ce.c 32.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
/*
 * Copyright (c) 2005-2011 Atheros Communications Inc.
 * Copyright (c) 2011-2013 Qualcomm Atheros, Inc.
 *
 * Permission to use, copy, modify, and/or distribute this software for any
 * purpose with or without fee is hereby granted, provided that the above
 * copyright notice and this permission notice appear in all copies.
 *
 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 */

#include "hif.h"
#include "pci.h"
#include "ce.h"
#include "debug.h"

/*
 * Support for Copy Engine hardware, which is mainly used for
 * communication between Host and Target over a PCIe interconnect.
 */

/*
 * A single CopyEngine (CE) comprises two "rings":
 *   a source ring
 *   a destination ring
 *
 * Each ring consists of a number of descriptors which specify
 * an address, length, and meta-data.
 *
 * Typically, one side of the PCIe interconnect (Host or Target)
 * controls one ring and the other side controls the other ring.
 * The source side chooses when to initiate a transfer and it
 * chooses what to send (buffer address, length). The destination
 * side keeps a supply of "anonymous receive buffers" available and
 * it handles incoming data as it arrives (when the destination
 * recieves an interrupt).
 *
 * The sender may send a simple buffer (address/length) or it may
 * send a small list of buffers.  When a small list is sent, hardware
 * "gathers" these and they end up in a single destination buffer
 * with a single interrupt.
 *
 * There are several "contexts" managed by this layer -- more, it
 * may seem -- than should be needed. These are provided mainly for
 * maximum flexibility and especially to facilitate a simpler HIF
 * implementation. There are per-CopyEngine recv, send, and watermark
 * contexts. These are supplied by the caller when a recv, send,
 * or watermark handler is established and they are echoed back to
 * the caller when the respective callbacks are invoked. There is
 * also a per-transfer context supplied by the caller when a buffer
 * (or sendlist) is sent and when a buffer is enqueued for recv.
 * These per-transfer contexts are echoed back to the caller when
 * the buffer is sent/received.
 */

static inline void ath10k_ce_dest_ring_write_index_set(struct ath10k *ar,
						       u32 ce_ctrl_addr,
						       unsigned int n)
{
	ath10k_pci_write32(ar, ce_ctrl_addr + DST_WR_INDEX_ADDRESS, n);
}

static inline u32 ath10k_ce_dest_ring_write_index_get(struct ath10k *ar,
						      u32 ce_ctrl_addr)
{
	return ath10k_pci_read32(ar, ce_ctrl_addr + DST_WR_INDEX_ADDRESS);
}

static inline void ath10k_ce_src_ring_write_index_set(struct ath10k *ar,
						      u32 ce_ctrl_addr,
						      unsigned int n)
{
79
	ath10k_pci_write32(ar, ce_ctrl_addr + SR_WR_INDEX_ADDRESS, n);
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
}

static inline u32 ath10k_ce_src_ring_write_index_get(struct ath10k *ar,
						     u32 ce_ctrl_addr)
{
	return ath10k_pci_read32(ar, ce_ctrl_addr + SR_WR_INDEX_ADDRESS);
}

static inline u32 ath10k_ce_src_ring_read_index_get(struct ath10k *ar,
						    u32 ce_ctrl_addr)
{
	return ath10k_pci_read32(ar, ce_ctrl_addr + CURRENT_SRRI_ADDRESS);
}

static inline void ath10k_ce_src_ring_base_addr_set(struct ath10k *ar,
						    u32 ce_ctrl_addr,
						    unsigned int addr)
{
	ath10k_pci_write32(ar, ce_ctrl_addr + SR_BA_ADDRESS, addr);
}

static inline void ath10k_ce_src_ring_size_set(struct ath10k *ar,
					       u32 ce_ctrl_addr,
					       unsigned int n)
{
	ath10k_pci_write32(ar, ce_ctrl_addr + SR_SIZE_ADDRESS, n);
}

static inline void ath10k_ce_src_ring_dmax_set(struct ath10k *ar,
					       u32 ce_ctrl_addr,
					       unsigned int n)
{
	u32 ctrl1_addr = ath10k_pci_read32((ar),
					   (ce_ctrl_addr) + CE_CTRL1_ADDRESS);

	ath10k_pci_write32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS,
			   (ctrl1_addr &  ~CE_CTRL1_DMAX_LENGTH_MASK) |
			   CE_CTRL1_DMAX_LENGTH_SET(n));
}

static inline void ath10k_ce_src_ring_byte_swap_set(struct ath10k *ar,
						    u32 ce_ctrl_addr,
						    unsigned int n)
{
	u32 ctrl1_addr = ath10k_pci_read32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS);

	ath10k_pci_write32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS,
			   (ctrl1_addr & ~CE_CTRL1_SRC_RING_BYTE_SWAP_EN_MASK) |
			   CE_CTRL1_SRC_RING_BYTE_SWAP_EN_SET(n));
}

static inline void ath10k_ce_dest_ring_byte_swap_set(struct ath10k *ar,
						     u32 ce_ctrl_addr,
						     unsigned int n)
{
	u32 ctrl1_addr = ath10k_pci_read32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS);

	ath10k_pci_write32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS,
			   (ctrl1_addr & ~CE_CTRL1_DST_RING_BYTE_SWAP_EN_MASK) |
			   CE_CTRL1_DST_RING_BYTE_SWAP_EN_SET(n));
}

static inline u32 ath10k_ce_dest_ring_read_index_get(struct ath10k *ar,
						     u32 ce_ctrl_addr)
{
	return ath10k_pci_read32(ar, ce_ctrl_addr + CURRENT_DRRI_ADDRESS);
}

static inline void ath10k_ce_dest_ring_base_addr_set(struct ath10k *ar,
						     u32 ce_ctrl_addr,
						     u32 addr)
{
	ath10k_pci_write32(ar, ce_ctrl_addr + DR_BA_ADDRESS, addr);
}

static inline void ath10k_ce_dest_ring_size_set(struct ath10k *ar,
						u32 ce_ctrl_addr,
						unsigned int n)
{
	ath10k_pci_write32(ar, ce_ctrl_addr + DR_SIZE_ADDRESS, n);
}

static inline void ath10k_ce_src_ring_highmark_set(struct ath10k *ar,
						   u32 ce_ctrl_addr,
						   unsigned int n)
{
	u32 addr = ath10k_pci_read32(ar, ce_ctrl_addr + SRC_WATERMARK_ADDRESS);

	ath10k_pci_write32(ar, ce_ctrl_addr + SRC_WATERMARK_ADDRESS,
			   (addr & ~SRC_WATERMARK_HIGH_MASK) |
			   SRC_WATERMARK_HIGH_SET(n));
}

static inline void ath10k_ce_src_ring_lowmark_set(struct ath10k *ar,
						  u32 ce_ctrl_addr,
						  unsigned int n)
{
	u32 addr = ath10k_pci_read32(ar, ce_ctrl_addr + SRC_WATERMARK_ADDRESS);

	ath10k_pci_write32(ar, ce_ctrl_addr + SRC_WATERMARK_ADDRESS,
			   (addr & ~SRC_WATERMARK_LOW_MASK) |
			   SRC_WATERMARK_LOW_SET(n));
}

static inline void ath10k_ce_dest_ring_highmark_set(struct ath10k *ar,
						    u32 ce_ctrl_addr,
						    unsigned int n)
{
	u32 addr = ath10k_pci_read32(ar, ce_ctrl_addr + DST_WATERMARK_ADDRESS);

	ath10k_pci_write32(ar, ce_ctrl_addr + DST_WATERMARK_ADDRESS,
			   (addr & ~DST_WATERMARK_HIGH_MASK) |
			   DST_WATERMARK_HIGH_SET(n));
}

static inline void ath10k_ce_dest_ring_lowmark_set(struct ath10k *ar,
						   u32 ce_ctrl_addr,
						   unsigned int n)
{
	u32 addr = ath10k_pci_read32(ar, ce_ctrl_addr + DST_WATERMARK_ADDRESS);

	ath10k_pci_write32(ar, ce_ctrl_addr + DST_WATERMARK_ADDRESS,
			   (addr & ~DST_WATERMARK_LOW_MASK) |
			   DST_WATERMARK_LOW_SET(n));
}

static inline void ath10k_ce_copy_complete_inter_enable(struct ath10k *ar,
							u32 ce_ctrl_addr)
{
	u32 host_ie_addr = ath10k_pci_read32(ar,
					     ce_ctrl_addr + HOST_IE_ADDRESS);

	ath10k_pci_write32(ar, ce_ctrl_addr + HOST_IE_ADDRESS,
			   host_ie_addr | HOST_IE_COPY_COMPLETE_MASK);
}

static inline void ath10k_ce_copy_complete_intr_disable(struct ath10k *ar,
							u32 ce_ctrl_addr)
{
	u32 host_ie_addr = ath10k_pci_read32(ar,
					     ce_ctrl_addr + HOST_IE_ADDRESS);

	ath10k_pci_write32(ar, ce_ctrl_addr + HOST_IE_ADDRESS,
			   host_ie_addr & ~HOST_IE_COPY_COMPLETE_MASK);
}

static inline void ath10k_ce_watermark_intr_disable(struct ath10k *ar,
						    u32 ce_ctrl_addr)
{
	u32 host_ie_addr = ath10k_pci_read32(ar,
					     ce_ctrl_addr + HOST_IE_ADDRESS);

	ath10k_pci_write32(ar, ce_ctrl_addr + HOST_IE_ADDRESS,
			   host_ie_addr & ~CE_WATERMARK_MASK);
}

static inline void ath10k_ce_error_intr_enable(struct ath10k *ar,
					       u32 ce_ctrl_addr)
{
	u32 misc_ie_addr = ath10k_pci_read32(ar,
					     ce_ctrl_addr + MISC_IE_ADDRESS);

	ath10k_pci_write32(ar, ce_ctrl_addr + MISC_IE_ADDRESS,
			   misc_ie_addr | CE_ERROR_MASK);
}

246 247 248 249 250 251 252 253 254 255
static inline void ath10k_ce_error_intr_disable(struct ath10k *ar,
						u32 ce_ctrl_addr)
{
	u32 misc_ie_addr = ath10k_pci_read32(ar,
					     ce_ctrl_addr + MISC_IE_ADDRESS);

	ath10k_pci_write32(ar, ce_ctrl_addr + MISC_IE_ADDRESS,
			   misc_ie_addr & ~CE_ERROR_MASK);
}

256 257 258 259 260 261 262 263 264 265 266 267 268
static inline void ath10k_ce_engine_int_status_clear(struct ath10k *ar,
						     u32 ce_ctrl_addr,
						     unsigned int mask)
{
	ath10k_pci_write32(ar, ce_ctrl_addr + HOST_IS_ADDRESS, mask);
}


/*
 * Guts of ath10k_ce_send, used by both ath10k_ce_send and
 * ath10k_ce_sendlist_send.
 * The caller takes responsibility for any needed locking.
 */
269 270 271 272 273 274
int ath10k_ce_send_nolock(struct ath10k_ce_pipe *ce_state,
			  void *per_transfer_context,
			  u32 buffer,
			  unsigned int nbytes,
			  unsigned int transfer_id,
			  unsigned int flags)
275 276
{
	struct ath10k *ar = ce_state->ar;
277
	struct ath10k_ce_ring *src_ring = ce_state->src_ring;
278 279 280 281 282 283 284 285 286 287 288 289
	struct ce_desc *desc, *sdesc;
	unsigned int nentries_mask = src_ring->nentries_mask;
	unsigned int sw_index = src_ring->sw_index;
	unsigned int write_index = src_ring->write_index;
	u32 ctrl_addr = ce_state->ctrl_addr;
	u32 desc_flags = 0;
	int ret = 0;

	if (nbytes > ce_state->src_sz_max)
		ath10k_warn("%s: send more we can (nbytes: %d, max: %d)\n",
			    __func__, nbytes, ce_state->src_sz_max);

290 291 292
	ret = ath10k_pci_wake(ar);
	if (ret)
		return ret;
293 294 295

	if (unlikely(CE_RING_DELTA(nentries_mask,
				   write_index, sw_index - 1) <= 0)) {
M
Michal Kazior 已提交
296
		ret = -ENOSR;
297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
		goto exit;
	}

	desc = CE_SRC_RING_TO_DESC(src_ring->base_addr_owner_space,
				   write_index);
	sdesc = CE_SRC_RING_TO_DESC(src_ring->shadow_base, write_index);

	desc_flags |= SM(transfer_id, CE_DESC_FLAGS_META_DATA);

	if (flags & CE_SEND_FLAG_GATHER)
		desc_flags |= CE_DESC_FLAGS_GATHER;
	if (flags & CE_SEND_FLAG_BYTE_SWAP)
		desc_flags |= CE_DESC_FLAGS_BYTE_SWAP;

	sdesc->addr   = __cpu_to_le32(buffer);
	sdesc->nbytes = __cpu_to_le16(nbytes);
	sdesc->flags  = __cpu_to_le16(desc_flags);

	*desc = *sdesc;

	src_ring->per_transfer_context[write_index] = per_transfer_context;

	/* Update Source Ring Write Index */
	write_index = CE_RING_IDX_INCR(nentries_mask, write_index);

	/* WORKAROUND */
	if (!(flags & CE_SEND_FLAG_GATHER))
		ath10k_ce_src_ring_write_index_set(ar, ctrl_addr, write_index);

	src_ring->write_index = write_index;
exit:
	ath10k_pci_sleep(ar);
	return ret;
}

332
int ath10k_ce_send(struct ath10k_ce_pipe *ce_state,
333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
		   void *per_transfer_context,
		   u32 buffer,
		   unsigned int nbytes,
		   unsigned int transfer_id,
		   unsigned int flags)
{
	struct ath10k *ar = ce_state->ar;
	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
	int ret;

	spin_lock_bh(&ar_pci->ce_lock);
	ret = ath10k_ce_send_nolock(ce_state, per_transfer_context,
				    buffer, nbytes, transfer_id, flags);
	spin_unlock_bh(&ar_pci->ce_lock);

	return ret;
}

M
Michal Kazior 已提交
351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
int ath10k_ce_num_free_src_entries(struct ath10k_ce_pipe *pipe)
{
	struct ath10k *ar = pipe->ar;
	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
	int delta;

	spin_lock_bh(&ar_pci->ce_lock);
	delta = CE_RING_DELTA(pipe->src_ring->nentries_mask,
			      pipe->src_ring->write_index,
			      pipe->src_ring->sw_index - 1);
	spin_unlock_bh(&ar_pci->ce_lock);

	return delta;
}

366
int ath10k_ce_recv_buf_enqueue(struct ath10k_ce_pipe *ce_state,
367 368 369
			       void *per_recv_context,
			       u32 buffer)
{
370
	struct ath10k_ce_ring *dest_ring = ce_state->dest_ring;
371 372 373 374 375 376 377 378 379 380 381 382
	u32 ctrl_addr = ce_state->ctrl_addr;
	struct ath10k *ar = ce_state->ar;
	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
	unsigned int nentries_mask = dest_ring->nentries_mask;
	unsigned int write_index;
	unsigned int sw_index;
	int ret;

	spin_lock_bh(&ar_pci->ce_lock);
	write_index = dest_ring->write_index;
	sw_index = dest_ring->sw_index;

383 384 385
	ret = ath10k_pci_wake(ar);
	if (ret)
		goto out;
386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406

	if (CE_RING_DELTA(nentries_mask, write_index, sw_index - 1) > 0) {
		struct ce_desc *base = dest_ring->base_addr_owner_space;
		struct ce_desc *desc = CE_DEST_RING_TO_DESC(base, write_index);

		/* Update destination descriptor */
		desc->addr    = __cpu_to_le32(buffer);
		desc->nbytes = 0;

		dest_ring->per_transfer_context[write_index] =
							per_recv_context;

		/* Update Destination Ring Write Index */
		write_index = CE_RING_IDX_INCR(nentries_mask, write_index);
		ath10k_ce_dest_ring_write_index_set(ar, ctrl_addr, write_index);
		dest_ring->write_index = write_index;
		ret = 0;
	} else {
		ret = -EIO;
	}
	ath10k_pci_sleep(ar);
407 408

out:
409 410 411 412 413 414 415 416 417
	spin_unlock_bh(&ar_pci->ce_lock);

	return ret;
}

/*
 * Guts of ath10k_ce_completed_recv_next.
 * The caller takes responsibility for any necessary locking.
 */
418
static int ath10k_ce_completed_recv_next_nolock(struct ath10k_ce_pipe *ce_state,
419 420 421 422 423 424
						void **per_transfer_contextp,
						u32 *bufferp,
						unsigned int *nbytesp,
						unsigned int *transfer_idp,
						unsigned int *flagsp)
{
425
	struct ath10k_ce_ring *dest_ring = ce_state->dest_ring;
426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473
	unsigned int nentries_mask = dest_ring->nentries_mask;
	unsigned int sw_index = dest_ring->sw_index;

	struct ce_desc *base = dest_ring->base_addr_owner_space;
	struct ce_desc *desc = CE_DEST_RING_TO_DESC(base, sw_index);
	struct ce_desc sdesc;
	u16 nbytes;

	/* Copy in one go for performance reasons */
	sdesc = *desc;

	nbytes = __le16_to_cpu(sdesc.nbytes);
	if (nbytes == 0) {
		/*
		 * This closes a relatively unusual race where the Host
		 * sees the updated DRRI before the update to the
		 * corresponding descriptor has completed. We treat this
		 * as a descriptor that is not yet done.
		 */
		return -EIO;
	}

	desc->nbytes = 0;

	/* Return data from completed destination descriptor */
	*bufferp = __le32_to_cpu(sdesc.addr);
	*nbytesp = nbytes;
	*transfer_idp = MS(__le16_to_cpu(sdesc.flags), CE_DESC_FLAGS_META_DATA);

	if (__le16_to_cpu(sdesc.flags) & CE_DESC_FLAGS_BYTE_SWAP)
		*flagsp = CE_RECV_FLAG_SWAPPED;
	else
		*flagsp = 0;

	if (per_transfer_contextp)
		*per_transfer_contextp =
			dest_ring->per_transfer_context[sw_index];

	/* sanity */
	dest_ring->per_transfer_context[sw_index] = NULL;

	/* Update sw_index */
	sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
	dest_ring->sw_index = sw_index;

	return 0;
}

474
int ath10k_ce_completed_recv_next(struct ath10k_ce_pipe *ce_state,
475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494
				  void **per_transfer_contextp,
				  u32 *bufferp,
				  unsigned int *nbytesp,
				  unsigned int *transfer_idp,
				  unsigned int *flagsp)
{
	struct ath10k *ar = ce_state->ar;
	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
	int ret;

	spin_lock_bh(&ar_pci->ce_lock);
	ret = ath10k_ce_completed_recv_next_nolock(ce_state,
						   per_transfer_contextp,
						   bufferp, nbytesp,
						   transfer_idp, flagsp);
	spin_unlock_bh(&ar_pci->ce_lock);

	return ret;
}

495
int ath10k_ce_revoke_recv_next(struct ath10k_ce_pipe *ce_state,
496 497 498
			       void **per_transfer_contextp,
			       u32 *bufferp)
{
499
	struct ath10k_ce_ring *dest_ring;
500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550
	unsigned int nentries_mask;
	unsigned int sw_index;
	unsigned int write_index;
	int ret;
	struct ath10k *ar;
	struct ath10k_pci *ar_pci;

	dest_ring = ce_state->dest_ring;

	if (!dest_ring)
		return -EIO;

	ar = ce_state->ar;
	ar_pci = ath10k_pci_priv(ar);

	spin_lock_bh(&ar_pci->ce_lock);

	nentries_mask = dest_ring->nentries_mask;
	sw_index = dest_ring->sw_index;
	write_index = dest_ring->write_index;
	if (write_index != sw_index) {
		struct ce_desc *base = dest_ring->base_addr_owner_space;
		struct ce_desc *desc = CE_DEST_RING_TO_DESC(base, sw_index);

		/* Return data from completed destination descriptor */
		*bufferp = __le32_to_cpu(desc->addr);

		if (per_transfer_contextp)
			*per_transfer_contextp =
				dest_ring->per_transfer_context[sw_index];

		/* sanity */
		dest_ring->per_transfer_context[sw_index] = NULL;

		/* Update sw_index */
		sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
		dest_ring->sw_index = sw_index;
		ret = 0;
	} else {
		ret = -EIO;
	}

	spin_unlock_bh(&ar_pci->ce_lock);

	return ret;
}

/*
 * Guts of ath10k_ce_completed_send_next.
 * The caller takes responsibility for any necessary locking.
 */
551
static int ath10k_ce_completed_send_next_nolock(struct ath10k_ce_pipe *ce_state,
552 553 554 555 556
						void **per_transfer_contextp,
						u32 *bufferp,
						unsigned int *nbytesp,
						unsigned int *transfer_idp)
{
557
	struct ath10k_ce_ring *src_ring = ce_state->src_ring;
558 559 560 561
	u32 ctrl_addr = ce_state->ctrl_addr;
	struct ath10k *ar = ce_state->ar;
	unsigned int nentries_mask = src_ring->nentries_mask;
	unsigned int sw_index = src_ring->sw_index;
562
	struct ce_desc *sdesc, *sbase;
563
	unsigned int read_index;
564
	int ret;
565 566 567 568 569 570 571 572 573

	if (src_ring->hw_index == sw_index) {
		/*
		 * The SW completion index has caught up with the cached
		 * version of the HW completion index.
		 * Update the cached HW completion index to see whether
		 * the SW has really caught up to the HW, or if the cached
		 * value of the HW index has become stale.
		 */
574 575 576 577 578

		ret = ath10k_pci_wake(ar);
		if (ret)
			return ret;

579 580
		src_ring->hw_index =
			ath10k_ce_src_ring_read_index_get(ar, ctrl_addr);
581
		src_ring->hw_index &= nentries_mask;
582

583 584
		ath10k_pci_sleep(ar);
	}
585

586 587
	read_index = src_ring->hw_index;

588 589
	if ((read_index == sw_index) || (read_index == 0xffffffff))
		return -EIO;
590

591 592
	sbase = src_ring->shadow_base;
	sdesc = CE_SRC_RING_TO_DESC(sbase, sw_index);
593

594 595 596 597 598
	/* Return data from completed source descriptor */
	*bufferp = __le32_to_cpu(sdesc->addr);
	*nbytesp = __le16_to_cpu(sdesc->nbytes);
	*transfer_idp = MS(__le16_to_cpu(sdesc->flags),
			   CE_DESC_FLAGS_META_DATA);
599

600 601 602
	if (per_transfer_contextp)
		*per_transfer_contextp =
			src_ring->per_transfer_context[sw_index];
603

604 605
	/* sanity */
	src_ring->per_transfer_context[sw_index] = NULL;
606

607 608 609 610 611
	/* Update sw_index */
	sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
	src_ring->sw_index = sw_index;

	return 0;
612 613 614
}

/* NB: Modeled after ath10k_ce_completed_send_next */
615
int ath10k_ce_cancel_send_next(struct ath10k_ce_pipe *ce_state,
616 617 618 619 620
			       void **per_transfer_contextp,
			       u32 *bufferp,
			       unsigned int *nbytesp,
			       unsigned int *transfer_idp)
{
621
	struct ath10k_ce_ring *src_ring;
622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672
	unsigned int nentries_mask;
	unsigned int sw_index;
	unsigned int write_index;
	int ret;
	struct ath10k *ar;
	struct ath10k_pci *ar_pci;

	src_ring = ce_state->src_ring;

	if (!src_ring)
		return -EIO;

	ar = ce_state->ar;
	ar_pci = ath10k_pci_priv(ar);

	spin_lock_bh(&ar_pci->ce_lock);

	nentries_mask = src_ring->nentries_mask;
	sw_index = src_ring->sw_index;
	write_index = src_ring->write_index;

	if (write_index != sw_index) {
		struct ce_desc *base = src_ring->base_addr_owner_space;
		struct ce_desc *desc = CE_SRC_RING_TO_DESC(base, sw_index);

		/* Return data from completed source descriptor */
		*bufferp = __le32_to_cpu(desc->addr);
		*nbytesp = __le16_to_cpu(desc->nbytes);
		*transfer_idp = MS(__le16_to_cpu(desc->flags),
						CE_DESC_FLAGS_META_DATA);

		if (per_transfer_contextp)
			*per_transfer_contextp =
				src_ring->per_transfer_context[sw_index];

		/* sanity */
		src_ring->per_transfer_context[sw_index] = NULL;

		/* Update sw_index */
		sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
		src_ring->sw_index = sw_index;
		ret = 0;
	} else {
		ret = -EIO;
	}

	spin_unlock_bh(&ar_pci->ce_lock);

	return ret;
}

673
int ath10k_ce_completed_send_next(struct ath10k_ce_pipe *ce_state,
674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701
				  void **per_transfer_contextp,
				  u32 *bufferp,
				  unsigned int *nbytesp,
				  unsigned int *transfer_idp)
{
	struct ath10k *ar = ce_state->ar;
	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
	int ret;

	spin_lock_bh(&ar_pci->ce_lock);
	ret = ath10k_ce_completed_send_next_nolock(ce_state,
						   per_transfer_contextp,
						   bufferp, nbytesp,
						   transfer_idp);
	spin_unlock_bh(&ar_pci->ce_lock);

	return ret;
}

/*
 * Guts of interrupt handler for per-engine interrupts on a particular CE.
 *
 * Invokes registered callbacks for recv_complete,
 * send_complete, and watermarks.
 */
void ath10k_ce_per_engine_service(struct ath10k *ar, unsigned int ce_id)
{
	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
702
	struct ath10k_ce_pipe *ce_state = &ar_pci->ce_states[ce_id];
703
	u32 ctrl_addr = ce_state->ctrl_addr;
704 705 706 707 708
	int ret;

	ret = ath10k_pci_wake(ar);
	if (ret)
		return;
709 710 711 712 713 714 715

	spin_lock_bh(&ar_pci->ce_lock);

	/* Clear the copy-complete interrupts that will be handled here. */
	ath10k_ce_engine_int_status_clear(ar, ctrl_addr,
					  HOST_IS_COPY_COMPLETE_MASK);

716
	spin_unlock_bh(&ar_pci->ce_lock);
717

718 719 720 721 722 723 724
	if (ce_state->recv_cb)
		ce_state->recv_cb(ce_state);

	if (ce_state->send_cb)
		ce_state->send_cb(ce_state);

	spin_lock_bh(&ar_pci->ce_lock);
725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743

	/*
	 * Misc CE interrupts are not being handled, but still need
	 * to be cleared.
	 */
	ath10k_ce_engine_int_status_clear(ar, ctrl_addr, CE_WATERMARK_MASK);

	spin_unlock_bh(&ar_pci->ce_lock);
	ath10k_pci_sleep(ar);
}

/*
 * Handler for per-engine interrupts on ALL active CEs.
 * This is used in cases where the system is sharing a
 * single interrput for all CEs
 */

void ath10k_ce_per_engine_service_any(struct ath10k *ar)
{
744
	int ce_id, ret;
745 746
	u32 intr_summary;

747 748 749 750
	ret = ath10k_pci_wake(ar);
	if (ret)
		return;

751 752
	intr_summary = CE_INTERRUPT_SUMMARY(ar);

M
Michal Kazior 已提交
753
	for (ce_id = 0; intr_summary && (ce_id < CE_COUNT); ce_id++) {
754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772
		if (intr_summary & (1 << ce_id))
			intr_summary &= ~(1 << ce_id);
		else
			/* no intr pending on this CE */
			continue;

		ath10k_ce_per_engine_service(ar, ce_id);
	}

	ath10k_pci_sleep(ar);
}

/*
 * Adjust interrupts for the copy complete handler.
 * If it's needed for either send or recv, then unmask
 * this interrupt; otherwise, mask it.
 *
 * Called with ce_lock held.
 */
773
static void ath10k_ce_per_engine_handler_adjust(struct ath10k_ce_pipe *ce_state,
774 775 776 777
						int disable_copy_compl_intr)
{
	u32 ctrl_addr = ce_state->ctrl_addr;
	struct ath10k *ar = ce_state->ar;
778
	int ret;
779

780 781 782
	ret = ath10k_pci_wake(ar);
	if (ret)
		return;
783 784 785 786 787 788 789 790 791 792 793 794

	if ((!disable_copy_compl_intr) &&
	    (ce_state->send_cb || ce_state->recv_cb))
		ath10k_ce_copy_complete_inter_enable(ar, ctrl_addr);
	else
		ath10k_ce_copy_complete_intr_disable(ar, ctrl_addr);

	ath10k_ce_watermark_intr_disable(ar, ctrl_addr);

	ath10k_pci_sleep(ar);
}

795
int ath10k_ce_disable_interrupts(struct ath10k *ar)
796
{
797 798 799 800
	int ce_id, ret;

	ret = ath10k_pci_wake(ar);
	if (ret)
801
		return ret;
802

M
Michal Kazior 已提交
803 804
	for (ce_id = 0; ce_id < CE_COUNT; ce_id++) {
		u32 ctrl_addr = ath10k_ce_base_address(ce_id);
805 806

		ath10k_ce_copy_complete_intr_disable(ar, ctrl_addr);
807 808
		ath10k_ce_error_intr_disable(ar, ctrl_addr);
		ath10k_ce_watermark_intr_disable(ar, ctrl_addr);
809
	}
810

811
	ath10k_pci_sleep(ar);
812 813

	return 0;
814 815
}

816
void ath10k_ce_send_cb_register(struct ath10k_ce_pipe *ce_state,
817
				void (*send_cb)(struct ath10k_ce_pipe *),
818 819 820 821 822 823 824 825 826 827 828
				int disable_interrupts)
{
	struct ath10k *ar = ce_state->ar;
	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);

	spin_lock_bh(&ar_pci->ce_lock);
	ce_state->send_cb = send_cb;
	ath10k_ce_per_engine_handler_adjust(ce_state, disable_interrupts);
	spin_unlock_bh(&ar_pci->ce_lock);
}

829
void ath10k_ce_recv_cb_register(struct ath10k_ce_pipe *ce_state,
830
				void (*recv_cb)(struct ath10k_ce_pipe *))
831 832 833 834 835 836 837 838 839 840 841 842 843 844
{
	struct ath10k *ar = ce_state->ar;
	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);

	spin_lock_bh(&ar_pci->ce_lock);
	ce_state->recv_cb = recv_cb;
	ath10k_ce_per_engine_handler_adjust(ce_state, 0);
	spin_unlock_bh(&ar_pci->ce_lock);
}

static int ath10k_ce_init_src_ring(struct ath10k *ar,
				   unsigned int ce_id,
				   const struct ce_attr *attr)
{
845 846 847 848
	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
	struct ath10k_ce_pipe *ce_state = &ar_pci->ce_states[ce_id];
	struct ath10k_ce_ring *src_ring = ce_state->src_ring;
	u32 nentries, ctrl_addr = ath10k_ce_base_address(ce_id);
849

850
	nentries = roundup_pow_of_two(attr->src_nentries);
851

852 853
	memset(src_ring->per_transfer_context, 0,
	       nentries * sizeof(*src_ring->per_transfer_context));
854 855

	src_ring->sw_index = ath10k_ce_src_ring_read_index_get(ar, ctrl_addr);
856
	src_ring->sw_index &= src_ring->nentries_mask;
857 858 859 860
	src_ring->hw_index = src_ring->sw_index;

	src_ring->write_index =
		ath10k_ce_src_ring_write_index_get(ar, ctrl_addr);
861
	src_ring->write_index &= src_ring->nentries_mask;
862

863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930
	ath10k_ce_src_ring_base_addr_set(ar, ctrl_addr,
					 src_ring->base_addr_ce_space);
	ath10k_ce_src_ring_size_set(ar, ctrl_addr, nentries);
	ath10k_ce_src_ring_dmax_set(ar, ctrl_addr, attr->src_sz_max);
	ath10k_ce_src_ring_byte_swap_set(ar, ctrl_addr, 0);
	ath10k_ce_src_ring_lowmark_set(ar, ctrl_addr, 0);
	ath10k_ce_src_ring_highmark_set(ar, ctrl_addr, nentries);

	ath10k_dbg(ATH10K_DBG_BOOT,
		   "boot init ce src ring id %d entries %d base_addr %p\n",
		   ce_id, nentries, src_ring->base_addr_owner_space);

	return 0;
}

static int ath10k_ce_init_dest_ring(struct ath10k *ar,
				    unsigned int ce_id,
				    const struct ce_attr *attr)
{
	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
	struct ath10k_ce_pipe *ce_state = &ar_pci->ce_states[ce_id];
	struct ath10k_ce_ring *dest_ring = ce_state->dest_ring;
	u32 nentries, ctrl_addr = ath10k_ce_base_address(ce_id);

	nentries = roundup_pow_of_two(attr->dest_nentries);

	memset(dest_ring->per_transfer_context, 0,
	       nentries * sizeof(*dest_ring->per_transfer_context));

	dest_ring->sw_index = ath10k_ce_dest_ring_read_index_get(ar, ctrl_addr);
	dest_ring->sw_index &= dest_ring->nentries_mask;
	dest_ring->write_index =
		ath10k_ce_dest_ring_write_index_get(ar, ctrl_addr);
	dest_ring->write_index &= dest_ring->nentries_mask;

	ath10k_ce_dest_ring_base_addr_set(ar, ctrl_addr,
					  dest_ring->base_addr_ce_space);
	ath10k_ce_dest_ring_size_set(ar, ctrl_addr, nentries);
	ath10k_ce_dest_ring_byte_swap_set(ar, ctrl_addr, 0);
	ath10k_ce_dest_ring_lowmark_set(ar, ctrl_addr, 0);
	ath10k_ce_dest_ring_highmark_set(ar, ctrl_addr, nentries);

	ath10k_dbg(ATH10K_DBG_BOOT,
		   "boot ce dest ring id %d entries %d base_addr %p\n",
		   ce_id, nentries, dest_ring->base_addr_owner_space);

	return 0;
}

static struct ath10k_ce_ring *
ath10k_ce_alloc_src_ring(struct ath10k *ar, unsigned int ce_id,
			 const struct ce_attr *attr)
{
	struct ath10k_ce_ring *src_ring;
	u32 nentries = attr->src_nentries;
	dma_addr_t base_addr;

	nentries = roundup_pow_of_two(nentries);

	src_ring = kzalloc(sizeof(*src_ring) +
			   (nentries *
			    sizeof(*src_ring->per_transfer_context)),
			   GFP_KERNEL);
	if (src_ring == NULL)
		return ERR_PTR(-ENOMEM);

	src_ring->nentries = nentries;
	src_ring->nentries_mask = nentries - 1;
931 932 933 934 935 936

	/*
	 * Legacy platforms that do not support cache
	 * coherent DMA are unsupported
	 */
	src_ring->base_addr_owner_space_unaligned =
937 938 939 940
		dma_alloc_coherent(ar->dev,
				   (nentries * sizeof(struct ce_desc) +
				    CE_DESC_RING_ALIGN),
				   &base_addr, GFP_KERNEL);
941
	if (!src_ring->base_addr_owner_space_unaligned) {
942 943
		kfree(src_ring);
		return ERR_PTR(-ENOMEM);
944 945
	}

946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961
	src_ring->base_addr_ce_space_unaligned = base_addr;

	src_ring->base_addr_owner_space = PTR_ALIGN(
			src_ring->base_addr_owner_space_unaligned,
			CE_DESC_RING_ALIGN);
	src_ring->base_addr_ce_space = ALIGN(
			src_ring->base_addr_ce_space_unaligned,
			CE_DESC_RING_ALIGN);

	/*
	 * Also allocate a shadow src ring in regular
	 * mem to use for faster access.
	 */
	src_ring->shadow_base_unaligned =
		kmalloc((nentries * sizeof(struct ce_desc) +
			 CE_DESC_RING_ALIGN), GFP_KERNEL);
962
	if (!src_ring->shadow_base_unaligned) {
963 964 965 966 967
		dma_free_coherent(ar->dev,
				  (nentries * sizeof(struct ce_desc) +
				   CE_DESC_RING_ALIGN),
				  src_ring->base_addr_owner_space,
				  src_ring->base_addr_ce_space);
968 969
		kfree(src_ring);
		return ERR_PTR(-ENOMEM);
970
	}
971 972 973 974 975

	src_ring->shadow_base = PTR_ALIGN(
			src_ring->shadow_base_unaligned,
			CE_DESC_RING_ALIGN);

976
	return src_ring;
977 978
}

979 980 981
static struct ath10k_ce_ring *
ath10k_ce_alloc_dest_ring(struct ath10k *ar, unsigned int ce_id,
			  const struct ce_attr *attr)
982
{
983
	struct ath10k_ce_ring *dest_ring;
984
	u32 nentries;
985 986
	dma_addr_t base_addr;

987
	nentries = roundup_pow_of_two(attr->dest_nentries);
988

989 990 991 992 993 994
	dest_ring = kzalloc(sizeof(*dest_ring) +
			    (nentries *
			     sizeof(*dest_ring->per_transfer_context)),
			    GFP_KERNEL);
	if (dest_ring == NULL)
		return ERR_PTR(-ENOMEM);
995 996 997 998 999 1000 1001 1002 1003

	dest_ring->nentries = nentries;
	dest_ring->nentries_mask = nentries - 1;

	/*
	 * Legacy platforms that do not support cache
	 * coherent DMA are unsupported
	 */
	dest_ring->base_addr_owner_space_unaligned =
1004 1005 1006 1007
		dma_alloc_coherent(ar->dev,
				   (nentries * sizeof(struct ce_desc) +
				    CE_DESC_RING_ALIGN),
				   &base_addr, GFP_KERNEL);
1008
	if (!dest_ring->base_addr_owner_space_unaligned) {
1009 1010
		kfree(dest_ring);
		return ERR_PTR(-ENOMEM);
1011 1012
	}

1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028
	dest_ring->base_addr_ce_space_unaligned = base_addr;

	/*
	 * Correctly initialize memory to 0 to prevent garbage
	 * data crashing system when download firmware
	 */
	memset(dest_ring->base_addr_owner_space_unaligned, 0,
	       nentries * sizeof(struct ce_desc) + CE_DESC_RING_ALIGN);

	dest_ring->base_addr_owner_space = PTR_ALIGN(
			dest_ring->base_addr_owner_space_unaligned,
			CE_DESC_RING_ALIGN);
	dest_ring->base_addr_ce_space = ALIGN(
			dest_ring->base_addr_ce_space_unaligned,
			CE_DESC_RING_ALIGN);

1029
	return dest_ring;
1030 1031 1032 1033 1034 1035 1036 1037 1038
}

/*
 * Initialize a Copy Engine based on caller-supplied attributes.
 * This may be called once to initialize both source and destination
 * rings or it may be called twice for separate source and destination
 * initialization. It may be that only one side or the other is
 * initialized by software/firmware.
 */
1039 1040
int ath10k_ce_init_pipe(struct ath10k *ar, unsigned int ce_id,
			const struct ce_attr *attr)
1041
{
1042 1043
	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
	struct ath10k_ce_pipe *ce_state = &ar_pci->ce_states[ce_id];
1044
	int ret;
1045

1046 1047 1048 1049 1050 1051
	/*
	 * Make sure there's enough CE ringbuffer entries for HTT TX to avoid
	 * additional TX locking checks.
	 *
	 * For the lack of a better place do the check here.
	 */
1052
	BUILD_BUG_ON(2*TARGET_NUM_MSDU_DESC >
1053
		     (CE_HTT_H2T_MSG_SRC_NENTRIES - 1));
1054
	BUILD_BUG_ON(2*TARGET_10X_NUM_MSDU_DESC >
1055 1056
		     (CE_HTT_H2T_MSG_SRC_NENTRIES - 1));

1057 1058
	ret = ath10k_pci_wake(ar);
	if (ret)
1059
		return ret;
1060

1061 1062 1063 1064 1065 1066 1067
	spin_lock_bh(&ar_pci->ce_lock);
	ce_state->ar = ar;
	ce_state->id = ce_id;
	ce_state->ctrl_addr = ath10k_ce_base_address(ce_id);
	ce_state->attr_flags = attr->flags;
	ce_state->src_sz_max = attr->src_sz_max;
	spin_unlock_bh(&ar_pci->ce_lock);
1068 1069

	if (attr->src_nentries) {
1070
		ret = ath10k_ce_init_src_ring(ar, ce_id, attr);
1071 1072 1073
		if (ret) {
			ath10k_err("Failed to initialize CE src ring for ID: %d (%d)\n",
				   ce_id, ret);
1074
			goto out;
1075 1076 1077 1078
		}
	}

	if (attr->dest_nentries) {
1079
		ret = ath10k_ce_init_dest_ring(ar, ce_id, attr);
1080 1081 1082
		if (ret) {
			ath10k_err("Failed to initialize CE dest ring for ID: %d (%d)\n",
				   ce_id, ret);
1083
			goto out;
1084 1085 1086
		}
	}

1087
out:
1088
	ath10k_pci_sleep(ar);
1089
	return ret;
1090 1091
}

1092
static void ath10k_ce_deinit_src_ring(struct ath10k *ar, unsigned int ce_id)
1093
{
1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
	u32 ctrl_addr = ath10k_ce_base_address(ce_id);

	ath10k_ce_src_ring_base_addr_set(ar, ctrl_addr, 0);
	ath10k_ce_src_ring_size_set(ar, ctrl_addr, 0);
	ath10k_ce_src_ring_dmax_set(ar, ctrl_addr, 0);
	ath10k_ce_src_ring_highmark_set(ar, ctrl_addr, 0);
}

static void ath10k_ce_deinit_dest_ring(struct ath10k *ar, unsigned int ce_id)
{
	u32 ctrl_addr = ath10k_ce_base_address(ce_id);

	ath10k_ce_dest_ring_base_addr_set(ar, ctrl_addr, 0);
	ath10k_ce_dest_ring_size_set(ar, ctrl_addr, 0);
	ath10k_ce_dest_ring_highmark_set(ar, ctrl_addr, 0);
}

void ath10k_ce_deinit_pipe(struct ath10k *ar, unsigned int ce_id)
{
	int ret;

	ret = ath10k_pci_wake(ar);
	if (ret)
		return;

	ath10k_ce_deinit_src_ring(ar, ce_id);
	ath10k_ce_deinit_dest_ring(ar, ce_id);

	ath10k_pci_sleep(ar);
}

int ath10k_ce_alloc_pipe(struct ath10k *ar, int ce_id,
			 const struct ce_attr *attr)
{
	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
	struct ath10k_ce_pipe *ce_state = &ar_pci->ce_states[ce_id];
	int ret;

	if (attr->src_nentries) {
		ce_state->src_ring = ath10k_ce_alloc_src_ring(ar, ce_id, attr);
		if (IS_ERR(ce_state->src_ring)) {
			ret = PTR_ERR(ce_state->src_ring);
			ath10k_err("failed to allocate copy engine source ring %d: %d\n",
				   ce_id, ret);
			ce_state->src_ring = NULL;
			return ret;
		}
	}

	if (attr->dest_nentries) {
		ce_state->dest_ring = ath10k_ce_alloc_dest_ring(ar, ce_id,
								attr);
		if (IS_ERR(ce_state->dest_ring)) {
			ret = PTR_ERR(ce_state->dest_ring);
			ath10k_err("failed to allocate copy engine destination ring %d: %d\n",
				   ce_id, ret);
			ce_state->dest_ring = NULL;
			return ret;
		}
	}

	return 0;
}

void ath10k_ce_free_pipe(struct ath10k *ar, int ce_id)
{
	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
	struct ath10k_ce_pipe *ce_state = &ar_pci->ce_states[ce_id];
1162 1163 1164

	if (ce_state->src_ring) {
		kfree(ce_state->src_ring->shadow_base_unaligned);
1165 1166 1167 1168 1169 1170
		dma_free_coherent(ar->dev,
				  (ce_state->src_ring->nentries *
				   sizeof(struct ce_desc) +
				   CE_DESC_RING_ALIGN),
				  ce_state->src_ring->base_addr_owner_space,
				  ce_state->src_ring->base_addr_ce_space);
1171 1172 1173 1174
		kfree(ce_state->src_ring);
	}

	if (ce_state->dest_ring) {
1175 1176 1177 1178 1179 1180
		dma_free_coherent(ar->dev,
				  (ce_state->dest_ring->nentries *
				   sizeof(struct ce_desc) +
				   CE_DESC_RING_ALIGN),
				  ce_state->dest_ring->base_addr_owner_space,
				  ce_state->dest_ring->base_addr_ce_space);
1181 1182
		kfree(ce_state->dest_ring);
	}
1183 1184 1185

	ce_state->src_ring = NULL;
	ce_state->dest_ring = NULL;
1186
}