ce.c 53.1 KB
Newer Older
1 2
/*
 * Copyright (c) 2005-2011 Atheros Communications Inc.
K
Kalle Valo 已提交
3
 * Copyright (c) 2011-2017 Qualcomm Atheros, Inc.
4
 * Copyright (c) 2018 The Linux Foundation. All rights reserved.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
 *
 * Permission to use, copy, modify, and/or distribute this software for any
 * purpose with or without fee is hereby granted, provided that the above
 * copyright notice and this permission notice appear in all copies.
 *
 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 */

#include "hif.h"
#include "ce.h"
#include "debug.h"

/*
 * Support for Copy Engine hardware, which is mainly used for
 * communication between Host and Target over a PCIe interconnect.
 */

/*
 * A single CopyEngine (CE) comprises two "rings":
 *   a source ring
 *   a destination ring
 *
 * Each ring consists of a number of descriptors which specify
 * an address, length, and meta-data.
 *
36
 * Typically, one side of the PCIe/AHB/SNOC interconnect (Host or Target)
37 38 39 40 41
 * controls one ring and the other side controls the other ring.
 * The source side chooses when to initiate a transfer and it
 * chooses what to send (buffer address, length). The destination
 * side keeps a supply of "anonymous receive buffers" available and
 * it handles incoming data as it arrives (when the destination
42
 * receives an interrupt).
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
 *
 * The sender may send a simple buffer (address/length) or it may
 * send a small list of buffers.  When a small list is sent, hardware
 * "gathers" these and they end up in a single destination buffer
 * with a single interrupt.
 *
 * There are several "contexts" managed by this layer -- more, it
 * may seem -- than should be needed. These are provided mainly for
 * maximum flexibility and especially to facilitate a simpler HIF
 * implementation. There are per-CopyEngine recv, send, and watermark
 * contexts. These are supplied by the caller when a recv, send,
 * or watermark handler is established and they are echoed back to
 * the caller when the respective callbacks are invoked. There is
 * also a per-transfer context supplied by the caller when a buffer
 * (or sendlist) is sent and when a buffer is enqueued for recv.
 * These per-transfer contexts are echoed back to the caller when
 * the buffer is sent/received.
 */

62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
static inline u32 shadow_sr_wr_ind_addr(struct ath10k *ar,
					struct ath10k_ce_pipe *ce_state)
{
	u32 ce_id = ce_state->id;
	u32 addr = 0;

	switch (ce_id) {
	case 0:
		addr = 0x00032000;
		break;
	case 3:
		addr = 0x0003200C;
		break;
	case 4:
		addr = 0x00032010;
		break;
	case 5:
		addr = 0x00032014;
		break;
	case 7:
		addr = 0x0003201C;
		break;
	default:
		ath10k_warn(ar, "invalid CE id: %d", ce_id);
		break;
	}
	return addr;
}

static inline u32 shadow_dst_wr_ind_addr(struct ath10k *ar,
					 struct ath10k_ce_pipe *ce_state)
{
	u32 ce_id = ce_state->id;
	u32 addr = 0;

	switch (ce_id) {
	case 1:
		addr = 0x00032034;
		break;
	case 2:
		addr = 0x00032038;
		break;
	case 5:
		addr = 0x00032044;
		break;
	case 7:
		addr = 0x0003204C;
		break;
	case 8:
		addr = 0x00032050;
		break;
	case 9:
		addr = 0x00032054;
		break;
	case 10:
		addr = 0x00032058;
		break;
	case 11:
		addr = 0x0003205C;
		break;
	default:
		ath10k_warn(ar, "invalid CE id: %d", ce_id);
		break;
	}

	return addr;
}

130 131 132 133 134 135 136 137 138 139 140 141 142 143
static inline unsigned int
ath10k_set_ring_byte(unsigned int offset,
		     struct ath10k_hw_ce_regs_addr_map *addr_map)
{
	return ((offset << addr_map->lsb) & addr_map->mask);
}

static inline unsigned int
ath10k_get_ring_byte(unsigned int offset,
		     struct ath10k_hw_ce_regs_addr_map *addr_map)
{
	return ((offset & addr_map->mask) >> (addr_map->lsb));
}

144 145 146 147 148 149 150 151 152 153 154 155 156 157
static inline u32 ath10k_ce_read32(struct ath10k *ar, u32 offset)
{
	struct ath10k_ce *ce = ath10k_ce_priv(ar);

	return ce->bus_ops->read32(ar, offset);
}

static inline void ath10k_ce_write32(struct ath10k *ar, u32 offset, u32 value)
{
	struct ath10k_ce *ce = ath10k_ce_priv(ar);

	ce->bus_ops->write32(ar, offset, value);
}

158 159 160 161
static inline void ath10k_ce_dest_ring_write_index_set(struct ath10k *ar,
						       u32 ce_ctrl_addr,
						       unsigned int n)
{
162 163
	ath10k_ce_write32(ar, ce_ctrl_addr +
			  ar->hw_ce_regs->dst_wr_index_addr, n);
164 165 166 167 168
}

static inline u32 ath10k_ce_dest_ring_write_index_get(struct ath10k *ar,
						      u32 ce_ctrl_addr)
{
169 170
	return ath10k_ce_read32(ar, ce_ctrl_addr +
				ar->hw_ce_regs->dst_wr_index_addr);
171 172 173 174 175 176
}

static inline void ath10k_ce_src_ring_write_index_set(struct ath10k *ar,
						      u32 ce_ctrl_addr,
						      unsigned int n)
{
177 178
	ath10k_ce_write32(ar, ce_ctrl_addr +
			  ar->hw_ce_regs->sr_wr_index_addr, n);
179 180 181 182 183
}

static inline u32 ath10k_ce_src_ring_write_index_get(struct ath10k *ar,
						     u32 ce_ctrl_addr)
{
184 185
	return ath10k_ce_read32(ar, ce_ctrl_addr +
				ar->hw_ce_regs->sr_wr_index_addr);
186 187
}

188 189 190 191 192 193 194 195
static inline u32 ath10k_ce_src_ring_read_index_from_ddr(struct ath10k *ar,
							 u32 ce_id)
{
	struct ath10k_ce *ce = ath10k_ce_priv(ar);

	return ce->vaddr_rri[ce_id] & CE_DDR_RRI_MASK;
}

196 197 198
static inline u32 ath10k_ce_src_ring_read_index_get(struct ath10k *ar,
						    u32 ce_ctrl_addr)
{
199 200 201 202 203 204 205 206 207 208 209 210 211
	struct ath10k_ce *ce = ath10k_ce_priv(ar);
	u32 ce_id = COPY_ENGINE_ID(ce_ctrl_addr);
	struct ath10k_ce_pipe *ce_state = &ce->ce_states[ce_id];
	u32 index;

	if (ar->hw_params.rri_on_ddr &&
	    (ce_state->attr_flags & CE_ATTR_DIS_INTR))
		index = ath10k_ce_src_ring_read_index_from_ddr(ar, ce_id);
	else
		index = ath10k_ce_read32(ar, ce_ctrl_addr +
					 ar->hw_ce_regs->current_srri_addr);

	return index;
212 213
}

214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
static inline void
ath10k_ce_shadow_src_ring_write_index_set(struct ath10k *ar,
					  struct ath10k_ce_pipe *ce_state,
					  unsigned int value)
{
	ath10k_ce_write32(ar, shadow_sr_wr_ind_addr(ar, ce_state), value);
}

static inline void
ath10k_ce_shadow_dest_ring_write_index_set(struct ath10k *ar,
					   struct ath10k_ce_pipe *ce_state,
					   unsigned int value)
{
	ath10k_ce_write32(ar, shadow_dst_wr_ind_addr(ar, ce_state), value);
}

230 231 232 233
static inline void ath10k_ce_src_ring_base_addr_set(struct ath10k *ar,
						    u32 ce_ctrl_addr,
						    unsigned int addr)
{
234 235
	ath10k_ce_write32(ar, ce_ctrl_addr +
			  ar->hw_ce_regs->sr_base_addr, addr);
236 237 238 239 240 241
}

static inline void ath10k_ce_src_ring_size_set(struct ath10k *ar,
					       u32 ce_ctrl_addr,
					       unsigned int n)
{
242 243
	ath10k_ce_write32(ar, ce_ctrl_addr +
			  ar->hw_ce_regs->sr_size_addr, n);
244 245 246 247 248 249
}

static inline void ath10k_ce_src_ring_dmax_set(struct ath10k *ar,
					       u32 ce_ctrl_addr,
					       unsigned int n)
{
250
	struct ath10k_hw_ce_ctrl1 *ctrl_regs = ar->hw_ce_regs->ctrl1_regs;
251

252 253 254 255 256 257
	u32 ctrl1_addr = ath10k_ce_read32(ar, ce_ctrl_addr +
					  ctrl_regs->addr);

	ath10k_ce_write32(ar, ce_ctrl_addr + ctrl_regs->addr,
			  (ctrl1_addr &  ~(ctrl_regs->dmax->mask)) |
			  ath10k_set_ring_byte(n, ctrl_regs->dmax));
258 259 260 261 262 263
}

static inline void ath10k_ce_src_ring_byte_swap_set(struct ath10k *ar,
						    u32 ce_ctrl_addr,
						    unsigned int n)
{
264
	struct ath10k_hw_ce_ctrl1 *ctrl_regs = ar->hw_ce_regs->ctrl1_regs;
265

266 267 268 269 270 271
	u32 ctrl1_addr = ath10k_ce_read32(ar, ce_ctrl_addr +
					  ctrl_regs->addr);

	ath10k_ce_write32(ar, ce_ctrl_addr + ctrl_regs->addr,
			  (ctrl1_addr & ~(ctrl_regs->src_ring->mask)) |
			  ath10k_set_ring_byte(n, ctrl_regs->src_ring));
272 273 274 275 276 277
}

static inline void ath10k_ce_dest_ring_byte_swap_set(struct ath10k *ar,
						     u32 ce_ctrl_addr,
						     unsigned int n)
{
278
	struct ath10k_hw_ce_ctrl1 *ctrl_regs = ar->hw_ce_regs->ctrl1_regs;
279

280 281 282 283 284 285
	u32 ctrl1_addr = ath10k_ce_read32(ar, ce_ctrl_addr +
					  ctrl_regs->addr);

	ath10k_ce_write32(ar, ce_ctrl_addr + ctrl_regs->addr,
			  (ctrl1_addr & ~(ctrl_regs->dst_ring->mask)) |
			  ath10k_set_ring_byte(n, ctrl_regs->dst_ring));
286 287
}

288 289 290 291 292 293 294 295 296
static inline
	u32 ath10k_ce_dest_ring_read_index_from_ddr(struct ath10k *ar, u32 ce_id)
{
	struct ath10k_ce *ce = ath10k_ce_priv(ar);

	return (ce->vaddr_rri[ce_id] >> CE_DDR_DRRI_SHIFT) &
		CE_DDR_RRI_MASK;
}

297 298 299
static inline u32 ath10k_ce_dest_ring_read_index_get(struct ath10k *ar,
						     u32 ce_ctrl_addr)
{
300 301 302 303 304 305 306 307 308 309 310 311 312
	struct ath10k_ce *ce = ath10k_ce_priv(ar);
	u32 ce_id = COPY_ENGINE_ID(ce_ctrl_addr);
	struct ath10k_ce_pipe *ce_state = &ce->ce_states[ce_id];
	u32 index;

	if (ar->hw_params.rri_on_ddr &&
	    (ce_state->attr_flags & CE_ATTR_DIS_INTR))
		index = ath10k_ce_dest_ring_read_index_from_ddr(ar, ce_id);
	else
		index = ath10k_ce_read32(ar, ce_ctrl_addr +
					 ar->hw_ce_regs->current_drri_addr);

	return index;
313 314 315 316 317 318
}

static inline void ath10k_ce_dest_ring_base_addr_set(struct ath10k *ar,
						     u32 ce_ctrl_addr,
						     u32 addr)
{
319 320
	ath10k_ce_write32(ar, ce_ctrl_addr +
			  ar->hw_ce_regs->dr_base_addr, addr);
321 322 323 324 325 326
}

static inline void ath10k_ce_dest_ring_size_set(struct ath10k *ar,
						u32 ce_ctrl_addr,
						unsigned int n)
{
327 328
	ath10k_ce_write32(ar, ce_ctrl_addr +
			  ar->hw_ce_regs->dr_size_addr, n);
329 330 331 332 333 334
}

static inline void ath10k_ce_src_ring_highmark_set(struct ath10k *ar,
						   u32 ce_ctrl_addr,
						   unsigned int n)
{
335
	struct ath10k_hw_ce_dst_src_wm_regs *srcr_wm = ar->hw_ce_regs->wm_srcr;
336
	u32 addr = ath10k_ce_read32(ar, ce_ctrl_addr + srcr_wm->addr);
337

338 339 340
	ath10k_ce_write32(ar, ce_ctrl_addr + srcr_wm->addr,
			  (addr & ~(srcr_wm->wm_high->mask)) |
			  (ath10k_set_ring_byte(n, srcr_wm->wm_high)));
341 342 343 344 345 346
}

static inline void ath10k_ce_src_ring_lowmark_set(struct ath10k *ar,
						  u32 ce_ctrl_addr,
						  unsigned int n)
{
347
	struct ath10k_hw_ce_dst_src_wm_regs *srcr_wm = ar->hw_ce_regs->wm_srcr;
348
	u32 addr = ath10k_ce_read32(ar, ce_ctrl_addr + srcr_wm->addr);
349

350 351 352
	ath10k_ce_write32(ar, ce_ctrl_addr + srcr_wm->addr,
			  (addr & ~(srcr_wm->wm_low->mask)) |
			  (ath10k_set_ring_byte(n, srcr_wm->wm_low)));
353 354 355 356 357 358
}

static inline void ath10k_ce_dest_ring_highmark_set(struct ath10k *ar,
						    u32 ce_ctrl_addr,
						    unsigned int n)
{
359
	struct ath10k_hw_ce_dst_src_wm_regs *dstr_wm = ar->hw_ce_regs->wm_dstr;
360
	u32 addr = ath10k_ce_read32(ar, ce_ctrl_addr + dstr_wm->addr);
361

362 363 364
	ath10k_ce_write32(ar, ce_ctrl_addr + dstr_wm->addr,
			  (addr & ~(dstr_wm->wm_high->mask)) |
			  (ath10k_set_ring_byte(n, dstr_wm->wm_high)));
365 366 367 368 369 370
}

static inline void ath10k_ce_dest_ring_lowmark_set(struct ath10k *ar,
						   u32 ce_ctrl_addr,
						   unsigned int n)
{
371
	struct ath10k_hw_ce_dst_src_wm_regs *dstr_wm = ar->hw_ce_regs->wm_dstr;
372
	u32 addr = ath10k_ce_read32(ar, ce_ctrl_addr + dstr_wm->addr);
373

374 375 376
	ath10k_ce_write32(ar, ce_ctrl_addr + dstr_wm->addr,
			  (addr & ~(dstr_wm->wm_low->mask)) |
			  (ath10k_set_ring_byte(n, dstr_wm->wm_low)));
377 378 379 380 381
}

static inline void ath10k_ce_copy_complete_inter_enable(struct ath10k *ar,
							u32 ce_ctrl_addr)
{
382
	struct ath10k_hw_ce_host_ie *host_ie = ar->hw_ce_regs->host_ie;
383

384 385 386 387 388
	u32 host_ie_addr = ath10k_ce_read32(ar, ce_ctrl_addr +
					    ar->hw_ce_regs->host_ie_addr);

	ath10k_ce_write32(ar, ce_ctrl_addr + ar->hw_ce_regs->host_ie_addr,
			  host_ie_addr | host_ie->copy_complete->mask);
389 390 391 392 393
}

static inline void ath10k_ce_copy_complete_intr_disable(struct ath10k *ar,
							u32 ce_ctrl_addr)
{
394
	struct ath10k_hw_ce_host_ie *host_ie = ar->hw_ce_regs->host_ie;
395

396 397 398 399 400
	u32 host_ie_addr = ath10k_ce_read32(ar, ce_ctrl_addr +
					    ar->hw_ce_regs->host_ie_addr);

	ath10k_ce_write32(ar, ce_ctrl_addr + ar->hw_ce_regs->host_ie_addr,
			  host_ie_addr & ~(host_ie->copy_complete->mask));
401 402 403 404 405
}

static inline void ath10k_ce_watermark_intr_disable(struct ath10k *ar,
						    u32 ce_ctrl_addr)
{
406
	struct ath10k_hw_ce_host_wm_regs *wm_regs = ar->hw_ce_regs->wm_regs;
407

408 409 410 411 412
	u32 host_ie_addr = ath10k_ce_read32(ar, ce_ctrl_addr +
					    ar->hw_ce_regs->host_ie_addr);

	ath10k_ce_write32(ar, ce_ctrl_addr + ar->hw_ce_regs->host_ie_addr,
			  host_ie_addr & ~(wm_regs->wm_mask));
413 414 415 416 417
}

static inline void ath10k_ce_error_intr_enable(struct ath10k *ar,
					       u32 ce_ctrl_addr)
{
418
	struct ath10k_hw_ce_misc_regs *misc_regs = ar->hw_ce_regs->misc_regs;
419

420 421 422 423 424 425
	u32 misc_ie_addr = ath10k_ce_read32(ar, ce_ctrl_addr +
					    ar->hw_ce_regs->misc_ie_addr);

	ath10k_ce_write32(ar,
			  ce_ctrl_addr + ar->hw_ce_regs->misc_ie_addr,
			  misc_ie_addr | misc_regs->err_mask);
426 427
}

428 429 430
static inline void ath10k_ce_error_intr_disable(struct ath10k *ar,
						u32 ce_ctrl_addr)
{
431
	struct ath10k_hw_ce_misc_regs *misc_regs = ar->hw_ce_regs->misc_regs;
432

433 434 435 436 437 438
	u32 misc_ie_addr = ath10k_ce_read32(ar,
			ce_ctrl_addr + ar->hw_ce_regs->misc_ie_addr);

	ath10k_ce_write32(ar,
			  ce_ctrl_addr + ar->hw_ce_regs->misc_ie_addr,
			  misc_ie_addr & ~(misc_regs->err_mask));
439 440
}

441 442 443 444
static inline void ath10k_ce_engine_int_status_clear(struct ath10k *ar,
						     u32 ce_ctrl_addr,
						     unsigned int mask)
{
445 446
	struct ath10k_hw_ce_host_wm_regs *wm_regs = ar->hw_ce_regs->wm_regs;

447
	ath10k_ce_write32(ar, ce_ctrl_addr + wm_regs->addr, mask);
448 449 450
}

/*
451
 * Guts of ath10k_ce_send.
452 453
 * The caller takes responsibility for any needed locking.
 */
454 455 456 457 458 459
static int _ath10k_ce_send_nolock(struct ath10k_ce_pipe *ce_state,
				  void *per_transfer_context,
				  dma_addr_t buffer,
				  unsigned int nbytes,
				  unsigned int transfer_id,
				  unsigned int flags)
460 461
{
	struct ath10k *ar = ce_state->ar;
462
	struct ath10k_ce_ring *src_ring = ce_state->src_ring;
463
	struct ce_desc *desc, sdesc;
464 465 466 467 468 469 470 471
	unsigned int nentries_mask = src_ring->nentries_mask;
	unsigned int sw_index = src_ring->sw_index;
	unsigned int write_index = src_ring->write_index;
	u32 ctrl_addr = ce_state->ctrl_addr;
	u32 desc_flags = 0;
	int ret = 0;

	if (nbytes > ce_state->src_sz_max)
472
		ath10k_warn(ar, "%s: send more we can (nbytes: %d, max: %d)\n",
473 474 475 476
			    __func__, nbytes, ce_state->src_sz_max);

	if (unlikely(CE_RING_DELTA(nentries_mask,
				   write_index, sw_index - 1) <= 0)) {
M
Michal Kazior 已提交
477
		ret = -ENOSR;
478 479 480 481 482 483 484 485 486 487 488 489 490
		goto exit;
	}

	desc = CE_SRC_RING_TO_DESC(src_ring->base_addr_owner_space,
				   write_index);

	desc_flags |= SM(transfer_id, CE_DESC_FLAGS_META_DATA);

	if (flags & CE_SEND_FLAG_GATHER)
		desc_flags |= CE_DESC_FLAGS_GATHER;
	if (flags & CE_SEND_FLAG_BYTE_SWAP)
		desc_flags |= CE_DESC_FLAGS_BYTE_SWAP;

491 492 493
	sdesc.addr   = __cpu_to_le32(buffer);
	sdesc.nbytes = __cpu_to_le16(nbytes);
	sdesc.flags  = __cpu_to_le16(desc_flags);
494

495
	*desc = sdesc;
496 497 498 499 500 501 502

	src_ring->per_transfer_context[write_index] = per_transfer_context;

	/* Update Source Ring Write Index */
	write_index = CE_RING_IDX_INCR(nentries_mask, write_index);

	/* WORKAROUND */
503 504 505 506 507 508 509 510
	if (!(flags & CE_SEND_FLAG_GATHER)) {
		if (ar->hw_params.shadow_reg_support)
			ath10k_ce_shadow_src_ring_write_index_set(ar, ce_state,
								  write_index);
		else
			ath10k_ce_src_ring_write_index_set(ar, ctrl_addr,
							   write_index);
	}
511 512 513 514 515 516

	src_ring->write_index = write_index;
exit:
	return ret;
}

517 518 519 520 521 522 523 524 525 526 527
static int _ath10k_ce_send_nolock_64(struct ath10k_ce_pipe *ce_state,
				     void *per_transfer_context,
				     dma_addr_t buffer,
				     unsigned int nbytes,
				     unsigned int transfer_id,
				     unsigned int flags)
{
	struct ath10k *ar = ce_state->ar;
	struct ath10k_ce_ring *src_ring = ce_state->src_ring;
	struct ce_desc_64 *desc, sdesc;
	unsigned int nentries_mask = src_ring->nentries_mask;
528
	unsigned int sw_index;
529 530 531 532 533 534 535 536 537 538 539 540 541
	unsigned int write_index = src_ring->write_index;
	u32 ctrl_addr = ce_state->ctrl_addr;
	__le32 *addr;
	u32 desc_flags = 0;
	int ret = 0;

	if (test_bit(ATH10K_FLAG_CRASH_FLUSH, &ar->dev_flags))
		return -ESHUTDOWN;

	if (nbytes > ce_state->src_sz_max)
		ath10k_warn(ar, "%s: send more we can (nbytes: %d, max: %d)\n",
			    __func__, nbytes, ce_state->src_sz_max);

542 543 544 545 546
	if (ar->hw_params.rri_on_ddr)
		sw_index = ath10k_ce_src_ring_read_index_from_ddr(ar, ce_state->id);
	else
		sw_index = src_ring->sw_index;

547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601
	if (unlikely(CE_RING_DELTA(nentries_mask,
				   write_index, sw_index - 1) <= 0)) {
		ret = -ENOSR;
		goto exit;
	}

	desc = CE_SRC_RING_TO_DESC_64(src_ring->base_addr_owner_space,
				      write_index);

	desc_flags |= SM(transfer_id, CE_DESC_FLAGS_META_DATA);

	if (flags & CE_SEND_FLAG_GATHER)
		desc_flags |= CE_DESC_FLAGS_GATHER;

	if (flags & CE_SEND_FLAG_BYTE_SWAP)
		desc_flags |= CE_DESC_FLAGS_BYTE_SWAP;

	addr = (__le32 *)&sdesc.addr;

	flags |= upper_32_bits(buffer) & CE_DESC_FLAGS_GET_MASK;
	addr[0] = __cpu_to_le32(buffer);
	addr[1] = __cpu_to_le32(flags);
	if (flags & CE_SEND_FLAG_GATHER)
		addr[1] |= __cpu_to_le32(CE_WCN3990_DESC_FLAGS_GATHER);
	else
		addr[1] &= ~(__cpu_to_le32(CE_WCN3990_DESC_FLAGS_GATHER));

	sdesc.nbytes = __cpu_to_le16(nbytes);
	sdesc.flags  = __cpu_to_le16(desc_flags);

	*desc = sdesc;

	src_ring->per_transfer_context[write_index] = per_transfer_context;

	/* Update Source Ring Write Index */
	write_index = CE_RING_IDX_INCR(nentries_mask, write_index);

	if (!(flags & CE_SEND_FLAG_GATHER))
		ath10k_ce_src_ring_write_index_set(ar, ctrl_addr, write_index);

	src_ring->write_index = write_index;
exit:
	return ret;
}

int ath10k_ce_send_nolock(struct ath10k_ce_pipe *ce_state,
			  void *per_transfer_context,
			  dma_addr_t buffer,
			  unsigned int nbytes,
			  unsigned int transfer_id,
			  unsigned int flags)
{
	return ce_state->ops->ce_send_nolock(ce_state, per_transfer_context,
				    buffer, nbytes, transfer_id, flags);
}
602
EXPORT_SYMBOL(ath10k_ce_send_nolock);
603

604 605 606
void __ath10k_ce_send_revert(struct ath10k_ce_pipe *pipe)
{
	struct ath10k *ar = pipe->ar;
607
	struct ath10k_ce *ce = ath10k_ce_priv(ar);
608 609 610
	struct ath10k_ce_ring *src_ring = pipe->src_ring;
	u32 ctrl_addr = pipe->ctrl_addr;

611
	lockdep_assert_held(&ce->ce_lock);
612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629

	/*
	 * This function must be called only if there is an incomplete
	 * scatter-gather transfer (before index register is updated)
	 * that needs to be cleaned up.
	 */
	if (WARN_ON_ONCE(src_ring->write_index == src_ring->sw_index))
		return;

	if (WARN_ON_ONCE(src_ring->write_index ==
			 ath10k_ce_src_ring_write_index_get(ar, ctrl_addr)))
		return;

	src_ring->write_index--;
	src_ring->write_index &= src_ring->nentries_mask;

	src_ring->per_transfer_context[src_ring->write_index] = NULL;
}
630
EXPORT_SYMBOL(__ath10k_ce_send_revert);
631

632
int ath10k_ce_send(struct ath10k_ce_pipe *ce_state,
633
		   void *per_transfer_context,
634
		   dma_addr_t buffer,
635 636 637 638 639
		   unsigned int nbytes,
		   unsigned int transfer_id,
		   unsigned int flags)
{
	struct ath10k *ar = ce_state->ar;
640
	struct ath10k_ce *ce = ath10k_ce_priv(ar);
641 642
	int ret;

643
	spin_lock_bh(&ce->ce_lock);
644 645
	ret = ath10k_ce_send_nolock(ce_state, per_transfer_context,
				    buffer, nbytes, transfer_id, flags);
646
	spin_unlock_bh(&ce->ce_lock);
647 648 649

	return ret;
}
650
EXPORT_SYMBOL(ath10k_ce_send);
651

M
Michal Kazior 已提交
652 653 654
int ath10k_ce_num_free_src_entries(struct ath10k_ce_pipe *pipe)
{
	struct ath10k *ar = pipe->ar;
655
	struct ath10k_ce *ce = ath10k_ce_priv(ar);
M
Michal Kazior 已提交
656 657
	int delta;

658
	spin_lock_bh(&ce->ce_lock);
M
Michal Kazior 已提交
659 660 661
	delta = CE_RING_DELTA(pipe->src_ring->nentries_mask,
			      pipe->src_ring->write_index,
			      pipe->src_ring->sw_index - 1);
662
	spin_unlock_bh(&ce->ce_lock);
M
Michal Kazior 已提交
663 664 665

	return delta;
}
666
EXPORT_SYMBOL(ath10k_ce_num_free_src_entries);
M
Michal Kazior 已提交
667

668
int __ath10k_ce_rx_num_free_bufs(struct ath10k_ce_pipe *pipe)
669
{
670
	struct ath10k *ar = pipe->ar;
671
	struct ath10k_ce *ce = ath10k_ce_priv(ar);
672
	struct ath10k_ce_ring *dest_ring = pipe->dest_ring;
673
	unsigned int nentries_mask = dest_ring->nentries_mask;
674 675 676
	unsigned int write_index = dest_ring->write_index;
	unsigned int sw_index = dest_ring->sw_index;

677
	lockdep_assert_held(&ce->ce_lock);
678 679 680

	return CE_RING_DELTA(nentries_mask, write_index, sw_index - 1);
}
681
EXPORT_SYMBOL(__ath10k_ce_rx_num_free_bufs);
682

683 684
static int __ath10k_ce_rx_post_buf(struct ath10k_ce_pipe *pipe, void *ctx,
				   dma_addr_t paddr)
685 686
{
	struct ath10k *ar = pipe->ar;
687
	struct ath10k_ce *ce = ath10k_ce_priv(ar);
688 689 690 691 692 693 694 695
	struct ath10k_ce_ring *dest_ring = pipe->dest_ring;
	unsigned int nentries_mask = dest_ring->nentries_mask;
	unsigned int write_index = dest_ring->write_index;
	unsigned int sw_index = dest_ring->sw_index;
	struct ce_desc *base = dest_ring->base_addr_owner_space;
	struct ce_desc *desc = CE_DEST_RING_TO_DESC(base, write_index);
	u32 ctrl_addr = pipe->ctrl_addr;

696
	lockdep_assert_held(&ce->ce_lock);
697

698 699
	if ((pipe->id != 5) &&
	    CE_RING_DELTA(nentries_mask, write_index, sw_index - 1) == 0)
700
		return -ENOSPC;
701 702 703 704 705 706 707 708 709 710 711 712

	desc->addr = __cpu_to_le32(paddr);
	desc->nbytes = 0;

	dest_ring->per_transfer_context[write_index] = ctx;
	write_index = CE_RING_IDX_INCR(nentries_mask, write_index);
	ath10k_ce_dest_ring_write_index_set(ar, ctrl_addr, write_index);
	dest_ring->write_index = write_index;

	return 0;
}

713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745
static int __ath10k_ce_rx_post_buf_64(struct ath10k_ce_pipe *pipe,
				      void *ctx,
				      dma_addr_t paddr)
{
	struct ath10k *ar = pipe->ar;
	struct ath10k_ce *ce = ath10k_ce_priv(ar);
	struct ath10k_ce_ring *dest_ring = pipe->dest_ring;
	unsigned int nentries_mask = dest_ring->nentries_mask;
	unsigned int write_index = dest_ring->write_index;
	unsigned int sw_index = dest_ring->sw_index;
	struct ce_desc_64 *base = dest_ring->base_addr_owner_space;
	struct ce_desc_64 *desc =
			CE_DEST_RING_TO_DESC_64(base, write_index);
	u32 ctrl_addr = pipe->ctrl_addr;

	lockdep_assert_held(&ce->ce_lock);

	if (CE_RING_DELTA(nentries_mask, write_index, sw_index - 1) == 0)
		return -ENOSPC;

	desc->addr = __cpu_to_le64(paddr);
	desc->addr &= __cpu_to_le64(CE_DESC_37BIT_ADDR_MASK);

	desc->nbytes = 0;

	dest_ring->per_transfer_context[write_index] = ctx;
	write_index = CE_RING_IDX_INCR(nentries_mask, write_index);
	ath10k_ce_dest_ring_write_index_set(ar, ctrl_addr, write_index);
	dest_ring->write_index = write_index;

	return 0;
}

746 747 748 749 750 751 752
void ath10k_ce_rx_update_write_idx(struct ath10k_ce_pipe *pipe, u32 nentries)
{
	struct ath10k *ar = pipe->ar;
	struct ath10k_ce_ring *dest_ring = pipe->dest_ring;
	unsigned int nentries_mask = dest_ring->nentries_mask;
	unsigned int write_index = dest_ring->write_index;
	u32 ctrl_addr = pipe->ctrl_addr;
753 754 755 756 757
	u32 cur_write_idx = ath10k_ce_dest_ring_write_index_get(ar, ctrl_addr);

	/* Prevent CE ring stuck issue that will occur when ring is full.
	 * Make sure that write index is 1 less than read index.
	 */
758
	if (((cur_write_idx + nentries) & nentries_mask) == dest_ring->sw_index)
759
		nentries -= 1;
760 761 762 763 764

	write_index = CE_RING_IDX_ADD(nentries_mask, write_index, nentries);
	ath10k_ce_dest_ring_write_index_set(ar, ctrl_addr, write_index);
	dest_ring->write_index = write_index;
}
765
EXPORT_SYMBOL(ath10k_ce_rx_update_write_idx);
766

767 768
int ath10k_ce_rx_post_buf(struct ath10k_ce_pipe *pipe, void *ctx,
			  dma_addr_t paddr)
769 770
{
	struct ath10k *ar = pipe->ar;
771
	struct ath10k_ce *ce = ath10k_ce_priv(ar);
772 773
	int ret;

774
	spin_lock_bh(&ce->ce_lock);
775
	ret = pipe->ops->ce_rx_post_buf(pipe, ctx, paddr);
776
	spin_unlock_bh(&ce->ce_lock);
777

778 779
	return ret;
}
780
EXPORT_SYMBOL(ath10k_ce_rx_post_buf);
781 782 783 784 785

/*
 * Guts of ath10k_ce_completed_recv_next.
 * The caller takes responsibility for any necessary locking.
 */
786 787 788 789
static int
	 _ath10k_ce_completed_recv_next_nolock(struct ath10k_ce_pipe *ce_state,
					       void **per_transfer_contextp,
					       unsigned int *nbytesp)
790
{
791
	struct ath10k_ce_ring *dest_ring = ce_state->dest_ring;
792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822
	unsigned int nentries_mask = dest_ring->nentries_mask;
	unsigned int sw_index = dest_ring->sw_index;

	struct ce_desc *base = dest_ring->base_addr_owner_space;
	struct ce_desc *desc = CE_DEST_RING_TO_DESC(base, sw_index);
	struct ce_desc sdesc;
	u16 nbytes;

	/* Copy in one go for performance reasons */
	sdesc = *desc;

	nbytes = __le16_to_cpu(sdesc.nbytes);
	if (nbytes == 0) {
		/*
		 * This closes a relatively unusual race where the Host
		 * sees the updated DRRI before the update to the
		 * corresponding descriptor has completed. We treat this
		 * as a descriptor that is not yet done.
		 */
		return -EIO;
	}

	desc->nbytes = 0;

	/* Return data from completed destination descriptor */
	*nbytesp = nbytes;

	if (per_transfer_contextp)
		*per_transfer_contextp =
			dest_ring->per_transfer_context[sw_index];

823 824 825 826 827
	/* Copy engine 5 (HTT Rx) will reuse the same transfer context.
	 * So update transfer context all CEs except CE5.
	 */
	if (ce_state->id != 5)
		dest_ring->per_transfer_context[sw_index] = NULL;
828 829 830 831 832 833 834 835

	/* Update sw_index */
	sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
	dest_ring->sw_index = sw_index;

	return 0;
}

836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892
static int
_ath10k_ce_completed_recv_next_nolock_64(struct ath10k_ce_pipe *ce_state,
					 void **per_transfer_contextp,
					 unsigned int *nbytesp)
{
	struct ath10k_ce_ring *dest_ring = ce_state->dest_ring;
	unsigned int nentries_mask = dest_ring->nentries_mask;
	unsigned int sw_index = dest_ring->sw_index;
	struct ce_desc_64 *base = dest_ring->base_addr_owner_space;
	struct ce_desc_64 *desc =
		CE_DEST_RING_TO_DESC_64(base, sw_index);
	struct ce_desc_64 sdesc;
	u16 nbytes;

	/* Copy in one go for performance reasons */
	sdesc = *desc;

	nbytes = __le16_to_cpu(sdesc.nbytes);
	if (nbytes == 0) {
		/* This closes a relatively unusual race where the Host
		 * sees the updated DRRI before the update to the
		 * corresponding descriptor has completed. We treat this
		 * as a descriptor that is not yet done.
		 */
		return -EIO;
	}

	desc->nbytes = 0;

	/* Return data from completed destination descriptor */
	*nbytesp = nbytes;

	if (per_transfer_contextp)
		*per_transfer_contextp =
			dest_ring->per_transfer_context[sw_index];

	/* Copy engine 5 (HTT Rx) will reuse the same transfer context.
	 * So update transfer context all CEs except CE5.
	 */
	if (ce_state->id != 5)
		dest_ring->per_transfer_context[sw_index] = NULL;

	/* Update sw_index */
	sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
	dest_ring->sw_index = sw_index;

	return 0;
}

int ath10k_ce_completed_recv_next_nolock(struct ath10k_ce_pipe *ce_state,
					 void **per_transfer_ctx,
					 unsigned int *nbytesp)
{
	return ce_state->ops->ce_completed_recv_next_nolock(ce_state,
							    per_transfer_ctx,
							    nbytesp);
}
893
EXPORT_SYMBOL(ath10k_ce_completed_recv_next_nolock);
894

895
int ath10k_ce_completed_recv_next(struct ath10k_ce_pipe *ce_state,
896
				  void **per_transfer_contextp,
897
				  unsigned int *nbytesp)
898 899
{
	struct ath10k *ar = ce_state->ar;
900
	struct ath10k_ce *ce = ath10k_ce_priv(ar);
901 902
	int ret;

903
	spin_lock_bh(&ce->ce_lock);
904
	ret = ce_state->ops->ce_completed_recv_next_nolock(ce_state,
905
						   per_transfer_contextp,
906
						   nbytesp);
907

908
	spin_unlock_bh(&ce->ce_lock);
909 910 911

	return ret;
}
912
EXPORT_SYMBOL(ath10k_ce_completed_recv_next);
913

914 915 916
static int _ath10k_ce_revoke_recv_next(struct ath10k_ce_pipe *ce_state,
				       void **per_transfer_contextp,
				       dma_addr_t *bufferp)
917
{
918
	struct ath10k_ce_ring *dest_ring;
919 920 921 922 923
	unsigned int nentries_mask;
	unsigned int sw_index;
	unsigned int write_index;
	int ret;
	struct ath10k *ar;
924
	struct ath10k_ce *ce;
925 926 927 928 929 930 931

	dest_ring = ce_state->dest_ring;

	if (!dest_ring)
		return -EIO;

	ar = ce_state->ar;
932
	ce = ath10k_ce_priv(ar);
933

934
	spin_lock_bh(&ce->ce_lock);
935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951

	nentries_mask = dest_ring->nentries_mask;
	sw_index = dest_ring->sw_index;
	write_index = dest_ring->write_index;
	if (write_index != sw_index) {
		struct ce_desc *base = dest_ring->base_addr_owner_space;
		struct ce_desc *desc = CE_DEST_RING_TO_DESC(base, sw_index);

		/* Return data from completed destination descriptor */
		*bufferp = __le32_to_cpu(desc->addr);

		if (per_transfer_contextp)
			*per_transfer_contextp =
				dest_ring->per_transfer_context[sw_index];

		/* sanity */
		dest_ring->per_transfer_context[sw_index] = NULL;
M
Michal Kazior 已提交
952
		desc->nbytes = 0;
953 954 955 956 957 958 959 960 961

		/* Update sw_index */
		sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
		dest_ring->sw_index = sw_index;
		ret = 0;
	} else {
		ret = -EIO;
	}

962
	spin_unlock_bh(&ce->ce_lock);
963 964 965 966

	return ret;
}

967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028
static int _ath10k_ce_revoke_recv_next_64(struct ath10k_ce_pipe *ce_state,
					  void **per_transfer_contextp,
					  dma_addr_t *bufferp)
{
	struct ath10k_ce_ring *dest_ring;
	unsigned int nentries_mask;
	unsigned int sw_index;
	unsigned int write_index;
	int ret;
	struct ath10k *ar;
	struct ath10k_ce *ce;

	dest_ring = ce_state->dest_ring;

	if (!dest_ring)
		return -EIO;

	ar = ce_state->ar;
	ce = ath10k_ce_priv(ar);

	spin_lock_bh(&ce->ce_lock);

	nentries_mask = dest_ring->nentries_mask;
	sw_index = dest_ring->sw_index;
	write_index = dest_ring->write_index;
	if (write_index != sw_index) {
		struct ce_desc_64 *base = dest_ring->base_addr_owner_space;
		struct ce_desc_64 *desc =
			CE_DEST_RING_TO_DESC_64(base, sw_index);

		/* Return data from completed destination descriptor */
		*bufferp = __le64_to_cpu(desc->addr);

		if (per_transfer_contextp)
			*per_transfer_contextp =
				dest_ring->per_transfer_context[sw_index];

		/* sanity */
		dest_ring->per_transfer_context[sw_index] = NULL;
		desc->nbytes = 0;

		/* Update sw_index */
		sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
		dest_ring->sw_index = sw_index;
		ret = 0;
	} else {
		ret = -EIO;
	}

	spin_unlock_bh(&ce->ce_lock);

	return ret;
}

int ath10k_ce_revoke_recv_next(struct ath10k_ce_pipe *ce_state,
			       void **per_transfer_contextp,
			       dma_addr_t *bufferp)
{
	return ce_state->ops->ce_revoke_recv_next(ce_state,
						  per_transfer_contextp,
						  bufferp);
}
1029
EXPORT_SYMBOL(ath10k_ce_revoke_recv_next);
1030

1031 1032 1033 1034
/*
 * Guts of ath10k_ce_completed_send_next.
 * The caller takes responsibility for any necessary locking.
 */
K
Kalle Valo 已提交
1035
int ath10k_ce_completed_send_next_nolock(struct ath10k_ce_pipe *ce_state,
1036
					 void **per_transfer_contextp)
1037
{
1038
	struct ath10k_ce_ring *src_ring = ce_state->src_ring;
1039 1040 1041 1042 1043
	u32 ctrl_addr = ce_state->ctrl_addr;
	struct ath10k *ar = ce_state->ar;
	unsigned int nentries_mask = src_ring->nentries_mask;
	unsigned int sw_index = src_ring->sw_index;
	unsigned int read_index;
B
Ben Greear 已提交
1044
	struct ce_desc *desc;
1045 1046 1047 1048 1049 1050 1051 1052 1053

	if (src_ring->hw_index == sw_index) {
		/*
		 * The SW completion index has caught up with the cached
		 * version of the HW completion index.
		 * Update the cached HW completion index to see whether
		 * the SW has really caught up to the HW, or if the cached
		 * value of the HW index has become stale.
		 */
1054

1055 1056 1057 1058 1059 1060
		read_index = ath10k_ce_src_ring_read_index_get(ar, ctrl_addr);
		if (read_index == 0xffffffff)
			return -ENODEV;

		read_index &= nentries_mask;
		src_ring->hw_index = read_index;
1061
	}
1062

1063 1064 1065 1066
	if (ar->hw_params.rri_on_ddr)
		read_index = ath10k_ce_src_ring_read_index_get(ar, ctrl_addr);
	else
		read_index = src_ring->hw_index;
1067

1068
	if (read_index == sw_index)
1069
		return -EIO;
1070

1071 1072 1073
	if (per_transfer_contextp)
		*per_transfer_contextp =
			src_ring->per_transfer_context[sw_index];
1074

1075 1076
	/* sanity */
	src_ring->per_transfer_context[sw_index] = NULL;
B
Ben Greear 已提交
1077 1078 1079
	desc = CE_SRC_RING_TO_DESC(src_ring->base_addr_owner_space,
				   sw_index);
	desc->nbytes = 0;
1080

1081 1082 1083 1084 1085
	/* Update sw_index */
	sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
	src_ring->sw_index = sw_index;

	return 0;
1086
}
1087
EXPORT_SYMBOL(ath10k_ce_completed_send_next_nolock);
1088

1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123
static void ath10k_ce_extract_desc_data(struct ath10k *ar,
					struct ath10k_ce_ring *src_ring,
					u32 sw_index,
					dma_addr_t *bufferp,
					u32 *nbytesp,
					u32 *transfer_idp)
{
		struct ce_desc *base = src_ring->base_addr_owner_space;
		struct ce_desc *desc = CE_SRC_RING_TO_DESC(base, sw_index);

		/* Return data from completed source descriptor */
		*bufferp = __le32_to_cpu(desc->addr);
		*nbytesp = __le16_to_cpu(desc->nbytes);
		*transfer_idp = MS(__le16_to_cpu(desc->flags),
				   CE_DESC_FLAGS_META_DATA);
}

static void ath10k_ce_extract_desc_data_64(struct ath10k *ar,
					   struct ath10k_ce_ring *src_ring,
					   u32 sw_index,
					   dma_addr_t *bufferp,
					   u32 *nbytesp,
					   u32 *transfer_idp)
{
		struct ce_desc_64 *base = src_ring->base_addr_owner_space;
		struct ce_desc_64 *desc =
			CE_SRC_RING_TO_DESC_64(base, sw_index);

		/* Return data from completed source descriptor */
		*bufferp = __le64_to_cpu(desc->addr);
		*nbytesp = __le16_to_cpu(desc->nbytes);
		*transfer_idp = MS(__le16_to_cpu(desc->flags),
				   CE_DESC_FLAGS_META_DATA);
}

1124
/* NB: Modeled after ath10k_ce_completed_send_next */
1125
int ath10k_ce_cancel_send_next(struct ath10k_ce_pipe *ce_state,
1126
			       void **per_transfer_contextp,
1127
			       dma_addr_t *bufferp,
1128 1129 1130
			       unsigned int *nbytesp,
			       unsigned int *transfer_idp)
{
1131
	struct ath10k_ce_ring *src_ring;
1132 1133 1134 1135 1136
	unsigned int nentries_mask;
	unsigned int sw_index;
	unsigned int write_index;
	int ret;
	struct ath10k *ar;
1137
	struct ath10k_ce *ce;
1138 1139 1140 1141 1142 1143 1144

	src_ring = ce_state->src_ring;

	if (!src_ring)
		return -EIO;

	ar = ce_state->ar;
1145
	ce = ath10k_ce_priv(ar);
1146

1147
	spin_lock_bh(&ce->ce_lock);
1148 1149 1150 1151 1152 1153

	nentries_mask = src_ring->nentries_mask;
	sw_index = src_ring->sw_index;
	write_index = src_ring->write_index;

	if (write_index != sw_index) {
1154 1155 1156
		ce_state->ops->ce_extract_desc_data(ar, src_ring, sw_index,
						    bufferp, nbytesp,
						    transfer_idp);
1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172

		if (per_transfer_contextp)
			*per_transfer_contextp =
				src_ring->per_transfer_context[sw_index];

		/* sanity */
		src_ring->per_transfer_context[sw_index] = NULL;

		/* Update sw_index */
		sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
		src_ring->sw_index = sw_index;
		ret = 0;
	} else {
		ret = -EIO;
	}

1173
	spin_unlock_bh(&ce->ce_lock);
1174 1175 1176

	return ret;
}
1177
EXPORT_SYMBOL(ath10k_ce_cancel_send_next);
1178

1179
int ath10k_ce_completed_send_next(struct ath10k_ce_pipe *ce_state,
1180
				  void **per_transfer_contextp)
1181 1182
{
	struct ath10k *ar = ce_state->ar;
1183
	struct ath10k_ce *ce = ath10k_ce_priv(ar);
1184 1185
	int ret;

1186
	spin_lock_bh(&ce->ce_lock);
1187
	ret = ath10k_ce_completed_send_next_nolock(ce_state,
1188
						   per_transfer_contextp);
1189
	spin_unlock_bh(&ce->ce_lock);
1190 1191 1192

	return ret;
}
1193
EXPORT_SYMBOL(ath10k_ce_completed_send_next);
1194 1195 1196 1197 1198 1199 1200 1201 1202

/*
 * Guts of interrupt handler for per-engine interrupts on a particular CE.
 *
 * Invokes registered callbacks for recv_complete,
 * send_complete, and watermarks.
 */
void ath10k_ce_per_engine_service(struct ath10k *ar, unsigned int ce_id)
{
1203 1204
	struct ath10k_ce *ce = ath10k_ce_priv(ar);
	struct ath10k_ce_pipe *ce_state = &ce->ce_states[ce_id];
1205
	struct ath10k_hw_ce_host_wm_regs *wm_regs = ar->hw_ce_regs->wm_regs;
1206 1207
	u32 ctrl_addr = ce_state->ctrl_addr;

1208
	spin_lock_bh(&ce->ce_lock);
1209 1210

	/* Clear the copy-complete interrupts that will be handled here. */
1211 1212
	ath10k_ce_engine_int_status_clear(ar, ctrl_addr,
					  wm_regs->cc_mask);
1213

1214
	spin_unlock_bh(&ce->ce_lock);
1215

1216 1217 1218 1219 1220 1221
	if (ce_state->recv_cb)
		ce_state->recv_cb(ce_state);

	if (ce_state->send_cb)
		ce_state->send_cb(ce_state);

1222
	spin_lock_bh(&ce->ce_lock);
1223 1224 1225 1226 1227

	/*
	 * Misc CE interrupts are not being handled, but still need
	 * to be cleared.
	 */
1228
	ath10k_ce_engine_int_status_clear(ar, ctrl_addr, wm_regs->wm_mask);
1229

1230
	spin_unlock_bh(&ce->ce_lock);
1231
}
1232
EXPORT_SYMBOL(ath10k_ce_per_engine_service);
1233 1234 1235 1236 1237 1238 1239 1240 1241

/*
 * Handler for per-engine interrupts on ALL active CEs.
 * This is used in cases where the system is sharing a
 * single interrput for all CEs
 */

void ath10k_ce_per_engine_service_any(struct ath10k *ar)
{
1242
	int ce_id;
1243 1244
	u32 intr_summary;

1245
	intr_summary = ath10k_ce_interrupt_summary(ar);
1246

M
Michal Kazior 已提交
1247
	for (ce_id = 0; intr_summary && (ce_id < CE_COUNT); ce_id++) {
1248 1249 1250 1251 1252 1253 1254 1255 1256
		if (intr_summary & (1 << ce_id))
			intr_summary &= ~(1 << ce_id);
		else
			/* no intr pending on this CE */
			continue;

		ath10k_ce_per_engine_service(ar, ce_id);
	}
}
1257
EXPORT_SYMBOL(ath10k_ce_per_engine_service_any);
1258 1259 1260 1261 1262 1263 1264 1265

/*
 * Adjust interrupts for the copy complete handler.
 * If it's needed for either send or recv, then unmask
 * this interrupt; otherwise, mask it.
 *
 * Called with ce_lock held.
 */
1266
static void ath10k_ce_per_engine_handler_adjust(struct ath10k_ce_pipe *ce_state)
1267 1268 1269
{
	u32 ctrl_addr = ce_state->ctrl_addr;
	struct ath10k *ar = ce_state->ar;
1270
	bool disable_copy_compl_intr = ce_state->attr_flags & CE_ATTR_DIS_INTR;
1271 1272 1273 1274 1275 1276 1277 1278 1279 1280

	if ((!disable_copy_compl_intr) &&
	    (ce_state->send_cb || ce_state->recv_cb))
		ath10k_ce_copy_complete_inter_enable(ar, ctrl_addr);
	else
		ath10k_ce_copy_complete_intr_disable(ar, ctrl_addr);

	ath10k_ce_watermark_intr_disable(ar, ctrl_addr);
}

1281
int ath10k_ce_disable_interrupts(struct ath10k *ar)
1282
{
1283
	int ce_id;
1284

M
Michal Kazior 已提交
1285
	for (ce_id = 0; ce_id < CE_COUNT; ce_id++) {
M
Michal Kazior 已提交
1286
		u32 ctrl_addr = ath10k_ce_base_address(ar, ce_id);
1287 1288

		ath10k_ce_copy_complete_intr_disable(ar, ctrl_addr);
1289 1290
		ath10k_ce_error_intr_disable(ar, ctrl_addr);
		ath10k_ce_watermark_intr_disable(ar, ctrl_addr);
1291
	}
1292 1293

	return 0;
1294
}
1295
EXPORT_SYMBOL(ath10k_ce_disable_interrupts);
1296

1297
void ath10k_ce_enable_interrupts(struct ath10k *ar)
1298
{
1299
	struct ath10k_ce *ce = ath10k_ce_priv(ar);
1300
	int ce_id;
1301
	struct ath10k_ce_pipe *ce_state;
1302

1303 1304 1305
	/* Skip the last copy engine, CE7 the diagnostic window, as that
	 * uses polling and isn't initialized for interrupts.
	 */
1306 1307 1308 1309
	for (ce_id = 0; ce_id < CE_COUNT - 1; ce_id++) {
		ce_state  = &ce->ce_states[ce_id];
		ath10k_ce_per_engine_handler_adjust(ce_state);
	}
1310
}
1311
EXPORT_SYMBOL(ath10k_ce_enable_interrupts);
1312 1313 1314 1315 1316

static int ath10k_ce_init_src_ring(struct ath10k *ar,
				   unsigned int ce_id,
				   const struct ce_attr *attr)
{
1317 1318
	struct ath10k_ce *ce = ath10k_ce_priv(ar);
	struct ath10k_ce_pipe *ce_state = &ce->ce_states[ce_id];
1319
	struct ath10k_ce_ring *src_ring = ce_state->src_ring;
M
Michal Kazior 已提交
1320
	u32 nentries, ctrl_addr = ath10k_ce_base_address(ar, ce_id);
1321

1322
	nentries = roundup_pow_of_two(attr->src_nentries);
1323

1324 1325 1326 1327 1328 1329
	if (ar->hw_params.target_64bit)
		memset(src_ring->base_addr_owner_space, 0,
		       nentries * sizeof(struct ce_desc_64));
	else
		memset(src_ring->base_addr_owner_space, 0,
		       nentries * sizeof(struct ce_desc));
M
Michal Kazior 已提交
1330

1331
	src_ring->sw_index = ath10k_ce_src_ring_read_index_get(ar, ctrl_addr);
1332
	src_ring->sw_index &= src_ring->nentries_mask;
1333 1334 1335 1336
	src_ring->hw_index = src_ring->sw_index;

	src_ring->write_index =
		ath10k_ce_src_ring_write_index_get(ar, ctrl_addr);
1337
	src_ring->write_index &= src_ring->nentries_mask;
1338

1339 1340 1341 1342 1343 1344 1345 1346
	ath10k_ce_src_ring_base_addr_set(ar, ctrl_addr,
					 src_ring->base_addr_ce_space);
	ath10k_ce_src_ring_size_set(ar, ctrl_addr, nentries);
	ath10k_ce_src_ring_dmax_set(ar, ctrl_addr, attr->src_sz_max);
	ath10k_ce_src_ring_byte_swap_set(ar, ctrl_addr, 0);
	ath10k_ce_src_ring_lowmark_set(ar, ctrl_addr, 0);
	ath10k_ce_src_ring_highmark_set(ar, ctrl_addr, nentries);

1347
	ath10k_dbg(ar, ATH10K_DBG_BOOT,
1348
		   "boot init ce src ring id %d entries %d base_addr %pK\n",
1349 1350 1351 1352 1353 1354 1355 1356 1357
		   ce_id, nentries, src_ring->base_addr_owner_space);

	return 0;
}

static int ath10k_ce_init_dest_ring(struct ath10k *ar,
				    unsigned int ce_id,
				    const struct ce_attr *attr)
{
1358 1359
	struct ath10k_ce *ce = ath10k_ce_priv(ar);
	struct ath10k_ce_pipe *ce_state = &ce->ce_states[ce_id];
1360
	struct ath10k_ce_ring *dest_ring = ce_state->dest_ring;
M
Michal Kazior 已提交
1361
	u32 nentries, ctrl_addr = ath10k_ce_base_address(ar, ce_id);
1362 1363 1364

	nentries = roundup_pow_of_two(attr->dest_nentries);

1365 1366 1367 1368 1369 1370
	if (ar->hw_params.target_64bit)
		memset(dest_ring->base_addr_owner_space, 0,
		       nentries * sizeof(struct ce_desc_64));
	else
		memset(dest_ring->base_addr_owner_space, 0,
		       nentries * sizeof(struct ce_desc));
M
Michal Kazior 已提交
1371

1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384
	dest_ring->sw_index = ath10k_ce_dest_ring_read_index_get(ar, ctrl_addr);
	dest_ring->sw_index &= dest_ring->nentries_mask;
	dest_ring->write_index =
		ath10k_ce_dest_ring_write_index_get(ar, ctrl_addr);
	dest_ring->write_index &= dest_ring->nentries_mask;

	ath10k_ce_dest_ring_base_addr_set(ar, ctrl_addr,
					  dest_ring->base_addr_ce_space);
	ath10k_ce_dest_ring_size_set(ar, ctrl_addr, nentries);
	ath10k_ce_dest_ring_byte_swap_set(ar, ctrl_addr, 0);
	ath10k_ce_dest_ring_lowmark_set(ar, ctrl_addr, 0);
	ath10k_ce_dest_ring_highmark_set(ar, ctrl_addr, nentries);

1385
	ath10k_dbg(ar, ATH10K_DBG_BOOT,
1386
		   "boot ce dest ring id %d entries %d base_addr %pK\n",
1387 1388 1389 1390 1391
		   ce_id, nentries, dest_ring->base_addr_owner_space);

	return 0;
}

1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407
static int ath10k_ce_alloc_shadow_base(struct ath10k *ar,
				       struct ath10k_ce_ring *src_ring,
				       u32 nentries)
{
	src_ring->shadow_base_unaligned = kcalloc(nentries,
						  sizeof(struct ce_desc),
						  GFP_KERNEL);
	if (!src_ring->shadow_base_unaligned)
		return -ENOMEM;

	src_ring->shadow_base = (struct ce_desc *)
			PTR_ALIGN(src_ring->shadow_base_unaligned,
				  CE_DESC_RING_ALIGN);
	return 0;
}

1408 1409 1410 1411 1412 1413 1414
static struct ath10k_ce_ring *
ath10k_ce_alloc_src_ring(struct ath10k *ar, unsigned int ce_id,
			 const struct ce_attr *attr)
{
	struct ath10k_ce_ring *src_ring;
	u32 nentries = attr->src_nentries;
	dma_addr_t base_addr;
1415
	int ret;
1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427

	nentries = roundup_pow_of_two(nentries);

	src_ring = kzalloc(sizeof(*src_ring) +
			   (nentries *
			    sizeof(*src_ring->per_transfer_context)),
			   GFP_KERNEL);
	if (src_ring == NULL)
		return ERR_PTR(-ENOMEM);

	src_ring->nentries = nentries;
	src_ring->nentries_mask = nentries - 1;
1428 1429 1430 1431 1432 1433

	/*
	 * Legacy platforms that do not support cache
	 * coherent DMA are unsupported
	 */
	src_ring->base_addr_owner_space_unaligned =
1434 1435 1436 1437
		dma_alloc_coherent(ar->dev,
				   (nentries * sizeof(struct ce_desc) +
				    CE_DESC_RING_ALIGN),
				   &base_addr, GFP_KERNEL);
1438
	if (!src_ring->base_addr_owner_space_unaligned) {
1439 1440
		kfree(src_ring);
		return ERR_PTR(-ENOMEM);
1441 1442
	}

1443 1444
	src_ring->base_addr_ce_space_unaligned = base_addr;

1445 1446 1447 1448 1449 1450 1451
	src_ring->base_addr_owner_space =
			PTR_ALIGN(src_ring->base_addr_owner_space_unaligned,
				  CE_DESC_RING_ALIGN);
	src_ring->base_addr_ce_space =
			ALIGN(src_ring->base_addr_ce_space_unaligned,
			      CE_DESC_RING_ALIGN);

1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464
	if (ar->hw_params.shadow_reg_support) {
		ret = ath10k_ce_alloc_shadow_base(ar, src_ring, nentries);
		if (ret) {
			dma_free_coherent(ar->dev,
					  (nentries * sizeof(struct ce_desc) +
					   CE_DESC_RING_ALIGN),
					  src_ring->base_addr_owner_space_unaligned,
					  base_addr);
			kfree(src_ring);
			return ERR_PTR(ret);
		}
	}

1465 1466 1467 1468 1469 1470 1471 1472 1473 1474
	return src_ring;
}

static struct ath10k_ce_ring *
ath10k_ce_alloc_src_ring_64(struct ath10k *ar, unsigned int ce_id,
			    const struct ce_attr *attr)
{
	struct ath10k_ce_ring *src_ring;
	u32 nentries = attr->src_nentries;
	dma_addr_t base_addr;
1475
	int ret;
1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509

	nentries = roundup_pow_of_two(nentries);

	src_ring = kzalloc(sizeof(*src_ring) +
			   (nentries *
			    sizeof(*src_ring->per_transfer_context)),
			   GFP_KERNEL);
	if (!src_ring)
		return ERR_PTR(-ENOMEM);

	src_ring->nentries = nentries;
	src_ring->nentries_mask = nentries - 1;

	/* Legacy platforms that do not support cache
	 * coherent DMA are unsupported
	 */
	src_ring->base_addr_owner_space_unaligned =
		dma_alloc_coherent(ar->dev,
				   (nentries * sizeof(struct ce_desc_64) +
				    CE_DESC_RING_ALIGN),
				   &base_addr, GFP_KERNEL);
	if (!src_ring->base_addr_owner_space_unaligned) {
		kfree(src_ring);
		return ERR_PTR(-ENOMEM);
	}

	src_ring->base_addr_ce_space_unaligned = base_addr;

	src_ring->base_addr_owner_space =
			PTR_ALIGN(src_ring->base_addr_owner_space_unaligned,
				  CE_DESC_RING_ALIGN);
	src_ring->base_addr_ce_space =
			ALIGN(src_ring->base_addr_ce_space_unaligned,
			      CE_DESC_RING_ALIGN);
1510

1511 1512 1513 1514
	if (ar->hw_params.shadow_reg_support) {
		ret = ath10k_ce_alloc_shadow_base(ar, src_ring, nentries);
		if (ret) {
			dma_free_coherent(ar->dev,
1515
					  (nentries * sizeof(struct ce_desc_64) +
1516 1517 1518 1519 1520 1521 1522 1523
					   CE_DESC_RING_ALIGN),
					  src_ring->base_addr_owner_space_unaligned,
					  base_addr);
			kfree(src_ring);
			return ERR_PTR(ret);
		}
	}

1524
	return src_ring;
1525 1526
}

1527 1528 1529
static struct ath10k_ce_ring *
ath10k_ce_alloc_dest_ring(struct ath10k *ar, unsigned int ce_id,
			  const struct ce_attr *attr)
1530
{
1531
	struct ath10k_ce_ring *dest_ring;
1532
	u32 nentries;
1533 1534
	dma_addr_t base_addr;

1535
	nentries = roundup_pow_of_two(attr->dest_nentries);
1536

1537 1538 1539 1540 1541 1542
	dest_ring = kzalloc(sizeof(*dest_ring) +
			    (nentries *
			     sizeof(*dest_ring->per_transfer_context)),
			    GFP_KERNEL);
	if (dest_ring == NULL)
		return ERR_PTR(-ENOMEM);
1543 1544 1545 1546 1547 1548 1549 1550 1551

	dest_ring->nentries = nentries;
	dest_ring->nentries_mask = nentries - 1;

	/*
	 * Legacy platforms that do not support cache
	 * coherent DMA are unsupported
	 */
	dest_ring->base_addr_owner_space_unaligned =
1552
		dma_zalloc_coherent(ar->dev,
K
Kalle Valo 已提交
1553 1554 1555
				    (nentries * sizeof(struct ce_desc) +
				     CE_DESC_RING_ALIGN),
				    &base_addr, GFP_KERNEL);
1556
	if (!dest_ring->base_addr_owner_space_unaligned) {
1557 1558
		kfree(dest_ring);
		return ERR_PTR(-ENOMEM);
1559 1560
	}

1561 1562
	dest_ring->base_addr_ce_space_unaligned = base_addr;

1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619
	dest_ring->base_addr_owner_space =
			PTR_ALIGN(dest_ring->base_addr_owner_space_unaligned,
				  CE_DESC_RING_ALIGN);
	dest_ring->base_addr_ce_space =
				ALIGN(dest_ring->base_addr_ce_space_unaligned,
				      CE_DESC_RING_ALIGN);

	return dest_ring;
}

static struct ath10k_ce_ring *
ath10k_ce_alloc_dest_ring_64(struct ath10k *ar, unsigned int ce_id,
			     const struct ce_attr *attr)
{
	struct ath10k_ce_ring *dest_ring;
	u32 nentries;
	dma_addr_t base_addr;

	nentries = roundup_pow_of_two(attr->dest_nentries);

	dest_ring = kzalloc(sizeof(*dest_ring) +
			    (nentries *
			     sizeof(*dest_ring->per_transfer_context)),
			    GFP_KERNEL);
	if (!dest_ring)
		return ERR_PTR(-ENOMEM);

	dest_ring->nentries = nentries;
	dest_ring->nentries_mask = nentries - 1;

	/* Legacy platforms that do not support cache
	 * coherent DMA are unsupported
	 */
	dest_ring->base_addr_owner_space_unaligned =
		dma_alloc_coherent(ar->dev,
				   (nentries * sizeof(struct ce_desc_64) +
				    CE_DESC_RING_ALIGN),
				   &base_addr, GFP_KERNEL);
	if (!dest_ring->base_addr_owner_space_unaligned) {
		kfree(dest_ring);
		return ERR_PTR(-ENOMEM);
	}

	dest_ring->base_addr_ce_space_unaligned = base_addr;

	/* Correctly initialize memory to 0 to prevent garbage
	 * data crashing system when download firmware
	 */
	memset(dest_ring->base_addr_owner_space_unaligned, 0,
	       nentries * sizeof(struct ce_desc_64) + CE_DESC_RING_ALIGN);

	dest_ring->base_addr_owner_space =
			PTR_ALIGN(dest_ring->base_addr_owner_space_unaligned,
				  CE_DESC_RING_ALIGN);
	dest_ring->base_addr_ce_space =
			ALIGN(dest_ring->base_addr_ce_space_unaligned,
			      CE_DESC_RING_ALIGN);
1620

1621
	return dest_ring;
1622 1623 1624 1625 1626 1627 1628 1629 1630
}

/*
 * Initialize a Copy Engine based on caller-supplied attributes.
 * This may be called once to initialize both source and destination
 * rings or it may be called twice for separate source and destination
 * initialization. It may be that only one side or the other is
 * initialized by software/firmware.
 */
1631
int ath10k_ce_init_pipe(struct ath10k *ar, unsigned int ce_id,
1632
			const struct ce_attr *attr)
1633
{
1634
	int ret;
1635 1636

	if (attr->src_nentries) {
1637
		ret = ath10k_ce_init_src_ring(ar, ce_id, attr);
1638
		if (ret) {
1639
			ath10k_err(ar, "Failed to initialize CE src ring for ID: %d (%d)\n",
1640
				   ce_id, ret);
1641
			return ret;
1642 1643 1644 1645
		}
	}

	if (attr->dest_nentries) {
1646
		ret = ath10k_ce_init_dest_ring(ar, ce_id, attr);
1647
		if (ret) {
1648
			ath10k_err(ar, "Failed to initialize CE dest ring for ID: %d (%d)\n",
1649
				   ce_id, ret);
1650
			return ret;
1651 1652 1653
		}
	}

1654
	return 0;
1655
}
1656
EXPORT_SYMBOL(ath10k_ce_init_pipe);
1657

1658
static void ath10k_ce_deinit_src_ring(struct ath10k *ar, unsigned int ce_id)
1659
{
M
Michal Kazior 已提交
1660
	u32 ctrl_addr = ath10k_ce_base_address(ar, ce_id);
1661 1662 1663 1664 1665 1666 1667 1668 1669

	ath10k_ce_src_ring_base_addr_set(ar, ctrl_addr, 0);
	ath10k_ce_src_ring_size_set(ar, ctrl_addr, 0);
	ath10k_ce_src_ring_dmax_set(ar, ctrl_addr, 0);
	ath10k_ce_src_ring_highmark_set(ar, ctrl_addr, 0);
}

static void ath10k_ce_deinit_dest_ring(struct ath10k *ar, unsigned int ce_id)
{
M
Michal Kazior 已提交
1670
	u32 ctrl_addr = ath10k_ce_base_address(ar, ce_id);
1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681

	ath10k_ce_dest_ring_base_addr_set(ar, ctrl_addr, 0);
	ath10k_ce_dest_ring_size_set(ar, ctrl_addr, 0);
	ath10k_ce_dest_ring_highmark_set(ar, ctrl_addr, 0);
}

void ath10k_ce_deinit_pipe(struct ath10k *ar, unsigned int ce_id)
{
	ath10k_ce_deinit_src_ring(ar, ce_id);
	ath10k_ce_deinit_dest_ring(ar, ce_id);
}
1682
EXPORT_SYMBOL(ath10k_ce_deinit_pipe);
1683

1684
static void _ath10k_ce_free_pipe(struct ath10k *ar, int ce_id)
1685
{
1686 1687
	struct ath10k_ce *ce = ath10k_ce_priv(ar);
	struct ath10k_ce_pipe *ce_state = &ce->ce_states[ce_id];
1688

1689
	if (ce_state->src_ring) {
1690 1691
		if (ar->hw_params.shadow_reg_support)
			kfree(ce_state->src_ring->shadow_base_unaligned);
1692 1693 1694 1695 1696 1697 1698
		dma_free_coherent(ar->dev,
				  (ce_state->src_ring->nentries *
				   sizeof(struct ce_desc) +
				   CE_DESC_RING_ALIGN),
				  ce_state->src_ring->base_addr_owner_space,
				  ce_state->src_ring->base_addr_ce_space);
		kfree(ce_state->src_ring);
1699 1700
	}

1701 1702 1703 1704 1705 1706 1707 1708
	if (ce_state->dest_ring) {
		dma_free_coherent(ar->dev,
				  (ce_state->dest_ring->nentries *
				   sizeof(struct ce_desc) +
				   CE_DESC_RING_ALIGN),
				  ce_state->dest_ring->base_addr_owner_space,
				  ce_state->dest_ring->base_addr_ce_space);
		kfree(ce_state->dest_ring);
1709 1710
	}

1711 1712
	ce_state->src_ring = NULL;
	ce_state->dest_ring = NULL;
1713 1714
}

1715
static void _ath10k_ce_free_pipe_64(struct ath10k *ar, int ce_id)
1716
{
1717 1718
	struct ath10k_ce *ce = ath10k_ce_priv(ar);
	struct ath10k_ce_pipe *ce_state = &ce->ce_states[ce_id];
1719 1720

	if (ce_state->src_ring) {
1721 1722
		if (ar->hw_params.shadow_reg_support)
			kfree(ce_state->src_ring->shadow_base_unaligned);
1723 1724
		dma_free_coherent(ar->dev,
				  (ce_state->src_ring->nentries *
1725
				   sizeof(struct ce_desc_64) +
1726 1727 1728
				   CE_DESC_RING_ALIGN),
				  ce_state->src_ring->base_addr_owner_space,
				  ce_state->src_ring->base_addr_ce_space);
1729 1730 1731 1732
		kfree(ce_state->src_ring);
	}

	if (ce_state->dest_ring) {
1733 1734
		dma_free_coherent(ar->dev,
				  (ce_state->dest_ring->nentries *
1735
				   sizeof(struct ce_desc_64) +
1736 1737 1738
				   CE_DESC_RING_ALIGN),
				  ce_state->dest_ring->base_addr_owner_space,
				  ce_state->dest_ring->base_addr_ce_space);
1739 1740
		kfree(ce_state->dest_ring);
	}
1741 1742 1743

	ce_state->src_ring = NULL;
	ce_state->dest_ring = NULL;
1744
}
1745

1746 1747 1748 1749 1750 1751 1752
void ath10k_ce_free_pipe(struct ath10k *ar, int ce_id)
{
	struct ath10k_ce *ce = ath10k_ce_priv(ar);
	struct ath10k_ce_pipe *ce_state = &ce->ce_states[ce_id];

	ce_state->ops->ce_free_pipe(ar, ce_id);
}
1753
EXPORT_SYMBOL(ath10k_ce_free_pipe);
1754

1755 1756 1757
void ath10k_ce_dump_registers(struct ath10k *ar,
			      struct ath10k_fw_crash_data *crash_data)
{
1758 1759
	struct ath10k_ce *ce = ath10k_ce_priv(ar);
	struct ath10k_ce_crash_data ce_data;
1760 1761 1762 1763 1764 1765
	u32 addr, id;

	lockdep_assert_held(&ar->data_lock);

	ath10k_err(ar, "Copy Engine register dump:\n");

1766
	spin_lock_bh(&ce->ce_lock);
1767 1768
	for (id = 0; id < CE_COUNT; id++) {
		addr = ath10k_ce_base_address(ar, id);
1769
		ce_data.base_addr = cpu_to_le32(addr);
1770

1771
		ce_data.src_wr_idx =
1772
			cpu_to_le32(ath10k_ce_src_ring_write_index_get(ar, addr));
1773
		ce_data.src_r_idx =
1774
			cpu_to_le32(ath10k_ce_src_ring_read_index_get(ar, addr));
1775
		ce_data.dst_wr_idx =
1776
			cpu_to_le32(ath10k_ce_dest_ring_write_index_get(ar, addr));
1777
		ce_data.dst_r_idx =
1778 1779 1780
			cpu_to_le32(ath10k_ce_dest_ring_read_index_get(ar, addr));

		if (crash_data)
1781
			crash_data->ce_crash_data[id] = ce_data;
1782 1783

		ath10k_err(ar, "[%02d]: 0x%08x %3u %3u %3u %3u", id,
1784 1785 1786 1787 1788
			   le32_to_cpu(ce_data.base_addr),
			   le32_to_cpu(ce_data.src_wr_idx),
			   le32_to_cpu(ce_data.src_r_idx),
			   le32_to_cpu(ce_data.dst_wr_idx),
			   le32_to_cpu(ce_data.dst_r_idx));
1789 1790
	}

1791
	spin_unlock_bh(&ce->ce_lock);
1792
}
1793
EXPORT_SYMBOL(ath10k_ce_dump_registers);
1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889

static const struct ath10k_ce_ops ce_ops = {
	.ce_alloc_src_ring = ath10k_ce_alloc_src_ring,
	.ce_alloc_dst_ring = ath10k_ce_alloc_dest_ring,
	.ce_rx_post_buf = __ath10k_ce_rx_post_buf,
	.ce_completed_recv_next_nolock = _ath10k_ce_completed_recv_next_nolock,
	.ce_revoke_recv_next = _ath10k_ce_revoke_recv_next,
	.ce_extract_desc_data = ath10k_ce_extract_desc_data,
	.ce_free_pipe = _ath10k_ce_free_pipe,
	.ce_send_nolock = _ath10k_ce_send_nolock,
};

static const struct ath10k_ce_ops ce_64_ops = {
	.ce_alloc_src_ring = ath10k_ce_alloc_src_ring_64,
	.ce_alloc_dst_ring = ath10k_ce_alloc_dest_ring_64,
	.ce_rx_post_buf = __ath10k_ce_rx_post_buf_64,
	.ce_completed_recv_next_nolock =
				_ath10k_ce_completed_recv_next_nolock_64,
	.ce_revoke_recv_next = _ath10k_ce_revoke_recv_next_64,
	.ce_extract_desc_data = ath10k_ce_extract_desc_data_64,
	.ce_free_pipe = _ath10k_ce_free_pipe_64,
	.ce_send_nolock = _ath10k_ce_send_nolock_64,
};

static void ath10k_ce_set_ops(struct ath10k *ar,
			      struct ath10k_ce_pipe *ce_state)
{
	switch (ar->hw_rev) {
	case ATH10K_HW_WCN3990:
		ce_state->ops = &ce_64_ops;
		break;
	default:
		ce_state->ops = &ce_ops;
		break;
	}
}

int ath10k_ce_alloc_pipe(struct ath10k *ar, int ce_id,
			 const struct ce_attr *attr)
{
	struct ath10k_ce *ce = ath10k_ce_priv(ar);
	struct ath10k_ce_pipe *ce_state = &ce->ce_states[ce_id];
	int ret;

	ath10k_ce_set_ops(ar, ce_state);
	/* Make sure there's enough CE ringbuffer entries for HTT TX to avoid
	 * additional TX locking checks.
	 *
	 * For the lack of a better place do the check here.
	 */
	BUILD_BUG_ON(2 * TARGET_NUM_MSDU_DESC >
		     (CE_HTT_H2T_MSG_SRC_NENTRIES - 1));
	BUILD_BUG_ON(2 * TARGET_10_4_NUM_MSDU_DESC_PFC >
		     (CE_HTT_H2T_MSG_SRC_NENTRIES - 1));
	BUILD_BUG_ON(2 * TARGET_TLV_NUM_MSDU_DESC >
		     (CE_HTT_H2T_MSG_SRC_NENTRIES - 1));

	ce_state->ar = ar;
	ce_state->id = ce_id;
	ce_state->ctrl_addr = ath10k_ce_base_address(ar, ce_id);
	ce_state->attr_flags = attr->flags;
	ce_state->src_sz_max = attr->src_sz_max;

	if (attr->src_nentries)
		ce_state->send_cb = attr->send_cb;

	if (attr->dest_nentries)
		ce_state->recv_cb = attr->recv_cb;

	if (attr->src_nentries) {
		ce_state->src_ring =
			ce_state->ops->ce_alloc_src_ring(ar, ce_id, attr);
		if (IS_ERR(ce_state->src_ring)) {
			ret = PTR_ERR(ce_state->src_ring);
			ath10k_err(ar, "failed to alloc CE src ring %d: %d\n",
				   ce_id, ret);
			ce_state->src_ring = NULL;
			return ret;
		}
	}

	if (attr->dest_nentries) {
		ce_state->dest_ring = ce_state->ops->ce_alloc_dst_ring(ar,
									ce_id,
									attr);
		if (IS_ERR(ce_state->dest_ring)) {
			ret = PTR_ERR(ce_state->dest_ring);
			ath10k_err(ar, "failed to alloc CE dest ring %d: %d\n",
				   ce_id, ret);
			ce_state->dest_ring = NULL;
			return ret;
		}
	}

	return 0;
}
1890
EXPORT_SYMBOL(ath10k_ce_alloc_pipe);
1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933

void ath10k_ce_alloc_rri(struct ath10k *ar)
{
	int i;
	u32 value;
	u32 ctrl1_regs;
	u32 ce_base_addr;
	struct ath10k_ce *ce = ath10k_ce_priv(ar);

	ce->vaddr_rri = dma_alloc_coherent(ar->dev,
					   (CE_COUNT * sizeof(u32)),
					   &ce->paddr_rri, GFP_KERNEL);

	if (!ce->vaddr_rri)
		return;

	ath10k_ce_write32(ar, ar->hw_ce_regs->ce_rri_low,
			  lower_32_bits(ce->paddr_rri));
	ath10k_ce_write32(ar, ar->hw_ce_regs->ce_rri_high,
			  (upper_32_bits(ce->paddr_rri) &
			  CE_DESC_FLAGS_GET_MASK));

	for (i = 0; i < CE_COUNT; i++) {
		ctrl1_regs = ar->hw_ce_regs->ctrl1_regs->addr;
		ce_base_addr = ath10k_ce_base_address(ar, i);
		value = ath10k_ce_read32(ar, ce_base_addr + ctrl1_regs);
		value |= ar->hw_ce_regs->upd->mask;
		ath10k_ce_write32(ar, ce_base_addr + ctrl1_regs, value);
	}

	memset(ce->vaddr_rri, 0, CE_COUNT * sizeof(u32));
}
EXPORT_SYMBOL(ath10k_ce_alloc_rri);

void ath10k_ce_free_rri(struct ath10k *ar)
{
	struct ath10k_ce *ce = ath10k_ce_priv(ar);

	dma_free_coherent(ar->dev, (CE_COUNT * sizeof(u32)),
			  ce->vaddr_rri,
			  ce->paddr_rri);
}
EXPORT_SYMBOL(ath10k_ce_free_rri);