ce.c 47.9 KB
Newer Older
1 2
/*
 * Copyright (c) 2005-2011 Atheros Communications Inc.
K
Kalle Valo 已提交
3
 * Copyright (c) 2011-2017 Qualcomm Atheros, Inc.
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
 *
 * Permission to use, copy, modify, and/or distribute this software for any
 * purpose with or without fee is hereby granted, provided that the above
 * copyright notice and this permission notice appear in all copies.
 *
 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 */

#include "hif.h"
#include "ce.h"
#include "debug.h"

/*
 * Support for Copy Engine hardware, which is mainly used for
 * communication between Host and Target over a PCIe interconnect.
 */

/*
 * A single CopyEngine (CE) comprises two "rings":
 *   a source ring
 *   a destination ring
 *
 * Each ring consists of a number of descriptors which specify
 * an address, length, and meta-data.
 *
35
 * Typically, one side of the PCIe/AHB/SNOC interconnect (Host or Target)
36 37 38 39 40
 * controls one ring and the other side controls the other ring.
 * The source side chooses when to initiate a transfer and it
 * chooses what to send (buffer address, length). The destination
 * side keeps a supply of "anonymous receive buffers" available and
 * it handles incoming data as it arrives (when the destination
41
 * receives an interrupt).
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
 *
 * The sender may send a simple buffer (address/length) or it may
 * send a small list of buffers.  When a small list is sent, hardware
 * "gathers" these and they end up in a single destination buffer
 * with a single interrupt.
 *
 * There are several "contexts" managed by this layer -- more, it
 * may seem -- than should be needed. These are provided mainly for
 * maximum flexibility and especially to facilitate a simpler HIF
 * implementation. There are per-CopyEngine recv, send, and watermark
 * contexts. These are supplied by the caller when a recv, send,
 * or watermark handler is established and they are echoed back to
 * the caller when the respective callbacks are invoked. There is
 * also a per-transfer context supplied by the caller when a buffer
 * (or sendlist) is sent and when a buffer is enqueued for recv.
 * These per-transfer contexts are echoed back to the caller when
 * the buffer is sent/received.
 */

61 62 63 64 65 66 67 68 69 70 71 72 73 74
static inline unsigned int
ath10k_set_ring_byte(unsigned int offset,
		     struct ath10k_hw_ce_regs_addr_map *addr_map)
{
	return ((offset << addr_map->lsb) & addr_map->mask);
}

static inline unsigned int
ath10k_get_ring_byte(unsigned int offset,
		     struct ath10k_hw_ce_regs_addr_map *addr_map)
{
	return ((offset & addr_map->mask) >> (addr_map->lsb));
}

75 76 77 78 79 80 81 82 83 84 85 86 87 88
static inline u32 ath10k_ce_read32(struct ath10k *ar, u32 offset)
{
	struct ath10k_ce *ce = ath10k_ce_priv(ar);

	return ce->bus_ops->read32(ar, offset);
}

static inline void ath10k_ce_write32(struct ath10k *ar, u32 offset, u32 value)
{
	struct ath10k_ce *ce = ath10k_ce_priv(ar);

	ce->bus_ops->write32(ar, offset, value);
}

89 90 91 92
static inline void ath10k_ce_dest_ring_write_index_set(struct ath10k *ar,
						       u32 ce_ctrl_addr,
						       unsigned int n)
{
93 94
	ath10k_ce_write32(ar, ce_ctrl_addr +
			  ar->hw_ce_regs->dst_wr_index_addr, n);
95 96 97 98 99
}

static inline u32 ath10k_ce_dest_ring_write_index_get(struct ath10k *ar,
						      u32 ce_ctrl_addr)
{
100 101
	return ath10k_ce_read32(ar, ce_ctrl_addr +
				ar->hw_ce_regs->dst_wr_index_addr);
102 103 104 105 106 107
}

static inline void ath10k_ce_src_ring_write_index_set(struct ath10k *ar,
						      u32 ce_ctrl_addr,
						      unsigned int n)
{
108 109
	ath10k_ce_write32(ar, ce_ctrl_addr +
			  ar->hw_ce_regs->sr_wr_index_addr, n);
110 111 112 113 114
}

static inline u32 ath10k_ce_src_ring_write_index_get(struct ath10k *ar,
						     u32 ce_ctrl_addr)
{
115 116
	return ath10k_ce_read32(ar, ce_ctrl_addr +
				ar->hw_ce_regs->sr_wr_index_addr);
117 118 119 120 121
}

static inline u32 ath10k_ce_src_ring_read_index_get(struct ath10k *ar,
						    u32 ce_ctrl_addr)
{
122 123
	return ath10k_ce_read32(ar, ce_ctrl_addr +
				ar->hw_ce_regs->current_srri_addr);
124 125 126 127 128 129
}

static inline void ath10k_ce_src_ring_base_addr_set(struct ath10k *ar,
						    u32 ce_ctrl_addr,
						    unsigned int addr)
{
130 131
	ath10k_ce_write32(ar, ce_ctrl_addr +
			  ar->hw_ce_regs->sr_base_addr, addr);
132 133 134 135 136 137
}

static inline void ath10k_ce_src_ring_size_set(struct ath10k *ar,
					       u32 ce_ctrl_addr,
					       unsigned int n)
{
138 139
	ath10k_ce_write32(ar, ce_ctrl_addr +
			  ar->hw_ce_regs->sr_size_addr, n);
140 141 142 143 144 145
}

static inline void ath10k_ce_src_ring_dmax_set(struct ath10k *ar,
					       u32 ce_ctrl_addr,
					       unsigned int n)
{
146
	struct ath10k_hw_ce_ctrl1 *ctrl_regs = ar->hw_ce_regs->ctrl1_regs;
147

148 149 150 151 152 153
	u32 ctrl1_addr = ath10k_ce_read32(ar, ce_ctrl_addr +
					  ctrl_regs->addr);

	ath10k_ce_write32(ar, ce_ctrl_addr + ctrl_regs->addr,
			  (ctrl1_addr &  ~(ctrl_regs->dmax->mask)) |
			  ath10k_set_ring_byte(n, ctrl_regs->dmax));
154 155 156 157 158 159
}

static inline void ath10k_ce_src_ring_byte_swap_set(struct ath10k *ar,
						    u32 ce_ctrl_addr,
						    unsigned int n)
{
160
	struct ath10k_hw_ce_ctrl1 *ctrl_regs = ar->hw_ce_regs->ctrl1_regs;
161

162 163 164 165 166 167
	u32 ctrl1_addr = ath10k_ce_read32(ar, ce_ctrl_addr +
					  ctrl_regs->addr);

	ath10k_ce_write32(ar, ce_ctrl_addr + ctrl_regs->addr,
			  (ctrl1_addr & ~(ctrl_regs->src_ring->mask)) |
			  ath10k_set_ring_byte(n, ctrl_regs->src_ring));
168 169 170 171 172 173
}

static inline void ath10k_ce_dest_ring_byte_swap_set(struct ath10k *ar,
						     u32 ce_ctrl_addr,
						     unsigned int n)
{
174
	struct ath10k_hw_ce_ctrl1 *ctrl_regs = ar->hw_ce_regs->ctrl1_regs;
175

176 177 178 179 180 181
	u32 ctrl1_addr = ath10k_ce_read32(ar, ce_ctrl_addr +
					  ctrl_regs->addr);

	ath10k_ce_write32(ar, ce_ctrl_addr + ctrl_regs->addr,
			  (ctrl1_addr & ~(ctrl_regs->dst_ring->mask)) |
			  ath10k_set_ring_byte(n, ctrl_regs->dst_ring));
182 183 184 185 186
}

static inline u32 ath10k_ce_dest_ring_read_index_get(struct ath10k *ar,
						     u32 ce_ctrl_addr)
{
187 188
	return ath10k_ce_read32(ar, ce_ctrl_addr +
				ar->hw_ce_regs->current_drri_addr);
189 190 191 192 193 194
}

static inline void ath10k_ce_dest_ring_base_addr_set(struct ath10k *ar,
						     u32 ce_ctrl_addr,
						     u32 addr)
{
195 196
	ath10k_ce_write32(ar, ce_ctrl_addr +
			  ar->hw_ce_regs->dr_base_addr, addr);
197 198 199 200 201 202
}

static inline void ath10k_ce_dest_ring_size_set(struct ath10k *ar,
						u32 ce_ctrl_addr,
						unsigned int n)
{
203 204
	ath10k_ce_write32(ar, ce_ctrl_addr +
			  ar->hw_ce_regs->dr_size_addr, n);
205 206 207 208 209 210
}

static inline void ath10k_ce_src_ring_highmark_set(struct ath10k *ar,
						   u32 ce_ctrl_addr,
						   unsigned int n)
{
211
	struct ath10k_hw_ce_dst_src_wm_regs *srcr_wm = ar->hw_ce_regs->wm_srcr;
212
	u32 addr = ath10k_ce_read32(ar, ce_ctrl_addr + srcr_wm->addr);
213

214 215 216
	ath10k_ce_write32(ar, ce_ctrl_addr + srcr_wm->addr,
			  (addr & ~(srcr_wm->wm_high->mask)) |
			  (ath10k_set_ring_byte(n, srcr_wm->wm_high)));
217 218 219 220 221 222
}

static inline void ath10k_ce_src_ring_lowmark_set(struct ath10k *ar,
						  u32 ce_ctrl_addr,
						  unsigned int n)
{
223
	struct ath10k_hw_ce_dst_src_wm_regs *srcr_wm = ar->hw_ce_regs->wm_srcr;
224
	u32 addr = ath10k_ce_read32(ar, ce_ctrl_addr + srcr_wm->addr);
225

226 227 228
	ath10k_ce_write32(ar, ce_ctrl_addr + srcr_wm->addr,
			  (addr & ~(srcr_wm->wm_low->mask)) |
			  (ath10k_set_ring_byte(n, srcr_wm->wm_low)));
229 230 231 232 233 234
}

static inline void ath10k_ce_dest_ring_highmark_set(struct ath10k *ar,
						    u32 ce_ctrl_addr,
						    unsigned int n)
{
235
	struct ath10k_hw_ce_dst_src_wm_regs *dstr_wm = ar->hw_ce_regs->wm_dstr;
236
	u32 addr = ath10k_ce_read32(ar, ce_ctrl_addr + dstr_wm->addr);
237

238 239 240
	ath10k_ce_write32(ar, ce_ctrl_addr + dstr_wm->addr,
			  (addr & ~(dstr_wm->wm_high->mask)) |
			  (ath10k_set_ring_byte(n, dstr_wm->wm_high)));
241 242 243 244 245 246
}

static inline void ath10k_ce_dest_ring_lowmark_set(struct ath10k *ar,
						   u32 ce_ctrl_addr,
						   unsigned int n)
{
247
	struct ath10k_hw_ce_dst_src_wm_regs *dstr_wm = ar->hw_ce_regs->wm_dstr;
248
	u32 addr = ath10k_ce_read32(ar, ce_ctrl_addr + dstr_wm->addr);
249

250 251 252
	ath10k_ce_write32(ar, ce_ctrl_addr + dstr_wm->addr,
			  (addr & ~(dstr_wm->wm_low->mask)) |
			  (ath10k_set_ring_byte(n, dstr_wm->wm_low)));
253 254 255 256 257
}

static inline void ath10k_ce_copy_complete_inter_enable(struct ath10k *ar,
							u32 ce_ctrl_addr)
{
258
	struct ath10k_hw_ce_host_ie *host_ie = ar->hw_ce_regs->host_ie;
259

260 261 262 263 264
	u32 host_ie_addr = ath10k_ce_read32(ar, ce_ctrl_addr +
					    ar->hw_ce_regs->host_ie_addr);

	ath10k_ce_write32(ar, ce_ctrl_addr + ar->hw_ce_regs->host_ie_addr,
			  host_ie_addr | host_ie->copy_complete->mask);
265 266 267 268 269
}

static inline void ath10k_ce_copy_complete_intr_disable(struct ath10k *ar,
							u32 ce_ctrl_addr)
{
270
	struct ath10k_hw_ce_host_ie *host_ie = ar->hw_ce_regs->host_ie;
271

272 273 274 275 276
	u32 host_ie_addr = ath10k_ce_read32(ar, ce_ctrl_addr +
					    ar->hw_ce_regs->host_ie_addr);

	ath10k_ce_write32(ar, ce_ctrl_addr + ar->hw_ce_regs->host_ie_addr,
			  host_ie_addr & ~(host_ie->copy_complete->mask));
277 278 279 280 281
}

static inline void ath10k_ce_watermark_intr_disable(struct ath10k *ar,
						    u32 ce_ctrl_addr)
{
282
	struct ath10k_hw_ce_host_wm_regs *wm_regs = ar->hw_ce_regs->wm_regs;
283

284 285 286 287 288
	u32 host_ie_addr = ath10k_ce_read32(ar, ce_ctrl_addr +
					    ar->hw_ce_regs->host_ie_addr);

	ath10k_ce_write32(ar, ce_ctrl_addr + ar->hw_ce_regs->host_ie_addr,
			  host_ie_addr & ~(wm_regs->wm_mask));
289 290 291 292 293
}

static inline void ath10k_ce_error_intr_enable(struct ath10k *ar,
					       u32 ce_ctrl_addr)
{
294
	struct ath10k_hw_ce_misc_regs *misc_regs = ar->hw_ce_regs->misc_regs;
295

296 297 298 299 300 301
	u32 misc_ie_addr = ath10k_ce_read32(ar, ce_ctrl_addr +
					    ar->hw_ce_regs->misc_ie_addr);

	ath10k_ce_write32(ar,
			  ce_ctrl_addr + ar->hw_ce_regs->misc_ie_addr,
			  misc_ie_addr | misc_regs->err_mask);
302 303
}

304 305 306
static inline void ath10k_ce_error_intr_disable(struct ath10k *ar,
						u32 ce_ctrl_addr)
{
307
	struct ath10k_hw_ce_misc_regs *misc_regs = ar->hw_ce_regs->misc_regs;
308

309 310 311 312 313 314
	u32 misc_ie_addr = ath10k_ce_read32(ar,
			ce_ctrl_addr + ar->hw_ce_regs->misc_ie_addr);

	ath10k_ce_write32(ar,
			  ce_ctrl_addr + ar->hw_ce_regs->misc_ie_addr,
			  misc_ie_addr & ~(misc_regs->err_mask));
315 316
}

317 318 319 320
static inline void ath10k_ce_engine_int_status_clear(struct ath10k *ar,
						     u32 ce_ctrl_addr,
						     unsigned int mask)
{
321 322
	struct ath10k_hw_ce_host_wm_regs *wm_regs = ar->hw_ce_regs->wm_regs;

323
	ath10k_ce_write32(ar, ce_ctrl_addr + wm_regs->addr, mask);
324 325 326
}

/*
327
 * Guts of ath10k_ce_send.
328 329
 * The caller takes responsibility for any needed locking.
 */
330 331 332 333 334 335
static int _ath10k_ce_send_nolock(struct ath10k_ce_pipe *ce_state,
				  void *per_transfer_context,
				  dma_addr_t buffer,
				  unsigned int nbytes,
				  unsigned int transfer_id,
				  unsigned int flags)
336 337
{
	struct ath10k *ar = ce_state->ar;
338
	struct ath10k_ce_ring *src_ring = ce_state->src_ring;
339
	struct ce_desc *desc, sdesc;
340 341 342 343 344 345 346 347
	unsigned int nentries_mask = src_ring->nentries_mask;
	unsigned int sw_index = src_ring->sw_index;
	unsigned int write_index = src_ring->write_index;
	u32 ctrl_addr = ce_state->ctrl_addr;
	u32 desc_flags = 0;
	int ret = 0;

	if (nbytes > ce_state->src_sz_max)
348
		ath10k_warn(ar, "%s: send more we can (nbytes: %d, max: %d)\n",
349 350 351 352
			    __func__, nbytes, ce_state->src_sz_max);

	if (unlikely(CE_RING_DELTA(nentries_mask,
				   write_index, sw_index - 1) <= 0)) {
M
Michal Kazior 已提交
353
		ret = -ENOSR;
354 355 356 357 358 359 360 361 362 363 364 365 366
		goto exit;
	}

	desc = CE_SRC_RING_TO_DESC(src_ring->base_addr_owner_space,
				   write_index);

	desc_flags |= SM(transfer_id, CE_DESC_FLAGS_META_DATA);

	if (flags & CE_SEND_FLAG_GATHER)
		desc_flags |= CE_DESC_FLAGS_GATHER;
	if (flags & CE_SEND_FLAG_BYTE_SWAP)
		desc_flags |= CE_DESC_FLAGS_BYTE_SWAP;

367 368 369
	sdesc.addr   = __cpu_to_le32(buffer);
	sdesc.nbytes = __cpu_to_le16(nbytes);
	sdesc.flags  = __cpu_to_le16(desc_flags);
370

371
	*desc = sdesc;
372 373 374 375 376 377 378 379 380 381 382 383 384 385 386

	src_ring->per_transfer_context[write_index] = per_transfer_context;

	/* Update Source Ring Write Index */
	write_index = CE_RING_IDX_INCR(nentries_mask, write_index);

	/* WORKAROUND */
	if (!(flags & CE_SEND_FLAG_GATHER))
		ath10k_ce_src_ring_write_index_set(ar, ctrl_addr, write_index);

	src_ring->write_index = write_index;
exit:
	return ret;
}

387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
static int _ath10k_ce_send_nolock_64(struct ath10k_ce_pipe *ce_state,
				     void *per_transfer_context,
				     dma_addr_t buffer,
				     unsigned int nbytes,
				     unsigned int transfer_id,
				     unsigned int flags)
{
	struct ath10k *ar = ce_state->ar;
	struct ath10k_ce_ring *src_ring = ce_state->src_ring;
	struct ce_desc_64 *desc, sdesc;
	unsigned int nentries_mask = src_ring->nentries_mask;
	unsigned int sw_index = src_ring->sw_index;
	unsigned int write_index = src_ring->write_index;
	u32 ctrl_addr = ce_state->ctrl_addr;
	__le32 *addr;
	u32 desc_flags = 0;
	int ret = 0;

	if (test_bit(ATH10K_FLAG_CRASH_FLUSH, &ar->dev_flags))
		return -ESHUTDOWN;

	if (nbytes > ce_state->src_sz_max)
		ath10k_warn(ar, "%s: send more we can (nbytes: %d, max: %d)\n",
			    __func__, nbytes, ce_state->src_sz_max);

	if (unlikely(CE_RING_DELTA(nentries_mask,
				   write_index, sw_index - 1) <= 0)) {
		ret = -ENOSR;
		goto exit;
	}

	desc = CE_SRC_RING_TO_DESC_64(src_ring->base_addr_owner_space,
				      write_index);

	desc_flags |= SM(transfer_id, CE_DESC_FLAGS_META_DATA);

	if (flags & CE_SEND_FLAG_GATHER)
		desc_flags |= CE_DESC_FLAGS_GATHER;

	if (flags & CE_SEND_FLAG_BYTE_SWAP)
		desc_flags |= CE_DESC_FLAGS_BYTE_SWAP;

	addr = (__le32 *)&sdesc.addr;

	flags |= upper_32_bits(buffer) & CE_DESC_FLAGS_GET_MASK;
	addr[0] = __cpu_to_le32(buffer);
	addr[1] = __cpu_to_le32(flags);
	if (flags & CE_SEND_FLAG_GATHER)
		addr[1] |= __cpu_to_le32(CE_WCN3990_DESC_FLAGS_GATHER);
	else
		addr[1] &= ~(__cpu_to_le32(CE_WCN3990_DESC_FLAGS_GATHER));

	sdesc.nbytes = __cpu_to_le16(nbytes);
	sdesc.flags  = __cpu_to_le16(desc_flags);

	*desc = sdesc;

	src_ring->per_transfer_context[write_index] = per_transfer_context;

	/* Update Source Ring Write Index */
	write_index = CE_RING_IDX_INCR(nentries_mask, write_index);

	if (!(flags & CE_SEND_FLAG_GATHER))
		ath10k_ce_src_ring_write_index_set(ar, ctrl_addr, write_index);

	src_ring->write_index = write_index;
exit:
	return ret;
}

int ath10k_ce_send_nolock(struct ath10k_ce_pipe *ce_state,
			  void *per_transfer_context,
			  dma_addr_t buffer,
			  unsigned int nbytes,
			  unsigned int transfer_id,
			  unsigned int flags)
{
	return ce_state->ops->ce_send_nolock(ce_state, per_transfer_context,
				    buffer, nbytes, transfer_id, flags);
}
467
EXPORT_SYMBOL(ath10k_ce_send_nolock);
468

469 470 471
void __ath10k_ce_send_revert(struct ath10k_ce_pipe *pipe)
{
	struct ath10k *ar = pipe->ar;
472
	struct ath10k_ce *ce = ath10k_ce_priv(ar);
473 474 475
	struct ath10k_ce_ring *src_ring = pipe->src_ring;
	u32 ctrl_addr = pipe->ctrl_addr;

476
	lockdep_assert_held(&ce->ce_lock);
477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494

	/*
	 * This function must be called only if there is an incomplete
	 * scatter-gather transfer (before index register is updated)
	 * that needs to be cleaned up.
	 */
	if (WARN_ON_ONCE(src_ring->write_index == src_ring->sw_index))
		return;

	if (WARN_ON_ONCE(src_ring->write_index ==
			 ath10k_ce_src_ring_write_index_get(ar, ctrl_addr)))
		return;

	src_ring->write_index--;
	src_ring->write_index &= src_ring->nentries_mask;

	src_ring->per_transfer_context[src_ring->write_index] = NULL;
}
495
EXPORT_SYMBOL(__ath10k_ce_send_revert);
496

497
int ath10k_ce_send(struct ath10k_ce_pipe *ce_state,
498
		   void *per_transfer_context,
499
		   dma_addr_t buffer,
500 501 502 503 504
		   unsigned int nbytes,
		   unsigned int transfer_id,
		   unsigned int flags)
{
	struct ath10k *ar = ce_state->ar;
505
	struct ath10k_ce *ce = ath10k_ce_priv(ar);
506 507
	int ret;

508
	spin_lock_bh(&ce->ce_lock);
509 510
	ret = ath10k_ce_send_nolock(ce_state, per_transfer_context,
				    buffer, nbytes, transfer_id, flags);
511
	spin_unlock_bh(&ce->ce_lock);
512 513 514

	return ret;
}
515
EXPORT_SYMBOL(ath10k_ce_send);
516

M
Michal Kazior 已提交
517 518 519
int ath10k_ce_num_free_src_entries(struct ath10k_ce_pipe *pipe)
{
	struct ath10k *ar = pipe->ar;
520
	struct ath10k_ce *ce = ath10k_ce_priv(ar);
M
Michal Kazior 已提交
521 522
	int delta;

523
	spin_lock_bh(&ce->ce_lock);
M
Michal Kazior 已提交
524 525 526
	delta = CE_RING_DELTA(pipe->src_ring->nentries_mask,
			      pipe->src_ring->write_index,
			      pipe->src_ring->sw_index - 1);
527
	spin_unlock_bh(&ce->ce_lock);
M
Michal Kazior 已提交
528 529 530

	return delta;
}
531
EXPORT_SYMBOL(ath10k_ce_num_free_src_entries);
M
Michal Kazior 已提交
532

533
int __ath10k_ce_rx_num_free_bufs(struct ath10k_ce_pipe *pipe)
534
{
535
	struct ath10k *ar = pipe->ar;
536
	struct ath10k_ce *ce = ath10k_ce_priv(ar);
537
	struct ath10k_ce_ring *dest_ring = pipe->dest_ring;
538
	unsigned int nentries_mask = dest_ring->nentries_mask;
539 540 541
	unsigned int write_index = dest_ring->write_index;
	unsigned int sw_index = dest_ring->sw_index;

542
	lockdep_assert_held(&ce->ce_lock);
543 544 545

	return CE_RING_DELTA(nentries_mask, write_index, sw_index - 1);
}
546
EXPORT_SYMBOL(__ath10k_ce_rx_num_free_bufs);
547

548 549
static int __ath10k_ce_rx_post_buf(struct ath10k_ce_pipe *pipe, void *ctx,
				   dma_addr_t paddr)
550 551
{
	struct ath10k *ar = pipe->ar;
552
	struct ath10k_ce *ce = ath10k_ce_priv(ar);
553 554 555 556 557 558 559 560
	struct ath10k_ce_ring *dest_ring = pipe->dest_ring;
	unsigned int nentries_mask = dest_ring->nentries_mask;
	unsigned int write_index = dest_ring->write_index;
	unsigned int sw_index = dest_ring->sw_index;
	struct ce_desc *base = dest_ring->base_addr_owner_space;
	struct ce_desc *desc = CE_DEST_RING_TO_DESC(base, write_index);
	u32 ctrl_addr = pipe->ctrl_addr;

561
	lockdep_assert_held(&ce->ce_lock);
562

563 564
	if ((pipe->id != 5) &&
	    CE_RING_DELTA(nentries_mask, write_index, sw_index - 1) == 0)
565
		return -ENOSPC;
566 567 568 569 570 571 572 573 574 575 576 577

	desc->addr = __cpu_to_le32(paddr);
	desc->nbytes = 0;

	dest_ring->per_transfer_context[write_index] = ctx;
	write_index = CE_RING_IDX_INCR(nentries_mask, write_index);
	ath10k_ce_dest_ring_write_index_set(ar, ctrl_addr, write_index);
	dest_ring->write_index = write_index;

	return 0;
}

578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610
static int __ath10k_ce_rx_post_buf_64(struct ath10k_ce_pipe *pipe,
				      void *ctx,
				      dma_addr_t paddr)
{
	struct ath10k *ar = pipe->ar;
	struct ath10k_ce *ce = ath10k_ce_priv(ar);
	struct ath10k_ce_ring *dest_ring = pipe->dest_ring;
	unsigned int nentries_mask = dest_ring->nentries_mask;
	unsigned int write_index = dest_ring->write_index;
	unsigned int sw_index = dest_ring->sw_index;
	struct ce_desc_64 *base = dest_ring->base_addr_owner_space;
	struct ce_desc_64 *desc =
			CE_DEST_RING_TO_DESC_64(base, write_index);
	u32 ctrl_addr = pipe->ctrl_addr;

	lockdep_assert_held(&ce->ce_lock);

	if (CE_RING_DELTA(nentries_mask, write_index, sw_index - 1) == 0)
		return -ENOSPC;

	desc->addr = __cpu_to_le64(paddr);
	desc->addr &= __cpu_to_le64(CE_DESC_37BIT_ADDR_MASK);

	desc->nbytes = 0;

	dest_ring->per_transfer_context[write_index] = ctx;
	write_index = CE_RING_IDX_INCR(nentries_mask, write_index);
	ath10k_ce_dest_ring_write_index_set(ar, ctrl_addr, write_index);
	dest_ring->write_index = write_index;

	return 0;
}

611 612 613 614 615 616 617
void ath10k_ce_rx_update_write_idx(struct ath10k_ce_pipe *pipe, u32 nentries)
{
	struct ath10k *ar = pipe->ar;
	struct ath10k_ce_ring *dest_ring = pipe->dest_ring;
	unsigned int nentries_mask = dest_ring->nentries_mask;
	unsigned int write_index = dest_ring->write_index;
	u32 ctrl_addr = pipe->ctrl_addr;
618 619 620 621 622
	u32 cur_write_idx = ath10k_ce_dest_ring_write_index_get(ar, ctrl_addr);

	/* Prevent CE ring stuck issue that will occur when ring is full.
	 * Make sure that write index is 1 less than read index.
	 */
623
	if (((cur_write_idx + nentries) & nentries_mask) == dest_ring->sw_index)
624
		nentries -= 1;
625 626 627 628 629

	write_index = CE_RING_IDX_ADD(nentries_mask, write_index, nentries);
	ath10k_ce_dest_ring_write_index_set(ar, ctrl_addr, write_index);
	dest_ring->write_index = write_index;
}
630
EXPORT_SYMBOL(ath10k_ce_rx_update_write_idx);
631

632 633
int ath10k_ce_rx_post_buf(struct ath10k_ce_pipe *pipe, void *ctx,
			  dma_addr_t paddr)
634 635
{
	struct ath10k *ar = pipe->ar;
636
	struct ath10k_ce *ce = ath10k_ce_priv(ar);
637 638
	int ret;

639
	spin_lock_bh(&ce->ce_lock);
640
	ret = pipe->ops->ce_rx_post_buf(pipe, ctx, paddr);
641
	spin_unlock_bh(&ce->ce_lock);
642

643 644
	return ret;
}
645
EXPORT_SYMBOL(ath10k_ce_rx_post_buf);
646 647 648 649 650

/*
 * Guts of ath10k_ce_completed_recv_next.
 * The caller takes responsibility for any necessary locking.
 */
651 652 653 654
static int
	 _ath10k_ce_completed_recv_next_nolock(struct ath10k_ce_pipe *ce_state,
					       void **per_transfer_contextp,
					       unsigned int *nbytesp)
655
{
656
	struct ath10k_ce_ring *dest_ring = ce_state->dest_ring;
657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687
	unsigned int nentries_mask = dest_ring->nentries_mask;
	unsigned int sw_index = dest_ring->sw_index;

	struct ce_desc *base = dest_ring->base_addr_owner_space;
	struct ce_desc *desc = CE_DEST_RING_TO_DESC(base, sw_index);
	struct ce_desc sdesc;
	u16 nbytes;

	/* Copy in one go for performance reasons */
	sdesc = *desc;

	nbytes = __le16_to_cpu(sdesc.nbytes);
	if (nbytes == 0) {
		/*
		 * This closes a relatively unusual race where the Host
		 * sees the updated DRRI before the update to the
		 * corresponding descriptor has completed. We treat this
		 * as a descriptor that is not yet done.
		 */
		return -EIO;
	}

	desc->nbytes = 0;

	/* Return data from completed destination descriptor */
	*nbytesp = nbytes;

	if (per_transfer_contextp)
		*per_transfer_contextp =
			dest_ring->per_transfer_context[sw_index];

688 689 690 691 692
	/* Copy engine 5 (HTT Rx) will reuse the same transfer context.
	 * So update transfer context all CEs except CE5.
	 */
	if (ce_state->id != 5)
		dest_ring->per_transfer_context[sw_index] = NULL;
693 694 695 696 697 698 699 700

	/* Update sw_index */
	sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
	dest_ring->sw_index = sw_index;

	return 0;
}

701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757
static int
_ath10k_ce_completed_recv_next_nolock_64(struct ath10k_ce_pipe *ce_state,
					 void **per_transfer_contextp,
					 unsigned int *nbytesp)
{
	struct ath10k_ce_ring *dest_ring = ce_state->dest_ring;
	unsigned int nentries_mask = dest_ring->nentries_mask;
	unsigned int sw_index = dest_ring->sw_index;
	struct ce_desc_64 *base = dest_ring->base_addr_owner_space;
	struct ce_desc_64 *desc =
		CE_DEST_RING_TO_DESC_64(base, sw_index);
	struct ce_desc_64 sdesc;
	u16 nbytes;

	/* Copy in one go for performance reasons */
	sdesc = *desc;

	nbytes = __le16_to_cpu(sdesc.nbytes);
	if (nbytes == 0) {
		/* This closes a relatively unusual race where the Host
		 * sees the updated DRRI before the update to the
		 * corresponding descriptor has completed. We treat this
		 * as a descriptor that is not yet done.
		 */
		return -EIO;
	}

	desc->nbytes = 0;

	/* Return data from completed destination descriptor */
	*nbytesp = nbytes;

	if (per_transfer_contextp)
		*per_transfer_contextp =
			dest_ring->per_transfer_context[sw_index];

	/* Copy engine 5 (HTT Rx) will reuse the same transfer context.
	 * So update transfer context all CEs except CE5.
	 */
	if (ce_state->id != 5)
		dest_ring->per_transfer_context[sw_index] = NULL;

	/* Update sw_index */
	sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
	dest_ring->sw_index = sw_index;

	return 0;
}

int ath10k_ce_completed_recv_next_nolock(struct ath10k_ce_pipe *ce_state,
					 void **per_transfer_ctx,
					 unsigned int *nbytesp)
{
	return ce_state->ops->ce_completed_recv_next_nolock(ce_state,
							    per_transfer_ctx,
							    nbytesp);
}
758
EXPORT_SYMBOL(ath10k_ce_completed_recv_next_nolock);
759

760
int ath10k_ce_completed_recv_next(struct ath10k_ce_pipe *ce_state,
761
				  void **per_transfer_contextp,
762
				  unsigned int *nbytesp)
763 764
{
	struct ath10k *ar = ce_state->ar;
765
	struct ath10k_ce *ce = ath10k_ce_priv(ar);
766 767
	int ret;

768
	spin_lock_bh(&ce->ce_lock);
769
	ret = ce_state->ops->ce_completed_recv_next_nolock(ce_state,
770
						   per_transfer_contextp,
771
						   nbytesp);
772

773
	spin_unlock_bh(&ce->ce_lock);
774 775 776

	return ret;
}
777
EXPORT_SYMBOL(ath10k_ce_completed_recv_next);
778

779 780 781
static int _ath10k_ce_revoke_recv_next(struct ath10k_ce_pipe *ce_state,
				       void **per_transfer_contextp,
				       dma_addr_t *bufferp)
782
{
783
	struct ath10k_ce_ring *dest_ring;
784 785 786 787 788
	unsigned int nentries_mask;
	unsigned int sw_index;
	unsigned int write_index;
	int ret;
	struct ath10k *ar;
789
	struct ath10k_ce *ce;
790 791 792 793 794 795 796

	dest_ring = ce_state->dest_ring;

	if (!dest_ring)
		return -EIO;

	ar = ce_state->ar;
797
	ce = ath10k_ce_priv(ar);
798

799
	spin_lock_bh(&ce->ce_lock);
800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816

	nentries_mask = dest_ring->nentries_mask;
	sw_index = dest_ring->sw_index;
	write_index = dest_ring->write_index;
	if (write_index != sw_index) {
		struct ce_desc *base = dest_ring->base_addr_owner_space;
		struct ce_desc *desc = CE_DEST_RING_TO_DESC(base, sw_index);

		/* Return data from completed destination descriptor */
		*bufferp = __le32_to_cpu(desc->addr);

		if (per_transfer_contextp)
			*per_transfer_contextp =
				dest_ring->per_transfer_context[sw_index];

		/* sanity */
		dest_ring->per_transfer_context[sw_index] = NULL;
M
Michal Kazior 已提交
817
		desc->nbytes = 0;
818 819 820 821 822 823 824 825 826

		/* Update sw_index */
		sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
		dest_ring->sw_index = sw_index;
		ret = 0;
	} else {
		ret = -EIO;
	}

827
	spin_unlock_bh(&ce->ce_lock);
828 829 830 831

	return ret;
}

832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893
static int _ath10k_ce_revoke_recv_next_64(struct ath10k_ce_pipe *ce_state,
					  void **per_transfer_contextp,
					  dma_addr_t *bufferp)
{
	struct ath10k_ce_ring *dest_ring;
	unsigned int nentries_mask;
	unsigned int sw_index;
	unsigned int write_index;
	int ret;
	struct ath10k *ar;
	struct ath10k_ce *ce;

	dest_ring = ce_state->dest_ring;

	if (!dest_ring)
		return -EIO;

	ar = ce_state->ar;
	ce = ath10k_ce_priv(ar);

	spin_lock_bh(&ce->ce_lock);

	nentries_mask = dest_ring->nentries_mask;
	sw_index = dest_ring->sw_index;
	write_index = dest_ring->write_index;
	if (write_index != sw_index) {
		struct ce_desc_64 *base = dest_ring->base_addr_owner_space;
		struct ce_desc_64 *desc =
			CE_DEST_RING_TO_DESC_64(base, sw_index);

		/* Return data from completed destination descriptor */
		*bufferp = __le64_to_cpu(desc->addr);

		if (per_transfer_contextp)
			*per_transfer_contextp =
				dest_ring->per_transfer_context[sw_index];

		/* sanity */
		dest_ring->per_transfer_context[sw_index] = NULL;
		desc->nbytes = 0;

		/* Update sw_index */
		sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
		dest_ring->sw_index = sw_index;
		ret = 0;
	} else {
		ret = -EIO;
	}

	spin_unlock_bh(&ce->ce_lock);

	return ret;
}

int ath10k_ce_revoke_recv_next(struct ath10k_ce_pipe *ce_state,
			       void **per_transfer_contextp,
			       dma_addr_t *bufferp)
{
	return ce_state->ops->ce_revoke_recv_next(ce_state,
						  per_transfer_contextp,
						  bufferp);
}
894
EXPORT_SYMBOL(ath10k_ce_revoke_recv_next);
895

896 897 898 899
/*
 * Guts of ath10k_ce_completed_send_next.
 * The caller takes responsibility for any necessary locking.
 */
K
Kalle Valo 已提交
900
int ath10k_ce_completed_send_next_nolock(struct ath10k_ce_pipe *ce_state,
901
					 void **per_transfer_contextp)
902
{
903
	struct ath10k_ce_ring *src_ring = ce_state->src_ring;
904 905 906 907 908
	u32 ctrl_addr = ce_state->ctrl_addr;
	struct ath10k *ar = ce_state->ar;
	unsigned int nentries_mask = src_ring->nentries_mask;
	unsigned int sw_index = src_ring->sw_index;
	unsigned int read_index;
B
Ben Greear 已提交
909
	struct ce_desc *desc;
910 911 912 913 914 915 916 917 918

	if (src_ring->hw_index == sw_index) {
		/*
		 * The SW completion index has caught up with the cached
		 * version of the HW completion index.
		 * Update the cached HW completion index to see whether
		 * the SW has really caught up to the HW, or if the cached
		 * value of the HW index has become stale.
		 */
919

920 921 922 923 924 925
		read_index = ath10k_ce_src_ring_read_index_get(ar, ctrl_addr);
		if (read_index == 0xffffffff)
			return -ENODEV;

		read_index &= nentries_mask;
		src_ring->hw_index = read_index;
926
	}
927

928 929
	read_index = src_ring->hw_index;

930
	if (read_index == sw_index)
931
		return -EIO;
932

933 934 935
	if (per_transfer_contextp)
		*per_transfer_contextp =
			src_ring->per_transfer_context[sw_index];
936

937 938
	/* sanity */
	src_ring->per_transfer_context[sw_index] = NULL;
B
Ben Greear 已提交
939 940 941
	desc = CE_SRC_RING_TO_DESC(src_ring->base_addr_owner_space,
				   sw_index);
	desc->nbytes = 0;
942

943 944 945 946 947
	/* Update sw_index */
	sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
	src_ring->sw_index = sw_index;

	return 0;
948
}
949
EXPORT_SYMBOL(ath10k_ce_completed_send_next_nolock);
950

951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985
static void ath10k_ce_extract_desc_data(struct ath10k *ar,
					struct ath10k_ce_ring *src_ring,
					u32 sw_index,
					dma_addr_t *bufferp,
					u32 *nbytesp,
					u32 *transfer_idp)
{
		struct ce_desc *base = src_ring->base_addr_owner_space;
		struct ce_desc *desc = CE_SRC_RING_TO_DESC(base, sw_index);

		/* Return data from completed source descriptor */
		*bufferp = __le32_to_cpu(desc->addr);
		*nbytesp = __le16_to_cpu(desc->nbytes);
		*transfer_idp = MS(__le16_to_cpu(desc->flags),
				   CE_DESC_FLAGS_META_DATA);
}

static void ath10k_ce_extract_desc_data_64(struct ath10k *ar,
					   struct ath10k_ce_ring *src_ring,
					   u32 sw_index,
					   dma_addr_t *bufferp,
					   u32 *nbytesp,
					   u32 *transfer_idp)
{
		struct ce_desc_64 *base = src_ring->base_addr_owner_space;
		struct ce_desc_64 *desc =
			CE_SRC_RING_TO_DESC_64(base, sw_index);

		/* Return data from completed source descriptor */
		*bufferp = __le64_to_cpu(desc->addr);
		*nbytesp = __le16_to_cpu(desc->nbytes);
		*transfer_idp = MS(__le16_to_cpu(desc->flags),
				   CE_DESC_FLAGS_META_DATA);
}

986
/* NB: Modeled after ath10k_ce_completed_send_next */
987
int ath10k_ce_cancel_send_next(struct ath10k_ce_pipe *ce_state,
988
			       void **per_transfer_contextp,
989
			       dma_addr_t *bufferp,
990 991 992
			       unsigned int *nbytesp,
			       unsigned int *transfer_idp)
{
993
	struct ath10k_ce_ring *src_ring;
994 995 996 997 998
	unsigned int nentries_mask;
	unsigned int sw_index;
	unsigned int write_index;
	int ret;
	struct ath10k *ar;
999
	struct ath10k_ce *ce;
1000 1001 1002 1003 1004 1005 1006

	src_ring = ce_state->src_ring;

	if (!src_ring)
		return -EIO;

	ar = ce_state->ar;
1007
	ce = ath10k_ce_priv(ar);
1008

1009
	spin_lock_bh(&ce->ce_lock);
1010 1011 1012 1013 1014 1015

	nentries_mask = src_ring->nentries_mask;
	sw_index = src_ring->sw_index;
	write_index = src_ring->write_index;

	if (write_index != sw_index) {
1016 1017 1018
		ce_state->ops->ce_extract_desc_data(ar, src_ring, sw_index,
						    bufferp, nbytesp,
						    transfer_idp);
1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034

		if (per_transfer_contextp)
			*per_transfer_contextp =
				src_ring->per_transfer_context[sw_index];

		/* sanity */
		src_ring->per_transfer_context[sw_index] = NULL;

		/* Update sw_index */
		sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
		src_ring->sw_index = sw_index;
		ret = 0;
	} else {
		ret = -EIO;
	}

1035
	spin_unlock_bh(&ce->ce_lock);
1036 1037 1038

	return ret;
}
1039
EXPORT_SYMBOL(ath10k_ce_cancel_send_next);
1040

1041
int ath10k_ce_completed_send_next(struct ath10k_ce_pipe *ce_state,
1042
				  void **per_transfer_contextp)
1043 1044
{
	struct ath10k *ar = ce_state->ar;
1045
	struct ath10k_ce *ce = ath10k_ce_priv(ar);
1046 1047
	int ret;

1048
	spin_lock_bh(&ce->ce_lock);
1049
	ret = ath10k_ce_completed_send_next_nolock(ce_state,
1050
						   per_transfer_contextp);
1051
	spin_unlock_bh(&ce->ce_lock);
1052 1053 1054

	return ret;
}
1055
EXPORT_SYMBOL(ath10k_ce_completed_send_next);
1056 1057 1058 1059 1060 1061 1062 1063 1064

/*
 * Guts of interrupt handler for per-engine interrupts on a particular CE.
 *
 * Invokes registered callbacks for recv_complete,
 * send_complete, and watermarks.
 */
void ath10k_ce_per_engine_service(struct ath10k *ar, unsigned int ce_id)
{
1065 1066
	struct ath10k_ce *ce = ath10k_ce_priv(ar);
	struct ath10k_ce_pipe *ce_state = &ce->ce_states[ce_id];
1067
	struct ath10k_hw_ce_host_wm_regs *wm_regs = ar->hw_ce_regs->wm_regs;
1068 1069
	u32 ctrl_addr = ce_state->ctrl_addr;

1070
	spin_lock_bh(&ce->ce_lock);
1071 1072

	/* Clear the copy-complete interrupts that will be handled here. */
1073 1074
	ath10k_ce_engine_int_status_clear(ar, ctrl_addr,
					  wm_regs->cc_mask);
1075

1076
	spin_unlock_bh(&ce->ce_lock);
1077

1078 1079 1080 1081 1082 1083
	if (ce_state->recv_cb)
		ce_state->recv_cb(ce_state);

	if (ce_state->send_cb)
		ce_state->send_cb(ce_state);

1084
	spin_lock_bh(&ce->ce_lock);
1085 1086 1087 1088 1089

	/*
	 * Misc CE interrupts are not being handled, but still need
	 * to be cleared.
	 */
1090
	ath10k_ce_engine_int_status_clear(ar, ctrl_addr, wm_regs->wm_mask);
1091

1092
	spin_unlock_bh(&ce->ce_lock);
1093
}
1094
EXPORT_SYMBOL(ath10k_ce_per_engine_service);
1095 1096 1097 1098 1099 1100 1101 1102 1103

/*
 * Handler for per-engine interrupts on ALL active CEs.
 * This is used in cases where the system is sharing a
 * single interrput for all CEs
 */

void ath10k_ce_per_engine_service_any(struct ath10k *ar)
{
1104
	int ce_id;
1105 1106
	u32 intr_summary;

1107
	intr_summary = ath10k_ce_interrupt_summary(ar);
1108

M
Michal Kazior 已提交
1109
	for (ce_id = 0; intr_summary && (ce_id < CE_COUNT); ce_id++) {
1110 1111 1112 1113 1114 1115 1116 1117 1118
		if (intr_summary & (1 << ce_id))
			intr_summary &= ~(1 << ce_id);
		else
			/* no intr pending on this CE */
			continue;

		ath10k_ce_per_engine_service(ar, ce_id);
	}
}
1119
EXPORT_SYMBOL(ath10k_ce_per_engine_service_any);
1120 1121 1122 1123 1124 1125 1126 1127

/*
 * Adjust interrupts for the copy complete handler.
 * If it's needed for either send or recv, then unmask
 * this interrupt; otherwise, mask it.
 *
 * Called with ce_lock held.
 */
1128
static void ath10k_ce_per_engine_handler_adjust(struct ath10k_ce_pipe *ce_state)
1129 1130 1131
{
	u32 ctrl_addr = ce_state->ctrl_addr;
	struct ath10k *ar = ce_state->ar;
1132
	bool disable_copy_compl_intr = ce_state->attr_flags & CE_ATTR_DIS_INTR;
1133 1134 1135 1136 1137 1138 1139 1140 1141 1142

	if ((!disable_copy_compl_intr) &&
	    (ce_state->send_cb || ce_state->recv_cb))
		ath10k_ce_copy_complete_inter_enable(ar, ctrl_addr);
	else
		ath10k_ce_copy_complete_intr_disable(ar, ctrl_addr);

	ath10k_ce_watermark_intr_disable(ar, ctrl_addr);
}

1143
int ath10k_ce_disable_interrupts(struct ath10k *ar)
1144
{
1145
	int ce_id;
1146

M
Michal Kazior 已提交
1147
	for (ce_id = 0; ce_id < CE_COUNT; ce_id++) {
M
Michal Kazior 已提交
1148
		u32 ctrl_addr = ath10k_ce_base_address(ar, ce_id);
1149 1150

		ath10k_ce_copy_complete_intr_disable(ar, ctrl_addr);
1151 1152
		ath10k_ce_error_intr_disable(ar, ctrl_addr);
		ath10k_ce_watermark_intr_disable(ar, ctrl_addr);
1153
	}
1154 1155

	return 0;
1156
}
1157
EXPORT_SYMBOL(ath10k_ce_disable_interrupts);
1158

1159
void ath10k_ce_enable_interrupts(struct ath10k *ar)
1160
{
1161
	struct ath10k_ce *ce = ath10k_ce_priv(ar);
1162
	int ce_id;
1163
	struct ath10k_ce_pipe *ce_state;
1164

1165 1166 1167
	/* Skip the last copy engine, CE7 the diagnostic window, as that
	 * uses polling and isn't initialized for interrupts.
	 */
1168 1169 1170 1171
	for (ce_id = 0; ce_id < CE_COUNT - 1; ce_id++) {
		ce_state  = &ce->ce_states[ce_id];
		ath10k_ce_per_engine_handler_adjust(ce_state);
	}
1172
}
1173
EXPORT_SYMBOL(ath10k_ce_enable_interrupts);
1174 1175 1176 1177 1178

static int ath10k_ce_init_src_ring(struct ath10k *ar,
				   unsigned int ce_id,
				   const struct ce_attr *attr)
{
1179 1180
	struct ath10k_ce *ce = ath10k_ce_priv(ar);
	struct ath10k_ce_pipe *ce_state = &ce->ce_states[ce_id];
1181
	struct ath10k_ce_ring *src_ring = ce_state->src_ring;
M
Michal Kazior 已提交
1182
	u32 nentries, ctrl_addr = ath10k_ce_base_address(ar, ce_id);
1183

1184
	nentries = roundup_pow_of_two(attr->src_nentries);
1185

1186 1187 1188 1189 1190 1191
	if (ar->hw_params.target_64bit)
		memset(src_ring->base_addr_owner_space, 0,
		       nentries * sizeof(struct ce_desc_64));
	else
		memset(src_ring->base_addr_owner_space, 0,
		       nentries * sizeof(struct ce_desc));
M
Michal Kazior 已提交
1192

1193
	src_ring->sw_index = ath10k_ce_src_ring_read_index_get(ar, ctrl_addr);
1194
	src_ring->sw_index &= src_ring->nentries_mask;
1195 1196 1197 1198
	src_ring->hw_index = src_ring->sw_index;

	src_ring->write_index =
		ath10k_ce_src_ring_write_index_get(ar, ctrl_addr);
1199
	src_ring->write_index &= src_ring->nentries_mask;
1200

1201 1202 1203 1204 1205 1206 1207 1208
	ath10k_ce_src_ring_base_addr_set(ar, ctrl_addr,
					 src_ring->base_addr_ce_space);
	ath10k_ce_src_ring_size_set(ar, ctrl_addr, nentries);
	ath10k_ce_src_ring_dmax_set(ar, ctrl_addr, attr->src_sz_max);
	ath10k_ce_src_ring_byte_swap_set(ar, ctrl_addr, 0);
	ath10k_ce_src_ring_lowmark_set(ar, ctrl_addr, 0);
	ath10k_ce_src_ring_highmark_set(ar, ctrl_addr, nentries);

1209
	ath10k_dbg(ar, ATH10K_DBG_BOOT,
1210
		   "boot init ce src ring id %d entries %d base_addr %pK\n",
1211 1212 1213 1214 1215 1216 1217 1218 1219
		   ce_id, nentries, src_ring->base_addr_owner_space);

	return 0;
}

static int ath10k_ce_init_dest_ring(struct ath10k *ar,
				    unsigned int ce_id,
				    const struct ce_attr *attr)
{
1220 1221
	struct ath10k_ce *ce = ath10k_ce_priv(ar);
	struct ath10k_ce_pipe *ce_state = &ce->ce_states[ce_id];
1222
	struct ath10k_ce_ring *dest_ring = ce_state->dest_ring;
M
Michal Kazior 已提交
1223
	u32 nentries, ctrl_addr = ath10k_ce_base_address(ar, ce_id);
1224 1225 1226

	nentries = roundup_pow_of_two(attr->dest_nentries);

1227 1228 1229 1230 1231 1232
	if (ar->hw_params.target_64bit)
		memset(dest_ring->base_addr_owner_space, 0,
		       nentries * sizeof(struct ce_desc_64));
	else
		memset(dest_ring->base_addr_owner_space, 0,
		       nentries * sizeof(struct ce_desc));
M
Michal Kazior 已提交
1233

1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246
	dest_ring->sw_index = ath10k_ce_dest_ring_read_index_get(ar, ctrl_addr);
	dest_ring->sw_index &= dest_ring->nentries_mask;
	dest_ring->write_index =
		ath10k_ce_dest_ring_write_index_get(ar, ctrl_addr);
	dest_ring->write_index &= dest_ring->nentries_mask;

	ath10k_ce_dest_ring_base_addr_set(ar, ctrl_addr,
					  dest_ring->base_addr_ce_space);
	ath10k_ce_dest_ring_size_set(ar, ctrl_addr, nentries);
	ath10k_ce_dest_ring_byte_swap_set(ar, ctrl_addr, 0);
	ath10k_ce_dest_ring_lowmark_set(ar, ctrl_addr, 0);
	ath10k_ce_dest_ring_highmark_set(ar, ctrl_addr, nentries);

1247
	ath10k_dbg(ar, ATH10K_DBG_BOOT,
1248
		   "boot ce dest ring id %d entries %d base_addr %pK\n",
1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272
		   ce_id, nentries, dest_ring->base_addr_owner_space);

	return 0;
}

static struct ath10k_ce_ring *
ath10k_ce_alloc_src_ring(struct ath10k *ar, unsigned int ce_id,
			 const struct ce_attr *attr)
{
	struct ath10k_ce_ring *src_ring;
	u32 nentries = attr->src_nentries;
	dma_addr_t base_addr;

	nentries = roundup_pow_of_two(nentries);

	src_ring = kzalloc(sizeof(*src_ring) +
			   (nentries *
			    sizeof(*src_ring->per_transfer_context)),
			   GFP_KERNEL);
	if (src_ring == NULL)
		return ERR_PTR(-ENOMEM);

	src_ring->nentries = nentries;
	src_ring->nentries_mask = nentries - 1;
1273 1274 1275 1276 1277 1278

	/*
	 * Legacy platforms that do not support cache
	 * coherent DMA are unsupported
	 */
	src_ring->base_addr_owner_space_unaligned =
1279 1280 1281 1282
		dma_alloc_coherent(ar->dev,
				   (nentries * sizeof(struct ce_desc) +
				    CE_DESC_RING_ALIGN),
				   &base_addr, GFP_KERNEL);
1283
	if (!src_ring->base_addr_owner_space_unaligned) {
1284 1285
		kfree(src_ring);
		return ERR_PTR(-ENOMEM);
1286 1287
	}

1288 1289
	src_ring->base_addr_ce_space_unaligned = base_addr;

1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340
	src_ring->base_addr_owner_space =
			PTR_ALIGN(src_ring->base_addr_owner_space_unaligned,
				  CE_DESC_RING_ALIGN);
	src_ring->base_addr_ce_space =
			ALIGN(src_ring->base_addr_ce_space_unaligned,
			      CE_DESC_RING_ALIGN);

	return src_ring;
}

static struct ath10k_ce_ring *
ath10k_ce_alloc_src_ring_64(struct ath10k *ar, unsigned int ce_id,
			    const struct ce_attr *attr)
{
	struct ath10k_ce_ring *src_ring;
	u32 nentries = attr->src_nentries;
	dma_addr_t base_addr;

	nentries = roundup_pow_of_two(nentries);

	src_ring = kzalloc(sizeof(*src_ring) +
			   (nentries *
			    sizeof(*src_ring->per_transfer_context)),
			   GFP_KERNEL);
	if (!src_ring)
		return ERR_PTR(-ENOMEM);

	src_ring->nentries = nentries;
	src_ring->nentries_mask = nentries - 1;

	/* Legacy platforms that do not support cache
	 * coherent DMA are unsupported
	 */
	src_ring->base_addr_owner_space_unaligned =
		dma_alloc_coherent(ar->dev,
				   (nentries * sizeof(struct ce_desc_64) +
				    CE_DESC_RING_ALIGN),
				   &base_addr, GFP_KERNEL);
	if (!src_ring->base_addr_owner_space_unaligned) {
		kfree(src_ring);
		return ERR_PTR(-ENOMEM);
	}

	src_ring->base_addr_ce_space_unaligned = base_addr;

	src_ring->base_addr_owner_space =
			PTR_ALIGN(src_ring->base_addr_owner_space_unaligned,
				  CE_DESC_RING_ALIGN);
	src_ring->base_addr_ce_space =
			ALIGN(src_ring->base_addr_ce_space_unaligned,
			      CE_DESC_RING_ALIGN);
1341

1342
	return src_ring;
1343 1344
}

1345 1346 1347
static struct ath10k_ce_ring *
ath10k_ce_alloc_dest_ring(struct ath10k *ar, unsigned int ce_id,
			  const struct ce_attr *attr)
1348
{
1349
	struct ath10k_ce_ring *dest_ring;
1350
	u32 nentries;
1351 1352
	dma_addr_t base_addr;

1353
	nentries = roundup_pow_of_two(attr->dest_nentries);
1354

1355 1356 1357 1358 1359 1360
	dest_ring = kzalloc(sizeof(*dest_ring) +
			    (nentries *
			     sizeof(*dest_ring->per_transfer_context)),
			    GFP_KERNEL);
	if (dest_ring == NULL)
		return ERR_PTR(-ENOMEM);
1361 1362 1363 1364 1365 1366 1367 1368 1369

	dest_ring->nentries = nentries;
	dest_ring->nentries_mask = nentries - 1;

	/*
	 * Legacy platforms that do not support cache
	 * coherent DMA are unsupported
	 */
	dest_ring->base_addr_owner_space_unaligned =
1370
		dma_zalloc_coherent(ar->dev,
K
Kalle Valo 已提交
1371 1372 1373
				    (nentries * sizeof(struct ce_desc) +
				     CE_DESC_RING_ALIGN),
				    &base_addr, GFP_KERNEL);
1374
	if (!dest_ring->base_addr_owner_space_unaligned) {
1375 1376
		kfree(dest_ring);
		return ERR_PTR(-ENOMEM);
1377 1378
	}

1379 1380
	dest_ring->base_addr_ce_space_unaligned = base_addr;

1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437
	dest_ring->base_addr_owner_space =
			PTR_ALIGN(dest_ring->base_addr_owner_space_unaligned,
				  CE_DESC_RING_ALIGN);
	dest_ring->base_addr_ce_space =
				ALIGN(dest_ring->base_addr_ce_space_unaligned,
				      CE_DESC_RING_ALIGN);

	return dest_ring;
}

static struct ath10k_ce_ring *
ath10k_ce_alloc_dest_ring_64(struct ath10k *ar, unsigned int ce_id,
			     const struct ce_attr *attr)
{
	struct ath10k_ce_ring *dest_ring;
	u32 nentries;
	dma_addr_t base_addr;

	nentries = roundup_pow_of_two(attr->dest_nentries);

	dest_ring = kzalloc(sizeof(*dest_ring) +
			    (nentries *
			     sizeof(*dest_ring->per_transfer_context)),
			    GFP_KERNEL);
	if (!dest_ring)
		return ERR_PTR(-ENOMEM);

	dest_ring->nentries = nentries;
	dest_ring->nentries_mask = nentries - 1;

	/* Legacy platforms that do not support cache
	 * coherent DMA are unsupported
	 */
	dest_ring->base_addr_owner_space_unaligned =
		dma_alloc_coherent(ar->dev,
				   (nentries * sizeof(struct ce_desc_64) +
				    CE_DESC_RING_ALIGN),
				   &base_addr, GFP_KERNEL);
	if (!dest_ring->base_addr_owner_space_unaligned) {
		kfree(dest_ring);
		return ERR_PTR(-ENOMEM);
	}

	dest_ring->base_addr_ce_space_unaligned = base_addr;

	/* Correctly initialize memory to 0 to prevent garbage
	 * data crashing system when download firmware
	 */
	memset(dest_ring->base_addr_owner_space_unaligned, 0,
	       nentries * sizeof(struct ce_desc_64) + CE_DESC_RING_ALIGN);

	dest_ring->base_addr_owner_space =
			PTR_ALIGN(dest_ring->base_addr_owner_space_unaligned,
				  CE_DESC_RING_ALIGN);
	dest_ring->base_addr_ce_space =
			ALIGN(dest_ring->base_addr_ce_space_unaligned,
			      CE_DESC_RING_ALIGN);
1438

1439
	return dest_ring;
1440 1441 1442 1443 1444 1445 1446 1447 1448
}

/*
 * Initialize a Copy Engine based on caller-supplied attributes.
 * This may be called once to initialize both source and destination
 * rings or it may be called twice for separate source and destination
 * initialization. It may be that only one side or the other is
 * initialized by software/firmware.
 */
1449
int ath10k_ce_init_pipe(struct ath10k *ar, unsigned int ce_id,
1450
			const struct ce_attr *attr)
1451
{
1452
	int ret;
1453 1454

	if (attr->src_nentries) {
1455
		ret = ath10k_ce_init_src_ring(ar, ce_id, attr);
1456
		if (ret) {
1457
			ath10k_err(ar, "Failed to initialize CE src ring for ID: %d (%d)\n",
1458
				   ce_id, ret);
1459
			return ret;
1460 1461 1462 1463
		}
	}

	if (attr->dest_nentries) {
1464
		ret = ath10k_ce_init_dest_ring(ar, ce_id, attr);
1465
		if (ret) {
1466
			ath10k_err(ar, "Failed to initialize CE dest ring for ID: %d (%d)\n",
1467
				   ce_id, ret);
1468
			return ret;
1469 1470 1471
		}
	}

1472
	return 0;
1473
}
1474
EXPORT_SYMBOL(ath10k_ce_init_pipe);
1475

1476
static void ath10k_ce_deinit_src_ring(struct ath10k *ar, unsigned int ce_id)
1477
{
M
Michal Kazior 已提交
1478
	u32 ctrl_addr = ath10k_ce_base_address(ar, ce_id);
1479 1480 1481 1482 1483 1484 1485 1486 1487

	ath10k_ce_src_ring_base_addr_set(ar, ctrl_addr, 0);
	ath10k_ce_src_ring_size_set(ar, ctrl_addr, 0);
	ath10k_ce_src_ring_dmax_set(ar, ctrl_addr, 0);
	ath10k_ce_src_ring_highmark_set(ar, ctrl_addr, 0);
}

static void ath10k_ce_deinit_dest_ring(struct ath10k *ar, unsigned int ce_id)
{
M
Michal Kazior 已提交
1488
	u32 ctrl_addr = ath10k_ce_base_address(ar, ce_id);
1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499

	ath10k_ce_dest_ring_base_addr_set(ar, ctrl_addr, 0);
	ath10k_ce_dest_ring_size_set(ar, ctrl_addr, 0);
	ath10k_ce_dest_ring_highmark_set(ar, ctrl_addr, 0);
}

void ath10k_ce_deinit_pipe(struct ath10k *ar, unsigned int ce_id)
{
	ath10k_ce_deinit_src_ring(ar, ce_id);
	ath10k_ce_deinit_dest_ring(ar, ce_id);
}
1500
EXPORT_SYMBOL(ath10k_ce_deinit_pipe);
1501

1502
static void _ath10k_ce_free_pipe(struct ath10k *ar, int ce_id)
1503
{
1504 1505
	struct ath10k_ce *ce = ath10k_ce_priv(ar);
	struct ath10k_ce_pipe *ce_state = &ce->ce_states[ce_id];
1506

1507 1508 1509 1510 1511 1512 1513 1514
	if (ce_state->src_ring) {
		dma_free_coherent(ar->dev,
				  (ce_state->src_ring->nentries *
				   sizeof(struct ce_desc) +
				   CE_DESC_RING_ALIGN),
				  ce_state->src_ring->base_addr_owner_space,
				  ce_state->src_ring->base_addr_ce_space);
		kfree(ce_state->src_ring);
1515 1516
	}

1517 1518 1519 1520 1521 1522 1523 1524
	if (ce_state->dest_ring) {
		dma_free_coherent(ar->dev,
				  (ce_state->dest_ring->nentries *
				   sizeof(struct ce_desc) +
				   CE_DESC_RING_ALIGN),
				  ce_state->dest_ring->base_addr_owner_space,
				  ce_state->dest_ring->base_addr_ce_space);
		kfree(ce_state->dest_ring);
1525 1526
	}

1527 1528
	ce_state->src_ring = NULL;
	ce_state->dest_ring = NULL;
1529 1530
}

1531
static void _ath10k_ce_free_pipe_64(struct ath10k *ar, int ce_id)
1532
{
1533 1534
	struct ath10k_ce *ce = ath10k_ce_priv(ar);
	struct ath10k_ce_pipe *ce_state = &ce->ce_states[ce_id];
1535 1536

	if (ce_state->src_ring) {
1537 1538
		dma_free_coherent(ar->dev,
				  (ce_state->src_ring->nentries *
1539
				   sizeof(struct ce_desc_64) +
1540 1541 1542
				   CE_DESC_RING_ALIGN),
				  ce_state->src_ring->base_addr_owner_space,
				  ce_state->src_ring->base_addr_ce_space);
1543 1544 1545 1546
		kfree(ce_state->src_ring);
	}

	if (ce_state->dest_ring) {
1547 1548
		dma_free_coherent(ar->dev,
				  (ce_state->dest_ring->nentries *
1549
				   sizeof(struct ce_desc_64) +
1550 1551 1552
				   CE_DESC_RING_ALIGN),
				  ce_state->dest_ring->base_addr_owner_space,
				  ce_state->dest_ring->base_addr_ce_space);
1553 1554
		kfree(ce_state->dest_ring);
	}
1555 1556 1557

	ce_state->src_ring = NULL;
	ce_state->dest_ring = NULL;
1558
}
1559

1560 1561 1562 1563 1564 1565 1566
void ath10k_ce_free_pipe(struct ath10k *ar, int ce_id)
{
	struct ath10k_ce *ce = ath10k_ce_priv(ar);
	struct ath10k_ce_pipe *ce_state = &ce->ce_states[ce_id];

	ce_state->ops->ce_free_pipe(ar, ce_id);
}
1567
EXPORT_SYMBOL(ath10k_ce_free_pipe);
1568

1569 1570 1571
void ath10k_ce_dump_registers(struct ath10k *ar,
			      struct ath10k_fw_crash_data *crash_data)
{
1572 1573
	struct ath10k_ce *ce = ath10k_ce_priv(ar);
	struct ath10k_ce_crash_data ce_data;
1574 1575 1576 1577 1578 1579
	u32 addr, id;

	lockdep_assert_held(&ar->data_lock);

	ath10k_err(ar, "Copy Engine register dump:\n");

1580
	spin_lock_bh(&ce->ce_lock);
1581 1582
	for (id = 0; id < CE_COUNT; id++) {
		addr = ath10k_ce_base_address(ar, id);
1583
		ce_data.base_addr = cpu_to_le32(addr);
1584

1585
		ce_data.src_wr_idx =
1586
			cpu_to_le32(ath10k_ce_src_ring_write_index_get(ar, addr));
1587
		ce_data.src_r_idx =
1588
			cpu_to_le32(ath10k_ce_src_ring_read_index_get(ar, addr));
1589
		ce_data.dst_wr_idx =
1590
			cpu_to_le32(ath10k_ce_dest_ring_write_index_get(ar, addr));
1591
		ce_data.dst_r_idx =
1592 1593 1594
			cpu_to_le32(ath10k_ce_dest_ring_read_index_get(ar, addr));

		if (crash_data)
1595
			crash_data->ce_crash_data[id] = ce_data;
1596 1597

		ath10k_err(ar, "[%02d]: 0x%08x %3u %3u %3u %3u", id,
1598 1599 1600 1601 1602
			   le32_to_cpu(ce_data.base_addr),
			   le32_to_cpu(ce_data.src_wr_idx),
			   le32_to_cpu(ce_data.src_r_idx),
			   le32_to_cpu(ce_data.dst_wr_idx),
			   le32_to_cpu(ce_data.dst_r_idx));
1603 1604
	}

1605
	spin_unlock_bh(&ce->ce_lock);
1606
}
1607
EXPORT_SYMBOL(ath10k_ce_dump_registers);
1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703

static const struct ath10k_ce_ops ce_ops = {
	.ce_alloc_src_ring = ath10k_ce_alloc_src_ring,
	.ce_alloc_dst_ring = ath10k_ce_alloc_dest_ring,
	.ce_rx_post_buf = __ath10k_ce_rx_post_buf,
	.ce_completed_recv_next_nolock = _ath10k_ce_completed_recv_next_nolock,
	.ce_revoke_recv_next = _ath10k_ce_revoke_recv_next,
	.ce_extract_desc_data = ath10k_ce_extract_desc_data,
	.ce_free_pipe = _ath10k_ce_free_pipe,
	.ce_send_nolock = _ath10k_ce_send_nolock,
};

static const struct ath10k_ce_ops ce_64_ops = {
	.ce_alloc_src_ring = ath10k_ce_alloc_src_ring_64,
	.ce_alloc_dst_ring = ath10k_ce_alloc_dest_ring_64,
	.ce_rx_post_buf = __ath10k_ce_rx_post_buf_64,
	.ce_completed_recv_next_nolock =
				_ath10k_ce_completed_recv_next_nolock_64,
	.ce_revoke_recv_next = _ath10k_ce_revoke_recv_next_64,
	.ce_extract_desc_data = ath10k_ce_extract_desc_data_64,
	.ce_free_pipe = _ath10k_ce_free_pipe_64,
	.ce_send_nolock = _ath10k_ce_send_nolock_64,
};

static void ath10k_ce_set_ops(struct ath10k *ar,
			      struct ath10k_ce_pipe *ce_state)
{
	switch (ar->hw_rev) {
	case ATH10K_HW_WCN3990:
		ce_state->ops = &ce_64_ops;
		break;
	default:
		ce_state->ops = &ce_ops;
		break;
	}
}

int ath10k_ce_alloc_pipe(struct ath10k *ar, int ce_id,
			 const struct ce_attr *attr)
{
	struct ath10k_ce *ce = ath10k_ce_priv(ar);
	struct ath10k_ce_pipe *ce_state = &ce->ce_states[ce_id];
	int ret;

	ath10k_ce_set_ops(ar, ce_state);
	/* Make sure there's enough CE ringbuffer entries for HTT TX to avoid
	 * additional TX locking checks.
	 *
	 * For the lack of a better place do the check here.
	 */
	BUILD_BUG_ON(2 * TARGET_NUM_MSDU_DESC >
		     (CE_HTT_H2T_MSG_SRC_NENTRIES - 1));
	BUILD_BUG_ON(2 * TARGET_10_4_NUM_MSDU_DESC_PFC >
		     (CE_HTT_H2T_MSG_SRC_NENTRIES - 1));
	BUILD_BUG_ON(2 * TARGET_TLV_NUM_MSDU_DESC >
		     (CE_HTT_H2T_MSG_SRC_NENTRIES - 1));

	ce_state->ar = ar;
	ce_state->id = ce_id;
	ce_state->ctrl_addr = ath10k_ce_base_address(ar, ce_id);
	ce_state->attr_flags = attr->flags;
	ce_state->src_sz_max = attr->src_sz_max;

	if (attr->src_nentries)
		ce_state->send_cb = attr->send_cb;

	if (attr->dest_nentries)
		ce_state->recv_cb = attr->recv_cb;

	if (attr->src_nentries) {
		ce_state->src_ring =
			ce_state->ops->ce_alloc_src_ring(ar, ce_id, attr);
		if (IS_ERR(ce_state->src_ring)) {
			ret = PTR_ERR(ce_state->src_ring);
			ath10k_err(ar, "failed to alloc CE src ring %d: %d\n",
				   ce_id, ret);
			ce_state->src_ring = NULL;
			return ret;
		}
	}

	if (attr->dest_nentries) {
		ce_state->dest_ring = ce_state->ops->ce_alloc_dst_ring(ar,
									ce_id,
									attr);
		if (IS_ERR(ce_state->dest_ring)) {
			ret = PTR_ERR(ce_state->dest_ring);
			ath10k_err(ar, "failed to alloc CE dest ring %d: %d\n",
				   ce_id, ret);
			ce_state->dest_ring = NULL;
			return ret;
		}
	}

	return 0;
}
1704
EXPORT_SYMBOL(ath10k_ce_alloc_pipe);