arm-smmu-v3.c 109.5 KB
Newer Older
A
Andrew Murray 已提交
1
// SPDX-License-Identifier: GPL-2.0
2 3 4 5 6 7 8 9 10 11
/*
 * IOMMU API for ARM architected SMMUv3 implementations.
 *
 * Copyright (C) 2015 ARM Limited
 *
 * Author: Will Deacon <will.deacon@arm.com>
 *
 * This driver is powered by bad coffee and bombay mix.
 */

12 13
#include <linux/acpi.h>
#include <linux/acpi_iort.h>
14
#include <linux/bitfield.h>
15
#include <linux/bitops.h>
16
#include <linux/crash_dump.h>
17
#include <linux/delay.h>
18
#include <linux/dma-iommu.h>
19 20
#include <linux/err.h>
#include <linux/interrupt.h>
21
#include <linux/io-pgtable.h>
22 23
#include <linux/iommu.h>
#include <linux/iopoll.h>
24
#include <linux/module.h>
25
#include <linux/msi.h>
26 27
#include <linux/of.h>
#include <linux/of_address.h>
28
#include <linux/of_iommu.h>
29
#include <linux/of_platform.h>
30
#include <linux/pci.h>
31
#include <linux/pci-ats.h>
32 33
#include <linux/platform_device.h>

34 35
#include <linux/amba/bus.h>

36 37
/* MMIO registers */
#define ARM_SMMU_IDR0			0x0
38 39 40 41 42 43 44 45 46
#define IDR0_ST_LVL			GENMASK(28, 27)
#define IDR0_ST_LVL_2LVL		1
#define IDR0_STALL_MODEL		GENMASK(25, 24)
#define IDR0_STALL_MODEL_STALL		0
#define IDR0_STALL_MODEL_FORCE		2
#define IDR0_TTENDIAN			GENMASK(22, 21)
#define IDR0_TTENDIAN_MIXED		0
#define IDR0_TTENDIAN_LE		2
#define IDR0_TTENDIAN_BE		3
47 48 49 50 51 52 53 54 55
#define IDR0_CD2L			(1 << 19)
#define IDR0_VMID16			(1 << 18)
#define IDR0_PRI			(1 << 16)
#define IDR0_SEV			(1 << 14)
#define IDR0_MSI			(1 << 13)
#define IDR0_ASID16			(1 << 12)
#define IDR0_ATS			(1 << 10)
#define IDR0_HYP			(1 << 9)
#define IDR0_COHACC			(1 << 4)
56 57 58
#define IDR0_TTF			GENMASK(3, 2)
#define IDR0_TTF_AARCH64		2
#define IDR0_TTF_AARCH32_64		3
59 60 61 62 63 64 65
#define IDR0_S1P			(1 << 1)
#define IDR0_S2P			(1 << 0)

#define ARM_SMMU_IDR1			0x4
#define IDR1_TABLES_PRESET		(1 << 30)
#define IDR1_QUEUES_PRESET		(1 << 29)
#define IDR1_REL			(1 << 28)
66 67 68 69 70
#define IDR1_CMDQS			GENMASK(25, 21)
#define IDR1_EVTQS			GENMASK(20, 16)
#define IDR1_PRIQS			GENMASK(15, 11)
#define IDR1_SSIDSIZE			GENMASK(10, 6)
#define IDR1_SIDSIZE			GENMASK(5, 0)
71

72 73 74
#define ARM_SMMU_IDR3			0xc
#define IDR3_RIL			(1 << 10)

75
#define ARM_SMMU_IDR5			0x14
76
#define IDR5_STALL_MAX			GENMASK(31, 16)
77 78 79
#define IDR5_GRAN64K			(1 << 6)
#define IDR5_GRAN16K			(1 << 5)
#define IDR5_GRAN4K			(1 << 4)
80 81 82 83 84 85 86
#define IDR5_OAS			GENMASK(2, 0)
#define IDR5_OAS_32_BIT			0
#define IDR5_OAS_36_BIT			1
#define IDR5_OAS_40_BIT			2
#define IDR5_OAS_42_BIT			3
#define IDR5_OAS_44_BIT			4
#define IDR5_OAS_48_BIT			5
87
#define IDR5_OAS_52_BIT			6
88 89
#define IDR5_VAX			GENMASK(11, 10)
#define IDR5_VAX_52_BIT			1
90 91

#define ARM_SMMU_CR0			0x20
92
#define CR0_ATSCHK			(1 << 4)
93 94 95 96 97 98 99 100
#define CR0_CMDQEN			(1 << 3)
#define CR0_EVTQEN			(1 << 2)
#define CR0_PRIQEN			(1 << 1)
#define CR0_SMMUEN			(1 << 0)

#define ARM_SMMU_CR0ACK			0x24

#define ARM_SMMU_CR1			0x28
101 102 103 104 105 106 107
#define CR1_TABLE_SH			GENMASK(11, 10)
#define CR1_TABLE_OC			GENMASK(9, 8)
#define CR1_TABLE_IC			GENMASK(7, 6)
#define CR1_QUEUE_SH			GENMASK(5, 4)
#define CR1_QUEUE_OC			GENMASK(3, 2)
#define CR1_QUEUE_IC			GENMASK(1, 0)
/* CR1 cacheability fields don't quite follow the usual TCR-style encoding */
108 109 110 111 112 113 114 115 116
#define CR1_CACHE_NC			0
#define CR1_CACHE_WB			1
#define CR1_CACHE_WT			2

#define ARM_SMMU_CR2			0x2c
#define CR2_PTM				(1 << 2)
#define CR2_RECINVSID			(1 << 1)
#define CR2_E2H				(1 << 0)

117 118
#define ARM_SMMU_GBPA			0x44
#define GBPA_UPDATE			(1 << 31)
119
#define GBPA_ABORT			(1 << 20)
120

121 122
#define ARM_SMMU_IRQ_CTRL		0x50
#define IRQ_CTRL_EVTQ_IRQEN		(1 << 2)
123
#define IRQ_CTRL_PRIQ_IRQEN		(1 << 1)
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
#define IRQ_CTRL_GERROR_IRQEN		(1 << 0)

#define ARM_SMMU_IRQ_CTRLACK		0x54

#define ARM_SMMU_GERROR			0x60
#define GERROR_SFM_ERR			(1 << 8)
#define GERROR_MSI_GERROR_ABT_ERR	(1 << 7)
#define GERROR_MSI_PRIQ_ABT_ERR		(1 << 6)
#define GERROR_MSI_EVTQ_ABT_ERR		(1 << 5)
#define GERROR_MSI_CMDQ_ABT_ERR		(1 << 4)
#define GERROR_PRIQ_ABT_ERR		(1 << 3)
#define GERROR_EVTQ_ABT_ERR		(1 << 2)
#define GERROR_CMDQ_ERR			(1 << 0)
#define GERROR_ERR_MASK			0xfd

#define ARM_SMMU_GERRORN		0x64

#define ARM_SMMU_GERROR_IRQ_CFG0	0x68
#define ARM_SMMU_GERROR_IRQ_CFG1	0x70
#define ARM_SMMU_GERROR_IRQ_CFG2	0x74

#define ARM_SMMU_STRTAB_BASE		0x80
#define STRTAB_BASE_RA			(1UL << 62)
147
#define STRTAB_BASE_ADDR_MASK		GENMASK_ULL(51, 6)
148 149

#define ARM_SMMU_STRTAB_BASE_CFG	0x88
150 151 152 153 154
#define STRTAB_BASE_CFG_FMT		GENMASK(17, 16)
#define STRTAB_BASE_CFG_FMT_LINEAR	0
#define STRTAB_BASE_CFG_FMT_2LVL	1
#define STRTAB_BASE_CFG_SPLIT		GENMASK(10, 6)
#define STRTAB_BASE_CFG_LOG2SIZE	GENMASK(5, 0)
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173

#define ARM_SMMU_CMDQ_BASE		0x90
#define ARM_SMMU_CMDQ_PROD		0x98
#define ARM_SMMU_CMDQ_CONS		0x9c

#define ARM_SMMU_EVTQ_BASE		0xa0
#define ARM_SMMU_EVTQ_PROD		0x100a8
#define ARM_SMMU_EVTQ_CONS		0x100ac
#define ARM_SMMU_EVTQ_IRQ_CFG0		0xb0
#define ARM_SMMU_EVTQ_IRQ_CFG1		0xb8
#define ARM_SMMU_EVTQ_IRQ_CFG2		0xbc

#define ARM_SMMU_PRIQ_BASE		0xc0
#define ARM_SMMU_PRIQ_PROD		0x100c8
#define ARM_SMMU_PRIQ_CONS		0x100cc
#define ARM_SMMU_PRIQ_IRQ_CFG0		0xd0
#define ARM_SMMU_PRIQ_IRQ_CFG1		0xd8
#define ARM_SMMU_PRIQ_IRQ_CFG2		0xdc

174 175
#define ARM_SMMU_REG_SZ			0xe00

176
/* Common MSI config fields */
177
#define MSI_CFG0_ADDR_MASK		GENMASK_ULL(51, 2)
178 179 180 181 182 183 184 185
#define MSI_CFG2_SH			GENMASK(5, 4)
#define MSI_CFG2_MEMATTR		GENMASK(3, 0)

/* Common memory attribute values */
#define ARM_SMMU_SH_NSH			0
#define ARM_SMMU_SH_OSH			2
#define ARM_SMMU_SH_ISH			3
#define ARM_SMMU_MEMATTR_DEVICE_nGnRE	0x1
186
#define ARM_SMMU_MEMATTR_OIWB		0xf
187

188 189
#define Q_IDX(llq, p)			((p) & ((1 << (llq)->max_n_shift) - 1))
#define Q_WRP(llq, p)			((p) & (1 << (llq)->max_n_shift))
190
#define Q_OVERFLOW_FLAG			(1U << 31)
191
#define Q_OVF(p)			((p) & Q_OVERFLOW_FLAG)
192
#define Q_ENT(q, p)			((q)->base +			\
193 194
					 Q_IDX(&((q)->llq), p) *	\
					 (q)->ent_dwords)
195 196

#define Q_BASE_RWA			(1UL << 62)
197
#define Q_BASE_ADDR_MASK		GENMASK_ULL(51, 5)
198
#define Q_BASE_LOG2SIZE			GENMASK(4, 0)
199 200 201

/* Ensure DMA allocations are naturally aligned */
#ifdef CONFIG_CMA_ALIGNMENT
202
#define Q_MAX_SZ_SHIFT			(PAGE_SHIFT + CONFIG_CMA_ALIGNMENT)
203 204 205
#else
#define Q_MAX_SZ_SHIFT			(PAGE_SHIFT + MAX_ORDER - 1)
#endif
206 207 208 209 210

/*
 * Stream table.
 *
 * Linear: Enough to cover 1 << IDR1.SIDSIZE entries
211 212
 * 2lvl: 128k L1 entries,
 *       256 lazy entries per table (each table covers a PCI bus)
213
 */
214
#define STRTAB_L1_SZ_SHIFT		20
215 216 217
#define STRTAB_SPLIT			8

#define STRTAB_L1_DESC_DWORDS		1
218
#define STRTAB_L1_DESC_SPAN		GENMASK_ULL(4, 0)
219
#define STRTAB_L1_DESC_L2PTR_MASK	GENMASK_ULL(51, 6)
220 221 222

#define STRTAB_STE_DWORDS		8
#define STRTAB_STE_0_V			(1UL << 0)
223 224 225 226 227 228 229 230
#define STRTAB_STE_0_CFG		GENMASK_ULL(3, 1)
#define STRTAB_STE_0_CFG_ABORT		0
#define STRTAB_STE_0_CFG_BYPASS		4
#define STRTAB_STE_0_CFG_S1_TRANS	5
#define STRTAB_STE_0_CFG_S2_TRANS	6

#define STRTAB_STE_0_S1FMT		GENMASK_ULL(5, 4)
#define STRTAB_STE_0_S1FMT_LINEAR	0
231
#define STRTAB_STE_0_S1FMT_64K_L2	2
232
#define STRTAB_STE_0_S1CTXPTR_MASK	GENMASK_ULL(51, 6)
233
#define STRTAB_STE_0_S1CDMAX		GENMASK_ULL(63, 59)
234

235 236 237 238 239
#define STRTAB_STE_1_S1DSS		GENMASK_ULL(1, 0)
#define STRTAB_STE_1_S1DSS_TERMINATE	0x0
#define STRTAB_STE_1_S1DSS_BYPASS	0x1
#define STRTAB_STE_1_S1DSS_SSID0	0x2

240 241 242 243
#define STRTAB_STE_1_S1C_CACHE_NC	0UL
#define STRTAB_STE_1_S1C_CACHE_WBRA	1UL
#define STRTAB_STE_1_S1C_CACHE_WT	2UL
#define STRTAB_STE_1_S1C_CACHE_WB	3UL
244 245 246
#define STRTAB_STE_1_S1CIR		GENMASK_ULL(3, 2)
#define STRTAB_STE_1_S1COR		GENMASK_ULL(5, 4)
#define STRTAB_STE_1_S1CSH		GENMASK_ULL(7, 6)
247 248 249

#define STRTAB_STE_1_S1STALLD		(1UL << 27)

250
#define STRTAB_STE_1_EATS		GENMASK_ULL(29, 28)
251 252 253 254
#define STRTAB_STE_1_EATS_ABT		0UL
#define STRTAB_STE_1_EATS_TRANS		1UL
#define STRTAB_STE_1_EATS_S1CHK		2UL

255
#define STRTAB_STE_1_STRW		GENMASK_ULL(31, 30)
256 257 258
#define STRTAB_STE_1_STRW_NSEL1		0UL
#define STRTAB_STE_1_STRW_EL2		2UL

259
#define STRTAB_STE_1_SHCFG		GENMASK_ULL(45, 44)
260 261
#define STRTAB_STE_1_SHCFG_INCOMING	1UL

262 263
#define STRTAB_STE_2_S2VMID		GENMASK_ULL(15, 0)
#define STRTAB_STE_2_VTCR		GENMASK_ULL(50, 32)
264 265 266 267 268 269 270
#define STRTAB_STE_2_VTCR_S2T0SZ	GENMASK_ULL(5, 0)
#define STRTAB_STE_2_VTCR_S2SL0		GENMASK_ULL(7, 6)
#define STRTAB_STE_2_VTCR_S2IR0		GENMASK_ULL(9, 8)
#define STRTAB_STE_2_VTCR_S2OR0		GENMASK_ULL(11, 10)
#define STRTAB_STE_2_VTCR_S2SH0		GENMASK_ULL(13, 12)
#define STRTAB_STE_2_VTCR_S2TG		GENMASK_ULL(15, 14)
#define STRTAB_STE_2_VTCR_S2PS		GENMASK_ULL(18, 16)
271 272 273 274 275
#define STRTAB_STE_2_S2AA64		(1UL << 51)
#define STRTAB_STE_2_S2ENDI		(1UL << 52)
#define STRTAB_STE_2_S2PTW		(1UL << 54)
#define STRTAB_STE_2_S2R		(1UL << 58)

276
#define STRTAB_STE_3_S2TTB_MASK		GENMASK_ULL(51, 4)
277

278 279 280 281 282 283 284 285 286 287 288 289 290 291
/*
 * Context descriptors.
 *
 * Linear: when less than 1024 SSIDs are supported
 * 2lvl: at most 1024 L1 entries,
 *       1024 lazy entries per table.
 */
#define CTXDESC_SPLIT			10
#define CTXDESC_L2_ENTRIES		(1 << CTXDESC_SPLIT)

#define CTXDESC_L1_DESC_DWORDS		1
#define CTXDESC_L1_DESC_V		(1UL << 0)
#define CTXDESC_L1_DESC_L2PTR_MASK	GENMASK_ULL(51, 12)

292
#define CTXDESC_CD_DWORDS		8
293 294 295 296 297 298 299
#define CTXDESC_CD_0_TCR_T0SZ		GENMASK_ULL(5, 0)
#define CTXDESC_CD_0_TCR_TG0		GENMASK_ULL(7, 6)
#define CTXDESC_CD_0_TCR_IRGN0		GENMASK_ULL(9, 8)
#define CTXDESC_CD_0_TCR_ORGN0		GENMASK_ULL(11, 10)
#define CTXDESC_CD_0_TCR_SH0		GENMASK_ULL(13, 12)
#define CTXDESC_CD_0_TCR_EPD0		(1ULL << 14)
#define CTXDESC_CD_0_TCR_EPD1		(1ULL << 30)
300 301 302 303

#define CTXDESC_CD_0_ENDI		(1UL << 15)
#define CTXDESC_CD_0_V			(1UL << 31)

304 305
#define CTXDESC_CD_0_TCR_IPS		GENMASK_ULL(34, 32)
#define CTXDESC_CD_0_TCR_TBI0		(1ULL << 38)
306 307

#define CTXDESC_CD_0_AA64		(1UL << 41)
308
#define CTXDESC_CD_0_S			(1UL << 44)
309 310
#define CTXDESC_CD_0_R			(1UL << 45)
#define CTXDESC_CD_0_A			(1UL << 46)
311 312
#define CTXDESC_CD_0_ASET		(1UL << 47)
#define CTXDESC_CD_0_ASID		GENMASK_ULL(63, 48)
313

314
#define CTXDESC_CD_1_TTB0_MASK		GENMASK_ULL(51, 4)
315

316 317 318 319 320
/*
 * When the SMMU only supports linear context descriptor tables, pick a
 * reasonable size limit (64kB).
 */
#define CTXDESC_LINEAR_CDMAX		ilog2(SZ_64K / (CTXDESC_CD_DWORDS << 3))
321 322

/* Command queue */
323 324 325
#define CMDQ_ENT_SZ_SHIFT		4
#define CMDQ_ENT_DWORDS			((1 << CMDQ_ENT_SZ_SHIFT) >> 3)
#define CMDQ_MAX_SZ_SHIFT		(Q_MAX_SZ_SHIFT - CMDQ_ENT_SZ_SHIFT)
326

327
#define CMDQ_CONS_ERR			GENMASK(30, 24)
328 329 330
#define CMDQ_ERR_CERROR_NONE_IDX	0
#define CMDQ_ERR_CERROR_ILL_IDX		1
#define CMDQ_ERR_CERROR_ABT_IDX		2
331
#define CMDQ_ERR_CERROR_ATC_INV_IDX	3
332

333 334
#define CMDQ_PROD_OWNED_FLAG		Q_OVERFLOW_FLAG

335 336 337 338 339 340 341
/*
 * This is used to size the command queue and therefore must be at least
 * BITS_PER_LONG so that the valid_map works correctly (it relies on the
 * total number of queue entries being a multiple of BITS_PER_LONG).
 */
#define CMDQ_BATCH_ENTRIES		BITS_PER_LONG

342
#define CMDQ_0_OP			GENMASK_ULL(7, 0)
343 344
#define CMDQ_0_SSV			(1UL << 11)

345 346
#define CMDQ_PREFETCH_0_SID		GENMASK_ULL(63, 32)
#define CMDQ_PREFETCH_1_SIZE		GENMASK_ULL(4, 0)
347
#define CMDQ_PREFETCH_1_ADDR_MASK	GENMASK_ULL(63, 12)
348

349
#define CMDQ_CFGI_0_SSID		GENMASK_ULL(31, 12)
350
#define CMDQ_CFGI_0_SID			GENMASK_ULL(63, 32)
351
#define CMDQ_CFGI_1_LEAF		(1UL << 0)
352
#define CMDQ_CFGI_1_RANGE		GENMASK_ULL(4, 0)
353

354 355 356
#define CMDQ_TLBI_0_NUM			GENMASK_ULL(16, 12)
#define CMDQ_TLBI_RANGE_NUM_MAX		31
#define CMDQ_TLBI_0_SCALE		GENMASK_ULL(24, 20)
357 358
#define CMDQ_TLBI_0_VMID		GENMASK_ULL(47, 32)
#define CMDQ_TLBI_0_ASID		GENMASK_ULL(63, 48)
359
#define CMDQ_TLBI_1_LEAF		(1UL << 0)
360 361
#define CMDQ_TLBI_1_TTL			GENMASK_ULL(9, 8)
#define CMDQ_TLBI_1_TG			GENMASK_ULL(11, 10)
362
#define CMDQ_TLBI_1_VA_MASK		GENMASK_ULL(63, 12)
363
#define CMDQ_TLBI_1_IPA_MASK		GENMASK_ULL(51, 12)
364

365 366 367 368 369 370
#define CMDQ_ATC_0_SSID			GENMASK_ULL(31, 12)
#define CMDQ_ATC_0_SID			GENMASK_ULL(63, 32)
#define CMDQ_ATC_0_GLOBAL		(1UL << 9)
#define CMDQ_ATC_1_SIZE			GENMASK_ULL(5, 0)
#define CMDQ_ATC_1_ADDR_MASK		GENMASK_ULL(63, 12)

371 372 373 374 375 376 377 378 379 380 381 382
#define CMDQ_PRI_0_SSID			GENMASK_ULL(31, 12)
#define CMDQ_PRI_0_SID			GENMASK_ULL(63, 32)
#define CMDQ_PRI_1_GRPID		GENMASK_ULL(8, 0)
#define CMDQ_PRI_1_RESP			GENMASK_ULL(13, 12)

#define CMDQ_SYNC_0_CS			GENMASK_ULL(13, 12)
#define CMDQ_SYNC_0_CS_NONE		0
#define CMDQ_SYNC_0_CS_IRQ		1
#define CMDQ_SYNC_0_CS_SEV		2
#define CMDQ_SYNC_0_MSH			GENMASK_ULL(23, 22)
#define CMDQ_SYNC_0_MSIATTR		GENMASK_ULL(27, 24)
#define CMDQ_SYNC_0_MSIDATA		GENMASK_ULL(63, 32)
383
#define CMDQ_SYNC_1_MSIADDR_MASK	GENMASK_ULL(51, 2)
384 385

/* Event queue */
386 387 388
#define EVTQ_ENT_SZ_SHIFT		5
#define EVTQ_ENT_DWORDS			((1 << EVTQ_ENT_SZ_SHIFT) >> 3)
#define EVTQ_MAX_SZ_SHIFT		(Q_MAX_SZ_SHIFT - EVTQ_ENT_SZ_SHIFT)
389

390
#define EVTQ_0_ID			GENMASK_ULL(7, 0)
391 392

/* PRI queue */
393 394 395
#define PRIQ_ENT_SZ_SHIFT		4
#define PRIQ_ENT_DWORDS			((1 << PRIQ_ENT_SZ_SHIFT) >> 3)
#define PRIQ_MAX_SZ_SHIFT		(Q_MAX_SZ_SHIFT - PRIQ_ENT_SZ_SHIFT)
396

397 398
#define PRIQ_0_SID			GENMASK_ULL(31, 0)
#define PRIQ_0_SSID			GENMASK_ULL(51, 32)
399 400 401 402 403 404 405
#define PRIQ_0_PERM_PRIV		(1UL << 58)
#define PRIQ_0_PERM_EXEC		(1UL << 59)
#define PRIQ_0_PERM_READ		(1UL << 60)
#define PRIQ_0_PERM_WRITE		(1UL << 61)
#define PRIQ_0_PRG_LAST			(1UL << 62)
#define PRIQ_0_SSID_V			(1UL << 63)

406
#define PRIQ_1_PRG_IDX			GENMASK_ULL(8, 0)
407
#define PRIQ_1_ADDR_MASK		GENMASK_ULL(63, 12)
408 409

/* High-level queue structures */
410 411
#define ARM_SMMU_POLL_TIMEOUT_US	1000000 /* 1s! */
#define ARM_SMMU_POLL_SPIN_COUNT	10
412

413 414 415
#define MSI_IOVA_BASE			0x8000000
#define MSI_IOVA_LENGTH			0x100000

416
static bool disable_bypass = 1;
417
module_param(disable_bypass, bool, 0444);
418 419 420
MODULE_PARM_DESC(disable_bypass,
	"Disable bypass streams such that incoming transactions from devices that are not attached to an iommu domain will report an abort back to the device and will not be allowed to pass through the SMMU.");

421 422 423 424 425
static bool disable_msipolling;
module_param(disable_msipolling, bool, 0444);
MODULE_PARM_DESC(disable_msipolling,
	"Disable MSI-based polling for CMD_SYNC completion.");

426
enum pri_resp {
427 428 429
	PRI_RESP_DENY = 0,
	PRI_RESP_FAIL = 1,
	PRI_RESP_SUCC = 2,
430 431
};

432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456
enum arm_smmu_msi_index {
	EVTQ_MSI_INDEX,
	GERROR_MSI_INDEX,
	PRIQ_MSI_INDEX,
	ARM_SMMU_MAX_MSIS,
};

static phys_addr_t arm_smmu_msi_cfg[ARM_SMMU_MAX_MSIS][3] = {
	[EVTQ_MSI_INDEX] = {
		ARM_SMMU_EVTQ_IRQ_CFG0,
		ARM_SMMU_EVTQ_IRQ_CFG1,
		ARM_SMMU_EVTQ_IRQ_CFG2,
	},
	[GERROR_MSI_INDEX] = {
		ARM_SMMU_GERROR_IRQ_CFG0,
		ARM_SMMU_GERROR_IRQ_CFG1,
		ARM_SMMU_GERROR_IRQ_CFG2,
	},
	[PRIQ_MSI_INDEX] = {
		ARM_SMMU_PRIQ_IRQ_CFG0,
		ARM_SMMU_PRIQ_IRQ_CFG1,
		ARM_SMMU_PRIQ_IRQ_CFG2,
	},
};

457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
struct arm_smmu_cmdq_ent {
	/* Common fields */
	u8				opcode;
	bool				substream_valid;

	/* Command-specific fields */
	union {
		#define CMDQ_OP_PREFETCH_CFG	0x1
		struct {
			u32			sid;
			u8			size;
			u64			addr;
		} prefetch;

		#define CMDQ_OP_CFGI_STE	0x3
		#define CMDQ_OP_CFGI_ALL	0x4
473 474
		#define CMDQ_OP_CFGI_CD		0x5
		#define CMDQ_OP_CFGI_CD_ALL	0x6
475 476
		struct {
			u32			sid;
477
			u32			ssid;
478 479 480 481 482 483 484 485 486 487 488 489 490
			union {
				bool		leaf;
				u8		span;
			};
		} cfgi;

		#define CMDQ_OP_TLBI_NH_ASID	0x11
		#define CMDQ_OP_TLBI_NH_VA	0x12
		#define CMDQ_OP_TLBI_EL2_ALL	0x20
		#define CMDQ_OP_TLBI_S12_VMALL	0x28
		#define CMDQ_OP_TLBI_S2_IPA	0x2a
		#define CMDQ_OP_TLBI_NSNH_ALL	0x30
		struct {
491 492
			u8			num;
			u8			scale;
493 494 495
			u16			asid;
			u16			vmid;
			bool			leaf;
496 497
			u8			ttl;
			u8			tg;
498 499 500
			u64			addr;
		} tlbi;

501 502 503 504 505 506 507 508 509 510
		#define CMDQ_OP_ATC_INV		0x40
		#define ATC_INV_SIZE_ALL	52
		struct {
			u32			sid;
			u32			ssid;
			u64			addr;
			u8			size;
			bool			global;
		} atc;

511 512 513 514 515 516 517 518 519
		#define CMDQ_OP_PRI_RESP	0x41
		struct {
			u32			sid;
			u32			ssid;
			u16			grpid;
			enum pri_resp		resp;
		} pri;

		#define CMDQ_OP_CMD_SYNC	0x46
520 521 522
		struct {
			u64			msiaddr;
		} sync;
523 524 525
	};
};

526
struct arm_smmu_ll_queue {
527 528 529 530 531 532 533 534 535 536 537 538
	union {
		u64			val;
		struct {
			u32		prod;
			u32		cons;
		};
		struct {
			atomic_t	prod;
			atomic_t	cons;
		} atomic;
		u8			__pad[SMP_CACHE_BYTES];
	} ____cacheline_aligned_in_smp;
539 540 541
	u32				max_n_shift;
};

542
struct arm_smmu_queue {
543
	struct arm_smmu_ll_queue	llq;
544 545 546 547 548 549 550 551 552 553 554 555
	int				irq; /* Wired interrupt */

	__le64				*base;
	dma_addr_t			base_dma;
	u64				q_base;

	size_t				ent_dwords;

	u32 __iomem			*prod_reg;
	u32 __iomem			*cons_reg;
};

556 557 558 559 560 561 562
struct arm_smmu_queue_poll {
	ktime_t				timeout;
	unsigned int			delay;
	unsigned int			spin_cnt;
	bool				wfe;
};

563 564
struct arm_smmu_cmdq {
	struct arm_smmu_queue		q;
565 566 567
	atomic_long_t			*valid_map;
	atomic_t			owner_prod;
	atomic_t			lock;
568 569
};

570 571 572 573 574
struct arm_smmu_cmdq_batch {
	u64				cmds[CMDQ_BATCH_ENTRIES * CMDQ_ENT_DWORDS];
	int				num;
};

575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591
struct arm_smmu_evtq {
	struct arm_smmu_queue		q;
	u32				max_stalls;
};

struct arm_smmu_priq {
	struct arm_smmu_queue		q;
};

/* High-level stream table and context descriptor structures */
struct arm_smmu_strtab_l1_desc {
	u8				span;

	__le64				*l2ptr;
	dma_addr_t			l2ptr_dma;
};

592 593 594 595 596 597 598
struct arm_smmu_ctx_desc {
	u16				asid;
	u64				ttbr;
	u64				tcr;
	u64				mair;
};

599 600 601 602 603
struct arm_smmu_l1_ctx_desc {
	__le64				*l2ptr;
	dma_addr_t			l2ptr_dma;
};

604 605 606
struct arm_smmu_ctx_desc_cfg {
	__le64				*cdtab;
	dma_addr_t			cdtab_dma;
607
	struct arm_smmu_l1_ctx_desc	*l1_desc;
608
	unsigned int			num_l1_ents;
609 610
};

611
struct arm_smmu_s1_cfg {
612 613
	struct arm_smmu_ctx_desc_cfg	cdcfg;
	struct arm_smmu_ctx_desc	cd;
614
	u8				s1fmt;
615
	u8				s1cdmax;
616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637
};

struct arm_smmu_s2_cfg {
	u16				vmid;
	u64				vttbr;
	u64				vtcr;
};

struct arm_smmu_strtab_cfg {
	__le64				*strtab;
	dma_addr_t			strtab_dma;
	struct arm_smmu_strtab_l1_desc	*l1_desc;
	unsigned int			num_l1_ents;

	u64				strtab_base;
	u32				strtab_base_cfg;
};

/* An SMMUv3 instance */
struct arm_smmu_device {
	struct device			*dev;
	void __iomem			*base;
638
	void __iomem			*page1;
639 640 641 642 643 644 645 646 647 648 649 650 651 652

#define ARM_SMMU_FEAT_2_LVL_STRTAB	(1 << 0)
#define ARM_SMMU_FEAT_2_LVL_CDTAB	(1 << 1)
#define ARM_SMMU_FEAT_TT_LE		(1 << 2)
#define ARM_SMMU_FEAT_TT_BE		(1 << 3)
#define ARM_SMMU_FEAT_PRI		(1 << 4)
#define ARM_SMMU_FEAT_ATS		(1 << 5)
#define ARM_SMMU_FEAT_SEV		(1 << 6)
#define ARM_SMMU_FEAT_MSI		(1 << 7)
#define ARM_SMMU_FEAT_COHERENCY		(1 << 8)
#define ARM_SMMU_FEAT_TRANS_S1		(1 << 9)
#define ARM_SMMU_FEAT_TRANS_S2		(1 << 10)
#define ARM_SMMU_FEAT_STALLS		(1 << 11)
#define ARM_SMMU_FEAT_HYP		(1 << 12)
653
#define ARM_SMMU_FEAT_STALL_FORCE	(1 << 13)
654
#define ARM_SMMU_FEAT_VAX		(1 << 14)
655
#define ARM_SMMU_FEAT_RANGE_INV		(1 << 15)
656 657
	u32				features;

658
#define ARM_SMMU_OPT_SKIP_PREFETCH	(1 << 0)
659
#define ARM_SMMU_OPT_PAGE0_REGS_ONLY	(1 << 1)
660
#define ARM_SMMU_OPT_MSIPOLL		(1 << 2)
661 662
	u32				options;

663 664 665 666 667
	struct arm_smmu_cmdq		cmdq;
	struct arm_smmu_evtq		evtq;
	struct arm_smmu_priq		priq;

	int				gerr_irq;
668
	int				combined_irq;
669 670 671

	unsigned long			ias; /* IPA */
	unsigned long			oas; /* PA */
672
	unsigned long			pgsize_bitmap;
673 674 675 676 677 678 679 680 681 682 683 684

#define ARM_SMMU_MAX_ASIDS		(1 << 16)
	unsigned int			asid_bits;

#define ARM_SMMU_MAX_VMIDS		(1 << 16)
	unsigned int			vmid_bits;
	DECLARE_BITMAP(vmid_map, ARM_SMMU_MAX_VMIDS);

	unsigned int			ssid_bits;
	unsigned int			sid_bits;

	struct arm_smmu_strtab_cfg	strtab_cfg;
685 686 687

	/* IOMMU core code handle */
	struct iommu_device		iommu;
688 689
};

690
/* SMMU private data for each master */
691
struct arm_smmu_master {
692
	struct arm_smmu_device		*smmu;
693
	struct device			*dev;
694
	struct arm_smmu_domain		*domain;
695
	struct list_head		domain_head;
696 697
	u32				*sids;
	unsigned int			num_sids;
698
	bool				ats_enabled;
699
	unsigned int			ssid_bits;
700 701 702 703 704 705 706
};

/* SMMU private data for an IOMMU domain */
enum arm_smmu_domain_stage {
	ARM_SMMU_DOMAIN_S1 = 0,
	ARM_SMMU_DOMAIN_S2,
	ARM_SMMU_DOMAIN_NESTED,
707
	ARM_SMMU_DOMAIN_BYPASS,
708 709 710 711 712 713 714
};

struct arm_smmu_domain {
	struct arm_smmu_device		*smmu;
	struct mutex			init_mutex; /* Protects smmu pointer */

	struct io_pgtable_ops		*pgtbl_ops;
715
	bool				non_strict;
716
	atomic_t			nr_ats_masters;
717 718 719 720 721 722 723 724

	enum arm_smmu_domain_stage	stage;
	union {
		struct arm_smmu_s1_cfg	s1_cfg;
		struct arm_smmu_s2_cfg	s2_cfg;
	};

	struct iommu_domain		domain;
725 726 727

	struct list_head		devices;
	spinlock_t			devices_lock;
728 729
};

730 731 732 733 734
struct arm_smmu_option_prop {
	u32 opt;
	const char *prop;
};

735 736
static DEFINE_XARRAY_ALLOC1(asid_xa);

737 738
static struct arm_smmu_option_prop arm_smmu_options[] = {
	{ ARM_SMMU_OPT_SKIP_PREFETCH, "hisilicon,broken-prefetch-cmd" },
739
	{ ARM_SMMU_OPT_PAGE0_REGS_ONLY, "cavium,cn9900-broken-page1-regspace"},
740 741 742
	{ 0, NULL},
};

743 744 745
static inline void __iomem *arm_smmu_page1_fixup(unsigned long offset,
						 struct arm_smmu_device *smmu)
{
746 747
	if (offset > SZ_64K)
		return smmu->page1 + offset - SZ_64K;
748 749 750 751

	return smmu->base + offset;
}

752 753 754 755 756
static struct arm_smmu_domain *to_smmu_domain(struct iommu_domain *dom)
{
	return container_of(dom, struct arm_smmu_domain, domain);
}

757 758 759 760 761 762 763 764 765 766 767 768 769 770
static void parse_driver_options(struct arm_smmu_device *smmu)
{
	int i = 0;

	do {
		if (of_property_read_bool(smmu->dev->of_node,
						arm_smmu_options[i].prop)) {
			smmu->options |= arm_smmu_options[i].opt;
			dev_notice(smmu->dev, "option %s\n",
				arm_smmu_options[i].prop);
		}
	} while (arm_smmu_options[++i].opt);
}

771
/* Low-level queue manipulation functions */
772 773 774 775 776 777 778 779 780 781 782 783 784 785 786
static bool queue_has_space(struct arm_smmu_ll_queue *q, u32 n)
{
	u32 space, prod, cons;

	prod = Q_IDX(q, q->prod);
	cons = Q_IDX(q, q->cons);

	if (Q_WRP(q, q->prod) == Q_WRP(q, q->cons))
		space = (1 << q->max_n_shift) - (prod - cons);
	else
		space = cons - prod;

	return space >= n;
}

787
static bool queue_full(struct arm_smmu_ll_queue *q)
788 789 790 791 792
{
	return Q_IDX(q, q->prod) == Q_IDX(q, q->cons) &&
	       Q_WRP(q, q->prod) != Q_WRP(q, q->cons);
}

793
static bool queue_empty(struct arm_smmu_ll_queue *q)
794 795 796 797 798
{
	return Q_IDX(q, q->prod) == Q_IDX(q, q->cons) &&
	       Q_WRP(q, q->prod) == Q_WRP(q, q->cons);
}

799
static bool queue_consumed(struct arm_smmu_ll_queue *q, u32 prod)
800
{
801 802 803 804
	return ((Q_WRP(q, q->cons) == Q_WRP(q, prod)) &&
		(Q_IDX(q, q->cons) > Q_IDX(q, prod))) ||
	       ((Q_WRP(q, q->cons) != Q_WRP(q, prod)) &&
		(Q_IDX(q, q->cons) <= Q_IDX(q, prod)));
805 806
}

807
static void queue_sync_cons_out(struct arm_smmu_queue *q)
808
{
809 810 811 812
	/*
	 * Ensure that all CPU accesses (reads and writes) to the queue
	 * are complete before we update the cons pointer.
	 */
813
	__iomb();
814
	writel_relaxed(q->llq.cons, q->cons_reg);
815 816
}

817
static void queue_inc_cons(struct arm_smmu_ll_queue *q)
818
{
819 820
	u32 cons = (Q_WRP(q, q->cons) | Q_IDX(q, q->cons)) + 1;
	q->cons = Q_OVF(q->cons) | Q_WRP(q, cons) | Q_IDX(q, cons);
821 822
}

823
static int queue_sync_prod_in(struct arm_smmu_queue *q)
824
{
825
	u32 prod;
826
	int ret = 0;
827 828 829 830 831 832 833

	/*
	 * We can't use the _relaxed() variant here, as we must prevent
	 * speculative reads of the queue before we have determined that
	 * prod has indeed moved.
	 */
	prod = readl(q->prod_reg);
834

835
	if (Q_OVF(prod) != Q_OVF(q->llq.prod))
836 837
		ret = -EOVERFLOW;

838
	q->llq.prod = prod;
839 840 841
	return ret;
}

842
static u32 queue_inc_prod_n(struct arm_smmu_ll_queue *q, int n)
843
{
844 845
	u32 prod = (Q_WRP(q, q->prod) | Q_IDX(q, q->prod)) + n;
	return Q_OVF(q->prod) | Q_WRP(q, prod) | Q_IDX(q, prod);
846 847
}

848 849
static void queue_poll_init(struct arm_smmu_device *smmu,
			    struct arm_smmu_queue_poll *qp)
850
{
851 852 853 854
	qp->delay = 1;
	qp->spin_cnt = 0;
	qp->wfe = !!(smmu->features & ARM_SMMU_FEAT_SEV);
	qp->timeout = ktime_add_us(ktime_get(), ARM_SMMU_POLL_TIMEOUT_US);
855 856
}

857
static int queue_poll(struct arm_smmu_queue_poll *qp)
858
{
859 860
	if (ktime_compare(ktime_get(), qp->timeout) > 0)
		return -ETIMEDOUT;
861

862 863 864 865 866 867 868 869
	if (qp->wfe) {
		wfe();
	} else if (++qp->spin_cnt < ARM_SMMU_POLL_SPIN_COUNT) {
		cpu_relax();
	} else {
		udelay(qp->delay);
		qp->delay *= 2;
		qp->spin_cnt = 0;
870 871 872 873 874 875 876 877 878 879 880 881 882
	}

	return 0;
}

static void queue_write(__le64 *dst, u64 *src, size_t n_dwords)
{
	int i;

	for (i = 0; i < n_dwords; ++i)
		*dst++ = cpu_to_le64(*src++);
}

883
static void queue_read(u64 *dst, __le64 *src, size_t n_dwords)
884 885 886 887 888 889 890 891 892
{
	int i;

	for (i = 0; i < n_dwords; ++i)
		*dst++ = le64_to_cpu(*src++);
}

static int queue_remove_raw(struct arm_smmu_queue *q, u64 *ent)
{
893
	if (queue_empty(&q->llq))
894 895
		return -EAGAIN;

896
	queue_read(ent, Q_ENT(q, q->llq.cons), q->ent_dwords);
897
	queue_inc_cons(&q->llq);
898
	queue_sync_cons_out(q);
899 900 901 902 903 904
	return 0;
}

/* High-level queue accessors */
static int arm_smmu_cmdq_build_cmd(u64 *cmd, struct arm_smmu_cmdq_ent *ent)
{
905
	memset(cmd, 0, 1 << CMDQ_ENT_SZ_SHIFT);
906
	cmd[0] |= FIELD_PREP(CMDQ_0_OP, ent->opcode);
907 908 909 910 911 912

	switch (ent->opcode) {
	case CMDQ_OP_TLBI_EL2_ALL:
	case CMDQ_OP_TLBI_NSNH_ALL:
		break;
	case CMDQ_OP_PREFETCH_CFG:
913 914
		cmd[0] |= FIELD_PREP(CMDQ_PREFETCH_0_SID, ent->prefetch.sid);
		cmd[1] |= FIELD_PREP(CMDQ_PREFETCH_1_SIZE, ent->prefetch.size);
915 916
		cmd[1] |= ent->prefetch.addr & CMDQ_PREFETCH_1_ADDR_MASK;
		break;
917 918
	case CMDQ_OP_CFGI_CD:
		cmd[0] |= FIELD_PREP(CMDQ_CFGI_0_SSID, ent->cfgi.ssid);
919
		fallthrough;
920
	case CMDQ_OP_CFGI_STE:
921 922
		cmd[0] |= FIELD_PREP(CMDQ_CFGI_0_SID, ent->cfgi.sid);
		cmd[1] |= FIELD_PREP(CMDQ_CFGI_1_LEAF, ent->cfgi.leaf);
923
		break;
924 925 926
	case CMDQ_OP_CFGI_CD_ALL:
		cmd[0] |= FIELD_PREP(CMDQ_CFGI_0_SID, ent->cfgi.sid);
		break;
927 928
	case CMDQ_OP_CFGI_ALL:
		/* Cover the entire SID range */
929
		cmd[1] |= FIELD_PREP(CMDQ_CFGI_1_RANGE, 31);
930 931
		break;
	case CMDQ_OP_TLBI_NH_VA:
932 933
		cmd[0] |= FIELD_PREP(CMDQ_TLBI_0_NUM, ent->tlbi.num);
		cmd[0] |= FIELD_PREP(CMDQ_TLBI_0_SCALE, ent->tlbi.scale);
934
		cmd[0] |= FIELD_PREP(CMDQ_TLBI_0_VMID, ent->tlbi.vmid);
935 936
		cmd[0] |= FIELD_PREP(CMDQ_TLBI_0_ASID, ent->tlbi.asid);
		cmd[1] |= FIELD_PREP(CMDQ_TLBI_1_LEAF, ent->tlbi.leaf);
937 938
		cmd[1] |= FIELD_PREP(CMDQ_TLBI_1_TTL, ent->tlbi.ttl);
		cmd[1] |= FIELD_PREP(CMDQ_TLBI_1_TG, ent->tlbi.tg);
939 940
		cmd[1] |= ent->tlbi.addr & CMDQ_TLBI_1_VA_MASK;
		break;
941
	case CMDQ_OP_TLBI_S2_IPA:
942 943
		cmd[0] |= FIELD_PREP(CMDQ_TLBI_0_NUM, ent->tlbi.num);
		cmd[0] |= FIELD_PREP(CMDQ_TLBI_0_SCALE, ent->tlbi.scale);
944 945
		cmd[0] |= FIELD_PREP(CMDQ_TLBI_0_VMID, ent->tlbi.vmid);
		cmd[1] |= FIELD_PREP(CMDQ_TLBI_1_LEAF, ent->tlbi.leaf);
946 947
		cmd[1] |= FIELD_PREP(CMDQ_TLBI_1_TTL, ent->tlbi.ttl);
		cmd[1] |= FIELD_PREP(CMDQ_TLBI_1_TG, ent->tlbi.tg);
948
		cmd[1] |= ent->tlbi.addr & CMDQ_TLBI_1_IPA_MASK;
949 950
		break;
	case CMDQ_OP_TLBI_NH_ASID:
951
		cmd[0] |= FIELD_PREP(CMDQ_TLBI_0_ASID, ent->tlbi.asid);
952
		fallthrough;
953
	case CMDQ_OP_TLBI_S12_VMALL:
954
		cmd[0] |= FIELD_PREP(CMDQ_TLBI_0_VMID, ent->tlbi.vmid);
955
		break;
956 957 958 959 960 961 962 963
	case CMDQ_OP_ATC_INV:
		cmd[0] |= FIELD_PREP(CMDQ_0_SSV, ent->substream_valid);
		cmd[0] |= FIELD_PREP(CMDQ_ATC_0_GLOBAL, ent->atc.global);
		cmd[0] |= FIELD_PREP(CMDQ_ATC_0_SSID, ent->atc.ssid);
		cmd[0] |= FIELD_PREP(CMDQ_ATC_0_SID, ent->atc.sid);
		cmd[1] |= FIELD_PREP(CMDQ_ATC_1_SIZE, ent->atc.size);
		cmd[1] |= ent->atc.addr & CMDQ_ATC_1_ADDR_MASK;
		break;
964
	case CMDQ_OP_PRI_RESP:
965 966 967 968
		cmd[0] |= FIELD_PREP(CMDQ_0_SSV, ent->substream_valid);
		cmd[0] |= FIELD_PREP(CMDQ_PRI_0_SSID, ent->pri.ssid);
		cmd[0] |= FIELD_PREP(CMDQ_PRI_0_SID, ent->pri.sid);
		cmd[1] |= FIELD_PREP(CMDQ_PRI_1_GRPID, ent->pri.grpid);
969 970 971 972 973 974 975 976
		switch (ent->pri.resp) {
		case PRI_RESP_DENY:
		case PRI_RESP_FAIL:
		case PRI_RESP_SUCC:
			break;
		default:
			return -EINVAL;
		}
977
		cmd[1] |= FIELD_PREP(CMDQ_PRI_1_RESP, ent->pri.resp);
978 979
		break;
	case CMDQ_OP_CMD_SYNC:
980
		if (ent->sync.msiaddr) {
981
			cmd[0] |= FIELD_PREP(CMDQ_SYNC_0_CS, CMDQ_SYNC_0_CS_IRQ);
982 983
			cmd[1] |= ent->sync.msiaddr & CMDQ_SYNC_1_MSIADDR_MASK;
		} else {
984
			cmd[0] |= FIELD_PREP(CMDQ_SYNC_0_CS, CMDQ_SYNC_0_CS_SEV);
985
		}
986 987
		cmd[0] |= FIELD_PREP(CMDQ_SYNC_0_MSH, ARM_SMMU_SH_ISH);
		cmd[0] |= FIELD_PREP(CMDQ_SYNC_0_MSIATTR, ARM_SMMU_MEMATTR_OIWB);
988 989 990 991 992 993 994 995
		break;
	default:
		return -ENOENT;
	}

	return 0;
}

996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007
static void arm_smmu_cmdq_build_sync_cmd(u64 *cmd, struct arm_smmu_device *smmu,
					 u32 prod)
{
	struct arm_smmu_queue *q = &smmu->cmdq.q;
	struct arm_smmu_cmdq_ent ent = {
		.opcode = CMDQ_OP_CMD_SYNC,
	};

	/*
	 * Beware that Hi16xx adds an extra 32 bits of goodness to its MSI
	 * payload, so the write will zero the entire command on that platform.
	 */
1008
	if (smmu->options & ARM_SMMU_OPT_MSIPOLL) {
1009 1010 1011 1012 1013 1014 1015
		ent.sync.msiaddr = q->base_dma + Q_IDX(&q->llq, prod) *
				   q->ent_dwords * 8;
	}

	arm_smmu_cmdq_build_cmd(cmd, &ent);
}

1016 1017 1018 1019 1020 1021
static void arm_smmu_cmdq_skip_err(struct arm_smmu_device *smmu)
{
	static const char *cerror_str[] = {
		[CMDQ_ERR_CERROR_NONE_IDX]	= "No error",
		[CMDQ_ERR_CERROR_ILL_IDX]	= "Illegal command",
		[CMDQ_ERR_CERROR_ABT_IDX]	= "Abort on command fetch",
1022
		[CMDQ_ERR_CERROR_ATC_INV_IDX]	= "ATC invalidate timeout",
1023 1024 1025 1026 1027 1028
	};

	int i;
	u64 cmd[CMDQ_ENT_DWORDS];
	struct arm_smmu_queue *q = &smmu->cmdq.q;
	u32 cons = readl_relaxed(q->cons_reg);
1029
	u32 idx = FIELD_GET(CMDQ_CONS_ERR, cons);
1030 1031 1032 1033 1034
	struct arm_smmu_cmdq_ent cmd_sync = {
		.opcode = CMDQ_OP_CMD_SYNC,
	};

	dev_err(smmu->dev, "CMDQ error (cons 0x%08x): %s\n", cons,
1035
		idx < ARRAY_SIZE(cerror_str) ?  cerror_str[idx] : "Unknown");
1036 1037 1038 1039 1040 1041

	switch (idx) {
	case CMDQ_ERR_CERROR_ABT_IDX:
		dev_err(smmu->dev, "retrying command fetch\n");
	case CMDQ_ERR_CERROR_NONE_IDX:
		return;
1042 1043 1044 1045 1046 1047 1048 1049
	case CMDQ_ERR_CERROR_ATC_INV_IDX:
		/*
		 * ATC Invalidation Completion timeout. CONS is still pointing
		 * at the CMD_SYNC. Attempt to complete other pending commands
		 * by repeating the CMD_SYNC, though we might well end up back
		 * here since the ATC invalidation may still be pending.
		 */
		return;
1050 1051 1052
	case CMDQ_ERR_CERROR_ILL_IDX:
	default:
		break;
1053 1054 1055 1056 1057 1058
	}

	/*
	 * We may have concurrent producers, so we need to be careful
	 * not to touch any of the shadow cmdq state.
	 */
1059
	queue_read(cmd, Q_ENT(q, cons), q->ent_dwords);
1060 1061 1062 1063 1064 1065 1066 1067 1068 1069
	dev_err(smmu->dev, "skipping command in error state:\n");
	for (i = 0; i < ARRAY_SIZE(cmd); ++i)
		dev_err(smmu->dev, "\t0x%016llx\n", (unsigned long long)cmd[i]);

	/* Convert the erroneous command into a CMD_SYNC */
	if (arm_smmu_cmdq_build_cmd(cmd, &cmd_sync)) {
		dev_err(smmu->dev, "failed to convert to CMD_SYNC\n");
		return;
	}

1070
	queue_write(Q_ENT(q, cons), cmd, q->ent_dwords);
1071 1072
}

1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085
/*
 * Command queue locking.
 * This is a form of bastardised rwlock with the following major changes:
 *
 * - The only LOCK routines are exclusive_trylock() and shared_lock().
 *   Neither have barrier semantics, and instead provide only a control
 *   dependency.
 *
 * - The UNLOCK routines are supplemented with shared_tryunlock(), which
 *   fails if the caller appears to be the last lock holder (yes, this is
 *   racy). All successful UNLOCK routines have RELEASE semantics.
 */
static void arm_smmu_cmdq_shared_lock(struct arm_smmu_cmdq *cmdq)
1086
{
1087
	int val;
1088

1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
	/*
	 * We can try to avoid the cmpxchg() loop by simply incrementing the
	 * lock counter. When held in exclusive state, the lock counter is set
	 * to INT_MIN so these increments won't hurt as the value will remain
	 * negative.
	 */
	if (atomic_fetch_inc_relaxed(&cmdq->lock) >= 0)
		return;

	do {
		val = atomic_cond_read_relaxed(&cmdq->lock, VAL >= 0);
	} while (atomic_cmpxchg_relaxed(&cmdq->lock, val, val + 1) != val);
}

static void arm_smmu_cmdq_shared_unlock(struct arm_smmu_cmdq *cmdq)
{
	(void)atomic_dec_return_release(&cmdq->lock);
}

static bool arm_smmu_cmdq_shared_tryunlock(struct arm_smmu_cmdq *cmdq)
{
	if (atomic_read(&cmdq->lock) == 1)
		return false;

	arm_smmu_cmdq_shared_unlock(cmdq);
	return true;
}

#define arm_smmu_cmdq_exclusive_trylock_irqsave(cmdq, flags)		\
({									\
	bool __ret;							\
	local_irq_save(flags);						\
	__ret = !atomic_cmpxchg_relaxed(&cmdq->lock, 0, INT_MIN);	\
	if (!__ret)							\
		local_irq_restore(flags);				\
	__ret;								\
})

#define arm_smmu_cmdq_exclusive_unlock_irqrestore(cmdq, flags)		\
({									\
	atomic_set_release(&cmdq->lock, 0);				\
	local_irq_restore(flags);					\
})


/*
 * Command queue insertion.
 * This is made fiddly by our attempts to achieve some sort of scalability
 * since there is one queue shared amongst all of the CPUs in the system.  If
 * you like mixed-size concurrency, dependency ordering and relaxed atomics,
 * then you'll *love* this monstrosity.
 *
 * The basic idea is to split the queue up into ranges of commands that are
 * owned by a given CPU; the owner may not have written all of the commands
 * itself, but is responsible for advancing the hardware prod pointer when
 * the time comes. The algorithm is roughly:
 *
 * 	1. Allocate some space in the queue. At this point we also discover
 *	   whether the head of the queue is currently owned by another CPU,
 *	   or whether we are the owner.
 *
 *	2. Write our commands into our allocated slots in the queue.
 *
 *	3. Mark our slots as valid in arm_smmu_cmdq.valid_map.
 *
 *	4. If we are an owner:
 *		a. Wait for the previous owner to finish.
 *		b. Mark the queue head as unowned, which tells us the range
 *		   that we are responsible for publishing.
 *		c. Wait for all commands in our owned range to become valid.
 *		d. Advance the hardware prod pointer.
 *		e. Tell the next owner we've finished.
 *
 *	5. If we are inserting a CMD_SYNC (we may or may not have been an
 *	   owner), then we need to stick around until it has completed:
 *		a. If we have MSIs, the SMMU can write back into the CMD_SYNC
 *		   to clear the first 4 bytes.
 *		b. Otherwise, we spin waiting for the hardware cons pointer to
 *		   advance past our command.
 *
 * The devil is in the details, particularly the use of locking for handling
 * SYNC completion and freeing up space in the queue before we think that it is
 * full.
 */
static void __arm_smmu_cmdq_poll_set_valid_map(struct arm_smmu_cmdq *cmdq,
					       u32 sprod, u32 eprod, bool set)
{
	u32 swidx, sbidx, ewidx, ebidx;
	struct arm_smmu_ll_queue llq = {
		.max_n_shift	= cmdq->q.llq.max_n_shift,
		.prod		= sprod,
	};
1181

1182 1183
	ewidx = BIT_WORD(Q_IDX(&llq, eprod));
	ebidx = Q_IDX(&llq, eprod) % BITS_PER_LONG;
1184

1185 1186 1187 1188
	while (llq.prod != eprod) {
		unsigned long mask;
		atomic_long_t *ptr;
		u32 limit = BITS_PER_LONG;
1189

1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
		swidx = BIT_WORD(Q_IDX(&llq, llq.prod));
		sbidx = Q_IDX(&llq, llq.prod) % BITS_PER_LONG;

		ptr = &cmdq->valid_map[swidx];

		if ((swidx == ewidx) && (sbidx < ebidx))
			limit = ebidx;

		mask = GENMASK(limit - 1, sbidx);

		/*
		 * The valid bit is the inverse of the wrap bit. This means
		 * that a zero-initialised queue is invalid and, after marking
		 * all entries as valid, they become invalid again when we
		 * wrap.
		 */
		if (set) {
			atomic_long_xor(mask, ptr);
		} else { /* Poll */
			unsigned long valid;

			valid = (ULONG_MAX + !!Q_WRP(&llq, llq.prod)) & mask;
			atomic_long_cond_read_relaxed(ptr, (VAL & mask) == valid);
		}

		llq.prod = queue_inc_prod_n(&llq, limit - sbidx);
1216 1217 1218
	}
}

1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235
/* Mark all entries in the range [sprod, eprod) as valid */
static void arm_smmu_cmdq_set_valid_map(struct arm_smmu_cmdq *cmdq,
					u32 sprod, u32 eprod)
{
	__arm_smmu_cmdq_poll_set_valid_map(cmdq, sprod, eprod, true);
}

/* Wait for all entries in the range [sprod, eprod) to become valid */
static void arm_smmu_cmdq_poll_valid_map(struct arm_smmu_cmdq *cmdq,
					 u32 sprod, u32 eprod)
{
	__arm_smmu_cmdq_poll_set_valid_map(cmdq, sprod, eprod, false);
}

/* Wait for the command queue to become non-full */
static int arm_smmu_cmdq_poll_until_not_full(struct arm_smmu_device *smmu,
					     struct arm_smmu_ll_queue *llq)
1236
{
1237
	unsigned long flags;
1238 1239 1240
	struct arm_smmu_queue_poll qp;
	struct arm_smmu_cmdq *cmdq = &smmu->cmdq;
	int ret = 0;
1241

1242 1243 1244 1245 1246 1247 1248 1249 1250
	/*
	 * Try to update our copy of cons by grabbing exclusive cmdq access. If
	 * that fails, spin until somebody else updates it for us.
	 */
	if (arm_smmu_cmdq_exclusive_trylock_irqsave(cmdq, flags)) {
		WRITE_ONCE(cmdq->q.llq.cons, readl_relaxed(cmdq->q.cons_reg));
		arm_smmu_cmdq_exclusive_unlock_irqrestore(cmdq, flags);
		llq->val = READ_ONCE(cmdq->q.llq.val);
		return 0;
1251 1252
	}

1253 1254 1255 1256 1257 1258 1259 1260 1261 1262
	queue_poll_init(smmu, &qp);
	do {
		llq->val = READ_ONCE(smmu->cmdq.q.llq.val);
		if (!queue_full(llq))
			break;

		ret = queue_poll(&qp);
	} while (!ret);

	return ret;
1263
}
1264

1265
/*
1266 1267
 * Wait until the SMMU signals a CMD_SYNC completion MSI.
 * Must be called with the cmdq lock held in some capacity.
1268
 */
1269 1270
static int __arm_smmu_cmdq_poll_until_msi(struct arm_smmu_device *smmu,
					  struct arm_smmu_ll_queue *llq)
1271
{
1272 1273 1274 1275
	int ret = 0;
	struct arm_smmu_queue_poll qp;
	struct arm_smmu_cmdq *cmdq = &smmu->cmdq;
	u32 *cmd = (u32 *)(Q_ENT(&cmdq->q, llq->prod));
1276

1277
	queue_poll_init(smmu, &qp);
1278

1279 1280 1281 1282 1283 1284 1285 1286
	/*
	 * The MSI won't generate an event, since it's being written back
	 * into the command queue.
	 */
	qp.wfe = false;
	smp_cond_load_relaxed(cmd, !VAL || (ret = queue_poll(&qp)));
	llq->cons = ret ? llq->prod : queue_inc_prod_n(llq, 1);
	return ret;
1287 1288
}

1289 1290 1291 1292 1293 1294
/*
 * Wait until the SMMU cons index passes llq->prod.
 * Must be called with the cmdq lock held in some capacity.
 */
static int __arm_smmu_cmdq_poll_until_consumed(struct arm_smmu_device *smmu,
					       struct arm_smmu_ll_queue *llq)
1295
{
1296 1297 1298 1299
	struct arm_smmu_queue_poll qp;
	struct arm_smmu_cmdq *cmdq = &smmu->cmdq;
	u32 prod = llq->prod;
	int ret = 0;
1300

1301 1302 1303 1304 1305
	queue_poll_init(smmu, &qp);
	llq->val = READ_ONCE(smmu->cmdq.q.llq.val);
	do {
		if (queue_consumed(llq, prod))
			break;
1306

1307
		ret = queue_poll(&qp);
1308

1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338
		/*
		 * This needs to be a readl() so that our subsequent call
		 * to arm_smmu_cmdq_shared_tryunlock() can fail accurately.
		 *
		 * Specifically, we need to ensure that we observe all
		 * shared_lock()s by other CMD_SYNCs that share our owner,
		 * so that a failing call to tryunlock() means that we're
		 * the last one out and therefore we can safely advance
		 * cmdq->q.llq.cons. Roughly speaking:
		 *
		 * CPU 0		CPU1			CPU2 (us)
		 *
		 * if (sync)
		 * 	shared_lock();
		 *
		 * dma_wmb();
		 * set_valid_map();
		 *
		 * 			if (owner) {
		 *				poll_valid_map();
		 *				<control dependency>
		 *				writel(prod_reg);
		 *
		 *						readl(cons_reg);
		 *						tryunlock();
		 *
		 * Requires us to see CPU 0's shared_lock() acquisition.
		 */
		llq->cons = readl(cmdq->q.cons_reg);
	} while (!ret);
1339

1340
	return ret;
1341 1342
}

1343 1344
static int arm_smmu_cmdq_poll_until_sync(struct arm_smmu_device *smmu,
					 struct arm_smmu_ll_queue *llq)
1345
{
1346
	if (smmu->options & ARM_SMMU_OPT_MSIPOLL)
1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368
		return __arm_smmu_cmdq_poll_until_msi(smmu, llq);

	return __arm_smmu_cmdq_poll_until_consumed(smmu, llq);
}

static void arm_smmu_cmdq_write_entries(struct arm_smmu_cmdq *cmdq, u64 *cmds,
					u32 prod, int n)
{
	int i;
	struct arm_smmu_ll_queue llq = {
		.max_n_shift	= cmdq->q.llq.max_n_shift,
		.prod		= prod,
	};

	for (i = 0; i < n; ++i) {
		u64 *cmd = &cmds[i * CMDQ_ENT_DWORDS];

		prod = queue_inc_prod_n(&llq, i);
		queue_write(Q_ENT(&cmdq->q, prod), cmd, CMDQ_ENT_DWORDS);
	}
}

1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384
/*
 * This is the actual insertion function, and provides the following
 * ordering guarantees to callers:
 *
 * - There is a dma_wmb() before publishing any commands to the queue.
 *   This can be relied upon to order prior writes to data structures
 *   in memory (such as a CD or an STE) before the command.
 *
 * - On completion of a CMD_SYNC, there is a control dependency.
 *   This can be relied upon to order subsequent writes to memory (e.g.
 *   freeing an IOVA) after completion of the CMD_SYNC.
 *
 * - Command insertion is totally ordered, so if two CPUs each race to
 *   insert their own list of commands then all of the commands from one
 *   CPU will appear before any of the commands from the other CPU.
 */
1385 1386 1387 1388 1389
static int arm_smmu_cmdq_issue_cmdlist(struct arm_smmu_device *smmu,
				       u64 *cmds, int n, bool sync)
{
	u64 cmd_sync[CMDQ_ENT_DWORDS];
	u32 prod;
1390
	unsigned long flags;
1391 1392 1393 1394 1395 1396
	bool owner;
	struct arm_smmu_cmdq *cmdq = &smmu->cmdq;
	struct arm_smmu_ll_queue llq = {
		.max_n_shift = cmdq->q.llq.max_n_shift,
	}, head = llq;
	int ret = 0;
1397

1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442
	/* 1. Allocate some space in the queue */
	local_irq_save(flags);
	llq.val = READ_ONCE(cmdq->q.llq.val);
	do {
		u64 old;

		while (!queue_has_space(&llq, n + sync)) {
			local_irq_restore(flags);
			if (arm_smmu_cmdq_poll_until_not_full(smmu, &llq))
				dev_err_ratelimited(smmu->dev, "CMDQ timeout\n");
			local_irq_save(flags);
		}

		head.cons = llq.cons;
		head.prod = queue_inc_prod_n(&llq, n + sync) |
					     CMDQ_PROD_OWNED_FLAG;

		old = cmpxchg_relaxed(&cmdq->q.llq.val, llq.val, head.val);
		if (old == llq.val)
			break;

		llq.val = old;
	} while (1);
	owner = !(llq.prod & CMDQ_PROD_OWNED_FLAG);
	head.prod &= ~CMDQ_PROD_OWNED_FLAG;
	llq.prod &= ~CMDQ_PROD_OWNED_FLAG;

	/*
	 * 2. Write our commands into the queue
	 * Dependency ordering from the cmpxchg() loop above.
	 */
	arm_smmu_cmdq_write_entries(cmdq, cmds, llq.prod, n);
	if (sync) {
		prod = queue_inc_prod_n(&llq, n);
		arm_smmu_cmdq_build_sync_cmd(cmd_sync, smmu, prod);
		queue_write(Q_ENT(&cmdq->q, prod), cmd_sync, CMDQ_ENT_DWORDS);

		/*
		 * In order to determine completion of our CMD_SYNC, we must
		 * ensure that the queue can't wrap twice without us noticing.
		 * We achieve that by taking the cmdq lock as shared before
		 * marking our slot as valid.
		 */
		arm_smmu_cmdq_shared_lock(cmdq);
	}
1443

1444 1445 1446
	/* 3. Mark our slots as valid, ensuring commands are visible first */
	dma_wmb();
	arm_smmu_cmdq_set_valid_map(cmdq, llq.prod, head.prod);
1447

1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489
	/* 4. If we are the owner, take control of the SMMU hardware */
	if (owner) {
		/* a. Wait for previous owner to finish */
		atomic_cond_read_relaxed(&cmdq->owner_prod, VAL == llq.prod);

		/* b. Stop gathering work by clearing the owned flag */
		prod = atomic_fetch_andnot_relaxed(CMDQ_PROD_OWNED_FLAG,
						   &cmdq->q.llq.atomic.prod);
		prod &= ~CMDQ_PROD_OWNED_FLAG;

		/*
		 * c. Wait for any gathered work to be written to the queue.
		 * Note that we read our own entries so that we have the control
		 * dependency required by (d).
		 */
		arm_smmu_cmdq_poll_valid_map(cmdq, llq.prod, prod);

		/*
		 * d. Advance the hardware prod pointer
		 * Control dependency ordering from the entries becoming valid.
		 */
		writel_relaxed(prod, cmdq->q.prod_reg);

		/*
		 * e. Tell the next owner we're done
		 * Make sure we've updated the hardware first, so that we don't
		 * race to update prod and potentially move it backwards.
		 */
		atomic_set_release(&cmdq->owner_prod, prod);
	}

	/* 5. If we are inserting a CMD_SYNC, we must wait for it to complete */
	if (sync) {
		llq.prod = queue_inc_prod_n(&llq, n);
		ret = arm_smmu_cmdq_poll_until_sync(smmu, &llq);
		if (ret) {
			dev_err_ratelimited(smmu->dev,
					    "CMD_SYNC timeout at 0x%08x [hwprod 0x%08x, hwcons 0x%08x]\n",
					    llq.prod,
					    readl_relaxed(cmdq->q.prod_reg),
					    readl_relaxed(cmdq->q.cons_reg));
		}
1490

1491
		/*
J
John Garry 已提交
1492
		 * Try to unlock the cmdq lock. This will fail if we're the last
1493 1494 1495 1496 1497 1498 1499
		 * reader, in which case we can safely update cmdq->q.llq.cons
		 */
		if (!arm_smmu_cmdq_shared_tryunlock(cmdq)) {
			WRITE_ONCE(cmdq->q.llq.cons, llq.cons);
			arm_smmu_cmdq_shared_unlock(cmdq);
		}
	}
1500

1501
	local_irq_restore(flags);
1502 1503 1504
	return ret;
}

1505 1506
static int arm_smmu_cmdq_issue_cmd(struct arm_smmu_device *smmu,
				   struct arm_smmu_cmdq_ent *ent)
1507
{
1508
	u64 cmd[CMDQ_ENT_DWORDS];
1509

1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521
	if (arm_smmu_cmdq_build_cmd(cmd, ent)) {
		dev_warn(smmu->dev, "ignoring unknown CMDQ opcode 0x%x\n",
			 ent->opcode);
		return -EINVAL;
	}

	return arm_smmu_cmdq_issue_cmdlist(smmu, cmd, 1, false);
}

static int arm_smmu_cmdq_issue_sync(struct arm_smmu_device *smmu)
{
	return arm_smmu_cmdq_issue_cmdlist(smmu, NULL, 0, true);
1522 1523
}

1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541
static void arm_smmu_cmdq_batch_add(struct arm_smmu_device *smmu,
				    struct arm_smmu_cmdq_batch *cmds,
				    struct arm_smmu_cmdq_ent *cmd)
{
	if (cmds->num == CMDQ_BATCH_ENTRIES) {
		arm_smmu_cmdq_issue_cmdlist(smmu, cmds->cmds, cmds->num, false);
		cmds->num = 0;
	}
	arm_smmu_cmdq_build_cmd(&cmds->cmds[cmds->num * CMDQ_ENT_DWORDS], cmd);
	cmds->num++;
}

static int arm_smmu_cmdq_batch_submit(struct arm_smmu_device *smmu,
				      struct arm_smmu_cmdq_batch *cmds)
{
	return arm_smmu_cmdq_issue_cmdlist(smmu, cmds->cmds, cmds->num, true);
}

1542
/* Context descriptor manipulation functions */
1543 1544
static void arm_smmu_sync_cd(struct arm_smmu_domain *smmu_domain,
			     int ssid, bool leaf)
1545
{
1546 1547 1548
	size_t i;
	unsigned long flags;
	struct arm_smmu_master *master;
1549
	struct arm_smmu_cmdq_batch cmds = {};
1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	struct arm_smmu_cmdq_ent cmd = {
		.opcode	= CMDQ_OP_CFGI_CD,
		.cfgi	= {
			.ssid	= ssid,
			.leaf	= leaf,
		},
	};

	spin_lock_irqsave(&smmu_domain->devices_lock, flags);
	list_for_each_entry(master, &smmu_domain->devices, domain_head) {
		for (i = 0; i < master->num_sids; i++) {
			cmd.cfgi.sid = master->sids[i];
1563
			arm_smmu_cmdq_batch_add(smmu, &cmds, &cmd);
1564 1565 1566
		}
	}
	spin_unlock_irqrestore(&smmu_domain->devices_lock, flags);
1567

1568
	arm_smmu_cmdq_batch_submit(smmu, &cmds);
1569
}
1570

1571 1572 1573 1574
static int arm_smmu_alloc_cd_leaf_table(struct arm_smmu_device *smmu,
					struct arm_smmu_l1_ctx_desc *l1_desc)
{
	size_t size = CTXDESC_L2_ENTRIES * (CTXDESC_CD_DWORDS << 3);
1575

1576 1577 1578 1579 1580 1581 1582 1583
	l1_desc->l2ptr = dmam_alloc_coherent(smmu->dev, size,
					     &l1_desc->l2ptr_dma, GFP_KERNEL);
	if (!l1_desc->l2ptr) {
		dev_warn(smmu->dev,
			 "failed to allocate context descriptor table\n");
		return -ENOMEM;
	}
	return 0;
1584 1585
}

1586 1587
static void arm_smmu_write_cd_l1_desc(__le64 *dst,
				      struct arm_smmu_l1_ctx_desc *l1_desc)
1588
{
1589 1590 1591
	u64 val = (l1_desc->l2ptr_dma & CTXDESC_L1_DESC_L2PTR_MASK) |
		  CTXDESC_L1_DESC_V;

1592
	/* See comment in arm_smmu_write_ctx_desc() */
1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603
	WRITE_ONCE(*dst, cpu_to_le64(val));
}

static __le64 *arm_smmu_get_cd_ptr(struct arm_smmu_domain *smmu_domain,
				   u32 ssid)
{
	__le64 *l1ptr;
	unsigned int idx;
	struct arm_smmu_l1_ctx_desc *l1_desc;
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	struct arm_smmu_ctx_desc_cfg *cdcfg = &smmu_domain->s1_cfg.cdcfg;
1604

1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622
	if (smmu_domain->s1_cfg.s1fmt == STRTAB_STE_0_S1FMT_LINEAR)
		return cdcfg->cdtab + ssid * CTXDESC_CD_DWORDS;

	idx = ssid >> CTXDESC_SPLIT;
	l1_desc = &cdcfg->l1_desc[idx];
	if (!l1_desc->l2ptr) {
		if (arm_smmu_alloc_cd_leaf_table(smmu, l1_desc))
			return NULL;

		l1ptr = cdcfg->cdtab + idx * CTXDESC_L1_DESC_DWORDS;
		arm_smmu_write_cd_l1_desc(l1ptr, l1_desc);
		/* An invalid L1CD can be cached */
		arm_smmu_sync_cd(smmu_domain, ssid, false);
	}
	idx = ssid & (CTXDESC_L2_ENTRIES - 1);
	return l1_desc->l2ptr + idx * CTXDESC_CD_DWORDS;
}

1623 1624 1625
static int arm_smmu_write_ctx_desc(struct arm_smmu_domain *smmu_domain,
				   int ssid, struct arm_smmu_ctx_desc *cd)
{
1626
	/*
1627 1628 1629 1630 1631 1632 1633
	 * This function handles the following cases:
	 *
	 * (1) Install primary CD, for normal DMA traffic (SSID = 0).
	 * (2) Install a secondary CD, for SID+SSID traffic.
	 * (3) Update ASID of a CD. Atomically write the first 64 bits of the
	 *     CD, then invalidate the old entry and mappings.
	 * (4) Remove a secondary CD.
1634
	 */
1635 1636
	u64 val;
	bool cd_live;
1637
	__le64 *cdptr;
1638
	struct arm_smmu_device *smmu = smmu_domain->smmu;
1639 1640 1641 1642 1643 1644 1645

	if (WARN_ON(ssid >= (1 << smmu_domain->s1_cfg.s1cdmax)))
		return -E2BIG;

	cdptr = arm_smmu_get_cd_ptr(smmu_domain, ssid);
	if (!cdptr)
		return -ENOMEM;
1646 1647 1648

	val = le64_to_cpu(cdptr[0]);
	cd_live = !!(val & CTXDESC_CD_0_V);
1649

1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662
	if (!cd) { /* (4) */
		val = 0;
	} else if (cd_live) { /* (3) */
		val &= ~CTXDESC_CD_0_ASID;
		val |= FIELD_PREP(CTXDESC_CD_0_ASID, cd->asid);
		/*
		 * Until CD+TLB invalidation, both ASIDs may be used for tagging
		 * this substream's traffic
		 */
	} else { /* (1) and (2) */
		cdptr[1] = cpu_to_le64(cd->ttbr & CTXDESC_CD_1_TTB0_MASK);
		cdptr[2] = 0;
		cdptr[3] = cpu_to_le64(cd->mair);
1663

1664 1665 1666 1667 1668 1669
		/*
		 * STE is live, and the SMMU might read dwords of this CD in any
		 * order. Ensure that it observes valid values before reading
		 * V=1.
		 */
		arm_smmu_sync_cd(smmu_domain, ssid, true);
1670

1671
		val = cd->tcr |
1672
#ifdef __BIG_ENDIAN
1673
			CTXDESC_CD_0_ENDI |
1674
#endif
1675 1676 1677 1678
			CTXDESC_CD_0_R | CTXDESC_CD_0_A | CTXDESC_CD_0_ASET |
			CTXDESC_CD_0_AA64 |
			FIELD_PREP(CTXDESC_CD_0_ASID, cd->asid) |
			CTXDESC_CD_0_V;
1679

1680 1681 1682 1683
		/* STALL_MODEL==0b10 && CD.S==0 is ILLEGAL */
		if (smmu->features & ARM_SMMU_FEAT_STALL_FORCE)
			val |= CTXDESC_CD_0_S;
	}
1684

1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696
	/*
	 * The SMMU accesses 64-bit values atomically. See IHI0070Ca 3.21.3
	 * "Configuration structures and configuration invalidation completion"
	 *
	 *   The size of single-copy atomic reads made by the SMMU is
	 *   IMPLEMENTATION DEFINED but must be at least 64 bits. Any single
	 *   field within an aligned 64-bit span of a structure can be altered
	 *   without first making the structure invalid.
	 */
	WRITE_ONCE(cdptr[0], cpu_to_le64(val));
	arm_smmu_sync_cd(smmu_domain, ssid, true);
	return 0;
1697 1698
}

1699 1700
static int arm_smmu_alloc_cd_tables(struct arm_smmu_domain *smmu_domain)
{
1701
	int ret;
1702
	size_t l1size;
1703
	size_t max_contexts;
1704 1705 1706 1707
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	struct arm_smmu_s1_cfg *cfg = &smmu_domain->s1_cfg;
	struct arm_smmu_ctx_desc_cfg *cdcfg = &cfg->cdcfg;

1708 1709 1710 1711 1712 1713
	max_contexts = 1 << cfg->s1cdmax;

	if (!(smmu->features & ARM_SMMU_FEAT_2_LVL_CDTAB) ||
	    max_contexts <= CTXDESC_L2_ENTRIES) {
		cfg->s1fmt = STRTAB_STE_0_S1FMT_LINEAR;
		cdcfg->num_l1_ents = max_contexts;
1714

1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728
		l1size = max_contexts * (CTXDESC_CD_DWORDS << 3);
	} else {
		cfg->s1fmt = STRTAB_STE_0_S1FMT_64K_L2;
		cdcfg->num_l1_ents = DIV_ROUND_UP(max_contexts,
						  CTXDESC_L2_ENTRIES);

		cdcfg->l1_desc = devm_kcalloc(smmu->dev, cdcfg->num_l1_ents,
					      sizeof(*cdcfg->l1_desc),
					      GFP_KERNEL);
		if (!cdcfg->l1_desc)
			return -ENOMEM;

		l1size = cdcfg->num_l1_ents * (CTXDESC_L1_DESC_DWORDS << 3);
	}
1729

1730 1731 1732 1733
	cdcfg->cdtab = dmam_alloc_coherent(smmu->dev, l1size, &cdcfg->cdtab_dma,
					   GFP_KERNEL);
	if (!cdcfg->cdtab) {
		dev_warn(smmu->dev, "failed to allocate context descriptor\n");
1734 1735
		ret = -ENOMEM;
		goto err_free_l1;
1736
	}
1737

1738
	return 0;
1739

1740 1741 1742 1743 1744 1745
err_free_l1:
	if (cdcfg->l1_desc) {
		devm_kfree(smmu->dev, cdcfg->l1_desc);
		cdcfg->l1_desc = NULL;
	}
	return ret;
1746 1747 1748 1749
}

static void arm_smmu_free_cd_tables(struct arm_smmu_domain *smmu_domain)
{
1750 1751
	int i;
	size_t size, l1size;
1752 1753
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	struct arm_smmu_ctx_desc_cfg *cdcfg = &smmu_domain->s1_cfg.cdcfg;
1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772

	if (cdcfg->l1_desc) {
		size = CTXDESC_L2_ENTRIES * (CTXDESC_CD_DWORDS << 3);

		for (i = 0; i < cdcfg->num_l1_ents; i++) {
			if (!cdcfg->l1_desc[i].l2ptr)
				continue;

			dmam_free_coherent(smmu->dev, size,
					   cdcfg->l1_desc[i].l2ptr,
					   cdcfg->l1_desc[i].l2ptr_dma);
		}
		devm_kfree(smmu->dev, cdcfg->l1_desc);
		cdcfg->l1_desc = NULL;

		l1size = cdcfg->num_l1_ents * (CTXDESC_L1_DESC_DWORDS << 3);
	} else {
		l1size = cdcfg->num_l1_ents * (CTXDESC_CD_DWORDS << 3);
	}
1773 1774 1775 1776

	dmam_free_coherent(smmu->dev, l1size, cdcfg->cdtab, cdcfg->cdtab_dma);
	cdcfg->cdtab_dma = 0;
	cdcfg->cdtab = NULL;
1777 1778
}

1779 1780 1781 1782 1783 1784 1785 1786
static void arm_smmu_free_asid(struct arm_smmu_ctx_desc *cd)
{
	if (!cd->asid)
		return;

	xa_erase(&asid_xa, cd->asid);
}

1787 1788 1789 1790 1791 1792
/* Stream table manipulation functions */
static void
arm_smmu_write_strtab_l1_desc(__le64 *dst, struct arm_smmu_strtab_l1_desc *desc)
{
	u64 val = 0;

1793
	val |= FIELD_PREP(STRTAB_L1_DESC_SPAN, desc->span);
1794
	val |= desc->l2ptr_dma & STRTAB_L1_DESC_L2PTR_MASK;
1795

1796 1797
	/* See comment in arm_smmu_write_ctx_desc() */
	WRITE_ONCE(*dst, cpu_to_le64(val));
1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810
}

static void arm_smmu_sync_ste_for_sid(struct arm_smmu_device *smmu, u32 sid)
{
	struct arm_smmu_cmdq_ent cmd = {
		.opcode	= CMDQ_OP_CFGI_STE,
		.cfgi	= {
			.sid	= sid,
			.leaf	= true,
		},
	};

	arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1811
	arm_smmu_cmdq_issue_sync(smmu);
1812 1813
}

1814 1815
static void arm_smmu_write_strtab_ent(struct arm_smmu_master *master, u32 sid,
				      __le64 *dst)
1816 1817 1818 1819 1820
{
	/*
	 * This is hideously complicated, but we only really care about
	 * three cases at the moment:
	 *
1821 1822 1823
	 * 1. Invalid (all zero) -> bypass/fault (init)
	 * 2. Bypass/fault -> translation/bypass (attach)
	 * 3. Translation/bypass -> bypass/fault (detach)
1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834
	 *
	 * Given that we can't update the STE atomically and the SMMU
	 * doesn't read the thing in a defined order, that leaves us
	 * with the following maintenance requirements:
	 *
	 * 1. Update Config, return (init time STEs aren't live)
	 * 2. Write everything apart from dword 0, sync, write dword 0, sync
	 * 3. Update Config, sync
	 */
	u64 val = le64_to_cpu(dst[0]);
	bool ste_live = false;
1835 1836 1837 1838
	struct arm_smmu_device *smmu = NULL;
	struct arm_smmu_s1_cfg *s1_cfg = NULL;
	struct arm_smmu_s2_cfg *s2_cfg = NULL;
	struct arm_smmu_domain *smmu_domain = NULL;
1839 1840 1841 1842 1843 1844 1845
	struct arm_smmu_cmdq_ent prefetch_cmd = {
		.opcode		= CMDQ_OP_PREFETCH_CFG,
		.prefetch	= {
			.sid	= sid,
		},
	};

1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864
	if (master) {
		smmu_domain = master->domain;
		smmu = master->smmu;
	}

	if (smmu_domain) {
		switch (smmu_domain->stage) {
		case ARM_SMMU_DOMAIN_S1:
			s1_cfg = &smmu_domain->s1_cfg;
			break;
		case ARM_SMMU_DOMAIN_S2:
		case ARM_SMMU_DOMAIN_NESTED:
			s2_cfg = &smmu_domain->s2_cfg;
			break;
		default:
			break;
		}
	}

1865
	if (val & STRTAB_STE_0_V) {
1866
		switch (FIELD_GET(STRTAB_STE_0_CFG, val)) {
1867 1868 1869 1870 1871 1872
		case STRTAB_STE_0_CFG_BYPASS:
			break;
		case STRTAB_STE_0_CFG_S1_TRANS:
		case STRTAB_STE_0_CFG_S2_TRANS:
			ste_live = true;
			break;
1873
		case STRTAB_STE_0_CFG_ABORT:
1874 1875
			BUG_ON(!disable_bypass);
			break;
1876 1877 1878 1879 1880
		default:
			BUG(); /* STE corruption */
		}
	}

1881
	/* Nuke the existing STE_0 value, as we're going to rewrite it */
1882 1883 1884
	val = STRTAB_STE_0_V;

	/* Bypass/fault */
1885 1886
	if (!smmu_domain || !(s1_cfg || s2_cfg)) {
		if (!smmu_domain && disable_bypass)
1887
			val |= FIELD_PREP(STRTAB_STE_0_CFG, STRTAB_STE_0_CFG_ABORT);
1888
		else
1889
			val |= FIELD_PREP(STRTAB_STE_0_CFG, STRTAB_STE_0_CFG_BYPASS);
1890 1891

		dst[0] = cpu_to_le64(val);
1892 1893
		dst[1] = cpu_to_le64(FIELD_PREP(STRTAB_STE_1_SHCFG,
						STRTAB_STE_1_SHCFG_INCOMING));
1894
		dst[2] = 0; /* Nuke the VMID */
1895 1896 1897 1898 1899
		/*
		 * The SMMU can perform negative caching, so we must sync
		 * the STE regardless of whether the old value was live.
		 */
		if (smmu)
1900 1901 1902 1903
			arm_smmu_sync_ste_for_sid(smmu, sid);
		return;
	}

1904
	if (s1_cfg) {
1905 1906
		BUG_ON(ste_live);
		dst[1] = cpu_to_le64(
1907
			 FIELD_PREP(STRTAB_STE_1_S1DSS, STRTAB_STE_1_S1DSS_SSID0) |
1908 1909 1910 1911
			 FIELD_PREP(STRTAB_STE_1_S1CIR, STRTAB_STE_1_S1C_CACHE_WBRA) |
			 FIELD_PREP(STRTAB_STE_1_S1COR, STRTAB_STE_1_S1C_CACHE_WBRA) |
			 FIELD_PREP(STRTAB_STE_1_S1CSH, ARM_SMMU_SH_ISH) |
			 FIELD_PREP(STRTAB_STE_1_STRW, STRTAB_STE_1_STRW_NSEL1));
1912

1913 1914
		if (smmu->features & ARM_SMMU_FEAT_STALLS &&
		   !(smmu->features & ARM_SMMU_FEAT_STALL_FORCE))
1915 1916
			dst[1] |= cpu_to_le64(STRTAB_STE_1_S1STALLD);

1917
		val |= (s1_cfg->cdcfg.cdtab_dma & STRTAB_STE_0_S1CTXPTR_MASK) |
1918 1919 1920
			FIELD_PREP(STRTAB_STE_0_CFG, STRTAB_STE_0_CFG_S1_TRANS) |
			FIELD_PREP(STRTAB_STE_0_S1CDMAX, s1_cfg->s1cdmax) |
			FIELD_PREP(STRTAB_STE_0_S1FMT, s1_cfg->s1fmt);
1921 1922
	}

1923
	if (s2_cfg) {
1924 1925
		BUG_ON(ste_live);
		dst[2] = cpu_to_le64(
1926 1927
			 FIELD_PREP(STRTAB_STE_2_S2VMID, s2_cfg->vmid) |
			 FIELD_PREP(STRTAB_STE_2_VTCR, s2_cfg->vtcr) |
1928 1929 1930 1931 1932 1933
#ifdef __BIG_ENDIAN
			 STRTAB_STE_2_S2ENDI |
#endif
			 STRTAB_STE_2_S2PTW | STRTAB_STE_2_S2AA64 |
			 STRTAB_STE_2_S2R);

1934
		dst[3] = cpu_to_le64(s2_cfg->vttbr & STRTAB_STE_3_S2TTB_MASK);
1935

1936
		val |= FIELD_PREP(STRTAB_STE_0_CFG, STRTAB_STE_0_CFG_S2_TRANS);
1937 1938
	}

1939 1940 1941 1942
	if (master->ats_enabled)
		dst[1] |= cpu_to_le64(FIELD_PREP(STRTAB_STE_1_EATS,
						 STRTAB_STE_1_EATS_TRANS));

1943
	arm_smmu_sync_ste_for_sid(smmu, sid);
1944 1945
	/* See comment in arm_smmu_write_ctx_desc() */
	WRITE_ONCE(dst[0], cpu_to_le64(val));
1946 1947 1948
	arm_smmu_sync_ste_for_sid(smmu, sid);

	/* It's likely that we'll want to use the new STE soon */
1949 1950
	if (!(smmu->options & ARM_SMMU_OPT_SKIP_PREFETCH))
		arm_smmu_cmdq_issue_cmd(smmu, &prefetch_cmd);
1951 1952
}

1953
static void arm_smmu_init_bypass_stes(__le64 *strtab, unsigned int nent)
1954 1955 1956 1957
{
	unsigned int i;

	for (i = 0; i < nent; ++i) {
1958
		arm_smmu_write_strtab_ent(NULL, -1, strtab);
1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973
		strtab += STRTAB_STE_DWORDS;
	}
}

static int arm_smmu_init_l2_strtab(struct arm_smmu_device *smmu, u32 sid)
{
	size_t size;
	void *strtab;
	struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
	struct arm_smmu_strtab_l1_desc *desc = &cfg->l1_desc[sid >> STRTAB_SPLIT];

	if (desc->l2ptr)
		return 0;

	size = 1 << (STRTAB_SPLIT + ilog2(STRTAB_STE_DWORDS) + 3);
1974
	strtab = &cfg->strtab[(sid >> STRTAB_SPLIT) * STRTAB_L1_DESC_DWORDS];
1975 1976

	desc->span = STRTAB_SPLIT + 1;
1977
	desc->l2ptr = dmam_alloc_coherent(smmu->dev, size, &desc->l2ptr_dma,
1978
					  GFP_KERNEL);
1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996
	if (!desc->l2ptr) {
		dev_err(smmu->dev,
			"failed to allocate l2 stream table for SID %u\n",
			sid);
		return -ENOMEM;
	}

	arm_smmu_init_bypass_stes(desc->l2ptr, 1 << STRTAB_SPLIT);
	arm_smmu_write_strtab_l1_desc(strtab, desc);
	return 0;
}

/* IRQ and event handlers */
static irqreturn_t arm_smmu_evtq_thread(int irq, void *dev)
{
	int i;
	struct arm_smmu_device *smmu = dev;
	struct arm_smmu_queue *q = &smmu->evtq.q;
1997
	struct arm_smmu_ll_queue *llq = &q->llq;
1998 1999
	u64 evt[EVTQ_ENT_DWORDS];

2000 2001
	do {
		while (!queue_remove_raw(q, evt)) {
2002
			u8 id = FIELD_GET(EVTQ_0_ID, evt[0]);
2003

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014
			dev_info(smmu->dev, "event 0x%02x received:\n", id);
			for (i = 0; i < ARRAY_SIZE(evt); ++i)
				dev_info(smmu->dev, "\t0x%016llx\n",
					 (unsigned long long)evt[i]);

		}

		/*
		 * Not much we can do on overflow, so scream and pretend we're
		 * trying harder.
		 */
2015
		if (queue_sync_prod_in(q) == -EOVERFLOW)
2016
			dev_err(smmu->dev, "EVTQ overflow detected -- events lost\n");
2017
	} while (!queue_empty(llq));
2018 2019

	/* Sync our overflow flag, as we believe we're up to speed */
2020 2021
	llq->cons = Q_OVF(llq->prod) | Q_WRP(llq, llq->cons) |
		    Q_IDX(llq, llq->cons);
2022 2023 2024
	return IRQ_HANDLED;
}

2025 2026 2027 2028 2029 2030
static void arm_smmu_handle_ppr(struct arm_smmu_device *smmu, u64 *evt)
{
	u32 sid, ssid;
	u16 grpid;
	bool ssv, last;

2031 2032 2033 2034 2035
	sid = FIELD_GET(PRIQ_0_SID, evt[0]);
	ssv = FIELD_GET(PRIQ_0_SSID_V, evt[0]);
	ssid = ssv ? FIELD_GET(PRIQ_0_SSID, evt[0]) : 0;
	last = FIELD_GET(PRIQ_0_PRG_LAST, evt[0]);
	grpid = FIELD_GET(PRIQ_1_PRG_IDX, evt[1]);
2036 2037 2038 2039 2040 2041 2042 2043 2044

	dev_info(smmu->dev, "unexpected PRI request received:\n");
	dev_info(smmu->dev,
		 "\tsid 0x%08x.0x%05x: [%u%s] %sprivileged %s%s%s access at iova 0x%016llx\n",
		 sid, ssid, grpid, last ? "L" : "",
		 evt[0] & PRIQ_0_PERM_PRIV ? "" : "un",
		 evt[0] & PRIQ_0_PERM_READ ? "R" : "",
		 evt[0] & PRIQ_0_PERM_WRITE ? "W" : "",
		 evt[0] & PRIQ_0_PERM_EXEC ? "X" : "",
2045
		 evt[1] & PRIQ_1_ADDR_MASK);
2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057

	if (last) {
		struct arm_smmu_cmdq_ent cmd = {
			.opcode			= CMDQ_OP_PRI_RESP,
			.substream_valid	= ssv,
			.pri			= {
				.sid	= sid,
				.ssid	= ssid,
				.grpid	= grpid,
				.resp	= PRI_RESP_DENY,
			},
		};
2058

2059 2060
		arm_smmu_cmdq_issue_cmd(smmu, &cmd);
	}
2061 2062 2063 2064 2065 2066
}

static irqreturn_t arm_smmu_priq_thread(int irq, void *dev)
{
	struct arm_smmu_device *smmu = dev;
	struct arm_smmu_queue *q = &smmu->priq.q;
2067
	struct arm_smmu_ll_queue *llq = &q->llq;
2068 2069
	u64 evt[PRIQ_ENT_DWORDS];

2070 2071 2072
	do {
		while (!queue_remove_raw(q, evt))
			arm_smmu_handle_ppr(smmu, evt);
2073

2074
		if (queue_sync_prod_in(q) == -EOVERFLOW)
2075
			dev_err(smmu->dev, "PRIQ overflow detected -- requests lost\n");
2076
	} while (!queue_empty(llq));
2077 2078

	/* Sync our overflow flag, as we believe we're up to speed */
2079 2080 2081
	llq->cons = Q_OVF(llq->prod) | Q_WRP(llq, llq->cons) |
		      Q_IDX(llq, llq->cons);
	queue_sync_cons_out(q);
2082 2083 2084 2085 2086 2087 2088
	return IRQ_HANDLED;
}

static int arm_smmu_device_disable(struct arm_smmu_device *smmu);

static irqreturn_t arm_smmu_gerror_handler(int irq, void *dev)
{
2089
	u32 gerror, gerrorn, active;
2090 2091 2092 2093 2094
	struct arm_smmu_device *smmu = dev;

	gerror = readl_relaxed(smmu->base + ARM_SMMU_GERROR);
	gerrorn = readl_relaxed(smmu->base + ARM_SMMU_GERRORN);

2095 2096
	active = gerror ^ gerrorn;
	if (!(active & GERROR_ERR_MASK))
2097 2098 2099 2100
		return IRQ_NONE; /* No errors pending */

	dev_warn(smmu->dev,
		 "unexpected global error reported (0x%08x), this could be serious\n",
2101
		 active);
2102

2103
	if (active & GERROR_SFM_ERR) {
2104 2105 2106 2107
		dev_err(smmu->dev, "device has entered Service Failure Mode!\n");
		arm_smmu_device_disable(smmu);
	}

2108
	if (active & GERROR_MSI_GERROR_ABT_ERR)
2109 2110
		dev_warn(smmu->dev, "GERROR MSI write aborted\n");

2111
	if (active & GERROR_MSI_PRIQ_ABT_ERR)
2112 2113
		dev_warn(smmu->dev, "PRIQ MSI write aborted\n");

2114
	if (active & GERROR_MSI_EVTQ_ABT_ERR)
2115 2116
		dev_warn(smmu->dev, "EVTQ MSI write aborted\n");

2117
	if (active & GERROR_MSI_CMDQ_ABT_ERR)
2118 2119
		dev_warn(smmu->dev, "CMDQ MSI write aborted\n");

2120
	if (active & GERROR_PRIQ_ABT_ERR)
2121 2122
		dev_err(smmu->dev, "PRIQ write aborted -- events may have been lost\n");

2123
	if (active & GERROR_EVTQ_ABT_ERR)
2124 2125
		dev_err(smmu->dev, "EVTQ write aborted -- events may have been lost\n");

2126
	if (active & GERROR_CMDQ_ERR)
2127 2128 2129 2130 2131 2132
		arm_smmu_cmdq_skip_err(smmu);

	writel(gerror, smmu->base + ARM_SMMU_GERRORN);
	return IRQ_HANDLED;
}

2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149
static irqreturn_t arm_smmu_combined_irq_thread(int irq, void *dev)
{
	struct arm_smmu_device *smmu = dev;

	arm_smmu_evtq_thread(irq, dev);
	if (smmu->features & ARM_SMMU_FEAT_PRI)
		arm_smmu_priq_thread(irq, dev);

	return IRQ_HANDLED;
}

static irqreturn_t arm_smmu_combined_irq_handler(int irq, void *dev)
{
	arm_smmu_gerror_handler(irq, dev);
	return IRQ_WAKE_THREAD;
}

2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202
static void
arm_smmu_atc_inv_to_cmd(int ssid, unsigned long iova, size_t size,
			struct arm_smmu_cmdq_ent *cmd)
{
	size_t log2_span;
	size_t span_mask;
	/* ATC invalidates are always on 4096-bytes pages */
	size_t inval_grain_shift = 12;
	unsigned long page_start, page_end;

	*cmd = (struct arm_smmu_cmdq_ent) {
		.opcode			= CMDQ_OP_ATC_INV,
		.substream_valid	= !!ssid,
		.atc.ssid		= ssid,
	};

	if (!size) {
		cmd->atc.size = ATC_INV_SIZE_ALL;
		return;
	}

	page_start	= iova >> inval_grain_shift;
	page_end	= (iova + size - 1) >> inval_grain_shift;

	/*
	 * In an ATS Invalidate Request, the address must be aligned on the
	 * range size, which must be a power of two number of page sizes. We
	 * thus have to choose between grossly over-invalidating the region, or
	 * splitting the invalidation into multiple commands. For simplicity
	 * we'll go with the first solution, but should refine it in the future
	 * if multiple commands are shown to be more efficient.
	 *
	 * Find the smallest power of two that covers the range. The most
	 * significant differing bit between the start and end addresses,
	 * fls(start ^ end), indicates the required span. For example:
	 *
	 * We want to invalidate pages [8; 11]. This is already the ideal range:
	 *		x = 0b1000 ^ 0b1011 = 0b11
	 *		span = 1 << fls(x) = 4
	 *
	 * To invalidate pages [7; 10], we need to invalidate [0; 15]:
	 *		x = 0b0111 ^ 0b1010 = 0b1101
	 *		span = 1 << fls(x) = 16
	 */
	log2_span	= fls_long(page_start ^ page_end);
	span_mask	= (1ULL << log2_span) - 1;

	page_start	&= ~span_mask;

	cmd->atc.addr	= page_start << inval_grain_shift;
	cmd->atc.size	= log2_span;
}

2203
static int arm_smmu_atc_inv_master(struct arm_smmu_master *master)
2204 2205
{
	int i;
2206
	struct arm_smmu_cmdq_ent cmd;
2207

2208
	arm_smmu_atc_inv_to_cmd(0, 0, 0, &cmd);
2209 2210

	for (i = 0; i < master->num_sids; i++) {
2211 2212
		cmd.atc.sid = master->sids[i];
		arm_smmu_cmdq_issue_cmd(master->smmu, &cmd);
2213 2214 2215 2216 2217 2218 2219 2220
	}

	return arm_smmu_cmdq_issue_sync(master->smmu);
}

static int arm_smmu_atc_inv_domain(struct arm_smmu_domain *smmu_domain,
				   int ssid, unsigned long iova, size_t size)
{
2221
	int i;
2222 2223 2224
	unsigned long flags;
	struct arm_smmu_cmdq_ent cmd;
	struct arm_smmu_master *master;
2225
	struct arm_smmu_cmdq_batch cmds = {};
2226 2227 2228 2229

	if (!(smmu_domain->smmu->features & ARM_SMMU_FEAT_ATS))
		return 0;

2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246
	/*
	 * Ensure that we've completed prior invalidation of the main TLBs
	 * before we read 'nr_ats_masters' in case of a concurrent call to
	 * arm_smmu_enable_ats():
	 *
	 *	// unmap()			// arm_smmu_enable_ats()
	 *	TLBI+SYNC			atomic_inc(&nr_ats_masters);
	 *	smp_mb();			[...]
	 *	atomic_read(&nr_ats_masters);	pci_enable_ats() // writel()
	 *
	 * Ensures that we always see the incremented 'nr_ats_masters' count if
	 * ATS was enabled at the PCI device before completion of the TLBI.
	 */
	smp_mb();
	if (!atomic_read(&smmu_domain->nr_ats_masters))
		return 0;

2247 2248 2249
	arm_smmu_atc_inv_to_cmd(ssid, iova, size, &cmd);

	spin_lock_irqsave(&smmu_domain->devices_lock, flags);
2250 2251 2252 2253 2254 2255 2256 2257 2258
	list_for_each_entry(master, &smmu_domain->devices, domain_head) {
		if (!master->ats_enabled)
			continue;

		for (i = 0; i < master->num_sids; i++) {
			cmd.atc.sid = master->sids[i];
			arm_smmu_cmdq_batch_add(smmu_domain->smmu, &cmds, &cmd);
		}
	}
2259 2260
	spin_unlock_irqrestore(&smmu_domain->devices_lock, flags);

2261
	return arm_smmu_cmdq_batch_submit(smmu_domain->smmu, &cmds);
2262 2263
}

2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279
/* IO_PGTABLE API */
static void arm_smmu_tlb_inv_context(void *cookie)
{
	struct arm_smmu_domain *smmu_domain = cookie;
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	struct arm_smmu_cmdq_ent cmd;

	if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
		cmd.opcode	= CMDQ_OP_TLBI_NH_ASID;
		cmd.tlbi.asid	= smmu_domain->s1_cfg.cd.asid;
		cmd.tlbi.vmid	= 0;
	} else {
		cmd.opcode	= CMDQ_OP_TLBI_S12_VMALL;
		cmd.tlbi.vmid	= smmu_domain->s2_cfg.vmid;
	}

2280 2281 2282
	/*
	 * NOTE: when io-pgtable is in non-strict mode, we may get here with
	 * PTEs previously cleared by unmaps on the current CPU not yet visible
2283 2284 2285
	 * to the SMMU. We are relying on the dma_wmb() implicit during cmd
	 * insertion to guarantee those are observed before the TLBI. Do be
	 * careful, 007.
2286
	 */
2287
	arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2288
	arm_smmu_cmdq_issue_sync(smmu);
2289
	arm_smmu_atc_inv_domain(smmu_domain, 0, 0, 0);
2290 2291
}

2292 2293 2294
static void arm_smmu_tlb_inv_range(unsigned long iova, size_t size,
				   size_t granule, bool leaf,
				   struct arm_smmu_domain *smmu_domain)
2295 2296
{
	struct arm_smmu_device *smmu = smmu_domain->smmu;
2297 2298
	unsigned long start = iova, end = iova + size, num_pages = 0, tg = 0;
	size_t inv_range = granule;
2299
	struct arm_smmu_cmdq_batch cmds = {};
2300 2301 2302 2303 2304 2305
	struct arm_smmu_cmdq_ent cmd = {
		.tlbi = {
			.leaf	= leaf,
		},
	};

2306 2307 2308
	if (!size)
		return;

2309 2310 2311 2312 2313 2314 2315 2316
	if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
		cmd.opcode	= CMDQ_OP_TLBI_NH_VA;
		cmd.tlbi.asid	= smmu_domain->s1_cfg.cd.asid;
	} else {
		cmd.opcode	= CMDQ_OP_TLBI_S2_IPA;
		cmd.tlbi.vmid	= smmu_domain->s2_cfg.vmid;
	}

2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329
	if (smmu->features & ARM_SMMU_FEAT_RANGE_INV) {
		/* Get the leaf page size */
		tg = __ffs(smmu_domain->domain.pgsize_bitmap);

		/* Convert page size of 12,14,16 (log2) to 1,2,3 */
		cmd.tlbi.tg = (tg - 10) / 2;

		/* Determine what level the granule is at */
		cmd.tlbi.ttl = 4 - ((ilog2(granule) - 3) / (tg - 3));

		num_pages = size >> tg;
	}

2330
	while (iova < end) {
2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353
		if (smmu->features & ARM_SMMU_FEAT_RANGE_INV) {
			/*
			 * On each iteration of the loop, the range is 5 bits
			 * worth of the aligned size remaining.
			 * The range in pages is:
			 *
			 * range = (num_pages & (0x1f << __ffs(num_pages)))
			 */
			unsigned long scale, num;

			/* Determine the power of 2 multiple number of pages */
			scale = __ffs(num_pages);
			cmd.tlbi.scale = scale;

			/* Determine how many chunks of 2^scale size we have */
			num = (num_pages >> scale) & CMDQ_TLBI_RANGE_NUM_MAX;
			cmd.tlbi.num = num - 1;

			/* range is num * 2^scale * pgsize */
			inv_range = num << (scale + tg);

			/* Clear out the lower order bits for the next iteration */
			num_pages -= num << scale;
2354 2355 2356
		}

		cmd.tlbi.addr = iova;
2357
		arm_smmu_cmdq_batch_add(smmu, &cmds, &cmd);
2358
		iova += inv_range;
2359
	}
2360
	arm_smmu_cmdq_batch_submit(smmu, &cmds);
2361 2362 2363 2364 2365 2366

	/*
	 * Unfortunately, this can't be leaf-only since we may have
	 * zapped an entire table.
	 */
	arm_smmu_atc_inv_domain(smmu_domain, 0, start, size);
2367 2368
}

2369 2370
static void arm_smmu_tlb_inv_page_nosync(struct iommu_iotlb_gather *gather,
					 unsigned long iova, size_t granule,
2371 2372
					 void *cookie)
{
2373 2374 2375 2376
	struct arm_smmu_domain *smmu_domain = cookie;
	struct iommu_domain *domain = &smmu_domain->domain;

	iommu_iotlb_gather_add_page(domain, gather, iova, granule);
2377 2378
}

2379 2380 2381
static void arm_smmu_tlb_inv_walk(unsigned long iova, size_t size,
				  size_t granule, void *cookie)
{
2382
	arm_smmu_tlb_inv_range(iova, size, granule, false, cookie);
2383 2384 2385 2386 2387
}

static void arm_smmu_tlb_inv_leaf(unsigned long iova, size_t size,
				  size_t granule, void *cookie)
{
2388
	arm_smmu_tlb_inv_range(iova, size, granule, true, cookie);
2389 2390
}

2391
static const struct iommu_flush_ops arm_smmu_flush_ops = {
2392
	.tlb_flush_all	= arm_smmu_tlb_inv_context,
2393 2394
	.tlb_flush_walk = arm_smmu_tlb_inv_walk,
	.tlb_flush_leaf = arm_smmu_tlb_inv_leaf,
2395
	.tlb_add_page	= arm_smmu_tlb_inv_page_nosync,
2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414
};

/* IOMMU API */
static bool arm_smmu_capable(enum iommu_cap cap)
{
	switch (cap) {
	case IOMMU_CAP_CACHE_COHERENCY:
		return true;
	case IOMMU_CAP_NOEXEC:
		return true;
	default:
		return false;
	}
}

static struct iommu_domain *arm_smmu_domain_alloc(unsigned type)
{
	struct arm_smmu_domain *smmu_domain;

2415 2416 2417
	if (type != IOMMU_DOMAIN_UNMANAGED &&
	    type != IOMMU_DOMAIN_DMA &&
	    type != IOMMU_DOMAIN_IDENTITY)
2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428
		return NULL;

	/*
	 * Allocate the domain and initialise some of its data structures.
	 * We can't really do anything meaningful until we've added a
	 * master.
	 */
	smmu_domain = kzalloc(sizeof(*smmu_domain), GFP_KERNEL);
	if (!smmu_domain)
		return NULL;

2429 2430 2431 2432 2433 2434
	if (type == IOMMU_DOMAIN_DMA &&
	    iommu_get_dma_cookie(&smmu_domain->domain)) {
		kfree(smmu_domain);
		return NULL;
	}

2435
	mutex_init(&smmu_domain->init_mutex);
2436 2437 2438
	INIT_LIST_HEAD(&smmu_domain->devices);
	spin_lock_init(&smmu_domain->devices_lock);

2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464
	return &smmu_domain->domain;
}

static int arm_smmu_bitmap_alloc(unsigned long *map, int span)
{
	int idx, size = 1 << span;

	do {
		idx = find_first_zero_bit(map, size);
		if (idx == size)
			return -ENOSPC;
	} while (test_and_set_bit(idx, map));

	return idx;
}

static void arm_smmu_bitmap_free(unsigned long *map, int idx)
{
	clear_bit(idx, map);
}

static void arm_smmu_domain_free(struct iommu_domain *domain)
{
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
	struct arm_smmu_device *smmu = smmu_domain->smmu;

2465
	iommu_put_dma_cookie(domain);
2466
	free_io_pgtable_ops(smmu_domain->pgtbl_ops);
2467 2468 2469 2470 2471

	/* Free the CD and ASID, if we allocated them */
	if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
		struct arm_smmu_s1_cfg *cfg = &smmu_domain->s1_cfg;

2472
		if (cfg->cdcfg.cdtab)
2473
			arm_smmu_free_cd_tables(smmu_domain);
2474
		arm_smmu_free_asid(&cfg->cd);
2475 2476 2477 2478 2479 2480 2481 2482 2483 2484
	} else {
		struct arm_smmu_s2_cfg *cfg = &smmu_domain->s2_cfg;
		if (cfg->vmid)
			arm_smmu_bitmap_free(smmu->vmid_map, cfg->vmid);
	}

	kfree(smmu_domain);
}

static int arm_smmu_domain_finalise_s1(struct arm_smmu_domain *smmu_domain,
2485
				       struct arm_smmu_master *master,
2486 2487 2488
				       struct io_pgtable_cfg *pgtbl_cfg)
{
	int ret;
2489
	u32 asid;
2490 2491
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	struct arm_smmu_s1_cfg *cfg = &smmu_domain->s1_cfg;
2492
	typeof(&pgtbl_cfg->arm_lpae_s1_cfg.tcr) tcr = &pgtbl_cfg->arm_lpae_s1_cfg.tcr;
2493

2494 2495 2496 2497
	ret = xa_alloc(&asid_xa, &asid, &cfg->cd,
		       XA_LIMIT(1, (1 << smmu->asid_bits) - 1), GFP_KERNEL);
	if (ret)
		return ret;
2498

2499 2500
	cfg->s1cdmax = master->ssid_bits;

2501 2502
	ret = arm_smmu_alloc_cd_tables(smmu_domain);
	if (ret)
2503 2504
		goto out_free_asid;

2505
	cfg->cd.asid	= (u16)asid;
2506
	cfg->cd.ttbr	= pgtbl_cfg->arm_lpae_s1_cfg.ttbr;
2507 2508 2509 2510 2511 2512 2513
	cfg->cd.tcr	= FIELD_PREP(CTXDESC_CD_0_TCR_T0SZ, tcr->tsz) |
			  FIELD_PREP(CTXDESC_CD_0_TCR_TG0, tcr->tg) |
			  FIELD_PREP(CTXDESC_CD_0_TCR_IRGN0, tcr->irgn) |
			  FIELD_PREP(CTXDESC_CD_0_TCR_ORGN0, tcr->orgn) |
			  FIELD_PREP(CTXDESC_CD_0_TCR_SH0, tcr->sh) |
			  FIELD_PREP(CTXDESC_CD_0_TCR_IPS, tcr->ips) |
			  CTXDESC_CD_0_TCR_EPD1 | CTXDESC_CD_0_AA64;
2514
	cfg->cd.mair	= pgtbl_cfg->arm_lpae_s1_cfg.mair;
2515 2516 2517 2518 2519 2520 2521 2522 2523 2524

	/*
	 * Note that this will end up calling arm_smmu_sync_cd() before
	 * the master has been added to the devices list for this domain.
	 * This isn't an issue because the STE hasn't been installed yet.
	 */
	ret = arm_smmu_write_ctx_desc(smmu_domain, 0, &cfg->cd);
	if (ret)
		goto out_free_cd_tables;

2525 2526
	return 0;

2527 2528
out_free_cd_tables:
	arm_smmu_free_cd_tables(smmu_domain);
2529
out_free_asid:
2530
	arm_smmu_free_asid(&cfg->cd);
2531 2532 2533 2534
	return ret;
}

static int arm_smmu_domain_finalise_s2(struct arm_smmu_domain *smmu_domain,
2535
				       struct arm_smmu_master *master,
2536 2537
				       struct io_pgtable_cfg *pgtbl_cfg)
{
2538
	int vmid;
2539 2540
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	struct arm_smmu_s2_cfg *cfg = &smmu_domain->s2_cfg;
2541
	typeof(&pgtbl_cfg->arm_lpae_s2_cfg.vtcr) vtcr;
2542 2543

	vmid = arm_smmu_bitmap_alloc(smmu->vmid_map, smmu->vmid_bits);
2544
	if (vmid < 0)
2545 2546
		return vmid;

2547
	vtcr = &pgtbl_cfg->arm_lpae_s2_cfg.vtcr;
2548
	cfg->vmid	= (u16)vmid;
2549
	cfg->vttbr	= pgtbl_cfg->arm_lpae_s2_cfg.vttbr;
2550 2551 2552 2553 2554 2555 2556
	cfg->vtcr	= FIELD_PREP(STRTAB_STE_2_VTCR_S2T0SZ, vtcr->tsz) |
			  FIELD_PREP(STRTAB_STE_2_VTCR_S2SL0, vtcr->sl) |
			  FIELD_PREP(STRTAB_STE_2_VTCR_S2IR0, vtcr->irgn) |
			  FIELD_PREP(STRTAB_STE_2_VTCR_S2OR0, vtcr->orgn) |
			  FIELD_PREP(STRTAB_STE_2_VTCR_S2SH0, vtcr->sh) |
			  FIELD_PREP(STRTAB_STE_2_VTCR_S2TG, vtcr->tg) |
			  FIELD_PREP(STRTAB_STE_2_VTCR_S2PS, vtcr->ps);
2557 2558 2559
	return 0;
}

2560 2561
static int arm_smmu_domain_finalise(struct iommu_domain *domain,
				    struct arm_smmu_master *master)
2562 2563 2564 2565 2566 2567 2568
{
	int ret;
	unsigned long ias, oas;
	enum io_pgtable_fmt fmt;
	struct io_pgtable_cfg pgtbl_cfg;
	struct io_pgtable_ops *pgtbl_ops;
	int (*finalise_stage_fn)(struct arm_smmu_domain *,
2569
				 struct arm_smmu_master *,
2570 2571 2572 2573
				 struct io_pgtable_cfg *);
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
	struct arm_smmu_device *smmu = smmu_domain->smmu;

2574 2575 2576 2577 2578
	if (domain->type == IOMMU_DOMAIN_IDENTITY) {
		smmu_domain->stage = ARM_SMMU_DOMAIN_BYPASS;
		return 0;
	}

2579 2580 2581 2582 2583 2584 2585 2586
	/* Restrict the stage to what we can actually support */
	if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S1))
		smmu_domain->stage = ARM_SMMU_DOMAIN_S2;
	if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S2))
		smmu_domain->stage = ARM_SMMU_DOMAIN_S1;

	switch (smmu_domain->stage) {
	case ARM_SMMU_DOMAIN_S1:
2587 2588
		ias = (smmu->features & ARM_SMMU_FEAT_VAX) ? 52 : 48;
		ias = min_t(unsigned long, ias, VA_BITS);
2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604
		oas = smmu->ias;
		fmt = ARM_64_LPAE_S1;
		finalise_stage_fn = arm_smmu_domain_finalise_s1;
		break;
	case ARM_SMMU_DOMAIN_NESTED:
	case ARM_SMMU_DOMAIN_S2:
		ias = smmu->ias;
		oas = smmu->oas;
		fmt = ARM_64_LPAE_S2;
		finalise_stage_fn = arm_smmu_domain_finalise_s2;
		break;
	default:
		return -EINVAL;
	}

	pgtbl_cfg = (struct io_pgtable_cfg) {
2605
		.pgsize_bitmap	= smmu->pgsize_bitmap,
2606 2607
		.ias		= ias,
		.oas		= oas,
2608
		.coherent_walk	= smmu->features & ARM_SMMU_FEAT_COHERENCY,
2609
		.tlb		= &arm_smmu_flush_ops,
2610
		.iommu_dev	= smmu->dev,
2611 2612
	};

2613 2614 2615
	if (smmu_domain->non_strict)
		pgtbl_cfg.quirks |= IO_PGTABLE_QUIRK_NON_STRICT;

2616 2617 2618 2619
	pgtbl_ops = alloc_io_pgtable_ops(fmt, &pgtbl_cfg, smmu_domain);
	if (!pgtbl_ops)
		return -ENOMEM;

2620
	domain->pgsize_bitmap = pgtbl_cfg.pgsize_bitmap;
2621
	domain->geometry.aperture_end = (1UL << pgtbl_cfg.ias) - 1;
2622
	domain->geometry.force_aperture = true;
2623

2624
	ret = finalise_stage_fn(smmu_domain, master, &pgtbl_cfg);
2625
	if (ret < 0) {
2626
		free_io_pgtable_ops(pgtbl_ops);
2627 2628
		return ret;
	}
2629

2630 2631
	smmu_domain->pgtbl_ops = pgtbl_ops;
	return 0;
2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655
}

static __le64 *arm_smmu_get_step_for_sid(struct arm_smmu_device *smmu, u32 sid)
{
	__le64 *step;
	struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;

	if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB) {
		struct arm_smmu_strtab_l1_desc *l1_desc;
		int idx;

		/* Two-level walk */
		idx = (sid >> STRTAB_SPLIT) * STRTAB_L1_DESC_DWORDS;
		l1_desc = &cfg->l1_desc[idx];
		idx = (sid & ((1 << STRTAB_SPLIT) - 1)) * STRTAB_STE_DWORDS;
		step = &l1_desc->l2ptr[idx];
	} else {
		/* Simple linear lookup */
		step = &cfg->strtab[sid * STRTAB_STE_DWORDS];
	}

	return step;
}

2656
static void arm_smmu_install_ste_for_dev(struct arm_smmu_master *master)
2657
{
2658
	int i, j;
2659
	struct arm_smmu_device *smmu = master->smmu;
2660

2661 2662
	for (i = 0; i < master->num_sids; ++i) {
		u32 sid = master->sids[i];
2663 2664
		__le64 *step = arm_smmu_get_step_for_sid(smmu, sid);

2665 2666
		/* Bridged PCI devices may end up with duplicated IDs */
		for (j = 0; j < i; j++)
2667
			if (master->sids[j] == sid)
2668 2669 2670 2671
				break;
		if (j < i)
			continue;

2672
		arm_smmu_write_strtab_ent(master, sid, step);
2673 2674 2675
	}
}

2676
static bool arm_smmu_ats_supported(struct arm_smmu_master *master)
2677
{
2678
	struct device *dev = master->dev;
2679
	struct arm_smmu_device *smmu = master->smmu;
2680
	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
2681

2682
	if (!(smmu->features & ARM_SMMU_FEAT_ATS))
2683
		return false;
2684

2685 2686 2687 2688
	if (!(fwspec->flags & IOMMU_FWSPEC_PCI_RC_ATS))
		return false;

	return dev_is_pci(dev) && pci_ats_supported(to_pci_dev(dev));
2689
}
2690

2691 2692 2693 2694 2695
static void arm_smmu_enable_ats(struct arm_smmu_master *master)
{
	size_t stu;
	struct pci_dev *pdev;
	struct arm_smmu_device *smmu = master->smmu;
2696
	struct arm_smmu_domain *smmu_domain = master->domain;
2697

2698 2699 2700
	/* Don't enable ATS at the endpoint if it's not enabled in the STE */
	if (!master->ats_enabled)
		return;
2701 2702 2703

	/* Smallest Translation Unit: log2 of the smallest supported granule */
	stu = __ffs(smmu->pgsize_bitmap);
2704
	pdev = to_pci_dev(master->dev);
2705

2706 2707
	atomic_inc(&smmu_domain->nr_ats_masters);
	arm_smmu_atc_inv_domain(smmu_domain, 0, 0, 0);
2708 2709
	if (pci_enable_ats(pdev, stu))
		dev_err(master->dev, "Failed to enable ATS (STU %zu)\n", stu);
2710 2711 2712 2713
}

static void arm_smmu_disable_ats(struct arm_smmu_master *master)
{
2714
	struct arm_smmu_domain *smmu_domain = master->domain;
2715

2716
	if (!master->ats_enabled)
2717 2718
		return;

2719 2720 2721 2722 2723 2724
	pci_disable_ats(to_pci_dev(master->dev));
	/*
	 * Ensure ATS is disabled at the endpoint before we issue the
	 * ATC invalidation via the SMMU.
	 */
	wmb();
2725
	arm_smmu_atc_inv_master(master);
2726
	atomic_dec(&smmu_domain->nr_ats_masters);
2727 2728
}

2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775
static int arm_smmu_enable_pasid(struct arm_smmu_master *master)
{
	int ret;
	int features;
	int num_pasids;
	struct pci_dev *pdev;

	if (!dev_is_pci(master->dev))
		return -ENODEV;

	pdev = to_pci_dev(master->dev);

	features = pci_pasid_features(pdev);
	if (features < 0)
		return features;

	num_pasids = pci_max_pasids(pdev);
	if (num_pasids <= 0)
		return num_pasids;

	ret = pci_enable_pasid(pdev, features);
	if (ret) {
		dev_err(&pdev->dev, "Failed to enable PASID\n");
		return ret;
	}

	master->ssid_bits = min_t(u8, ilog2(num_pasids),
				  master->smmu->ssid_bits);
	return 0;
}

static void arm_smmu_disable_pasid(struct arm_smmu_master *master)
{
	struct pci_dev *pdev;

	if (!dev_is_pci(master->dev))
		return;

	pdev = to_pci_dev(master->dev);

	if (!pdev->pasid_enabled)
		return;

	master->ssid_bits = 0;
	pci_disable_pasid(pdev);
}

2776
static void arm_smmu_detach_dev(struct arm_smmu_master *master)
2777
{
2778 2779 2780 2781
	unsigned long flags;
	struct arm_smmu_domain *smmu_domain = master->domain;

	if (!smmu_domain)
2782 2783
		return;

2784 2785
	arm_smmu_disable_ats(master);

2786 2787 2788 2789
	spin_lock_irqsave(&smmu_domain->devices_lock, flags);
	list_del(&master->domain_head);
	spin_unlock_irqrestore(&smmu_domain->devices_lock, flags);

2790
	master->domain = NULL;
2791
	master->ats_enabled = false;
2792
	arm_smmu_install_ste_for_dev(master);
2793 2794
}

2795 2796 2797
static int arm_smmu_attach_dev(struct iommu_domain *domain, struct device *dev)
{
	int ret = 0;
2798
	unsigned long flags;
2799
	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
2800 2801
	struct arm_smmu_device *smmu;
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
2802
	struct arm_smmu_master *master;
2803

2804
	if (!fwspec)
2805 2806
		return -ENOENT;

2807
	master = dev_iommu_priv_get(dev);
2808 2809
	smmu = master->smmu;

2810
	arm_smmu_detach_dev(master);
2811 2812 2813 2814 2815

	mutex_lock(&smmu_domain->init_mutex);

	if (!smmu_domain->smmu) {
		smmu_domain->smmu = smmu;
2816
		ret = arm_smmu_domain_finalise(domain, master);
2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827
		if (ret) {
			smmu_domain->smmu = NULL;
			goto out_unlock;
		}
	} else if (smmu_domain->smmu != smmu) {
		dev_err(dev,
			"cannot attach to SMMU %s (upstream of %s)\n",
			dev_name(smmu_domain->smmu->dev),
			dev_name(smmu->dev));
		ret = -ENXIO;
		goto out_unlock;
2828 2829 2830 2831 2832 2833 2834
	} else if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1 &&
		   master->ssid_bits != smmu_domain->s1_cfg.s1cdmax) {
		dev_err(dev,
			"cannot attach to incompatible domain (%u SSID bits != %u)\n",
			smmu_domain->s1_cfg.s1cdmax, master->ssid_bits);
		ret = -EINVAL;
		goto out_unlock;
2835 2836
	}

2837
	master->domain = smmu_domain;
2838

2839
	if (smmu_domain->stage != ARM_SMMU_DOMAIN_BYPASS)
2840
		master->ats_enabled = arm_smmu_ats_supported(master);
2841

2842
	arm_smmu_install_ste_for_dev(master);
2843 2844 2845 2846 2847

	spin_lock_irqsave(&smmu_domain->devices_lock, flags);
	list_add(&master->domain_head, &smmu_domain->devices);
	spin_unlock_irqrestore(&smmu_domain->devices_lock, flags);

2848
	arm_smmu_enable_ats(master);
2849

2850 2851 2852 2853 2854 2855
out_unlock:
	mutex_unlock(&smmu_domain->init_mutex);
	return ret;
}

static int arm_smmu_map(struct iommu_domain *domain, unsigned long iova,
2856
			phys_addr_t paddr, size_t size, int prot, gfp_t gfp)
2857
{
2858
	struct io_pgtable_ops *ops = to_smmu_domain(domain)->pgtbl_ops;
2859 2860 2861 2862

	if (!ops)
		return -ENODEV;

2863
	return ops->map(ops, iova, paddr, size, prot, gfp);
2864 2865
}

2866 2867
static size_t arm_smmu_unmap(struct iommu_domain *domain, unsigned long iova,
			     size_t size, struct iommu_iotlb_gather *gather)
2868
{
2869 2870
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
	struct io_pgtable_ops *ops = smmu_domain->pgtbl_ops;
2871 2872 2873 2874

	if (!ops)
		return 0;

2875
	return ops->unmap(ops, iova, size, gather);
2876 2877
}

2878 2879 2880 2881 2882 2883 2884 2885
static void arm_smmu_flush_iotlb_all(struct iommu_domain *domain)
{
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);

	if (smmu_domain->smmu)
		arm_smmu_tlb_inv_context(smmu_domain);
}

2886 2887
static void arm_smmu_iotlb_sync(struct iommu_domain *domain,
				struct iommu_iotlb_gather *gather)
2888
{
2889
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
2890

2891 2892
	arm_smmu_tlb_inv_range(gather->start, gather->end - gather->start,
			       gather->pgsize, true, smmu_domain);
2893 2894
}

2895 2896 2897
static phys_addr_t
arm_smmu_iova_to_phys(struct iommu_domain *domain, dma_addr_t iova)
{
2898
	struct io_pgtable_ops *ops = to_smmu_domain(domain)->pgtbl_ops;
2899

2900 2901 2902
	if (domain->type == IOMMU_DOMAIN_IDENTITY)
		return iova;

2903 2904 2905
	if (!ops)
		return 0;

2906
	return ops->iova_to_phys(ops, iova);
2907 2908
}

2909
static struct platform_driver arm_smmu_driver;
2910

2911 2912
static
struct arm_smmu_device *arm_smmu_get_by_fwnode(struct fwnode_handle *fwnode)
2913
{
2914 2915
	struct device *dev = driver_find_device_by_fwnode(&arm_smmu_driver.driver,
							  fwnode);
2916 2917
	put_device(dev);
	return dev ? dev_get_drvdata(dev) : NULL;
2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929
}

static bool arm_smmu_sid_in_range(struct arm_smmu_device *smmu, u32 sid)
{
	unsigned long limit = smmu->strtab_cfg.num_l1_ents;

	if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB)
		limit *= 1UL << STRTAB_SPLIT;

	return sid < limit;
}

2930 2931
static struct iommu_ops arm_smmu_ops;

2932
static struct iommu_device *arm_smmu_probe_device(struct device *dev)
2933 2934 2935
{
	int i, ret;
	struct arm_smmu_device *smmu;
2936
	struct arm_smmu_master *master;
2937
	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
2938

2939
	if (!fwspec || fwspec->ops != &arm_smmu_ops)
2940
		return ERR_PTR(-ENODEV);
2941

2942
	if (WARN_ON_ONCE(dev_iommu_priv_get(dev)))
2943
		return ERR_PTR(-EBUSY);
2944 2945 2946

	smmu = arm_smmu_get_by_fwnode(fwspec->iommu_fwnode);
	if (!smmu)
2947
		return ERR_PTR(-ENODEV);
2948 2949 2950

	master = kzalloc(sizeof(*master), GFP_KERNEL);
	if (!master)
2951
		return ERR_PTR(-ENOMEM);
2952 2953 2954 2955 2956

	master->dev = dev;
	master->smmu = smmu;
	master->sids = fwspec->ids;
	master->num_sids = fwspec->num_ids;
2957
	dev_iommu_priv_set(dev, master);
2958

2959
	/* Check the SIDs are in range of the SMMU and our stream table */
2960 2961
	for (i = 0; i < master->num_sids; i++) {
		u32 sid = master->sids[i];
2962

2963 2964 2965 2966
		if (!arm_smmu_sid_in_range(smmu, sid)) {
			ret = -ERANGE;
			goto err_free_master;
		}
2967

2968 2969 2970 2971
		/* Ensure l2 strtab is initialised */
		if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB) {
			ret = arm_smmu_init_l2_strtab(smmu, sid);
			if (ret)
2972
				goto err_free_master;
2973
		}
2974 2975
	}

2976 2977
	master->ssid_bits = min(smmu->ssid_bits, fwspec->num_pasid_bits);

2978 2979 2980 2981 2982 2983 2984 2985 2986 2987
	/*
	 * Note that PASID must be enabled before, and disabled after ATS:
	 * PCI Express Base 4.0r1.0 - 10.5.1.3 ATS Control Register
	 *
	 *   Behavior is undefined if this bit is Set and the value of the PASID
	 *   Enable, Execute Requested Enable, or Privileged Mode Requested bits
	 *   are changed.
	 */
	arm_smmu_enable_pasid(master);

2988 2989 2990 2991
	if (!(smmu->features & ARM_SMMU_FEAT_2_LVL_CDTAB))
		master->ssid_bits = min_t(u8, master->ssid_bits,
					  CTXDESC_LINEAR_CDMAX);

2992
	return &smmu->iommu;
2993

2994 2995
err_free_master:
	kfree(master);
2996
	dev_iommu_priv_set(dev, NULL);
2997
	return ERR_PTR(ret);
2998 2999
}

3000
static void arm_smmu_release_device(struct device *dev)
3001
{
3002
	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
3003
	struct arm_smmu_master *master;
3004 3005 3006 3007

	if (!fwspec || fwspec->ops != &arm_smmu_ops)
		return;

3008
	master = dev_iommu_priv_get(dev);
3009
	arm_smmu_detach_dev(master);
3010
	arm_smmu_disable_pasid(master);
3011 3012
	kfree(master);
	iommu_fwspec_free(dev);
3013 3014
}

3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031
static struct iommu_group *arm_smmu_device_group(struct device *dev)
{
	struct iommu_group *group;

	/*
	 * We don't support devices sharing stream IDs other than PCI RID
	 * aliases, since the necessary ID-to-device lookup becomes rather
	 * impractical given a potential sparse 32-bit stream ID space.
	 */
	if (dev_is_pci(dev))
		group = pci_device_group(dev);
	else
		group = generic_device_group(dev);

	return group;
}

3032 3033 3034 3035 3036
static int arm_smmu_domain_get_attr(struct iommu_domain *domain,
				    enum iommu_attr attr, void *data)
{
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);

3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055
	switch (domain->type) {
	case IOMMU_DOMAIN_UNMANAGED:
		switch (attr) {
		case DOMAIN_ATTR_NESTING:
			*(int *)data = (smmu_domain->stage == ARM_SMMU_DOMAIN_NESTED);
			return 0;
		default:
			return -ENODEV;
		}
		break;
	case IOMMU_DOMAIN_DMA:
		switch (attr) {
		case DOMAIN_ATTR_DMA_USE_FLUSH_QUEUE:
			*(int *)data = smmu_domain->non_strict;
			return 0;
		default:
			return -ENODEV;
		}
		break;
3056
	default:
3057
		return -EINVAL;
3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068
	}
}

static int arm_smmu_domain_set_attr(struct iommu_domain *domain,
				    enum iommu_attr attr, void *data)
{
	int ret = 0;
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);

	mutex_lock(&smmu_domain->init_mutex);

3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093
	switch (domain->type) {
	case IOMMU_DOMAIN_UNMANAGED:
		switch (attr) {
		case DOMAIN_ATTR_NESTING:
			if (smmu_domain->smmu) {
				ret = -EPERM;
				goto out_unlock;
			}

			if (*(int *)data)
				smmu_domain->stage = ARM_SMMU_DOMAIN_NESTED;
			else
				smmu_domain->stage = ARM_SMMU_DOMAIN_S1;
			break;
		default:
			ret = -ENODEV;
		}
		break;
	case IOMMU_DOMAIN_DMA:
		switch(attr) {
		case DOMAIN_ATTR_DMA_USE_FLUSH_QUEUE:
			smmu_domain->non_strict = *(int *)data;
			break;
		default:
			ret = -ENODEV;
3094 3095 3096
		}
		break;
	default:
3097
		ret = -EINVAL;
3098 3099 3100 3101 3102 3103 3104
	}

out_unlock:
	mutex_unlock(&smmu_domain->init_mutex);
	return ret;
}

3105 3106 3107 3108 3109
static int arm_smmu_of_xlate(struct device *dev, struct of_phandle_args *args)
{
	return iommu_fwspec_add_ids(dev, args->args, 1);
}

3110 3111 3112 3113 3114 3115 3116
static void arm_smmu_get_resv_regions(struct device *dev,
				      struct list_head *head)
{
	struct iommu_resv_region *region;
	int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO;

	region = iommu_alloc_resv_region(MSI_IOVA_BASE, MSI_IOVA_LENGTH,
3117
					 prot, IOMMU_RESV_SW_MSI);
3118 3119 3120 3121
	if (!region)
		return;

	list_add_tail(&region->list, head);
3122 3123

	iommu_dma_get_resv_regions(dev, head);
3124 3125
}

3126 3127 3128 3129 3130 3131 3132
static struct iommu_ops arm_smmu_ops = {
	.capable		= arm_smmu_capable,
	.domain_alloc		= arm_smmu_domain_alloc,
	.domain_free		= arm_smmu_domain_free,
	.attach_dev		= arm_smmu_attach_dev,
	.map			= arm_smmu_map,
	.unmap			= arm_smmu_unmap,
3133
	.flush_iotlb_all	= arm_smmu_flush_iotlb_all,
3134
	.iotlb_sync		= arm_smmu_iotlb_sync,
3135
	.iova_to_phys		= arm_smmu_iova_to_phys,
3136 3137
	.probe_device		= arm_smmu_probe_device,
	.release_device		= arm_smmu_release_device,
3138
	.device_group		= arm_smmu_device_group,
3139 3140
	.domain_get_attr	= arm_smmu_domain_get_attr,
	.domain_set_attr	= arm_smmu_domain_set_attr,
3141
	.of_xlate		= arm_smmu_of_xlate,
3142
	.get_resv_regions	= arm_smmu_get_resv_regions,
3143
	.put_resv_regions	= generic_iommu_put_resv_regions,
3144 3145 3146 3147 3148 3149 3150 3151
	.pgsize_bitmap		= -1UL, /* Restricted during device attach */
};

/* Probing and initialisation functions */
static int arm_smmu_init_one_queue(struct arm_smmu_device *smmu,
				   struct arm_smmu_queue *q,
				   unsigned long prod_off,
				   unsigned long cons_off,
3152
				   size_t dwords, const char *name)
3153
{
3154 3155 3156
	size_t qsz;

	do {
3157
		qsz = ((1 << q->llq.max_n_shift) * dwords) << 3;
3158 3159 3160 3161 3162
		q->base = dmam_alloc_coherent(smmu->dev, qsz, &q->base_dma,
					      GFP_KERNEL);
		if (q->base || qsz < PAGE_SIZE)
			break;

3163
		q->llq.max_n_shift--;
3164
	} while (1);
3165 3166

	if (!q->base) {
3167 3168 3169
		dev_err(smmu->dev,
			"failed to allocate queue (0x%zx bytes) for %s\n",
			qsz, name);
3170 3171 3172
		return -ENOMEM;
	}

3173 3174
	if (!WARN_ON(q->base_dma & (qsz - 1))) {
		dev_info(smmu->dev, "allocated %u entries for %s\n",
3175
			 1 << q->llq.max_n_shift, name);
3176 3177
	}

3178 3179
	q->prod_reg	= arm_smmu_page1_fixup(prod_off, smmu);
	q->cons_reg	= arm_smmu_page1_fixup(cons_off, smmu);
3180 3181 3182
	q->ent_dwords	= dwords;

	q->q_base  = Q_BASE_RWA;
3183
	q->q_base |= q->base_dma & Q_BASE_ADDR_MASK;
3184
	q->q_base |= FIELD_PREP(Q_BASE_LOG2SIZE, q->llq.max_n_shift);
3185

3186
	q->llq.prod = q->llq.cons = 0;
3187 3188 3189
	return 0;
}

3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217
static void arm_smmu_cmdq_free_bitmap(void *data)
{
	unsigned long *bitmap = data;
	bitmap_free(bitmap);
}

static int arm_smmu_cmdq_init(struct arm_smmu_device *smmu)
{
	int ret = 0;
	struct arm_smmu_cmdq *cmdq = &smmu->cmdq;
	unsigned int nents = 1 << cmdq->q.llq.max_n_shift;
	atomic_long_t *bitmap;

	atomic_set(&cmdq->owner_prod, 0);
	atomic_set(&cmdq->lock, 0);

	bitmap = (atomic_long_t *)bitmap_zalloc(nents, GFP_KERNEL);
	if (!bitmap) {
		dev_err(smmu->dev, "failed to allocate cmdq bitmap\n");
		ret = -ENOMEM;
	} else {
		cmdq->valid_map = bitmap;
		devm_add_action(smmu->dev, arm_smmu_cmdq_free_bitmap, bitmap);
	}

	return ret;
}

3218 3219 3220 3221 3222 3223
static int arm_smmu_init_queues(struct arm_smmu_device *smmu)
{
	int ret;

	/* cmdq */
	ret = arm_smmu_init_one_queue(smmu, &smmu->cmdq.q, ARM_SMMU_CMDQ_PROD,
3224 3225
				      ARM_SMMU_CMDQ_CONS, CMDQ_ENT_DWORDS,
				      "cmdq");
3226
	if (ret)
3227
		return ret;
3228

3229 3230 3231 3232
	ret = arm_smmu_cmdq_init(smmu);
	if (ret)
		return ret;

3233 3234
	/* evtq */
	ret = arm_smmu_init_one_queue(smmu, &smmu->evtq.q, ARM_SMMU_EVTQ_PROD,
3235 3236
				      ARM_SMMU_EVTQ_CONS, EVTQ_ENT_DWORDS,
				      "evtq");
3237
	if (ret)
3238
		return ret;
3239 3240 3241 3242 3243

	/* priq */
	if (!(smmu->features & ARM_SMMU_FEAT_PRI))
		return 0;

3244
	return arm_smmu_init_one_queue(smmu, &smmu->priq.q, ARM_SMMU_PRIQ_PROD,
3245 3246
				       ARM_SMMU_PRIQ_CONS, PRIQ_ENT_DWORDS,
				       "priq");
3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273
}

static int arm_smmu_init_l1_strtab(struct arm_smmu_device *smmu)
{
	unsigned int i;
	struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
	size_t size = sizeof(*cfg->l1_desc) * cfg->num_l1_ents;
	void *strtab = smmu->strtab_cfg.strtab;

	cfg->l1_desc = devm_kzalloc(smmu->dev, size, GFP_KERNEL);
	if (!cfg->l1_desc) {
		dev_err(smmu->dev, "failed to allocate l1 stream table desc\n");
		return -ENOMEM;
	}

	for (i = 0; i < cfg->num_l1_ents; ++i) {
		arm_smmu_write_strtab_l1_desc(strtab, &cfg->l1_desc[i]);
		strtab += STRTAB_L1_DESC_DWORDS << 3;
	}

	return 0;
}

static int arm_smmu_init_strtab_2lvl(struct arm_smmu_device *smmu)
{
	void *strtab;
	u64 reg;
3274
	u32 size, l1size;
3275 3276
	struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;

3277 3278 3279
	/* Calculate the L1 size, capped to the SIDSIZE. */
	size = STRTAB_L1_SZ_SHIFT - (ilog2(STRTAB_L1_DESC_DWORDS) + 3);
	size = min(size, smmu->sid_bits - STRTAB_SPLIT);
3280 3281 3282 3283
	cfg->num_l1_ents = 1 << size;

	size += STRTAB_SPLIT;
	if (size < smmu->sid_bits)
3284 3285
		dev_warn(smmu->dev,
			 "2-level strtab only covers %u/%u bits of SID\n",
3286
			 size, smmu->sid_bits);
3287

3288
	l1size = cfg->num_l1_ents * (STRTAB_L1_DESC_DWORDS << 3);
3289
	strtab = dmam_alloc_coherent(smmu->dev, l1size, &cfg->strtab_dma,
3290
				     GFP_KERNEL);
3291 3292 3293
	if (!strtab) {
		dev_err(smmu->dev,
			"failed to allocate l1 stream table (%u bytes)\n",
3294
			l1size);
3295 3296 3297 3298 3299
		return -ENOMEM;
	}
	cfg->strtab = strtab;

	/* Configure strtab_base_cfg for 2 levels */
3300 3301 3302
	reg  = FIELD_PREP(STRTAB_BASE_CFG_FMT, STRTAB_BASE_CFG_FMT_2LVL);
	reg |= FIELD_PREP(STRTAB_BASE_CFG_LOG2SIZE, size);
	reg |= FIELD_PREP(STRTAB_BASE_CFG_SPLIT, STRTAB_SPLIT);
3303 3304
	cfg->strtab_base_cfg = reg;

3305
	return arm_smmu_init_l1_strtab(smmu);
3306 3307 3308 3309 3310 3311 3312 3313 3314 3315
}

static int arm_smmu_init_strtab_linear(struct arm_smmu_device *smmu)
{
	void *strtab;
	u64 reg;
	u32 size;
	struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;

	size = (1 << smmu->sid_bits) * (STRTAB_STE_DWORDS << 3);
3316
	strtab = dmam_alloc_coherent(smmu->dev, size, &cfg->strtab_dma,
3317
				     GFP_KERNEL);
3318 3319 3320 3321 3322 3323 3324 3325 3326 3327
	if (!strtab) {
		dev_err(smmu->dev,
			"failed to allocate linear stream table (%u bytes)\n",
			size);
		return -ENOMEM;
	}
	cfg->strtab = strtab;
	cfg->num_l1_ents = 1 << smmu->sid_bits;

	/* Configure strtab_base_cfg for a linear table covering all SIDs */
3328 3329
	reg  = FIELD_PREP(STRTAB_BASE_CFG_FMT, STRTAB_BASE_CFG_FMT_LINEAR);
	reg |= FIELD_PREP(STRTAB_BASE_CFG_LOG2SIZE, smmu->sid_bits);
3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349
	cfg->strtab_base_cfg = reg;

	arm_smmu_init_bypass_stes(strtab, cfg->num_l1_ents);
	return 0;
}

static int arm_smmu_init_strtab(struct arm_smmu_device *smmu)
{
	u64 reg;
	int ret;

	if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB)
		ret = arm_smmu_init_strtab_2lvl(smmu);
	else
		ret = arm_smmu_init_strtab_linear(smmu);

	if (ret)
		return ret;

	/* Set the strtab base address */
3350
	reg  = smmu->strtab_cfg.strtab_dma & STRTAB_BASE_ADDR_MASK;
3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366
	reg |= STRTAB_BASE_RA;
	smmu->strtab_cfg.strtab_base = reg;

	/* Allocate the first VMID for stage-2 bypass STEs */
	set_bit(0, smmu->vmid_map);
	return 0;
}

static int arm_smmu_init_structures(struct arm_smmu_device *smmu)
{
	int ret;

	ret = arm_smmu_init_queues(smmu);
	if (ret)
		return ret;

3367
	return arm_smmu_init_strtab(smmu);
3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379
}

static int arm_smmu_write_reg_sync(struct arm_smmu_device *smmu, u32 val,
				   unsigned int reg_off, unsigned int ack_off)
{
	u32 reg;

	writel_relaxed(val, smmu->base + reg_off);
	return readl_relaxed_poll_timeout(smmu->base + ack_off, reg, reg == val,
					  1, ARM_SMMU_POLL_TIMEOUT_US);
}

3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393
/* GBPA is "special" */
static int arm_smmu_update_gbpa(struct arm_smmu_device *smmu, u32 set, u32 clr)
{
	int ret;
	u32 reg, __iomem *gbpa = smmu->base + ARM_SMMU_GBPA;

	ret = readl_relaxed_poll_timeout(gbpa, reg, !(reg & GBPA_UPDATE),
					 1, ARM_SMMU_POLL_TIMEOUT_US);
	if (ret)
		return ret;

	reg &= ~clr;
	reg |= set;
	writel_relaxed(reg | GBPA_UPDATE, gbpa);
3394 3395 3396 3397 3398 3399
	ret = readl_relaxed_poll_timeout(gbpa, reg, !(reg & GBPA_UPDATE),
					 1, ARM_SMMU_POLL_TIMEOUT_US);

	if (ret)
		dev_err(smmu->dev, "GBPA not responding to update\n");
	return ret;
3400 3401
}

3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415
static void arm_smmu_free_msis(void *data)
{
	struct device *dev = data;
	platform_msi_domain_free_irqs(dev);
}

static void arm_smmu_write_msi_msg(struct msi_desc *desc, struct msi_msg *msg)
{
	phys_addr_t doorbell;
	struct device *dev = msi_desc_to_dev(desc);
	struct arm_smmu_device *smmu = dev_get_drvdata(dev);
	phys_addr_t *cfg = arm_smmu_msi_cfg[desc->platform.msi_index];

	doorbell = (((u64)msg->address_hi) << 32) | msg->address_lo;
3416
	doorbell &= MSI_CFG0_ADDR_MASK;
3417 3418 3419

	writeq_relaxed(doorbell, smmu->base + cfg[0]);
	writel_relaxed(msg->data, smmu->base + cfg[1]);
3420
	writel_relaxed(ARM_SMMU_MEMATTR_DEVICE_nGnRE, smmu->base + cfg[2]);
3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440
}

static void arm_smmu_setup_msis(struct arm_smmu_device *smmu)
{
	struct msi_desc *desc;
	int ret, nvec = ARM_SMMU_MAX_MSIS;
	struct device *dev = smmu->dev;

	/* Clear the MSI address regs */
	writeq_relaxed(0, smmu->base + ARM_SMMU_GERROR_IRQ_CFG0);
	writeq_relaxed(0, smmu->base + ARM_SMMU_EVTQ_IRQ_CFG0);

	if (smmu->features & ARM_SMMU_FEAT_PRI)
		writeq_relaxed(0, smmu->base + ARM_SMMU_PRIQ_IRQ_CFG0);
	else
		nvec--;

	if (!(smmu->features & ARM_SMMU_FEAT_MSI))
		return;

3441 3442 3443 3444 3445
	if (!dev->msi_domain) {
		dev_info(smmu->dev, "msi_domain absent - falling back to wired irqs\n");
		return;
	}

3446 3447 3448
	/* Allocate MSIs for evtq, gerror and priq. Ignore cmdq */
	ret = platform_msi_domain_alloc_irqs(dev, nvec, arm_smmu_write_msi_msg);
	if (ret) {
3449
		dev_warn(dev, "failed to allocate MSIs - falling back to wired irqs\n");
3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472
		return;
	}

	for_each_msi_entry(desc, dev) {
		switch (desc->platform.msi_index) {
		case EVTQ_MSI_INDEX:
			smmu->evtq.q.irq = desc->irq;
			break;
		case GERROR_MSI_INDEX:
			smmu->gerr_irq = desc->irq;
			break;
		case PRIQ_MSI_INDEX:
			smmu->priq.q.irq = desc->irq;
			break;
		default:	/* Unknown */
			continue;
		}
	}

	/* Add callback to free MSIs on teardown */
	devm_add_action(dev, arm_smmu_free_msis, dev);
}

3473
static void arm_smmu_setup_unique_irqs(struct arm_smmu_device *smmu)
3474
{
3475
	int irq, ret;
3476

3477
	arm_smmu_setup_msis(smmu);
3478

3479
	/* Request interrupt lines */
3480 3481
	irq = smmu->evtq.q.irq;
	if (irq) {
3482
		ret = devm_request_threaded_irq(smmu->dev, irq, NULL,
3483
						arm_smmu_evtq_thread,
3484 3485
						IRQF_ONESHOT,
						"arm-smmu-v3-evtq", smmu);
3486
		if (ret < 0)
3487
			dev_warn(smmu->dev, "failed to enable evtq irq\n");
3488 3489
	} else {
		dev_warn(smmu->dev, "no evtq irq - events will not be reported!\n");
3490 3491 3492 3493 3494 3495
	}

	irq = smmu->gerr_irq;
	if (irq) {
		ret = devm_request_irq(smmu->dev, irq, arm_smmu_gerror_handler,
				       0, "arm-smmu-v3-gerror", smmu);
3496
		if (ret < 0)
3497
			dev_warn(smmu->dev, "failed to enable gerror irq\n");
3498 3499
	} else {
		dev_warn(smmu->dev, "no gerr irq - errors will not be reported!\n");
3500 3501 3502 3503 3504
	}

	if (smmu->features & ARM_SMMU_FEAT_PRI) {
		irq = smmu->priq.q.irq;
		if (irq) {
3505
			ret = devm_request_threaded_irq(smmu->dev, irq, NULL,
3506
							arm_smmu_priq_thread,
3507 3508
							IRQF_ONESHOT,
							"arm-smmu-v3-priq",
3509
							smmu);
3510
			if (ret < 0)
3511 3512
				dev_warn(smmu->dev,
					 "failed to enable priq irq\n");
3513 3514
		} else {
			dev_warn(smmu->dev, "no priq irq - PRI will be broken\n");
3515 3516
		}
	}
3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534
}

static int arm_smmu_setup_irqs(struct arm_smmu_device *smmu)
{
	int ret, irq;
	u32 irqen_flags = IRQ_CTRL_EVTQ_IRQEN | IRQ_CTRL_GERROR_IRQEN;

	/* Disable IRQs first */
	ret = arm_smmu_write_reg_sync(smmu, 0, ARM_SMMU_IRQ_CTRL,
				      ARM_SMMU_IRQ_CTRLACK);
	if (ret) {
		dev_err(smmu->dev, "failed to disable irqs\n");
		return ret;
	}

	irq = smmu->combined_irq;
	if (irq) {
		/*
3535 3536
		 * Cavium ThunderX2 implementation doesn't support unique irq
		 * lines. Use a single irq line for all the SMMUv3 interrupts.
3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549
		 */
		ret = devm_request_threaded_irq(smmu->dev, irq,
					arm_smmu_combined_irq_handler,
					arm_smmu_combined_irq_thread,
					IRQF_ONESHOT,
					"arm-smmu-v3-combined-irq", smmu);
		if (ret < 0)
			dev_warn(smmu->dev, "failed to enable combined irq\n");
	} else
		arm_smmu_setup_unique_irqs(smmu);

	if (smmu->features & ARM_SMMU_FEAT_PRI)
		irqen_flags |= IRQ_CTRL_PRIQ_IRQEN;
3550 3551

	/* Enable interrupt generation on the SMMU */
3552
	ret = arm_smmu_write_reg_sync(smmu, irqen_flags,
3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570
				      ARM_SMMU_IRQ_CTRL, ARM_SMMU_IRQ_CTRLACK);
	if (ret)
		dev_warn(smmu->dev, "failed to enable irqs\n");

	return 0;
}

static int arm_smmu_device_disable(struct arm_smmu_device *smmu)
{
	int ret;

	ret = arm_smmu_write_reg_sync(smmu, 0, ARM_SMMU_CR0, ARM_SMMU_CR0ACK);
	if (ret)
		dev_err(smmu->dev, "failed to clear cr0\n");

	return ret;
}

3571
static int arm_smmu_device_reset(struct arm_smmu_device *smmu, bool bypass)
3572 3573 3574 3575 3576 3577 3578
{
	int ret;
	u32 reg, enables;
	struct arm_smmu_cmdq_ent cmd;

	/* Clear CR0 and sync (disables SMMU and queue processing) */
	reg = readl_relaxed(smmu->base + ARM_SMMU_CR0);
3579
	if (reg & CR0_SMMUEN) {
3580
		dev_warn(smmu->dev, "SMMU currently enabled! Resetting...\n");
3581 3582
		WARN_ON(is_kdump_kernel() && !disable_bypass);
		arm_smmu_update_gbpa(smmu, GBPA_ABORT, 0);
3583
	}
3584 3585 3586 3587 3588 3589

	ret = arm_smmu_device_disable(smmu);
	if (ret)
		return ret;

	/* CR1 (table and queue memory attributes) */
3590 3591 3592 3593 3594 3595
	reg = FIELD_PREP(CR1_TABLE_SH, ARM_SMMU_SH_ISH) |
	      FIELD_PREP(CR1_TABLE_OC, CR1_CACHE_WB) |
	      FIELD_PREP(CR1_TABLE_IC, CR1_CACHE_WB) |
	      FIELD_PREP(CR1_QUEUE_SH, ARM_SMMU_SH_ISH) |
	      FIELD_PREP(CR1_QUEUE_OC, CR1_CACHE_WB) |
	      FIELD_PREP(CR1_QUEUE_IC, CR1_CACHE_WB);
3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609
	writel_relaxed(reg, smmu->base + ARM_SMMU_CR1);

	/* CR2 (random crap) */
	reg = CR2_PTM | CR2_RECINVSID | CR2_E2H;
	writel_relaxed(reg, smmu->base + ARM_SMMU_CR2);

	/* Stream table */
	writeq_relaxed(smmu->strtab_cfg.strtab_base,
		       smmu->base + ARM_SMMU_STRTAB_BASE);
	writel_relaxed(smmu->strtab_cfg.strtab_base_cfg,
		       smmu->base + ARM_SMMU_STRTAB_BASE_CFG);

	/* Command queue */
	writeq_relaxed(smmu->cmdq.q.q_base, smmu->base + ARM_SMMU_CMDQ_BASE);
3610 3611
	writel_relaxed(smmu->cmdq.q.llq.prod, smmu->base + ARM_SMMU_CMDQ_PROD);
	writel_relaxed(smmu->cmdq.q.llq.cons, smmu->base + ARM_SMMU_CMDQ_CONS);
3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623

	enables = CR0_CMDQEN;
	ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
				      ARM_SMMU_CR0ACK);
	if (ret) {
		dev_err(smmu->dev, "failed to enable command queue\n");
		return ret;
	}

	/* Invalidate any cached configuration */
	cmd.opcode = CMDQ_OP_CFGI_ALL;
	arm_smmu_cmdq_issue_cmd(smmu, &cmd);
3624
	arm_smmu_cmdq_issue_sync(smmu);
3625 3626 3627 3628 3629 3630 3631 3632 3633

	/* Invalidate any stale TLB entries */
	if (smmu->features & ARM_SMMU_FEAT_HYP) {
		cmd.opcode = CMDQ_OP_TLBI_EL2_ALL;
		arm_smmu_cmdq_issue_cmd(smmu, &cmd);
	}

	cmd.opcode = CMDQ_OP_TLBI_NSNH_ALL;
	arm_smmu_cmdq_issue_cmd(smmu, &cmd);
3634
	arm_smmu_cmdq_issue_sync(smmu);
3635 3636 3637

	/* Event queue */
	writeq_relaxed(smmu->evtq.q.q_base, smmu->base + ARM_SMMU_EVTQ_BASE);
3638
	writel_relaxed(smmu->evtq.q.llq.prod,
3639
		       arm_smmu_page1_fixup(ARM_SMMU_EVTQ_PROD, smmu));
3640
	writel_relaxed(smmu->evtq.q.llq.cons,
3641
		       arm_smmu_page1_fixup(ARM_SMMU_EVTQ_CONS, smmu));
3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654

	enables |= CR0_EVTQEN;
	ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
				      ARM_SMMU_CR0ACK);
	if (ret) {
		dev_err(smmu->dev, "failed to enable event queue\n");
		return ret;
	}

	/* PRI queue */
	if (smmu->features & ARM_SMMU_FEAT_PRI) {
		writeq_relaxed(smmu->priq.q.q_base,
			       smmu->base + ARM_SMMU_PRIQ_BASE);
3655
		writel_relaxed(smmu->priq.q.llq.prod,
3656
			       arm_smmu_page1_fixup(ARM_SMMU_PRIQ_PROD, smmu));
3657
		writel_relaxed(smmu->priq.q.llq.cons,
3658
			       arm_smmu_page1_fixup(ARM_SMMU_PRIQ_CONS, smmu));
3659 3660 3661 3662 3663 3664 3665 3666 3667 3668

		enables |= CR0_PRIQEN;
		ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
					      ARM_SMMU_CR0ACK);
		if (ret) {
			dev_err(smmu->dev, "failed to enable PRI queue\n");
			return ret;
		}
	}

3669 3670 3671 3672 3673 3674 3675 3676 3677 3678
	if (smmu->features & ARM_SMMU_FEAT_ATS) {
		enables |= CR0_ATSCHK;
		ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
					      ARM_SMMU_CR0ACK);
		if (ret) {
			dev_err(smmu->dev, "failed to enable ATS check\n");
			return ret;
		}
	}

3679 3680 3681 3682 3683 3684
	ret = arm_smmu_setup_irqs(smmu);
	if (ret) {
		dev_err(smmu->dev, "failed to setup irqs\n");
		return ret;
	}

3685 3686
	if (is_kdump_kernel())
		enables &= ~(CR0_EVTQEN | CR0_PRIQEN);
3687 3688 3689 3690 3691 3692

	/* Enable the SMMU interface, or ensure bypass */
	if (!bypass || disable_bypass) {
		enables |= CR0_SMMUEN;
	} else {
		ret = arm_smmu_update_gbpa(smmu, 0, GBPA_ABORT);
3693
		if (ret)
3694 3695
			return ret;
	}
3696 3697 3698 3699 3700 3701 3702 3703 3704 3705
	ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
				      ARM_SMMU_CR0ACK);
	if (ret) {
		dev_err(smmu->dev, "failed to enable SMMU interface\n");
		return ret;
	}

	return 0;
}

3706
static int arm_smmu_device_hw_probe(struct arm_smmu_device *smmu)
3707 3708
{
	u32 reg;
3709
	bool coherent = smmu->features & ARM_SMMU_FEAT_COHERENCY;
3710 3711 3712 3713 3714

	/* IDR0 */
	reg = readl_relaxed(smmu->base + ARM_SMMU_IDR0);

	/* 2-level structures */
3715
	if (FIELD_GET(IDR0_ST_LVL, reg) == IDR0_ST_LVL_2LVL)
3716 3717 3718 3719 3720 3721 3722 3723 3724 3725
		smmu->features |= ARM_SMMU_FEAT_2_LVL_STRTAB;

	if (reg & IDR0_CD2L)
		smmu->features |= ARM_SMMU_FEAT_2_LVL_CDTAB;

	/*
	 * Translation table endianness.
	 * We currently require the same endianness as the CPU, but this
	 * could be changed later by adding a new IO_PGTABLE_QUIRK.
	 */
3726
	switch (FIELD_GET(IDR0_TTENDIAN, reg)) {
3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753
	case IDR0_TTENDIAN_MIXED:
		smmu->features |= ARM_SMMU_FEAT_TT_LE | ARM_SMMU_FEAT_TT_BE;
		break;
#ifdef __BIG_ENDIAN
	case IDR0_TTENDIAN_BE:
		smmu->features |= ARM_SMMU_FEAT_TT_BE;
		break;
#else
	case IDR0_TTENDIAN_LE:
		smmu->features |= ARM_SMMU_FEAT_TT_LE;
		break;
#endif
	default:
		dev_err(smmu->dev, "unknown/unsupported TT endianness!\n");
		return -ENXIO;
	}

	/* Boolean feature flags */
	if (IS_ENABLED(CONFIG_PCI_PRI) && reg & IDR0_PRI)
		smmu->features |= ARM_SMMU_FEAT_PRI;

	if (IS_ENABLED(CONFIG_PCI_ATS) && reg & IDR0_ATS)
		smmu->features |= ARM_SMMU_FEAT_ATS;

	if (reg & IDR0_SEV)
		smmu->features |= ARM_SMMU_FEAT_SEV;

3754
	if (reg & IDR0_MSI) {
3755
		smmu->features |= ARM_SMMU_FEAT_MSI;
3756 3757 3758
		if (coherent && !disable_msipolling)
			smmu->options |= ARM_SMMU_OPT_MSIPOLL;
	}
3759 3760 3761 3762 3763

	if (reg & IDR0_HYP)
		smmu->features |= ARM_SMMU_FEAT_HYP;

	/*
3764
	 * The coherency feature as set by FW is used in preference to the ID
3765 3766 3767
	 * register, but warn on mismatch.
	 */
	if (!!(reg & IDR0_COHACC) != coherent)
3768
		dev_warn(smmu->dev, "IDR0.COHACC overridden by FW configuration (%s)\n",
3769 3770
			 coherent ? "true" : "false");

3771
	switch (FIELD_GET(IDR0_STALL_MODEL, reg)) {
3772
	case IDR0_STALL_MODEL_FORCE:
3773
		smmu->features |= ARM_SMMU_FEAT_STALL_FORCE;
3774
		fallthrough;
3775
	case IDR0_STALL_MODEL_STALL:
3776
		smmu->features |= ARM_SMMU_FEAT_STALLS;
3777
	}
3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790

	if (reg & IDR0_S1P)
		smmu->features |= ARM_SMMU_FEAT_TRANS_S1;

	if (reg & IDR0_S2P)
		smmu->features |= ARM_SMMU_FEAT_TRANS_S2;

	if (!(reg & (IDR0_S1P | IDR0_S2P))) {
		dev_err(smmu->dev, "no translation support!\n");
		return -ENXIO;
	}

	/* We only support the AArch64 table format at present */
3791
	switch (FIELD_GET(IDR0_TTF, reg)) {
3792 3793
	case IDR0_TTF_AARCH32_64:
		smmu->ias = 40;
3794
		fallthrough;
3795 3796 3797
	case IDR0_TTF_AARCH64:
		break;
	default:
3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812
		dev_err(smmu->dev, "AArch64 table format not supported!\n");
		return -ENXIO;
	}

	/* ASID/VMID sizes */
	smmu->asid_bits = reg & IDR0_ASID16 ? 16 : 8;
	smmu->vmid_bits = reg & IDR0_VMID16 ? 16 : 8;

	/* IDR1 */
	reg = readl_relaxed(smmu->base + ARM_SMMU_IDR1);
	if (reg & (IDR1_TABLES_PRESET | IDR1_QUEUES_PRESET | IDR1_REL)) {
		dev_err(smmu->dev, "embedded implementation not supported\n");
		return -ENXIO;
	}

3813
	/* Queue sizes, capped to ensure natural alignment */
3814 3815
	smmu->cmdq.q.llq.max_n_shift = min_t(u32, CMDQ_MAX_SZ_SHIFT,
					     FIELD_GET(IDR1_CMDQS, reg));
3816
	if (smmu->cmdq.q.llq.max_n_shift <= ilog2(CMDQ_BATCH_ENTRIES)) {
3817
		/*
3818 3819 3820 3821
		 * We don't support splitting up batches, so one batch of
		 * commands plus an extra sync needs to fit inside the command
		 * queue. There's also no way we can handle the weird alignment
		 * restrictions on the base pointer for a unit-length queue.
3822
		 */
3823 3824
		dev_err(smmu->dev, "command queue size <= %d entries not supported\n",
			CMDQ_BATCH_ENTRIES);
3825 3826 3827
		return -ENXIO;
	}

3828 3829 3830 3831
	smmu->evtq.q.llq.max_n_shift = min_t(u32, EVTQ_MAX_SZ_SHIFT,
					     FIELD_GET(IDR1_EVTQS, reg));
	smmu->priq.q.llq.max_n_shift = min_t(u32, PRIQ_MAX_SZ_SHIFT,
					     FIELD_GET(IDR1_PRIQS, reg));
3832 3833

	/* SID/SSID sizes */
3834 3835
	smmu->ssid_bits = FIELD_GET(IDR1_SSIDSIZE, reg);
	smmu->sid_bits = FIELD_GET(IDR1_SIDSIZE, reg);
3836

3837 3838 3839 3840 3841 3842 3843
	/*
	 * If the SMMU supports fewer bits than would fill a single L2 stream
	 * table, use a linear table instead.
	 */
	if (smmu->sid_bits <= STRTAB_SPLIT)
		smmu->features &= ~ARM_SMMU_FEAT_2_LVL_STRTAB;

3844 3845 3846 3847 3848
	/* IDR3 */
	reg = readl_relaxed(smmu->base + ARM_SMMU_IDR3);
	if (FIELD_GET(IDR3_RIL, reg))
		smmu->features |= ARM_SMMU_FEAT_RANGE_INV;

3849 3850 3851 3852
	/* IDR5 */
	reg = readl_relaxed(smmu->base + ARM_SMMU_IDR5);

	/* Maximum number of outstanding stalls */
3853
	smmu->evtq.max_stalls = FIELD_GET(IDR5_STALL_MAX, reg);
3854 3855 3856

	/* Page sizes */
	if (reg & IDR5_GRAN64K)
3857
		smmu->pgsize_bitmap |= SZ_64K | SZ_512M;
3858
	if (reg & IDR5_GRAN16K)
3859
		smmu->pgsize_bitmap |= SZ_16K | SZ_32M;
3860
	if (reg & IDR5_GRAN4K)
3861
		smmu->pgsize_bitmap |= SZ_4K | SZ_2M | SZ_1G;
3862

3863 3864 3865 3866
	/* Input address size */
	if (FIELD_GET(IDR5_VAX, reg) == IDR5_VAX_52_BIT)
		smmu->features |= ARM_SMMU_FEAT_VAX;

3867
	/* Output address size */
3868
	switch (FIELD_GET(IDR5_OAS, reg)) {
3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883
	case IDR5_OAS_32_BIT:
		smmu->oas = 32;
		break;
	case IDR5_OAS_36_BIT:
		smmu->oas = 36;
		break;
	case IDR5_OAS_40_BIT:
		smmu->oas = 40;
		break;
	case IDR5_OAS_42_BIT:
		smmu->oas = 42;
		break;
	case IDR5_OAS_44_BIT:
		smmu->oas = 44;
		break;
3884 3885 3886 3887
	case IDR5_OAS_52_BIT:
		smmu->oas = 52;
		smmu->pgsize_bitmap |= 1ULL << 42; /* 4TB */
		break;
3888 3889 3890
	default:
		dev_info(smmu->dev,
			"unknown output address size. Truncating to 48-bit\n");
3891
		fallthrough;
3892 3893 3894 3895
	case IDR5_OAS_48_BIT:
		smmu->oas = 48;
	}

3896 3897 3898 3899 3900
	if (arm_smmu_ops.pgsize_bitmap == -1UL)
		arm_smmu_ops.pgsize_bitmap = smmu->pgsize_bitmap;
	else
		arm_smmu_ops.pgsize_bitmap |= smmu->pgsize_bitmap;

3901 3902 3903 3904 3905
	/* Set the DMA mask for our table walker */
	if (dma_set_mask_and_coherent(smmu->dev, DMA_BIT_MASK(smmu->oas)))
		dev_warn(smmu->dev,
			 "failed to set DMA mask for table walker\n");

3906
	smmu->ias = max(smmu->ias, smmu->oas);
3907 3908 3909 3910 3911 3912

	dev_info(smmu->dev, "ias %lu-bit, oas %lu-bit (features 0x%08x)\n",
		 smmu->ias, smmu->oas, smmu->features);
	return 0;
}

3913
#ifdef CONFIG_ACPI
3914 3915
static void acpi_smmu_get_options(u32 model, struct arm_smmu_device *smmu)
{
3916 3917
	switch (model) {
	case ACPI_IORT_SMMU_V3_CAVIUM_CN99XX:
3918
		smmu->options |= ARM_SMMU_OPT_PAGE0_REGS_ONLY;
3919
		break;
3920
	case ACPI_IORT_SMMU_V3_HISILICON_HI161X:
3921 3922 3923
		smmu->options |= ARM_SMMU_OPT_SKIP_PREFETCH;
		break;
	}
3924 3925 3926 3927

	dev_notice(smmu->dev, "option mask 0x%x\n", smmu->options);
}

3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939
static int arm_smmu_device_acpi_probe(struct platform_device *pdev,
				      struct arm_smmu_device *smmu)
{
	struct acpi_iort_smmu_v3 *iort_smmu;
	struct device *dev = smmu->dev;
	struct acpi_iort_node *node;

	node = *(struct acpi_iort_node **)dev_get_platdata(dev);

	/* Retrieve SMMUv3 specific data */
	iort_smmu = (struct acpi_iort_smmu_v3 *)node->node_data;

3940 3941
	acpi_smmu_get_options(iort_smmu->model, smmu);

3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954
	if (iort_smmu->flags & ACPI_IORT_SMMU_V3_COHACC_OVERRIDE)
		smmu->features |= ARM_SMMU_FEAT_COHERENCY;

	return 0;
}
#else
static inline int arm_smmu_device_acpi_probe(struct platform_device *pdev,
					     struct arm_smmu_device *smmu)
{
	return -ENODEV;
}
#endif

3955 3956
static int arm_smmu_device_dt_probe(struct platform_device *pdev,
				    struct arm_smmu_device *smmu)
3957 3958
{
	struct device *dev = &pdev->dev;
3959
	u32 cells;
3960
	int ret = -EINVAL;
3961 3962 3963 3964 3965 3966

	if (of_property_read_u32(dev->of_node, "#iommu-cells", &cells))
		dev_err(dev, "missing #iommu-cells property\n");
	else if (cells != 1)
		dev_err(dev, "invalid #iommu-cells value (%d)\n", cells);
	else
3967 3968 3969 3970 3971 3972 3973 3974 3975 3976
		ret = 0;

	parse_driver_options(smmu);

	if (of_dma_is_coherent(dev->of_node))
		smmu->features |= ARM_SMMU_FEAT_COHERENCY;

	return ret;
}

3977 3978 3979 3980 3981 3982 3983 3984
static unsigned long arm_smmu_resource_size(struct arm_smmu_device *smmu)
{
	if (smmu->options & ARM_SMMU_OPT_PAGE0_REGS_ONLY)
		return SZ_64K;
	else
		return SZ_128K;
}

3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021
static int arm_smmu_set_bus_ops(struct iommu_ops *ops)
{
	int err;

#ifdef CONFIG_PCI
	if (pci_bus_type.iommu_ops != ops) {
		err = bus_set_iommu(&pci_bus_type, ops);
		if (err)
			return err;
	}
#endif
#ifdef CONFIG_ARM_AMBA
	if (amba_bustype.iommu_ops != ops) {
		err = bus_set_iommu(&amba_bustype, ops);
		if (err)
			goto err_reset_pci_ops;
	}
#endif
	if (platform_bus_type.iommu_ops != ops) {
		err = bus_set_iommu(&platform_bus_type, ops);
		if (err)
			goto err_reset_amba_ops;
	}

	return 0;

err_reset_amba_ops:
#ifdef CONFIG_ARM_AMBA
	bus_set_iommu(&amba_bustype, NULL);
#endif
err_reset_pci_ops: __maybe_unused;
#ifdef CONFIG_PCI
	bus_set_iommu(&pci_bus_type, NULL);
#endif
	return err;
}

4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033
static void __iomem *arm_smmu_ioremap(struct device *dev, resource_size_t start,
				      resource_size_t size)
{
	struct resource res = {
		.flags = IORESOURCE_MEM,
		.start = start,
		.end = start + size - 1,
	};

	return devm_ioremap_resource(dev, &res);
}

4034 4035 4036 4037
static int arm_smmu_device_probe(struct platform_device *pdev)
{
	int irq, ret;
	struct resource *res;
4038
	resource_size_t ioaddr;
4039 4040 4041
	struct arm_smmu_device *smmu;
	struct device *dev = &pdev->dev;
	bool bypass;
4042 4043 4044 4045 4046 4047 4048 4049

	smmu = devm_kzalloc(dev, sizeof(*smmu), GFP_KERNEL);
	if (!smmu) {
		dev_err(dev, "failed to allocate arm_smmu_device\n");
		return -ENOMEM;
	}
	smmu->dev = dev;

4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060
	if (dev->of_node) {
		ret = arm_smmu_device_dt_probe(pdev, smmu);
	} else {
		ret = arm_smmu_device_acpi_probe(pdev, smmu);
		if (ret == -ENODEV)
			return ret;
	}

	/* Set bypass mode according to firmware probing result */
	bypass = !!ret;

4061 4062
	/* Base address */
	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4063
	if (resource_size(res) < arm_smmu_resource_size(smmu)) {
4064 4065 4066
		dev_err(dev, "MMIO region too small (%pr)\n", res);
		return -EINVAL;
	}
4067
	ioaddr = res->start;
4068

4069 4070 4071 4072 4073
	/*
	 * Don't map the IMPLEMENTATION DEFINED regions, since they may contain
	 * the PMCG registers which are reserved by the PMU driver.
	 */
	smmu->base = arm_smmu_ioremap(dev, ioaddr, ARM_SMMU_REG_SZ);
4074 4075 4076
	if (IS_ERR(smmu->base))
		return PTR_ERR(smmu->base);

4077 4078 4079 4080 4081 4082 4083 4084 4085
	if (arm_smmu_resource_size(smmu) > SZ_64K) {
		smmu->page1 = arm_smmu_ioremap(dev, ioaddr + SZ_64K,
					       ARM_SMMU_REG_SZ);
		if (IS_ERR(smmu->page1))
			return PTR_ERR(smmu->page1);
	} else {
		smmu->page1 = smmu->base;
	}

4086 4087
	/* Interrupt lines */

4088
	irq = platform_get_irq_byname_optional(pdev, "combined");
4089
	if (irq > 0)
4090 4091
		smmu->combined_irq = irq;
	else {
4092
		irq = platform_get_irq_byname_optional(pdev, "eventq");
4093 4094
		if (irq > 0)
			smmu->evtq.q.irq = irq;
4095

4096
		irq = platform_get_irq_byname_optional(pdev, "priq");
4097 4098
		if (irq > 0)
			smmu->priq.q.irq = irq;
4099

4100
		irq = platform_get_irq_byname_optional(pdev, "gerror");
4101 4102 4103
		if (irq > 0)
			smmu->gerr_irq = irq;
	}
4104
	/* Probe the h/w */
4105
	ret = arm_smmu_device_hw_probe(smmu);
4106 4107 4108 4109 4110 4111 4112 4113
	if (ret)
		return ret;

	/* Initialise in-memory data structures */
	ret = arm_smmu_init_structures(smmu);
	if (ret)
		return ret;

4114 4115 4116
	/* Record our private device structure */
	platform_set_drvdata(pdev, smmu);

4117
	/* Reset the device */
4118 4119 4120 4121 4122
	ret = arm_smmu_device_reset(smmu, bypass);
	if (ret)
		return ret;

	/* And we're up. Go go go! */
4123 4124
	ret = iommu_device_sysfs_add(&smmu->iommu, dev, NULL,
				     "smmu3.%pa", &ioaddr);
4125 4126
	if (ret)
		return ret;
4127 4128 4129 4130 4131

	iommu_device_set_ops(&smmu->iommu, &arm_smmu_ops);
	iommu_device_set_fwnode(&smmu->iommu, dev->fwnode);

	ret = iommu_device_register(&smmu->iommu);
4132 4133 4134 4135
	if (ret) {
		dev_err(dev, "Failed to register iommu\n");
		return ret;
	}
4136

4137
	return arm_smmu_set_bus_ops(&arm_smmu_ops);
4138 4139
}

4140
static int arm_smmu_device_remove(struct platform_device *pdev)
4141
{
4142
	struct arm_smmu_device *smmu = platform_get_drvdata(pdev);
4143

4144 4145 4146
	arm_smmu_set_bus_ops(NULL);
	iommu_device_unregister(&smmu->iommu);
	iommu_device_sysfs_remove(&smmu->iommu);
4147
	arm_smmu_device_disable(smmu);
4148 4149 4150 4151 4152 4153 4154

	return 0;
}

static void arm_smmu_device_shutdown(struct platform_device *pdev)
{
	arm_smmu_device_remove(pdev);
4155 4156
}

4157
static const struct of_device_id arm_smmu_of_match[] = {
4158 4159 4160
	{ .compatible = "arm,smmu-v3", },
	{ },
};
4161
MODULE_DEVICE_TABLE(of, arm_smmu_of_match);
4162 4163 4164

static struct platform_driver arm_smmu_driver = {
	.driver	= {
4165
		.name			= "arm-smmu-v3",
4166
		.of_match_table		= arm_smmu_of_match,
4167
		.suppress_bind_attrs	= true,
4168
	},
4169
	.probe	= arm_smmu_device_probe,
4170
	.remove	= arm_smmu_device_remove,
4171
	.shutdown = arm_smmu_device_shutdown,
4172
};
4173 4174 4175
module_platform_driver(arm_smmu_driver);

MODULE_DESCRIPTION("IOMMU API for ARM architected SMMUv3 implementations");
4176
MODULE_AUTHOR("Will Deacon <will@kernel.org>");
4177
MODULE_ALIAS("platform:arm-smmu-v3");
4178
MODULE_LICENSE("GPL v2");