mmu.c 21.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License, version 2, as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
 */
18 19 20 21

#include <linux/mman.h>
#include <linux/kvm_host.h>
#include <linux/io.h>
C
Christoffer Dall 已提交
22
#include <trace/events/kvm.h>
23
#include <asm/pgalloc.h>
24
#include <asm/cacheflush.h>
25 26
#include <asm/kvm_arm.h>
#include <asm/kvm_mmu.h>
C
Christoffer Dall 已提交
27
#include <asm/kvm_mmio.h>
28
#include <asm/kvm_asm.h>
29
#include <asm/kvm_emulate.h>
30 31

#include "trace.h"
32 33 34

extern char  __hyp_idmap_text_start[], __hyp_idmap_text_end[];

35
static pgd_t *boot_hyp_pgd;
36
static pgd_t *hyp_pgd;
37 38
static DEFINE_MUTEX(kvm_hyp_pgd_mutex);

39 40 41 42 43
static void *init_bounce_page;
static unsigned long hyp_idmap_start;
static unsigned long hyp_idmap_end;
static phys_addr_t hyp_idmap_vector;

44
static void kvm_tlb_flush_vmid_ipa(struct kvm *kvm, phys_addr_t ipa)
45
{
46 47 48 49 50 51 52 53
	/*
	 * This function also gets called when dealing with HYP page
	 * tables. As HYP doesn't have an associated struct kvm (and
	 * the HYP page tables are fairly static), we don't do
	 * anything there.
	 */
	if (kvm)
		kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, kvm, ipa);
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
}

static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
				  int min, int max)
{
	void *page;

	BUG_ON(max > KVM_NR_MEM_OBJS);
	if (cache->nobjs >= min)
		return 0;
	while (cache->nobjs < max) {
		page = (void *)__get_free_page(PGALLOC_GFP);
		if (!page)
			return -ENOMEM;
		cache->objects[cache->nobjs++] = page;
	}
	return 0;
}

static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
{
	while (mc->nobjs)
		free_page((unsigned long)mc->objects[--mc->nobjs]);
}

static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
{
	void *p;

	BUG_ON(!mc || !mc->nobjs);
	p = mc->objects[--mc->nobjs];
	return p;
}

88
static void clear_pud_entry(struct kvm *kvm, pud_t *pud, phys_addr_t addr)
89
{
90 91
	pmd_t *pmd_table = pmd_offset(pud, 0);
	pud_clear(pud);
92
	kvm_tlb_flush_vmid_ipa(kvm, addr);
93 94 95
	pmd_free(NULL, pmd_table);
	put_page(virt_to_page(pud));
}
96

97
static void clear_pmd_entry(struct kvm *kvm, pmd_t *pmd, phys_addr_t addr)
98 99 100
{
	pte_t *pte_table = pte_offset_kernel(pmd, 0);
	pmd_clear(pmd);
101
	kvm_tlb_flush_vmid_ipa(kvm, addr);
102 103 104 105 106 107 108 109 110 111
	pte_free_kernel(NULL, pte_table);
	put_page(virt_to_page(pmd));
}

static bool pmd_empty(pmd_t *pmd)
{
	struct page *pmd_page = virt_to_page(pmd);
	return page_count(pmd_page) == 1;
}

112
static void clear_pte_entry(struct kvm *kvm, pte_t *pte, phys_addr_t addr)
113 114 115 116
{
	if (pte_present(*pte)) {
		kvm_set_pte(pte, __pte(0));
		put_page(virt_to_page(pte));
117
		kvm_tlb_flush_vmid_ipa(kvm, addr);
118 119 120
	}
}

121 122 123 124 125 126
static bool pte_empty(pte_t *pte)
{
	struct page *pte_page = virt_to_page(pte);
	return page_count(pte_page) == 1;
}

127 128
static void unmap_range(struct kvm *kvm, pgd_t *pgdp,
			unsigned long long start, u64 size)
129 130 131 132
{
	pgd_t *pgd;
	pud_t *pud;
	pmd_t *pmd;
133 134
	pte_t *pte;
	unsigned long long addr = start, end = start + size;
135
	u64 next;
136

137 138 139 140
	while (addr < end) {
		pgd = pgdp + pgd_index(addr);
		pud = pud_offset(pgd, addr);
		if (pud_none(*pud)) {
141
			addr = pud_addr_end(addr, end);
142 143
			continue;
		}
144

145 146
		pmd = pmd_offset(pud, addr);
		if (pmd_none(*pmd)) {
147
			addr = pmd_addr_end(addr, end);
148 149
			continue;
		}
150

151
		pte = pte_offset_kernel(pmd, addr);
152
		clear_pte_entry(kvm, pte, addr);
153
		next = addr + PAGE_SIZE;
154 155 156

		/* If we emptied the pte, walk back up the ladder */
		if (pte_empty(pte)) {
157
			clear_pmd_entry(kvm, pmd, addr);
158
			next = pmd_addr_end(addr, end);
159
			if (pmd_empty(pmd)) {
160
				clear_pud_entry(kvm, pud, addr);
161
				next = pud_addr_end(addr, end);
162 163 164
			}
		}

165
		addr = next;
166
	}
167 168
}

169 170 171 172 173 174 175 176 177 178
/**
 * free_boot_hyp_pgd - free HYP boot page tables
 *
 * Free the HYP boot page tables. The bounce page is also freed.
 */
void free_boot_hyp_pgd(void)
{
	mutex_lock(&kvm_hyp_pgd_mutex);

	if (boot_hyp_pgd) {
179 180
		unmap_range(NULL, boot_hyp_pgd, hyp_idmap_start, PAGE_SIZE);
		unmap_range(NULL, boot_hyp_pgd, TRAMPOLINE_VA, PAGE_SIZE);
181 182 183 184 185
		kfree(boot_hyp_pgd);
		boot_hyp_pgd = NULL;
	}

	if (hyp_pgd)
186
		unmap_range(NULL, hyp_pgd, TRAMPOLINE_VA, PAGE_SIZE);
187 188 189 190 191 192 193

	kfree(init_bounce_page);
	init_bounce_page = NULL;

	mutex_unlock(&kvm_hyp_pgd_mutex);
}

194
/**
195
 * free_hyp_pgds - free Hyp-mode page tables
196
 *
197 198 199 200 201 202
 * Assumes hyp_pgd is a page table used strictly in Hyp-mode and
 * therefore contains either mappings in the kernel memory area (above
 * PAGE_OFFSET), or device mappings in the vmalloc range (from
 * VMALLOC_START to VMALLOC_END).
 *
 * boot_hyp_pgd should only map two pages for the init code.
203
 */
204
void free_hyp_pgds(void)
205 206 207
{
	unsigned long addr;

208
	free_boot_hyp_pgd();
209

210
	mutex_lock(&kvm_hyp_pgd_mutex);
211

212 213
	if (hyp_pgd) {
		for (addr = PAGE_OFFSET; virt_addr_valid(addr); addr += PGDIR_SIZE)
214
			unmap_range(NULL, hyp_pgd, KERN_TO_HYP(addr), PGDIR_SIZE);
215
		for (addr = VMALLOC_START; is_vmalloc_addr((void*)addr); addr += PGDIR_SIZE)
216 217
			unmap_range(NULL, hyp_pgd, KERN_TO_HYP(addr), PGDIR_SIZE);

218
		kfree(hyp_pgd);
219
		hyp_pgd = NULL;
220 221
	}

222 223 224 225
	mutex_unlock(&kvm_hyp_pgd_mutex);
}

static void create_hyp_pte_mappings(pmd_t *pmd, unsigned long start,
226 227
				    unsigned long end, unsigned long pfn,
				    pgprot_t prot)
228 229 230 231
{
	pte_t *pte;
	unsigned long addr;

232 233
	addr = start;
	do {
234 235
		pte = pte_offset_kernel(pmd, addr);
		kvm_set_pte(pte, pfn_pte(pfn, prot));
236
		get_page(virt_to_page(pte));
237
		kvm_flush_dcache_to_poc(pte, sizeof(*pte));
238
		pfn++;
239
	} while (addr += PAGE_SIZE, addr != end);
240 241 242
}

static int create_hyp_pmd_mappings(pud_t *pud, unsigned long start,
243 244
				   unsigned long end, unsigned long pfn,
				   pgprot_t prot)
245 246 247 248 249
{
	pmd_t *pmd;
	pte_t *pte;
	unsigned long addr, next;

250 251
	addr = start;
	do {
252
		pmd = pmd_offset(pud, addr);
253 254 255 256

		BUG_ON(pmd_sect(*pmd));

		if (pmd_none(*pmd)) {
257
			pte = pte_alloc_one_kernel(NULL, addr);
258 259 260 261 262
			if (!pte) {
				kvm_err("Cannot allocate Hyp pte\n");
				return -ENOMEM;
			}
			pmd_populate_kernel(NULL, pmd, pte);
263
			get_page(virt_to_page(pmd));
264
			kvm_flush_dcache_to_poc(pmd, sizeof(*pmd));
265 266 267 268
		}

		next = pmd_addr_end(addr, end);

269 270
		create_hyp_pte_mappings(pmd, addr, next, pfn, prot);
		pfn += (next - addr) >> PAGE_SHIFT;
271
	} while (addr = next, addr != end);
272 273 274 275

	return 0;
}

276 277 278
static int __create_hyp_mappings(pgd_t *pgdp,
				 unsigned long start, unsigned long end,
				 unsigned long pfn, pgprot_t prot)
279 280 281 282 283 284 285 286
{
	pgd_t *pgd;
	pud_t *pud;
	pmd_t *pmd;
	unsigned long addr, next;
	int err = 0;

	mutex_lock(&kvm_hyp_pgd_mutex);
287 288 289
	addr = start & PAGE_MASK;
	end = PAGE_ALIGN(end);
	do {
290 291
		pgd = pgdp + pgd_index(addr);
		pud = pud_offset(pgd, addr);
292 293

		if (pud_none_or_clear_bad(pud)) {
294
			pmd = pmd_alloc_one(NULL, addr);
295 296 297 298 299 300
			if (!pmd) {
				kvm_err("Cannot allocate Hyp pmd\n");
				err = -ENOMEM;
				goto out;
			}
			pud_populate(NULL, pud, pmd);
301
			get_page(virt_to_page(pud));
302
			kvm_flush_dcache_to_poc(pud, sizeof(*pud));
303 304 305
		}

		next = pgd_addr_end(addr, end);
306
		err = create_hyp_pmd_mappings(pud, addr, next, pfn, prot);
307 308
		if (err)
			goto out;
309
		pfn += (next - addr) >> PAGE_SHIFT;
310
	} while (addr = next, addr != end);
311 312 313 314 315 316
out:
	mutex_unlock(&kvm_hyp_pgd_mutex);
	return err;
}

/**
317
 * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode
318 319 320
 * @from:	The virtual kernel start address of the range
 * @to:		The virtual kernel end address of the range (exclusive)
 *
321 322 323
 * The same virtual address as the kernel virtual address is also used
 * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying
 * physical pages.
324 325 326
 */
int create_hyp_mappings(void *from, void *to)
{
327 328 329 330 331 332 333 334 335 336
	unsigned long phys_addr = virt_to_phys(from);
	unsigned long start = KERN_TO_HYP((unsigned long)from);
	unsigned long end = KERN_TO_HYP((unsigned long)to);

	/* Check for a valid kernel memory mapping */
	if (!virt_addr_valid(from) || !virt_addr_valid(to - 1))
		return -EINVAL;

	return __create_hyp_mappings(hyp_pgd, start, end,
				     __phys_to_pfn(phys_addr), PAGE_HYP);
337 338 339
}

/**
340 341 342
 * create_hyp_io_mappings - duplicate a kernel IO mapping into Hyp mode
 * @from:	The kernel start VA of the range
 * @to:		The kernel end VA of the range (exclusive)
343
 * @phys_addr:	The physical start address which gets mapped
344 345 346
 *
 * The resulting HYP VA is the same as the kernel VA, modulo
 * HYP_PAGE_OFFSET.
347
 */
348
int create_hyp_io_mappings(void *from, void *to, phys_addr_t phys_addr)
349
{
350 351 352 353 354 355 356 357 358
	unsigned long start = KERN_TO_HYP((unsigned long)from);
	unsigned long end = KERN_TO_HYP((unsigned long)to);

	/* Check for a valid kernel IO mapping */
	if (!is_vmalloc_addr(from) || !is_vmalloc_addr(to - 1))
		return -EINVAL;

	return __create_hyp_mappings(hyp_pgd, start, end,
				     __phys_to_pfn(phys_addr), PAGE_HYP_DEVICE);
359 360
}

361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
/**
 * kvm_alloc_stage2_pgd - allocate level-1 table for stage-2 translation.
 * @kvm:	The KVM struct pointer for the VM.
 *
 * Allocates the 1st level table only of size defined by S2_PGD_ORDER (can
 * support either full 40-bit input addresses or limited to 32-bit input
 * addresses). Clears the allocated pages.
 *
 * Note we don't need locking here as this is only called when the VM is
 * created, which can only be done once.
 */
int kvm_alloc_stage2_pgd(struct kvm *kvm)
{
	pgd_t *pgd;

	if (kvm->arch.pgd != NULL) {
		kvm_err("kvm_arch already initialized?\n");
		return -EINVAL;
	}

	pgd = (pgd_t *)__get_free_pages(GFP_KERNEL, S2_PGD_ORDER);
	if (!pgd)
		return -ENOMEM;

	memset(pgd, 0, PTRS_PER_S2_PGD * sizeof(pgd_t));
386
	kvm_clean_pgd(pgd);
387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
	kvm->arch.pgd = pgd;

	return 0;
}

/**
 * unmap_stage2_range -- Clear stage2 page table entries to unmap a range
 * @kvm:   The VM pointer
 * @start: The intermediate physical base address of the range to unmap
 * @size:  The size of the area to unmap
 *
 * Clear a range of stage-2 mappings, lowering the various ref-counts.  Must
 * be called while holding mmu_lock (unless for freeing the stage2 pgd before
 * destroying the VM), otherwise another faulting VCPU may come in and mess
 * with things behind our backs.
 */
static void unmap_stage2_range(struct kvm *kvm, phys_addr_t start, u64 size)
{
405
	unmap_range(kvm, kvm->arch.pgd, start, size);
406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
}

/**
 * kvm_free_stage2_pgd - free all stage-2 tables
 * @kvm:	The KVM struct pointer for the VM.
 *
 * Walks the level-1 page table pointed to by kvm->arch.pgd and frees all
 * underlying level-2 and level-3 tables before freeing the actual level-1 table
 * and setting the struct pointer to NULL.
 *
 * Note we don't need locking here as this is only called when the VM is
 * destroyed, which can only be done once.
 */
void kvm_free_stage2_pgd(struct kvm *kvm)
{
	if (kvm->arch.pgd == NULL)
		return;

	unmap_stage2_range(kvm, 0, KVM_PHYS_SIZE);
	free_pages((unsigned long)kvm->arch.pgd, S2_PGD_ORDER);
	kvm->arch.pgd = NULL;
}


static int stage2_set_pte(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
			  phys_addr_t addr, const pte_t *new_pte, bool iomap)
{
	pgd_t *pgd;
	pud_t *pud;
	pmd_t *pmd;
	pte_t *pte, old_pte;

	/* Create 2nd stage page table mapping - Level 1 */
	pgd = kvm->arch.pgd + pgd_index(addr);
	pud = pud_offset(pgd, addr);
	if (pud_none(*pud)) {
		if (!cache)
			return 0; /* ignore calls from kvm_set_spte_hva */
		pmd = mmu_memory_cache_alloc(cache);
		pud_populate(NULL, pud, pmd);
		get_page(virt_to_page(pud));
447 448 449
	}

	pmd = pmd_offset(pud, addr);
450 451 452 453 454 455

	/* Create 2nd stage page table mapping - Level 2 */
	if (pmd_none(*pmd)) {
		if (!cache)
			return 0; /* ignore calls from kvm_set_spte_hva */
		pte = mmu_memory_cache_alloc(cache);
456
		kvm_clean_pte(pte);
457 458
		pmd_populate_kernel(NULL, pmd, pte);
		get_page(virt_to_page(pmd));
459 460 461
	}

	pte = pte_offset_kernel(pmd, addr);
462 463 464 465 466 467 468 469

	if (iomap && pte_present(*pte))
		return -EFAULT;

	/* Create 2nd stage page table mapping - Level 3 */
	old_pte = *pte;
	kvm_set_pte(pte, *new_pte);
	if (pte_present(old_pte))
470
		kvm_tlb_flush_vmid_ipa(kvm, addr);
471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
	else
		get_page(virt_to_page(pte));

	return 0;
}

/**
 * kvm_phys_addr_ioremap - map a device range to guest IPA
 *
 * @kvm:	The KVM pointer
 * @guest_ipa:	The IPA at which to insert the mapping
 * @pa:		The physical address of the device
 * @size:	The size of the mapping
 */
int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
			  phys_addr_t pa, unsigned long size)
{
	phys_addr_t addr, end;
	int ret = 0;
	unsigned long pfn;
	struct kvm_mmu_memory_cache cache = { 0, };

	end = (guest_ipa + size + PAGE_SIZE - 1) & PAGE_MASK;
	pfn = __phys_to_pfn(pa);

	for (addr = guest_ipa; addr < end; addr += PAGE_SIZE) {
497 498
		pte_t pte = pfn_pte(pfn, PAGE_S2_DEVICE);
		kvm_set_s2pte_writable(&pte);
499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516

		ret = mmu_topup_memory_cache(&cache, 2, 2);
		if (ret)
			goto out;
		spin_lock(&kvm->mmu_lock);
		ret = stage2_set_pte(kvm, &cache, addr, &pte, true);
		spin_unlock(&kvm->mmu_lock);
		if (ret)
			goto out;

		pfn++;
	}

out:
	mmu_free_memory_cache(&cache);
	return ret;
}

517 518 519 520 521 522 523 524 525 526 527
static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
			  gfn_t gfn, struct kvm_memory_slot *memslot,
			  unsigned long fault_status)
{
	pte_t new_pte;
	pfn_t pfn;
	int ret;
	bool write_fault, writable;
	unsigned long mmu_seq;
	struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;

528
	write_fault = kvm_is_write_fault(kvm_vcpu_get_hsr(vcpu));
529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561
	if (fault_status == FSC_PERM && !write_fault) {
		kvm_err("Unexpected L2 read permission error\n");
		return -EFAULT;
	}

	/* We need minimum second+third level pages */
	ret = mmu_topup_memory_cache(memcache, 2, KVM_NR_MEM_OBJS);
	if (ret)
		return ret;

	mmu_seq = vcpu->kvm->mmu_notifier_seq;
	/*
	 * Ensure the read of mmu_notifier_seq happens before we call
	 * gfn_to_pfn_prot (which calls get_user_pages), so that we don't risk
	 * the page we just got a reference to gets unmapped before we have a
	 * chance to grab the mmu_lock, which ensure that if the page gets
	 * unmapped afterwards, the call to kvm_unmap_hva will take it away
	 * from us again properly. This smp_rmb() interacts with the smp_wmb()
	 * in kvm_mmu_notifier_invalidate_<page|range_end>.
	 */
	smp_rmb();

	pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write_fault, &writable);
	if (is_error_pfn(pfn))
		return -EFAULT;

	new_pte = pfn_pte(pfn, PAGE_S2);
	coherent_icache_guest_page(vcpu->kvm, gfn);

	spin_lock(&vcpu->kvm->mmu_lock);
	if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
		goto out_unlock;
	if (writable) {
562
		kvm_set_s2pte_writable(&new_pte);
563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584
		kvm_set_pfn_dirty(pfn);
	}
	stage2_set_pte(vcpu->kvm, memcache, fault_ipa, &new_pte, false);

out_unlock:
	spin_unlock(&vcpu->kvm->mmu_lock);
	kvm_release_pfn_clean(pfn);
	return 0;
}

/**
 * kvm_handle_guest_abort - handles all 2nd stage aborts
 * @vcpu:	the VCPU pointer
 * @run:	the kvm_run structure
 *
 * Any abort that gets to the host is almost guaranteed to be caused by a
 * missing second stage translation table entry, which can mean that either the
 * guest simply needs more memory and we must allocate an appropriate page or it
 * can mean that the guest tried to access I/O memory, which is emulated by user
 * space. The distinction is based on the IPA causing the fault and whether this
 * memory region has been registered as standard RAM by user space.
 */
585 586
int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
587 588 589 590 591 592 593
	unsigned long fault_status;
	phys_addr_t fault_ipa;
	struct kvm_memory_slot *memslot;
	bool is_iabt;
	gfn_t gfn;
	int ret, idx;

594
	is_iabt = kvm_vcpu_trap_is_iabt(vcpu);
595
	fault_ipa = kvm_vcpu_get_fault_ipa(vcpu);
596

597 598
	trace_kvm_guest_fault(*vcpu_pc(vcpu), kvm_vcpu_get_hsr(vcpu),
			      kvm_vcpu_get_hfar(vcpu), fault_ipa);
599 600

	/* Check the stage-2 fault is trans. fault or write fault */
601
	fault_status = kvm_vcpu_trap_get_fault(vcpu);
602
	if (fault_status != FSC_FAULT && fault_status != FSC_PERM) {
603 604
		kvm_err("Unsupported fault status: EC=%#x DFCS=%#lx\n",
			kvm_vcpu_trap_get_class(vcpu), fault_status);
605 606 607 608 609 610 611 612 613
		return -EFAULT;
	}

	idx = srcu_read_lock(&vcpu->kvm->srcu);

	gfn = fault_ipa >> PAGE_SHIFT;
	if (!kvm_is_visible_gfn(vcpu->kvm, gfn)) {
		if (is_iabt) {
			/* Prefetch Abort on I/O address */
614
			kvm_inject_pabt(vcpu, kvm_vcpu_get_hfar(vcpu));
615 616 617 618 619 620 621 622 623 624 625
			ret = 1;
			goto out_unlock;
		}

		if (fault_status != FSC_FAULT) {
			kvm_err("Unsupported fault status on io memory: %#lx\n",
				fault_status);
			ret = -EFAULT;
			goto out_unlock;
		}

M
Marc Zyngier 已提交
626 627 628 629 630 631 632
		/*
		 * The IPA is reported as [MAX:12], so we need to
		 * complement it with the bottom 12 bits from the
		 * faulting VA. This is always 12 bits, irrespective
		 * of the page size.
		 */
		fault_ipa |= kvm_vcpu_get_hfar(vcpu) & ((1 << 12) - 1);
C
Christoffer Dall 已提交
633
		ret = io_mem_abort(vcpu, run, fault_ipa);
634 635 636 637 638 639 640 641 642 643 644
		goto out_unlock;
	}

	memslot = gfn_to_memslot(vcpu->kvm, gfn);

	ret = user_mem_abort(vcpu, fault_ipa, gfn, memslot, fault_status);
	if (ret == 0)
		ret = 1;
out_unlock:
	srcu_read_unlock(&vcpu->kvm->srcu, idx);
	return ret;
645 646
}

647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737
static void handle_hva_to_gpa(struct kvm *kvm,
			      unsigned long start,
			      unsigned long end,
			      void (*handler)(struct kvm *kvm,
					      gpa_t gpa, void *data),
			      void *data)
{
	struct kvm_memslots *slots;
	struct kvm_memory_slot *memslot;

	slots = kvm_memslots(kvm);

	/* we only care about the pages that the guest sees */
	kvm_for_each_memslot(memslot, slots) {
		unsigned long hva_start, hva_end;
		gfn_t gfn, gfn_end;

		hva_start = max(start, memslot->userspace_addr);
		hva_end = min(end, memslot->userspace_addr +
					(memslot->npages << PAGE_SHIFT));
		if (hva_start >= hva_end)
			continue;

		/*
		 * {gfn(page) | page intersects with [hva_start, hva_end)} =
		 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
		 */
		gfn = hva_to_gfn_memslot(hva_start, memslot);
		gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);

		for (; gfn < gfn_end; ++gfn) {
			gpa_t gpa = gfn << PAGE_SHIFT;
			handler(kvm, gpa, data);
		}
	}
}

static void kvm_unmap_hva_handler(struct kvm *kvm, gpa_t gpa, void *data)
{
	unmap_stage2_range(kvm, gpa, PAGE_SIZE);
}

int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
{
	unsigned long end = hva + PAGE_SIZE;

	if (!kvm->arch.pgd)
		return 0;

	trace_kvm_unmap_hva(hva);
	handle_hva_to_gpa(kvm, hva, end, &kvm_unmap_hva_handler, NULL);
	return 0;
}

int kvm_unmap_hva_range(struct kvm *kvm,
			unsigned long start, unsigned long end)
{
	if (!kvm->arch.pgd)
		return 0;

	trace_kvm_unmap_hva_range(start, end);
	handle_hva_to_gpa(kvm, start, end, &kvm_unmap_hva_handler, NULL);
	return 0;
}

static void kvm_set_spte_handler(struct kvm *kvm, gpa_t gpa, void *data)
{
	pte_t *pte = (pte_t *)data;

	stage2_set_pte(kvm, NULL, gpa, pte, false);
}


void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
{
	unsigned long end = hva + PAGE_SIZE;
	pte_t stage2_pte;

	if (!kvm->arch.pgd)
		return;

	trace_kvm_set_spte_hva(hva);
	stage2_pte = pfn_pte(pte_pfn(pte), PAGE_S2);
	handle_hva_to_gpa(kvm, hva, end, &kvm_set_spte_handler, &stage2_pte);
}

void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu)
{
	mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
}

738 739 740 741 742
phys_addr_t kvm_mmu_get_httbr(void)
{
	return virt_to_phys(hyp_pgd);
}

743 744 745 746 747 748 749 750 751 752
phys_addr_t kvm_mmu_get_boot_httbr(void)
{
	return virt_to_phys(boot_hyp_pgd);
}

phys_addr_t kvm_get_idmap_vector(void)
{
	return hyp_idmap_vector;
}

753 754
int kvm_mmu_init(void)
{
755 756
	int err;

757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794
	hyp_idmap_start = virt_to_phys(__hyp_idmap_text_start);
	hyp_idmap_end = virt_to_phys(__hyp_idmap_text_end);
	hyp_idmap_vector = virt_to_phys(__kvm_hyp_init);

	if ((hyp_idmap_start ^ hyp_idmap_end) & PAGE_MASK) {
		/*
		 * Our init code is crossing a page boundary. Allocate
		 * a bounce page, copy the code over and use that.
		 */
		size_t len = __hyp_idmap_text_end - __hyp_idmap_text_start;
		phys_addr_t phys_base;

		init_bounce_page = kmalloc(PAGE_SIZE, GFP_KERNEL);
		if (!init_bounce_page) {
			kvm_err("Couldn't allocate HYP init bounce page\n");
			err = -ENOMEM;
			goto out;
		}

		memcpy(init_bounce_page, __hyp_idmap_text_start, len);
		/*
		 * Warning: the code we just copied to the bounce page
		 * must be flushed to the point of coherency.
		 * Otherwise, the data may be sitting in L2, and HYP
		 * mode won't be able to observe it as it runs with
		 * caches off at that point.
		 */
		kvm_flush_dcache_to_poc(init_bounce_page, len);

		phys_base = virt_to_phys(init_bounce_page);
		hyp_idmap_vector += phys_base - hyp_idmap_start;
		hyp_idmap_start = phys_base;
		hyp_idmap_end = phys_base + len;

		kvm_info("Using HYP init bounce page @%lx\n",
			 (unsigned long)phys_base);
	}

795
	hyp_pgd = kzalloc(PTRS_PER_PGD * sizeof(pgd_t), GFP_KERNEL);
796 797
	boot_hyp_pgd = kzalloc(PTRS_PER_PGD * sizeof(pgd_t), GFP_KERNEL);
	if (!hyp_pgd || !boot_hyp_pgd) {
798
		kvm_err("Hyp mode PGD not allocated\n");
799 800 801 802 803 804 805 806 807 808 809 810 811 812
		err = -ENOMEM;
		goto out;
	}

	/* Create the idmap in the boot page tables */
	err = 	__create_hyp_mappings(boot_hyp_pgd,
				      hyp_idmap_start, hyp_idmap_end,
				      __phys_to_pfn(hyp_idmap_start),
				      PAGE_HYP);

	if (err) {
		kvm_err("Failed to idmap %lx-%lx\n",
			hyp_idmap_start, hyp_idmap_end);
		goto out;
813 814
	}

815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836
	/* Map the very same page at the trampoline VA */
	err = 	__create_hyp_mappings(boot_hyp_pgd,
				      TRAMPOLINE_VA, TRAMPOLINE_VA + PAGE_SIZE,
				      __phys_to_pfn(hyp_idmap_start),
				      PAGE_HYP);
	if (err) {
		kvm_err("Failed to map trampoline @%lx into boot HYP pgd\n",
			TRAMPOLINE_VA);
		goto out;
	}

	/* Map the same page again into the runtime page tables */
	err = 	__create_hyp_mappings(hyp_pgd,
				      TRAMPOLINE_VA, TRAMPOLINE_VA + PAGE_SIZE,
				      __phys_to_pfn(hyp_idmap_start),
				      PAGE_HYP);
	if (err) {
		kvm_err("Failed to map trampoline @%lx into runtime HYP pgd\n",
			TRAMPOLINE_VA);
		goto out;
	}

837
	return 0;
838
out:
839
	free_hyp_pgds();
840
	return err;
841
}