interrupt.c 65.5 KB
Newer Older
1
/*
2
 * handling kvm guest interrupts
3
 *
4
 * Copyright IBM Corp. 2008, 2015
5 6 7 8 9 10 11 12
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License (version 2 only)
 * as published by the Free Software Foundation.
 *
 *    Author(s): Carsten Otte <cotte@de.ibm.com>
 */

13
#include <linux/interrupt.h>
14
#include <linux/kvm_host.h>
15
#include <linux/hrtimer.h>
16
#include <linux/mmu_context.h>
17
#include <linux/signal.h>
18
#include <linux/slab.h>
19
#include <linux/bitmap.h>
20
#include <linux/vmalloc.h>
21
#include <asm/asm-offsets.h>
22
#include <asm/dis.h>
23
#include <asm/uaccess.h>
24
#include <asm/sclp.h>
25
#include <asm/isc.h>
26
#include <asm/gmap.h>
27
#include <asm/switch_to.h>
28
#include <asm/nmi.h>
29 30
#include "kvm-s390.h"
#include "gaccess.h"
31
#include "trace-s390.h"
32

33
#define PFAULT_INIT 0x0600
34 35
#define PFAULT_DONE 0x0680
#define VIRTIO_PARAM 0x0d00
36

37 38 39
/* handle external calls via sigp interpretation facility */
static int sca_ext_call_pending(struct kvm_vcpu *vcpu, int *src_id)
{
40 41
	int c, scn;

42 43 44
	if (!(atomic_read(&vcpu->arch.sie_block->cpuflags) & CPUSTAT_ECALL_PEND))
		return 0;

45
	BUG_ON(!kvm_s390_use_sca_entries());
46
	read_lock(&vcpu->kvm->arch.sca_lock);
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
	if (vcpu->kvm->arch.use_esca) {
		struct esca_block *sca = vcpu->kvm->arch.sca;
		union esca_sigp_ctrl sigp_ctrl =
			sca->cpu[vcpu->vcpu_id].sigp_ctrl;

		c = sigp_ctrl.c;
		scn = sigp_ctrl.scn;
	} else {
		struct bsca_block *sca = vcpu->kvm->arch.sca;
		union bsca_sigp_ctrl sigp_ctrl =
			sca->cpu[vcpu->vcpu_id].sigp_ctrl;

		c = sigp_ctrl.c;
		scn = sigp_ctrl.scn;
	}
62
	read_unlock(&vcpu->kvm->arch.sca_lock);
63 64

	if (src_id)
65
		*src_id = scn;
66

67
	return c;
68 69 70 71
}

static int sca_inject_ext_call(struct kvm_vcpu *vcpu, int src_id)
{
72
	int expect, rc;
73

74
	BUG_ON(!kvm_s390_use_sca_entries());
75
	read_lock(&vcpu->kvm->arch.sca_lock);
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
	if (vcpu->kvm->arch.use_esca) {
		struct esca_block *sca = vcpu->kvm->arch.sca;
		union esca_sigp_ctrl *sigp_ctrl =
			&(sca->cpu[vcpu->vcpu_id].sigp_ctrl);
		union esca_sigp_ctrl new_val = {0}, old_val = *sigp_ctrl;

		new_val.scn = src_id;
		new_val.c = 1;
		old_val.c = 0;

		expect = old_val.value;
		rc = cmpxchg(&sigp_ctrl->value, old_val.value, new_val.value);
	} else {
		struct bsca_block *sca = vcpu->kvm->arch.sca;
		union bsca_sigp_ctrl *sigp_ctrl =
			&(sca->cpu[vcpu->vcpu_id].sigp_ctrl);
		union bsca_sigp_ctrl new_val = {0}, old_val = *sigp_ctrl;
93

94 95 96 97 98 99 100
		new_val.scn = src_id;
		new_val.c = 1;
		old_val.c = 0;

		expect = old_val.value;
		rc = cmpxchg(&sigp_ctrl->value, old_val.value, new_val.value);
	}
101
	read_unlock(&vcpu->kvm->arch.sca_lock);
102 103

	if (rc != expect) {
104 105 106 107 108 109 110 111 112 113
		/* another external call is pending */
		return -EBUSY;
	}
	atomic_or(CPUSTAT_ECALL_PEND, &vcpu->arch.sie_block->cpuflags);
	return 0;
}

static void sca_clear_ext_call(struct kvm_vcpu *vcpu)
{
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
114
	int rc, expect;
115

116 117
	if (!kvm_s390_use_sca_entries())
		return;
118
	atomic_andnot(CPUSTAT_ECALL_PEND, li->cpuflags);
119
	read_lock(&vcpu->kvm->arch.sca_lock);
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
	if (vcpu->kvm->arch.use_esca) {
		struct esca_block *sca = vcpu->kvm->arch.sca;
		union esca_sigp_ctrl *sigp_ctrl =
			&(sca->cpu[vcpu->vcpu_id].sigp_ctrl);
		union esca_sigp_ctrl old = *sigp_ctrl;

		expect = old.value;
		rc = cmpxchg(&sigp_ctrl->value, old.value, 0);
	} else {
		struct bsca_block *sca = vcpu->kvm->arch.sca;
		union bsca_sigp_ctrl *sigp_ctrl =
			&(sca->cpu[vcpu->vcpu_id].sigp_ctrl);
		union bsca_sigp_ctrl old = *sigp_ctrl;

		expect = old.value;
		rc = cmpxchg(&sigp_ctrl->value, old.value, 0);
	}
137
	read_unlock(&vcpu->kvm->arch.sca_lock);
138
	WARN_ON(rc != expect); /* cannot clear? */
139 140
}

141
int psw_extint_disabled(struct kvm_vcpu *vcpu)
142 143 144 145
{
	return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_EXT);
}

146 147 148 149 150
static int psw_ioint_disabled(struct kvm_vcpu *vcpu)
{
	return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_IO);
}

151 152 153 154 155
static int psw_mchk_disabled(struct kvm_vcpu *vcpu)
{
	return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_MCHECK);
}

156 157
static int psw_interrupts_disabled(struct kvm_vcpu *vcpu)
{
158 159 160
	return psw_extint_disabled(vcpu) &&
	       psw_ioint_disabled(vcpu) &&
	       psw_mchk_disabled(vcpu);
161 162
}

163 164 165 166 167
static int ckc_interrupts_enabled(struct kvm_vcpu *vcpu)
{
	if (psw_extint_disabled(vcpu) ||
	    !(vcpu->arch.sie_block->gcr[0] & 0x800ul))
		return 0;
168 169 170
	if (guestdbg_enabled(vcpu) && guestdbg_sstep_enabled(vcpu))
		/* No timer interrupts when single stepping */
		return 0;
171 172 173
	return 1;
}

174 175
static int ckc_irq_pending(struct kvm_vcpu *vcpu)
{
176
	if (vcpu->arch.sie_block->ckc >= kvm_s390_get_tod_clock_fast(vcpu->kvm))
177 178 179 180 181 182 183 184 185 186 187 188
		return 0;
	return ckc_interrupts_enabled(vcpu);
}

static int cpu_timer_interrupts_enabled(struct kvm_vcpu *vcpu)
{
	return !psw_extint_disabled(vcpu) &&
	       (vcpu->arch.sie_block->gcr[0] & 0x400ul);
}

static int cpu_timer_irq_pending(struct kvm_vcpu *vcpu)
{
189 190 191
	if (!cpu_timer_interrupts_enabled(vcpu))
		return 0;
	return kvm_s390_get_cpu_timer(vcpu) >> 63;
192 193
}

194
static inline int is_ioirq(unsigned long irq_type)
C
Cornelia Huck 已提交
195
{
196 197 198
	return ((irq_type >= IRQ_PEND_IO_ISC_0) &&
		(irq_type <= IRQ_PEND_IO_ISC_7));
}
C
Cornelia Huck 已提交
199

200 201
static uint64_t isc_to_isc_bits(int isc)
{
C
Cornelia Huck 已提交
202 203 204
	return (0x80 >> isc) << 24;
}

205
static inline u8 int_word_to_isc(u32 int_word)
206
{
207 208 209
	return (int_word & 0x38000000) >> 27;
}

210
static inline unsigned long pending_irqs(struct kvm_vcpu *vcpu)
211
{
212 213
	return vcpu->kvm->arch.float_int.pending_irqs |
	       vcpu->arch.local_int.pending_irqs;
214 215
}

216 217 218 219 220 221 222 223 224 225 226 227 228
static unsigned long disable_iscs(struct kvm_vcpu *vcpu,
				   unsigned long active_mask)
{
	int i;

	for (i = 0; i <= MAX_ISC; i++)
		if (!(vcpu->arch.sie_block->gcr[6] & isc_to_isc_bits(i)))
			active_mask &= ~(1UL << (IRQ_PEND_IO_ISC_0 + i));

	return active_mask;
}

static unsigned long deliverable_irqs(struct kvm_vcpu *vcpu)
229
{
230 231
	unsigned long active_mask;

232
	active_mask = pending_irqs(vcpu);
233 234
	if (!active_mask)
		return 0;
235 236 237

	if (psw_extint_disabled(vcpu))
		active_mask &= ~IRQ_PEND_EXT_MASK;
238 239 240 241
	if (psw_ioint_disabled(vcpu))
		active_mask &= ~IRQ_PEND_IO_MASK;
	else
		active_mask = disable_iscs(vcpu, active_mask);
242 243 244 245 246 247 248 249
	if (!(vcpu->arch.sie_block->gcr[0] & 0x2000ul))
		__clear_bit(IRQ_PEND_EXT_EXTERNAL, &active_mask);
	if (!(vcpu->arch.sie_block->gcr[0] & 0x4000ul))
		__clear_bit(IRQ_PEND_EXT_EMERGENCY, &active_mask);
	if (!(vcpu->arch.sie_block->gcr[0] & 0x800ul))
		__clear_bit(IRQ_PEND_EXT_CLOCK_COMP, &active_mask);
	if (!(vcpu->arch.sie_block->gcr[0] & 0x400ul))
		__clear_bit(IRQ_PEND_EXT_CPU_TIMER, &active_mask);
250 251
	if (!(vcpu->arch.sie_block->gcr[0] & 0x200ul))
		__clear_bit(IRQ_PEND_EXT_SERVICE, &active_mask);
252 253
	if (psw_mchk_disabled(vcpu))
		active_mask &= ~IRQ_PEND_MCHK_MASK;
254 255 256
	if (!(vcpu->arch.sie_block->gcr[14] &
	      vcpu->kvm->arch.float_int.mchk.cr14))
		__clear_bit(IRQ_PEND_MCHK_REP, &active_mask);
257

258 259 260 261 262 263
	/*
	 * STOP irqs will never be actively delivered. They are triggered via
	 * intercept requests and cleared when the stop intercept is performed.
	 */
	__clear_bit(IRQ_PEND_SIGP_STOP, &active_mask);

264 265 266
	return active_mask;
}

267 268
static void __set_cpu_idle(struct kvm_vcpu *vcpu)
{
269
	atomic_or(CPUSTAT_WAIT, &vcpu->arch.sie_block->cpuflags);
270 271 272 273 274
	set_bit(vcpu->vcpu_id, vcpu->arch.local_int.float_int->idle_mask);
}

static void __unset_cpu_idle(struct kvm_vcpu *vcpu)
{
275
	atomic_andnot(CPUSTAT_WAIT, &vcpu->arch.sie_block->cpuflags);
276 277 278 279 280
	clear_bit(vcpu->vcpu_id, vcpu->arch.local_int.float_int->idle_mask);
}

static void __reset_intercept_indicators(struct kvm_vcpu *vcpu)
{
281 282
	atomic_andnot(CPUSTAT_IO_INT | CPUSTAT_EXT_INT | CPUSTAT_STOP_INT,
		    &vcpu->arch.sie_block->cpuflags);
283
	vcpu->arch.sie_block->lctl = 0x0000;
284 285 286 287 288 289 290
	vcpu->arch.sie_block->ictl &= ~(ICTL_LPSW | ICTL_STCTL | ICTL_PINT);

	if (guestdbg_enabled(vcpu)) {
		vcpu->arch.sie_block->lctl |= (LCTL_CR0 | LCTL_CR9 |
					       LCTL_CR10 | LCTL_CR11);
		vcpu->arch.sie_block->ictl |= (ICTL_STCTL | ICTL_PINT);
	}
291 292 293 294
}

static void __set_cpuflag(struct kvm_vcpu *vcpu, u32 flag)
{
295
	atomic_or(flag, &vcpu->arch.sie_block->cpuflags);
296 297
}

298 299
static void set_intercept_indicators_io(struct kvm_vcpu *vcpu)
{
300
	if (!(pending_irqs(vcpu) & IRQ_PEND_IO_MASK))
301 302 303 304 305 306 307
		return;
	else if (psw_ioint_disabled(vcpu))
		__set_cpuflag(vcpu, CPUSTAT_IO_INT);
	else
		vcpu->arch.sie_block->lctl |= LCTL_CR6;
}

308 309
static void set_intercept_indicators_ext(struct kvm_vcpu *vcpu)
{
310
	if (!(pending_irqs(vcpu) & IRQ_PEND_EXT_MASK))
311 312 313 314 315 316 317 318 319
		return;
	if (psw_extint_disabled(vcpu))
		__set_cpuflag(vcpu, CPUSTAT_EXT_INT);
	else
		vcpu->arch.sie_block->lctl |= LCTL_CR0;
}

static void set_intercept_indicators_mchk(struct kvm_vcpu *vcpu)
{
320
	if (!(pending_irqs(vcpu) & IRQ_PEND_MCHK_MASK))
321 322 323 324 325 326 327
		return;
	if (psw_mchk_disabled(vcpu))
		vcpu->arch.sie_block->ictl |= ICTL_LPSW;
	else
		vcpu->arch.sie_block->lctl |= LCTL_CR14;
}

328 329 330 331 332 333
static void set_intercept_indicators_stop(struct kvm_vcpu *vcpu)
{
	if (kvm_s390_is_stop_irq_pending(vcpu))
		__set_cpuflag(vcpu, CPUSTAT_STOP_INT);
}

334 335
/* Set interception request for non-deliverable interrupts */
static void set_intercept_indicators(struct kvm_vcpu *vcpu)
336
{
337
	set_intercept_indicators_io(vcpu);
338 339
	set_intercept_indicators_ext(vcpu);
	set_intercept_indicators_mchk(vcpu);
340
	set_intercept_indicators_stop(vcpu);
341 342
}

343 344
static int __must_check __deliver_cpu_timer(struct kvm_vcpu *vcpu)
{
345
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
346 347 348 349 350 351 352
	int rc;

	trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_CPU_TIMER,
					 0, 0);

	rc  = put_guest_lc(vcpu, EXT_IRQ_CPU_TIMER,
			   (u16 *)__LC_EXT_INT_CODE);
353
	rc |= put_guest_lc(vcpu, 0, (u16 *)__LC_EXT_CPU_ADDR);
354 355 356 357
	rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
			     &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
	rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
			    &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
358
	clear_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs);
359
	return rc ? -EFAULT : 0;
360 361 362 363
}

static int __must_check __deliver_ckc(struct kvm_vcpu *vcpu)
{
364
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
365 366 367 368 369 370 371
	int rc;

	trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_CLOCK_COMP,
					 0, 0);

	rc  = put_guest_lc(vcpu, EXT_IRQ_CLK_COMP,
			   (u16 __user *)__LC_EXT_INT_CODE);
372
	rc |= put_guest_lc(vcpu, 0, (u16 *)__LC_EXT_CPU_ADDR);
373 374 375 376
	rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
			     &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
	rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
			    &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
377
	clear_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs);
378
	return rc ? -EFAULT : 0;
379 380
}

381
static int __must_check __deliver_pfault_init(struct kvm_vcpu *vcpu)
382
{
383 384
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
	struct kvm_s390_ext_info ext;
385 386
	int rc;

387 388 389 390 391 392
	spin_lock(&li->lock);
	ext = li->irq.ext;
	clear_bit(IRQ_PEND_PFAULT_INIT, &li->pending_irqs);
	li->irq.ext.ext_params2 = 0;
	spin_unlock(&li->lock);

393 394
	VCPU_EVENT(vcpu, 4, "deliver: pfault init token 0x%llx",
		   ext.ext_params2);
395 396
	trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
					 KVM_S390_INT_PFAULT_INIT,
397
					 0, ext.ext_params2);
398 399 400 401 402 403 404

	rc  = put_guest_lc(vcpu, EXT_IRQ_CP_SERVICE, (u16 *) __LC_EXT_INT_CODE);
	rc |= put_guest_lc(vcpu, PFAULT_INIT, (u16 *) __LC_EXT_CPU_ADDR);
	rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
			     &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
	rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
			    &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
405
	rc |= put_guest_lc(vcpu, ext.ext_params2, (u64 *) __LC_EXT_PARAMS2);
406
	return rc ? -EFAULT : 0;
407 408
}

409 410 411 412
static int __write_machine_check(struct kvm_vcpu *vcpu,
				 struct kvm_s390_mchk_info *mchk)
{
	unsigned long ext_sa_addr;
413
	freg_t fprs[NUM_FPRS];
414
	union mci mci;
415 416
	int rc;

417
	mci.val = mchk->mcic;
418 419 420 421
	/* take care of lazy register loading via vcpu load/put */
	save_fpu_regs();
	save_access_regs(vcpu->run->s.regs.acrs);

422 423 424
	/* Extended save area */
	rc = read_guest_lc(vcpu, __LC_VX_SAVE_AREA_ADDR, &ext_sa_addr,
			    sizeof(unsigned long));
425 426 427 428 429 430 431 432 433
	/* Only bits 0-53 are used for address formation */
	ext_sa_addr &= ~0x3ffUL;
	if (!rc && mci.vr && ext_sa_addr && test_kvm_facility(vcpu->kvm, 129)) {
		if (write_guest_abs(vcpu, ext_sa_addr, vcpu->run->s.regs.vrs,
				    512))
			mci.vr = 0;
	} else {
		mci.vr = 0;
	}
434 435

	/* General interruption information */
436
	rc |= put_guest_lc(vcpu, 1, (u8 __user *) __LC_AR_MODE_ID);
437 438 439 440
	rc |= write_guest_lc(vcpu, __LC_MCK_OLD_PSW,
			     &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
	rc |= read_guest_lc(vcpu, __LC_MCK_NEW_PSW,
			    &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
441
	rc |= put_guest_lc(vcpu, mci.val, (u64 __user *) __LC_MCCK_CODE);
442 443

	/* Register-save areas */
444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
	if (MACHINE_HAS_VX) {
		convert_vx_to_fp(fprs, (__vector128 *) vcpu->run->s.regs.vrs);
		rc |= write_guest_lc(vcpu, __LC_FPREGS_SAVE_AREA, fprs, 128);
	} else {
		rc |= write_guest_lc(vcpu, __LC_FPREGS_SAVE_AREA,
				     vcpu->run->s.regs.fprs, 128);
	}
	rc |= write_guest_lc(vcpu, __LC_GPREGS_SAVE_AREA,
			     vcpu->run->s.regs.gprs, 128);
	rc |= put_guest_lc(vcpu, current->thread.fpu.fpc,
			   (u32 __user *) __LC_FP_CREG_SAVE_AREA);
	rc |= put_guest_lc(vcpu, vcpu->arch.sie_block->todpr,
			   (u32 __user *) __LC_TOD_PROGREG_SAVE_AREA);
	rc |= put_guest_lc(vcpu, kvm_s390_get_cpu_timer(vcpu),
			   (u64 __user *) __LC_CPU_TIMER_SAVE_AREA);
	rc |= put_guest_lc(vcpu, vcpu->arch.sie_block->ckc >> 8,
			   (u64 __user *) __LC_CLOCK_COMP_SAVE_AREA);
	rc |= write_guest_lc(vcpu, __LC_AREGS_SAVE_AREA,
			     &vcpu->run->s.regs.acrs, 64);
	rc |= write_guest_lc(vcpu, __LC_CREGS_SAVE_AREA,
			     &vcpu->arch.sie_block->gcr, 128);
465 466

	/* Extended interruption information */
467 468
	rc |= put_guest_lc(vcpu, mchk->ext_damage_code,
			   (u32 __user *) __LC_EXT_DAMAGE_CODE);
469 470 471 472 473 474 475
	rc |= put_guest_lc(vcpu, mchk->failing_storage_address,
			   (u64 __user *) __LC_MCCK_FAIL_STOR_ADDR);
	rc |= write_guest_lc(vcpu, __LC_PSW_SAVE_AREA, &mchk->fixed_logout,
			     sizeof(mchk->fixed_logout));
	return rc ? -EFAULT : 0;
}

476
static int __must_check __deliver_machine_check(struct kvm_vcpu *vcpu)
477
{
478
	struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int;
479
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
480 481 482
	struct kvm_s390_mchk_info mchk = {};
	int deliver = 0;
	int rc = 0;
483

484
	spin_lock(&fi->lock);
485
	spin_lock(&li->lock);
486 487 488 489 490 491 492 493 494 495 496 497 498 499
	if (test_bit(IRQ_PEND_MCHK_EX, &li->pending_irqs) ||
	    test_bit(IRQ_PEND_MCHK_REP, &li->pending_irqs)) {
		/*
		 * If there was an exigent machine check pending, then any
		 * repressible machine checks that might have been pending
		 * are indicated along with it, so always clear bits for
		 * repressible and exigent interrupts
		 */
		mchk = li->irq.mchk;
		clear_bit(IRQ_PEND_MCHK_EX, &li->pending_irqs);
		clear_bit(IRQ_PEND_MCHK_REP, &li->pending_irqs);
		memset(&li->irq.mchk, 0, sizeof(mchk));
		deliver = 1;
	}
500
	/*
501 502 503 504
	 * We indicate floating repressible conditions along with
	 * other pending conditions. Channel Report Pending and Channel
	 * Subsystem damage are the only two and and are indicated by
	 * bits in mcic and masked in cr14.
505
	 */
506 507 508 509 510 511
	if (test_and_clear_bit(IRQ_PEND_MCHK_REP, &fi->pending_irqs)) {
		mchk.mcic |= fi->mchk.mcic;
		mchk.cr14 |= fi->mchk.cr14;
		memset(&fi->mchk, 0, sizeof(mchk));
		deliver = 1;
	}
512
	spin_unlock(&li->lock);
513
	spin_unlock(&fi->lock);
514

515
	if (deliver) {
516
		VCPU_EVENT(vcpu, 3, "deliver: machine check mcic 0x%llx",
517 518 519 520
			   mchk.mcic);
		trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
						 KVM_S390_MCHK,
						 mchk.cr14, mchk.mcic);
521
		rc = __write_machine_check(vcpu, &mchk);
522
	}
523
	return rc;
524 525 526 527
}

static int __must_check __deliver_restart(struct kvm_vcpu *vcpu)
{
528
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
529 530
	int rc;

531
	VCPU_EVENT(vcpu, 3, "%s", "deliver: cpu restart");
532 533 534 535
	vcpu->stat.deliver_restart_signal++;
	trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_RESTART, 0, 0);

	rc  = write_guest_lc(vcpu,
536
			     offsetof(struct lowcore, restart_old_psw),
537
			     &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
538
	rc |= read_guest_lc(vcpu, offsetof(struct lowcore, restart_psw),
539
			    &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
540
	clear_bit(IRQ_PEND_RESTART, &li->pending_irqs);
541
	return rc ? -EFAULT : 0;
542 543
}

544
static int __must_check __deliver_set_prefix(struct kvm_vcpu *vcpu)
545
{
546 547 548 549 550 551 552 553
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
	struct kvm_s390_prefix_info prefix;

	spin_lock(&li->lock);
	prefix = li->irq.prefix;
	li->irq.prefix.address = 0;
	clear_bit(IRQ_PEND_SET_PREFIX, &li->pending_irqs);
	spin_unlock(&li->lock);
554 555 556 557

	vcpu->stat.deliver_prefix_signal++;
	trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
					 KVM_S390_SIGP_SET_PREFIX,
558
					 prefix.address, 0);
559

560
	kvm_s390_set_prefix(vcpu, prefix.address);
561 562 563
	return 0;
}

564
static int __must_check __deliver_emergency_signal(struct kvm_vcpu *vcpu)
565
{
566
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
567
	int rc;
568 569 570 571 572 573 574 575
	int cpu_addr;

	spin_lock(&li->lock);
	cpu_addr = find_first_bit(li->sigp_emerg_pending, KVM_MAX_VCPUS);
	clear_bit(cpu_addr, li->sigp_emerg_pending);
	if (bitmap_empty(li->sigp_emerg_pending, KVM_MAX_VCPUS))
		clear_bit(IRQ_PEND_EXT_EMERGENCY, &li->pending_irqs);
	spin_unlock(&li->lock);
576

577
	VCPU_EVENT(vcpu, 4, "%s", "deliver: sigp emerg");
578
	vcpu->stat.deliver_emergency_signal++;
579 580
	trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_EMERGENCY,
					 cpu_addr, 0);
581 582 583

	rc  = put_guest_lc(vcpu, EXT_IRQ_EMERGENCY_SIG,
			   (u16 *)__LC_EXT_INT_CODE);
584
	rc |= put_guest_lc(vcpu, cpu_addr, (u16 *)__LC_EXT_CPU_ADDR);
585 586 587 588
	rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
			     &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
	rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
			    &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
589
	return rc ? -EFAULT : 0;
590 591
}

592
static int __must_check __deliver_external_call(struct kvm_vcpu *vcpu)
593
{
594 595
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
	struct kvm_s390_extcall_info extcall;
596 597
	int rc;

598 599 600 601 602 603
	spin_lock(&li->lock);
	extcall = li->irq.extcall;
	li->irq.extcall.code = 0;
	clear_bit(IRQ_PEND_EXT_EXTERNAL, &li->pending_irqs);
	spin_unlock(&li->lock);

604
	VCPU_EVENT(vcpu, 4, "%s", "deliver: sigp ext call");
605 606 607
	vcpu->stat.deliver_external_call++;
	trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
					 KVM_S390_INT_EXTERNAL_CALL,
608
					 extcall.code, 0);
609 610 611

	rc  = put_guest_lc(vcpu, EXT_IRQ_EXTERNAL_CALL,
			   (u16 *)__LC_EXT_INT_CODE);
612
	rc |= put_guest_lc(vcpu, extcall.code, (u16 *)__LC_EXT_CPU_ADDR);
613 614 615 616
	rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
			     &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
	rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW, &vcpu->arch.sie_block->gpsw,
			    sizeof(psw_t));
617
	return rc ? -EFAULT : 0;
618 619
}

620
static int __must_check __deliver_prog(struct kvm_vcpu *vcpu)
621
{
622 623
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
	struct kvm_s390_pgm_info pgm_info;
624
	int rc = 0, nullifying = false;
625
	u16 ilen;
626

627 628 629 630 631 632
	spin_lock(&li->lock);
	pgm_info = li->irq.pgm;
	clear_bit(IRQ_PEND_PROG, &li->pending_irqs);
	memset(&li->irq.pgm, 0, sizeof(pgm_info));
	spin_unlock(&li->lock);

633
	ilen = pgm_info.flags & KVM_S390_PGM_FLAGS_ILC_MASK;
634 635
	VCPU_EVENT(vcpu, 3, "deliver: program irq code 0x%x, ilen:%d",
		   pgm_info.code, ilen);
636 637
	vcpu->stat.deliver_program_int++;
	trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_PROGRAM_INT,
638
					 pgm_info.code, 0);
639

640
	switch (pgm_info.code & ~PGM_PER) {
641 642 643 644 645 646 647 648 649
	case PGM_AFX_TRANSLATION:
	case PGM_ASX_TRANSLATION:
	case PGM_EX_TRANSLATION:
	case PGM_LFX_TRANSLATION:
	case PGM_LSTE_SEQUENCE:
	case PGM_LSX_TRANSLATION:
	case PGM_LX_TRANSLATION:
	case PGM_PRIMARY_AUTHORITY:
	case PGM_SECONDARY_AUTHORITY:
650 651
		nullifying = true;
		/* fall through */
652
	case PGM_SPACE_SWITCH:
653
		rc = put_guest_lc(vcpu, pgm_info.trans_exc_code,
654 655 656 657 658 659 660 661
				  (u64 *)__LC_TRANS_EXC_CODE);
		break;
	case PGM_ALEN_TRANSLATION:
	case PGM_ALE_SEQUENCE:
	case PGM_ASTE_INSTANCE:
	case PGM_ASTE_SEQUENCE:
	case PGM_ASTE_VALIDITY:
	case PGM_EXTENDED_AUTHORITY:
662
		rc = put_guest_lc(vcpu, pgm_info.exc_access_id,
663
				  (u8 *)__LC_EXC_ACCESS_ID);
664
		nullifying = true;
665 666 667 668 669 670 671
		break;
	case PGM_ASCE_TYPE:
	case PGM_PAGE_TRANSLATION:
	case PGM_REGION_FIRST_TRANS:
	case PGM_REGION_SECOND_TRANS:
	case PGM_REGION_THIRD_TRANS:
	case PGM_SEGMENT_TRANSLATION:
672
		rc = put_guest_lc(vcpu, pgm_info.trans_exc_code,
673
				  (u64 *)__LC_TRANS_EXC_CODE);
674
		rc |= put_guest_lc(vcpu, pgm_info.exc_access_id,
675
				   (u8 *)__LC_EXC_ACCESS_ID);
676
		rc |= put_guest_lc(vcpu, pgm_info.op_access_id,
677
				   (u8 *)__LC_OP_ACCESS_ID);
678
		nullifying = true;
679 680
		break;
	case PGM_MONITOR:
681
		rc = put_guest_lc(vcpu, pgm_info.mon_class_nr,
682
				  (u16 *)__LC_MON_CLASS_NR);
683
		rc |= put_guest_lc(vcpu, pgm_info.mon_code,
684 685
				   (u64 *)__LC_MON_CODE);
		break;
E
Eric Farman 已提交
686
	case PGM_VECTOR_PROCESSING:
687
	case PGM_DATA:
688
		rc = put_guest_lc(vcpu, pgm_info.data_exc_code,
689 690 691
				  (u32 *)__LC_DATA_EXC_CODE);
		break;
	case PGM_PROTECTION:
692
		rc = put_guest_lc(vcpu, pgm_info.trans_exc_code,
693
				  (u64 *)__LC_TRANS_EXC_CODE);
694
		rc |= put_guest_lc(vcpu, pgm_info.exc_access_id,
695 696
				   (u8 *)__LC_EXC_ACCESS_ID);
		break;
697 698 699 700 701 702 703 704 705
	case PGM_STACK_FULL:
	case PGM_STACK_EMPTY:
	case PGM_STACK_SPECIFICATION:
	case PGM_STACK_TYPE:
	case PGM_STACK_OPERATION:
	case PGM_TRACE_TABEL:
	case PGM_CRYPTO_OPERATION:
		nullifying = true;
		break;
706 707
	}

708 709
	if (pgm_info.code & PGM_PER) {
		rc |= put_guest_lc(vcpu, pgm_info.per_code,
710
				   (u8 *) __LC_PER_CODE);
711
		rc |= put_guest_lc(vcpu, pgm_info.per_atmid,
712
				   (u8 *)__LC_PER_ATMID);
713
		rc |= put_guest_lc(vcpu, pgm_info.per_address,
714
				   (u64 *) __LC_PER_ADDRESS);
715
		rc |= put_guest_lc(vcpu, pgm_info.per_access_id,
716 717 718
				   (u8 *) __LC_PER_ACCESS_ID);
	}

719
	if (nullifying && !(pgm_info.flags & KVM_S390_PGM_FLAGS_NO_REWIND))
720
		kvm_s390_rewind_psw(vcpu, ilen);
721

722 723
	/* bit 1+2 of the target are the ilc, so we can directly use ilen */
	rc |= put_guest_lc(vcpu, ilen, (u16 *) __LC_PGM_ILC);
724 725
	rc |= put_guest_lc(vcpu, vcpu->arch.sie_block->gbea,
				 (u64 *) __LC_LAST_BREAK);
726
	rc |= put_guest_lc(vcpu, pgm_info.code,
727 728 729 730 731
			   (u16 *)__LC_PGM_INT_CODE);
	rc |= write_guest_lc(vcpu, __LC_PGM_OLD_PSW,
			     &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
	rc |= read_guest_lc(vcpu, __LC_PGM_NEW_PSW,
			    &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
732
	return rc ? -EFAULT : 0;
733 734
}

735
static int __must_check __deliver_service(struct kvm_vcpu *vcpu)
736
{
737 738 739 740 741 742 743 744 745 746 747 748 749
	struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int;
	struct kvm_s390_ext_info ext;
	int rc = 0;

	spin_lock(&fi->lock);
	if (!(test_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs))) {
		spin_unlock(&fi->lock);
		return 0;
	}
	ext = fi->srv_signal;
	memset(&fi->srv_signal, 0, sizeof(ext));
	clear_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs);
	spin_unlock(&fi->lock);
750

751
	VCPU_EVENT(vcpu, 4, "deliver: sclp parameter 0x%x",
752
		   ext.ext_params);
753
	vcpu->stat.deliver_service_signal++;
754 755
	trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_SERVICE,
					 ext.ext_params, 0);
756 757

	rc  = put_guest_lc(vcpu, EXT_IRQ_SERVICE_SIG, (u16 *)__LC_EXT_INT_CODE);
758
	rc |= put_guest_lc(vcpu, 0, (u16 *)__LC_EXT_CPU_ADDR);
759 760 761 762
	rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
			     &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
	rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
			    &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
763
	rc |= put_guest_lc(vcpu, ext.ext_params,
764
			   (u32 *)__LC_EXT_PARAMS);
765

766
	return rc ? -EFAULT : 0;
767 768
}

769
static int __must_check __deliver_pfault_done(struct kvm_vcpu *vcpu)
770
{
771 772 773
	struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int;
	struct kvm_s390_interrupt_info *inti;
	int rc = 0;
774

775 776 777 778 779 780 781 782 783 784 785
	spin_lock(&fi->lock);
	inti = list_first_entry_or_null(&fi->lists[FIRQ_LIST_PFAULT],
					struct kvm_s390_interrupt_info,
					list);
	if (inti) {
		list_del(&inti->list);
		fi->counters[FIRQ_CNTR_PFAULT] -= 1;
	}
	if (list_empty(&fi->lists[FIRQ_LIST_PFAULT]))
		clear_bit(IRQ_PEND_PFAULT_DONE, &fi->pending_irqs);
	spin_unlock(&fi->lock);
786

787
	if (inti) {
788 789 790 791 792 793
		trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
						 KVM_S390_INT_PFAULT_DONE, 0,
						 inti->ext.ext_params2);
		VCPU_EVENT(vcpu, 4, "deliver: pfault done token 0x%llx",
			   inti->ext.ext_params2);

794 795 796 797 798 799 800 801 802 803 804 805 806 807
		rc  = put_guest_lc(vcpu, EXT_IRQ_CP_SERVICE,
				(u16 *)__LC_EXT_INT_CODE);
		rc |= put_guest_lc(vcpu, PFAULT_DONE,
				(u16 *)__LC_EXT_CPU_ADDR);
		rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
				&vcpu->arch.sie_block->gpsw,
				sizeof(psw_t));
		rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
				&vcpu->arch.sie_block->gpsw,
				sizeof(psw_t));
		rc |= put_guest_lc(vcpu, inti->ext.ext_params2,
				(u64 *)__LC_EXT_PARAMS2);
		kfree(inti);
	}
808
	return rc ? -EFAULT : 0;
809 810
}

811
static int __must_check __deliver_virtio(struct kvm_vcpu *vcpu)
812
{
813 814 815
	struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int;
	struct kvm_s390_interrupt_info *inti;
	int rc = 0;
816

817 818 819 820 821 822
	spin_lock(&fi->lock);
	inti = list_first_entry_or_null(&fi->lists[FIRQ_LIST_VIRTIO],
					struct kvm_s390_interrupt_info,
					list);
	if (inti) {
		VCPU_EVENT(vcpu, 4,
823
			   "deliver: virtio parm: 0x%x,parm64: 0x%llx",
824 825 826 827 828 829 830 831 832 833 834 835
			   inti->ext.ext_params, inti->ext.ext_params2);
		vcpu->stat.deliver_virtio_interrupt++;
		trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
				inti->type,
				inti->ext.ext_params,
				inti->ext.ext_params2);
		list_del(&inti->list);
		fi->counters[FIRQ_CNTR_VIRTIO] -= 1;
	}
	if (list_empty(&fi->lists[FIRQ_LIST_VIRTIO]))
		clear_bit(IRQ_PEND_VIRTIO, &fi->pending_irqs);
	spin_unlock(&fi->lock);
836

837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853
	if (inti) {
		rc  = put_guest_lc(vcpu, EXT_IRQ_CP_SERVICE,
				(u16 *)__LC_EXT_INT_CODE);
		rc |= put_guest_lc(vcpu, VIRTIO_PARAM,
				(u16 *)__LC_EXT_CPU_ADDR);
		rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
				&vcpu->arch.sie_block->gpsw,
				sizeof(psw_t));
		rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
				&vcpu->arch.sie_block->gpsw,
				sizeof(psw_t));
		rc |= put_guest_lc(vcpu, inti->ext.ext_params,
				(u32 *)__LC_EXT_PARAMS);
		rc |= put_guest_lc(vcpu, inti->ext.ext_params2,
				(u64 *)__LC_EXT_PARAMS2);
		kfree(inti);
	}
854
	return rc ? -EFAULT : 0;
855 856 857
}

static int __must_check __deliver_io(struct kvm_vcpu *vcpu,
858
				     unsigned long irq_type)
859
{
860 861 862 863
	struct list_head *isc_list;
	struct kvm_s390_float_interrupt *fi;
	struct kvm_s390_interrupt_info *inti = NULL;
	int rc = 0;
864

865
	fi = &vcpu->kvm->arch.float_int;
866

867 868 869 870 871 872
	spin_lock(&fi->lock);
	isc_list = &fi->lists[irq_type - IRQ_PEND_IO_ISC_0];
	inti = list_first_entry_or_null(isc_list,
					struct kvm_s390_interrupt_info,
					list);
	if (inti) {
873 874 875 876 877 878 879 880
		if (inti->type & KVM_S390_INT_IO_AI_MASK)
			VCPU_EVENT(vcpu, 4, "%s", "deliver: I/O (AI)");
		else
			VCPU_EVENT(vcpu, 4, "deliver: I/O %x ss %x schid %04x",
			inti->io.subchannel_id >> 8,
			inti->io.subchannel_id >> 1 & 0x3,
			inti->io.subchannel_nr);

881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911
		vcpu->stat.deliver_io_int++;
		trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
				inti->type,
				((__u32)inti->io.subchannel_id << 16) |
				inti->io.subchannel_nr,
				((__u64)inti->io.io_int_parm << 32) |
				inti->io.io_int_word);
		list_del(&inti->list);
		fi->counters[FIRQ_CNTR_IO] -= 1;
	}
	if (list_empty(isc_list))
		clear_bit(irq_type, &fi->pending_irqs);
	spin_unlock(&fi->lock);

	if (inti) {
		rc  = put_guest_lc(vcpu, inti->io.subchannel_id,
				(u16 *)__LC_SUBCHANNEL_ID);
		rc |= put_guest_lc(vcpu, inti->io.subchannel_nr,
				(u16 *)__LC_SUBCHANNEL_NR);
		rc |= put_guest_lc(vcpu, inti->io.io_int_parm,
				(u32 *)__LC_IO_INT_PARM);
		rc |= put_guest_lc(vcpu, inti->io.io_int_word,
				(u32 *)__LC_IO_INT_WORD);
		rc |= write_guest_lc(vcpu, __LC_IO_OLD_PSW,
				&vcpu->arch.sie_block->gpsw,
				sizeof(psw_t));
		rc |= read_guest_lc(vcpu, __LC_IO_NEW_PSW,
				&vcpu->arch.sie_block->gpsw,
				sizeof(psw_t));
		kfree(inti);
	}
912

913
	return rc ? -EFAULT : 0;
914 915 916 917 918 919
}

typedef int (*deliver_irq_t)(struct kvm_vcpu *vcpu);

static const deliver_irq_t deliver_irq_funcs[] = {
	[IRQ_PEND_MCHK_EX]        = __deliver_machine_check,
920
	[IRQ_PEND_MCHK_REP]       = __deliver_machine_check,
921 922 923 924 925 926 927 928
	[IRQ_PEND_PROG]           = __deliver_prog,
	[IRQ_PEND_EXT_EMERGENCY]  = __deliver_emergency_signal,
	[IRQ_PEND_EXT_EXTERNAL]   = __deliver_external_call,
	[IRQ_PEND_EXT_CLOCK_COMP] = __deliver_ckc,
	[IRQ_PEND_EXT_CPU_TIMER]  = __deliver_cpu_timer,
	[IRQ_PEND_RESTART]        = __deliver_restart,
	[IRQ_PEND_SET_PREFIX]     = __deliver_set_prefix,
	[IRQ_PEND_PFAULT_INIT]    = __deliver_pfault_init,
929 930 931
	[IRQ_PEND_EXT_SERVICE]    = __deliver_service,
	[IRQ_PEND_PFAULT_DONE]    = __deliver_pfault_done,
	[IRQ_PEND_VIRTIO]         = __deliver_virtio,
932 933
};

934 935
/* Check whether an external call is pending (deliverable or not) */
int kvm_s390_ext_call_pending(struct kvm_vcpu *vcpu)
936
{
937
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
938

939
	if (!sclp.has_sigpif)
940
		return test_bit(IRQ_PEND_EXT_EXTERNAL, &li->pending_irqs);
941

942
	return sca_ext_call_pending(vcpu, NULL);
943 944
}

945
int kvm_s390_vcpu_has_irq(struct kvm_vcpu *vcpu, int exclude_stop)
946
{
947 948
	if (deliverable_irqs(vcpu))
		return 1;
949

950 951
	if (kvm_cpu_has_pending_timer(vcpu))
		return 1;
952

953
	/* external call pending and deliverable */
954
	if (kvm_s390_ext_call_pending(vcpu) &&
955 956
	    !psw_extint_disabled(vcpu) &&
	    (vcpu->arch.sie_block->gcr[0] & 0x2000ul))
957
		return 1;
958

959 960 961
	if (!exclude_stop && kvm_s390_is_stop_irq_pending(vcpu))
		return 1;
	return 0;
962 963
}

964 965
int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
{
966
	return ckc_irq_pending(vcpu) || cpu_timer_irq_pending(vcpu);
967 968
}

969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994
static u64 __calculate_sltime(struct kvm_vcpu *vcpu)
{
	u64 now, cputm, sltime = 0;

	if (ckc_interrupts_enabled(vcpu)) {
		now = kvm_s390_get_tod_clock_fast(vcpu->kvm);
		sltime = tod_to_ns(vcpu->arch.sie_block->ckc - now);
		/* already expired or overflow? */
		if (!sltime || vcpu->arch.sie_block->ckc <= now)
			return 0;
		if (cpu_timer_interrupts_enabled(vcpu)) {
			cputm = kvm_s390_get_cpu_timer(vcpu);
			/* already expired? */
			if (cputm >> 63)
				return 0;
			return min(sltime, tod_to_ns(cputm));
		}
	} else if (cpu_timer_interrupts_enabled(vcpu)) {
		sltime = kvm_s390_get_cpu_timer(vcpu);
		/* already expired? */
		if (sltime >> 63)
			return 0;
	}
	return sltime;
}

995 996
int kvm_s390_handle_wait(struct kvm_vcpu *vcpu)
{
997
	u64 sltime;
998 999 1000

	vcpu->stat.exit_wait_state++;

1001
	/* fast path */
1002
	if (kvm_arch_vcpu_runnable(vcpu))
1003
		return 0;
1004

1005 1006
	if (psw_interrupts_disabled(vcpu)) {
		VCPU_EVENT(vcpu, 3, "%s", "disabled wait");
1007
		return -EOPNOTSUPP; /* disabled wait */
1008 1009
	}

1010 1011
	if (!ckc_interrupts_enabled(vcpu) &&
	    !cpu_timer_interrupts_enabled(vcpu)) {
1012
		VCPU_EVENT(vcpu, 3, "%s", "enabled wait w/o timer");
1013
		__set_cpu_idle(vcpu);
1014 1015 1016
		goto no_timer;
	}

1017 1018
	sltime = __calculate_sltime(vcpu);
	if (!sltime)
1019 1020 1021
		return 0;

	__set_cpu_idle(vcpu);
1022
	hrtimer_start(&vcpu->arch.ckc_timer, ktime_set (0, sltime) , HRTIMER_MODE_REL);
1023
	VCPU_EVENT(vcpu, 4, "enabled wait: %llu ns", sltime);
1024
no_timer:
1025
	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
1026
	kvm_vcpu_block(vcpu);
1027
	__unset_cpu_idle(vcpu);
1028 1029
	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);

1030
	hrtimer_cancel(&vcpu->arch.ckc_timer);
1031 1032 1033
	return 0;
}

1034 1035
void kvm_s390_vcpu_wakeup(struct kvm_vcpu *vcpu)
{
1036 1037 1038 1039 1040
	/*
	 * We cannot move this into the if, as the CPU might be already
	 * in kvm_vcpu_block without having the waitqueue set (polling)
	 */
	vcpu->valid_wakeup = true;
1041
	if (swait_active(&vcpu->wq)) {
1042 1043 1044 1045 1046
		/*
		 * The vcpu gave up the cpu voluntarily, mark it as a good
		 * yield-candidate.
		 */
		vcpu->preempted = true;
1047
		swake_up(&vcpu->wq);
1048
		vcpu->stat.halt_wakeup++;
1049
	}
1050 1051 1052 1053 1054
	/*
	 * The VCPU might not be sleeping but is executing the VSIE. Let's
	 * kick it, so it leaves the SIE to process the request.
	 */
	kvm_s390_vsie_kick(vcpu);
1055 1056
}

1057 1058 1059
enum hrtimer_restart kvm_s390_idle_wakeup(struct hrtimer *timer)
{
	struct kvm_vcpu *vcpu;
1060
	u64 sltime;
1061 1062

	vcpu = container_of(timer, struct kvm_vcpu, arch.ckc_timer);
1063
	sltime = __calculate_sltime(vcpu);
1064

1065 1066 1067 1068
	/*
	 * If the monotonic clock runs faster than the tod clock we might be
	 * woken up too early and have to go back to sleep to avoid deadlocks.
	 */
1069
	if (sltime && hrtimer_forward_now(timer, ns_to_ktime(sltime)))
1070 1071
		return HRTIMER_RESTART;
	kvm_s390_vcpu_wakeup(vcpu);
1072 1073
	return HRTIMER_NORESTART;
}
1074

1075 1076 1077 1078
void kvm_s390_clear_local_irqs(struct kvm_vcpu *vcpu)
{
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;

1079
	spin_lock(&li->lock);
1080 1081 1082
	li->pending_irqs = 0;
	bitmap_zero(li->sigp_emerg_pending, KVM_MAX_VCPUS);
	memset(&li->irq, 0, sizeof(li->irq));
1083
	spin_unlock(&li->lock);
1084

1085
	sca_clear_ext_call(vcpu);
1086 1087
}

1088
int __must_check kvm_s390_deliver_pending_interrupts(struct kvm_vcpu *vcpu)
1089
{
1090
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1091
	deliver_irq_t func;
1092
	int rc = 0;
1093
	unsigned long irq_type;
1094
	unsigned long irqs;
1095 1096 1097

	__reset_intercept_indicators(vcpu);

1098 1099
	/* pending ckc conditions might have been invalidated */
	clear_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs);
1100
	if (ckc_irq_pending(vcpu))
1101 1102
		set_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs);

1103 1104 1105 1106 1107
	/* pending cpu timer conditions might have been invalidated */
	clear_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs);
	if (cpu_timer_irq_pending(vcpu))
		set_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs);

1108
	while ((irqs = deliverable_irqs(vcpu)) && !rc) {
1109
		/* bits are in the order of interrupt priority */
1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120
		irq_type = find_first_bit(&irqs, IRQ_PEND_COUNT);
		if (is_ioirq(irq_type)) {
			rc = __deliver_io(vcpu, irq_type);
		} else {
			func = deliver_irq_funcs[irq_type];
			if (!func) {
				WARN_ON_ONCE(func == NULL);
				clear_bit(irq_type, &li->pending_irqs);
				continue;
			}
			rc = func(vcpu);
1121
		}
1122
	}
1123

1124
	set_intercept_indicators(vcpu);
1125 1126

	return rc;
1127 1128
}

1129
static int __inject_prog(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
1130 1131 1132
{
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;

1133 1134 1135 1136
	VCPU_EVENT(vcpu, 3, "inject: program irq code 0x%x", irq->u.pgm.code);
	trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_PROGRAM_INT,
				   irq->u.pgm.code, 0);

1137 1138 1139 1140 1141 1142 1143
	if (!(irq->u.pgm.flags & KVM_S390_PGM_FLAGS_ILC_VALID)) {
		/* auto detection if no valid ILC was given */
		irq->u.pgm.flags &= ~KVM_S390_PGM_FLAGS_ILC_MASK;
		irq->u.pgm.flags |= kvm_s390_get_ilen(vcpu);
		irq->u.pgm.flags |= KVM_S390_PGM_FLAGS_ILC_VALID;
	}

1144 1145
	if (irq->u.pgm.code == PGM_PER) {
		li->irq.pgm.code |= PGM_PER;
1146
		li->irq.pgm.flags = irq->u.pgm.flags;
1147 1148 1149 1150 1151 1152 1153 1154
		/* only modify PER related information */
		li->irq.pgm.per_address = irq->u.pgm.per_address;
		li->irq.pgm.per_code = irq->u.pgm.per_code;
		li->irq.pgm.per_atmid = irq->u.pgm.per_atmid;
		li->irq.pgm.per_access_id = irq->u.pgm.per_access_id;
	} else if (!(irq->u.pgm.code & PGM_PER)) {
		li->irq.pgm.code = (li->irq.pgm.code & PGM_PER) |
				   irq->u.pgm.code;
1155
		li->irq.pgm.flags = irq->u.pgm.flags;
1156 1157 1158 1159 1160 1161 1162 1163 1164 1165
		/* only modify non-PER information */
		li->irq.pgm.trans_exc_code = irq->u.pgm.trans_exc_code;
		li->irq.pgm.mon_code = irq->u.pgm.mon_code;
		li->irq.pgm.data_exc_code = irq->u.pgm.data_exc_code;
		li->irq.pgm.mon_class_nr = irq->u.pgm.mon_class_nr;
		li->irq.pgm.exc_access_id = irq->u.pgm.exc_access_id;
		li->irq.pgm.op_access_id = irq->u.pgm.op_access_id;
	} else {
		li->irq.pgm = irq->u.pgm;
	}
1166
	set_bit(IRQ_PEND_PROG, &li->pending_irqs);
1167 1168 1169
	return 0;
}

1170
static int __inject_pfault_init(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
1171 1172 1173
{
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;

1174 1175
	VCPU_EVENT(vcpu, 4, "inject: pfault init parameter block at 0x%llx",
		   irq->u.ext.ext_params2);
1176 1177
	trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_PFAULT_INIT,
				   irq->u.ext.ext_params,
1178
				   irq->u.ext.ext_params2);
1179 1180 1181

	li->irq.ext = irq->u.ext;
	set_bit(IRQ_PEND_PFAULT_INIT, &li->pending_irqs);
1182
	atomic_or(CPUSTAT_EXT_INT, li->cpuflags);
1183 1184 1185
	return 0;
}

1186
static int __inject_extcall(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
1187 1188
{
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1189
	struct kvm_s390_extcall_info *extcall = &li->irq.extcall;
1190
	uint16_t src_id = irq->u.extcall.code;
1191

1192
	VCPU_EVENT(vcpu, 4, "inject: external call source-cpu:%u",
1193
		   src_id);
1194
	trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_EXTERNAL_CALL,
1195
				   src_id, 0);
1196 1197

	/* sending vcpu invalid */
1198
	if (kvm_get_vcpu_by_id(vcpu->kvm, src_id) == NULL)
1199 1200
		return -EINVAL;

1201
	if (sclp.has_sigpif)
1202
		return sca_inject_ext_call(vcpu, src_id);
1203

1204
	if (test_and_set_bit(IRQ_PEND_EXT_EXTERNAL, &li->pending_irqs))
1205
		return -EBUSY;
1206
	*extcall = irq->u.extcall;
1207
	atomic_or(CPUSTAT_EXT_INT, li->cpuflags);
1208 1209 1210
	return 0;
}

1211
static int __inject_set_prefix(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
1212 1213
{
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1214
	struct kvm_s390_prefix_info *prefix = &li->irq.prefix;
1215

1216
	VCPU_EVENT(vcpu, 3, "inject: set prefix to %x",
1217
		   irq->u.prefix.address);
1218
	trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_SIGP_SET_PREFIX,
1219
				   irq->u.prefix.address, 0);
1220

1221 1222 1223
	if (!is_vcpu_stopped(vcpu))
		return -EBUSY;

1224 1225
	*prefix = irq->u.prefix;
	set_bit(IRQ_PEND_SET_PREFIX, &li->pending_irqs);
1226 1227 1228
	return 0;
}

1229
#define KVM_S390_STOP_SUPP_FLAGS (KVM_S390_STOP_FLAG_STORE_STATUS)
1230
static int __inject_sigp_stop(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
1231 1232
{
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1233
	struct kvm_s390_stop_info *stop = &li->irq.stop;
1234
	int rc = 0;
1235

1236
	trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_SIGP_STOP, 0, 0);
1237

1238 1239 1240
	if (irq->u.stop.flags & ~KVM_S390_STOP_SUPP_FLAGS)
		return -EINVAL;

1241 1242 1243 1244 1245 1246 1247 1248 1249
	if (is_vcpu_stopped(vcpu)) {
		if (irq->u.stop.flags & KVM_S390_STOP_FLAG_STORE_STATUS)
			rc = kvm_s390_store_status_unloaded(vcpu,
						KVM_S390_STORE_STATUS_NOADDR);
		return rc;
	}

	if (test_and_set_bit(IRQ_PEND_SIGP_STOP, &li->pending_irqs))
		return -EBUSY;
1250
	stop->flags = irq->u.stop.flags;
1251
	__set_cpuflag(vcpu, CPUSTAT_STOP_INT);
1252 1253 1254 1255
	return 0;
}

static int __inject_sigp_restart(struct kvm_vcpu *vcpu,
1256
				 struct kvm_s390_irq *irq)
1257 1258 1259
{
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;

1260
	VCPU_EVENT(vcpu, 3, "%s", "inject: restart int");
1261
	trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_RESTART, 0, 0);
1262 1263

	set_bit(IRQ_PEND_RESTART, &li->pending_irqs);
1264 1265 1266 1267
	return 0;
}

static int __inject_sigp_emergency(struct kvm_vcpu *vcpu,
1268
				   struct kvm_s390_irq *irq)
1269 1270 1271
{
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;

1272
	VCPU_EVENT(vcpu, 4, "inject: emergency from cpu %u",
1273 1274
		   irq->u.emerg.code);
	trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_EMERGENCY,
1275
				   irq->u.emerg.code, 0);
1276

1277 1278 1279 1280
	/* sending vcpu invalid */
	if (kvm_get_vcpu_by_id(vcpu->kvm, irq->u.emerg.code) == NULL)
		return -EINVAL;

1281
	set_bit(irq->u.emerg.code, li->sigp_emerg_pending);
1282
	set_bit(IRQ_PEND_EXT_EMERGENCY, &li->pending_irqs);
1283
	atomic_or(CPUSTAT_EXT_INT, li->cpuflags);
1284 1285 1286
	return 0;
}

1287
static int __inject_mchk(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
1288 1289
{
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1290
	struct kvm_s390_mchk_info *mchk = &li->irq.mchk;
1291

1292
	VCPU_EVENT(vcpu, 3, "inject: machine check mcic 0x%llx",
1293
		   irq->u.mchk.mcic);
1294
	trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_MCHK, 0,
1295
				   irq->u.mchk.mcic);
1296 1297

	/*
1298 1299 1300 1301 1302 1303
	 * Because repressible machine checks can be indicated along with
	 * exigent machine checks (PoP, Chapter 11, Interruption action)
	 * we need to combine cr14, mcic and external damage code.
	 * Failing storage address and the logout area should not be or'ed
	 * together, we just indicate the last occurrence of the corresponding
	 * machine check
1304
	 */
1305
	mchk->cr14 |= irq->u.mchk.cr14;
1306
	mchk->mcic |= irq->u.mchk.mcic;
1307 1308 1309 1310
	mchk->ext_damage_code |= irq->u.mchk.ext_damage_code;
	mchk->failing_storage_address = irq->u.mchk.failing_storage_address;
	memcpy(&mchk->fixed_logout, &irq->u.mchk.fixed_logout,
	       sizeof(mchk->fixed_logout));
1311 1312 1313 1314
	if (mchk->mcic & MCHK_EX_MASK)
		set_bit(IRQ_PEND_MCHK_EX, &li->pending_irqs);
	else if (mchk->mcic & MCHK_REP_MASK)
		set_bit(IRQ_PEND_MCHK_REP,  &li->pending_irqs);
1315 1316 1317
	return 0;
}

1318
static int __inject_ckc(struct kvm_vcpu *vcpu)
1319 1320 1321
{
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;

1322
	VCPU_EVENT(vcpu, 3, "%s", "inject: clock comparator external");
1323
	trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_CLOCK_COMP,
1324
				   0, 0);
1325 1326

	set_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs);
1327
	atomic_or(CPUSTAT_EXT_INT, li->cpuflags);
1328 1329 1330
	return 0;
}

1331
static int __inject_cpu_timer(struct kvm_vcpu *vcpu)
1332 1333 1334
{
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;

1335
	VCPU_EVENT(vcpu, 3, "%s", "inject: cpu timer external");
1336
	trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_CPU_TIMER,
1337
				   0, 0);
1338 1339

	set_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs);
1340
	atomic_or(CPUSTAT_EXT_INT, li->cpuflags);
1341 1342 1343
	return 0;
}

1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368
static struct kvm_s390_interrupt_info *get_io_int(struct kvm *kvm,
						  int isc, u32 schid)
{
	struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
	struct list_head *isc_list = &fi->lists[FIRQ_LIST_IO_ISC_0 + isc];
	struct kvm_s390_interrupt_info *iter;
	u16 id = (schid & 0xffff0000U) >> 16;
	u16 nr = schid & 0x0000ffffU;

	spin_lock(&fi->lock);
	list_for_each_entry(iter, isc_list, list) {
		if (schid && (id != iter->io.subchannel_id ||
			      nr != iter->io.subchannel_nr))
			continue;
		/* found an appropriate entry */
		list_del_init(&iter->list);
		fi->counters[FIRQ_CNTR_IO] -= 1;
		if (list_empty(isc_list))
			clear_bit(IRQ_PEND_IO_ISC_0 + isc, &fi->pending_irqs);
		spin_unlock(&fi->lock);
		return iter;
	}
	spin_unlock(&fi->lock);
	return NULL;
}
1369

1370 1371 1372 1373
/*
 * Dequeue and return an I/O interrupt matching any of the interruption
 * subclasses as designated by the isc mask in cr6 and the schid (if != 0).
 */
1374
struct kvm_s390_interrupt_info *kvm_s390_get_io_int(struct kvm *kvm,
1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465
						    u64 isc_mask, u32 schid)
{
	struct kvm_s390_interrupt_info *inti = NULL;
	int isc;

	for (isc = 0; isc <= MAX_ISC && !inti; isc++) {
		if (isc_mask & isc_to_isc_bits(isc))
			inti = get_io_int(kvm, isc, schid);
	}
	return inti;
}

#define SCCB_MASK 0xFFFFFFF8
#define SCCB_EVENT_PENDING 0x3

static int __inject_service(struct kvm *kvm,
			     struct kvm_s390_interrupt_info *inti)
{
	struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;

	spin_lock(&fi->lock);
	fi->srv_signal.ext_params |= inti->ext.ext_params & SCCB_EVENT_PENDING;
	/*
	 * Early versions of the QEMU s390 bios will inject several
	 * service interrupts after another without handling a
	 * condition code indicating busy.
	 * We will silently ignore those superfluous sccb values.
	 * A future version of QEMU will take care of serialization
	 * of servc requests
	 */
	if (fi->srv_signal.ext_params & SCCB_MASK)
		goto out;
	fi->srv_signal.ext_params |= inti->ext.ext_params & SCCB_MASK;
	set_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs);
out:
	spin_unlock(&fi->lock);
	kfree(inti);
	return 0;
}

static int __inject_virtio(struct kvm *kvm,
			    struct kvm_s390_interrupt_info *inti)
{
	struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;

	spin_lock(&fi->lock);
	if (fi->counters[FIRQ_CNTR_VIRTIO] >= KVM_S390_MAX_VIRTIO_IRQS) {
		spin_unlock(&fi->lock);
		return -EBUSY;
	}
	fi->counters[FIRQ_CNTR_VIRTIO] += 1;
	list_add_tail(&inti->list, &fi->lists[FIRQ_LIST_VIRTIO]);
	set_bit(IRQ_PEND_VIRTIO, &fi->pending_irqs);
	spin_unlock(&fi->lock);
	return 0;
}

static int __inject_pfault_done(struct kvm *kvm,
				 struct kvm_s390_interrupt_info *inti)
{
	struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;

	spin_lock(&fi->lock);
	if (fi->counters[FIRQ_CNTR_PFAULT] >=
		(ASYNC_PF_PER_VCPU * KVM_MAX_VCPUS)) {
		spin_unlock(&fi->lock);
		return -EBUSY;
	}
	fi->counters[FIRQ_CNTR_PFAULT] += 1;
	list_add_tail(&inti->list, &fi->lists[FIRQ_LIST_PFAULT]);
	set_bit(IRQ_PEND_PFAULT_DONE, &fi->pending_irqs);
	spin_unlock(&fi->lock);
	return 0;
}

#define CR_PENDING_SUBCLASS 28
static int __inject_float_mchk(struct kvm *kvm,
				struct kvm_s390_interrupt_info *inti)
{
	struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;

	spin_lock(&fi->lock);
	fi->mchk.cr14 |= inti->mchk.cr14 & (1UL << CR_PENDING_SUBCLASS);
	fi->mchk.mcic |= inti->mchk.mcic;
	set_bit(IRQ_PEND_MCHK_REP, &fi->pending_irqs);
	spin_unlock(&fi->lock);
	kfree(inti);
	return 0;
}

static int __inject_io(struct kvm *kvm, struct kvm_s390_interrupt_info *inti)
1466 1467
{
	struct kvm_s390_float_interrupt *fi;
1468 1469
	struct list_head *list;
	int isc;
1470 1471 1472

	fi = &kvm->arch.float_int;
	spin_lock(&fi->lock);
1473 1474 1475
	if (fi->counters[FIRQ_CNTR_IO] >= KVM_S390_MAX_FLOAT_IRQS) {
		spin_unlock(&fi->lock);
		return -EBUSY;
J
Jens Freimann 已提交
1476
	}
1477 1478
	fi->counters[FIRQ_CNTR_IO] += 1;

1479 1480 1481 1482 1483 1484 1485
	if (inti->type & KVM_S390_INT_IO_AI_MASK)
		VM_EVENT(kvm, 4, "%s", "inject: I/O (AI)");
	else
		VM_EVENT(kvm, 4, "inject: I/O %x ss %x schid %04x",
			inti->io.subchannel_id >> 8,
			inti->io.subchannel_id >> 1 & 0x3,
			inti->io.subchannel_nr);
1486 1487 1488 1489
	isc = int_word_to_isc(inti->io.io_int_word);
	list = &fi->lists[FIRQ_LIST_IO_ISC_0 + isc];
	list_add_tail(&inti->list, list);
	set_bit(IRQ_PEND_IO_ISC_0 + isc, &fi->pending_irqs);
1490
	spin_unlock(&fi->lock);
1491
	return 0;
1492
}
1493

1494 1495 1496 1497
/*
 * Find a destination VCPU for a floating irq and kick it.
 */
static void __floating_irq_kick(struct kvm *kvm, u64 type)
1498
{
1499
	struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
1500
	struct kvm_s390_local_interrupt *li;
1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525
	struct kvm_vcpu *dst_vcpu;
	int sigcpu, online_vcpus, nr_tries = 0;

	online_vcpus = atomic_read(&kvm->online_vcpus);
	if (!online_vcpus)
		return;

	/* find idle VCPUs first, then round robin */
	sigcpu = find_first_bit(fi->idle_mask, online_vcpus);
	if (sigcpu == online_vcpus) {
		do {
			sigcpu = fi->next_rr_cpu;
			fi->next_rr_cpu = (fi->next_rr_cpu + 1) % online_vcpus;
			/* avoid endless loops if all vcpus are stopped */
			if (nr_tries++ >= online_vcpus)
				return;
		} while (is_vcpu_stopped(kvm_get_vcpu(kvm, sigcpu)));
	}
	dst_vcpu = kvm_get_vcpu(kvm, sigcpu);

	/* make the VCPU drop out of the SIE, or wake it up if sleeping */
	li = &dst_vcpu->arch.local_int;
	spin_lock(&li->lock);
	switch (type) {
	case KVM_S390_MCHK:
1526
		atomic_or(CPUSTAT_STOP_INT, li->cpuflags);
1527 1528
		break;
	case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
1529
		atomic_or(CPUSTAT_IO_INT, li->cpuflags);
1530 1531
		break;
	default:
1532
		atomic_or(CPUSTAT_EXT_INT, li->cpuflags);
1533 1534 1535 1536 1537 1538 1539 1540
		break;
	}
	spin_unlock(&li->lock);
	kvm_s390_vcpu_wakeup(dst_vcpu);
}

static int __inject_vm(struct kvm *kvm, struct kvm_s390_interrupt_info *inti)
{
1541 1542
	u64 type = READ_ONCE(inti->type);
	int rc;
1543

1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560
	switch (type) {
	case KVM_S390_MCHK:
		rc = __inject_float_mchk(kvm, inti);
		break;
	case KVM_S390_INT_VIRTIO:
		rc = __inject_virtio(kvm, inti);
		break;
	case KVM_S390_INT_SERVICE:
		rc = __inject_service(kvm, inti);
		break;
	case KVM_S390_INT_PFAULT_DONE:
		rc = __inject_pfault_done(kvm, inti);
		break;
	case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
		rc = __inject_io(kvm, inti);
		break;
	default:
J
Jens Freimann 已提交
1561
		rc = -EINVAL;
1562
	}
1563 1564 1565
	if (rc)
		return rc;

1566
	__floating_irq_kick(kvm, type);
1567
	return 0;
1568 1569 1570 1571 1572 1573
}

int kvm_s390_inject_vm(struct kvm *kvm,
		       struct kvm_s390_interrupt *s390int)
{
	struct kvm_s390_interrupt_info *inti;
1574
	int rc;
1575

1576 1577 1578 1579
	inti = kzalloc(sizeof(*inti), GFP_KERNEL);
	if (!inti)
		return -ENOMEM;

1580 1581
	inti->type = s390int->type;
	switch (inti->type) {
1582
	case KVM_S390_INT_VIRTIO:
1583
		VM_EVENT(kvm, 5, "inject: virtio parm:%x,parm64:%llx",
1584 1585 1586 1587 1588
			 s390int->parm, s390int->parm64);
		inti->ext.ext_params = s390int->parm;
		inti->ext.ext_params2 = s390int->parm64;
		break;
	case KVM_S390_INT_SERVICE:
1589
		VM_EVENT(kvm, 4, "inject: sclp parm:%x", s390int->parm);
1590 1591
		inti->ext.ext_params = s390int->parm;
		break;
1592 1593 1594
	case KVM_S390_INT_PFAULT_DONE:
		inti->ext.ext_params2 = s390int->parm64;
		break;
1595
	case KVM_S390_MCHK:
1596
		VM_EVENT(kvm, 3, "inject: machine check mcic 0x%llx",
1597 1598 1599 1600
			 s390int->parm64);
		inti->mchk.cr14 = s390int->parm; /* upper bits are not used */
		inti->mchk.mcic = s390int->parm64;
		break;
1601 1602 1603 1604 1605 1606
	case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
		inti->io.subchannel_id = s390int->parm >> 16;
		inti->io.subchannel_nr = s390int->parm & 0x0000ffffu;
		inti->io.io_int_parm = s390int->parm64 >> 32;
		inti->io.io_int_word = s390int->parm64 & 0x00000000ffffffffull;
		break;
1607 1608 1609 1610
	default:
		kfree(inti);
		return -EINVAL;
	}
1611 1612
	trace_kvm_s390_inject_vm(s390int->type, s390int->parm, s390int->parm64,
				 2);
1613

1614 1615 1616 1617
	rc = __inject_vm(kvm, inti);
	if (rc)
		kfree(inti);
	return rc;
1618 1619
}

1620
int kvm_s390_reinject_io_int(struct kvm *kvm,
1621 1622
			      struct kvm_s390_interrupt_info *inti)
{
1623
	return __inject_vm(kvm, inti);
1624 1625
}

1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638
int s390int_to_s390irq(struct kvm_s390_interrupt *s390int,
		       struct kvm_s390_irq *irq)
{
	irq->type = s390int->type;
	switch (irq->type) {
	case KVM_S390_PROGRAM_INT:
		if (s390int->parm & 0xffff0000)
			return -EINVAL;
		irq->u.pgm.code = s390int->parm;
		break;
	case KVM_S390_SIGP_SET_PREFIX:
		irq->u.prefix.address = s390int->parm;
		break;
1639 1640 1641
	case KVM_S390_SIGP_STOP:
		irq->u.stop.flags = s390int->parm;
		break;
1642
	case KVM_S390_INT_EXTERNAL_CALL:
1643
		if (s390int->parm & 0xffff0000)
1644 1645 1646 1647
			return -EINVAL;
		irq->u.extcall.code = s390int->parm;
		break;
	case KVM_S390_INT_EMERGENCY:
1648
		if (s390int->parm & 0xffff0000)
1649 1650 1651 1652 1653 1654 1655 1656 1657 1658
			return -EINVAL;
		irq->u.emerg.code = s390int->parm;
		break;
	case KVM_S390_MCHK:
		irq->u.mchk.mcic = s390int->parm64;
		break;
	}
	return 0;
}

1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675
int kvm_s390_is_stop_irq_pending(struct kvm_vcpu *vcpu)
{
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;

	return test_bit(IRQ_PEND_SIGP_STOP, &li->pending_irqs);
}

void kvm_s390_clear_stop_irq(struct kvm_vcpu *vcpu)
{
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;

	spin_lock(&li->lock);
	li->irq.stop.flags = 0;
	clear_bit(IRQ_PEND_SIGP_STOP, &li->pending_irqs);
	spin_unlock(&li->lock);
}

1676
static int do_inject_vcpu(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
1677
{
1678
	int rc;
1679

1680
	switch (irq->type) {
1681
	case KVM_S390_PROGRAM_INT:
1682
		rc = __inject_prog(vcpu, irq);
1683
		break;
1684
	case KVM_S390_SIGP_SET_PREFIX:
1685
		rc = __inject_set_prefix(vcpu, irq);
1686
		break;
1687
	case KVM_S390_SIGP_STOP:
1688
		rc = __inject_sigp_stop(vcpu, irq);
1689
		break;
1690
	case KVM_S390_RESTART:
1691
		rc = __inject_sigp_restart(vcpu, irq);
1692
		break;
1693
	case KVM_S390_INT_CLOCK_COMP:
1694
		rc = __inject_ckc(vcpu);
1695
		break;
1696
	case KVM_S390_INT_CPU_TIMER:
1697
		rc = __inject_cpu_timer(vcpu);
1698
		break;
1699
	case KVM_S390_INT_EXTERNAL_CALL:
1700
		rc = __inject_extcall(vcpu, irq);
1701
		break;
1702
	case KVM_S390_INT_EMERGENCY:
1703
		rc = __inject_sigp_emergency(vcpu, irq);
1704
		break;
1705
	case KVM_S390_MCHK:
1706
		rc = __inject_mchk(vcpu, irq);
1707
		break;
1708
	case KVM_S390_INT_PFAULT_INIT:
1709
		rc = __inject_pfault_init(vcpu, irq);
1710
		break;
1711 1712
	case KVM_S390_INT_VIRTIO:
	case KVM_S390_INT_SERVICE:
1713
	case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
1714
	default:
1715
		rc = -EINVAL;
1716
	}
1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727

	return rc;
}

int kvm_s390_inject_vcpu(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
{
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
	int rc;

	spin_lock(&li->lock);
	rc = do_inject_vcpu(vcpu, irq);
1728
	spin_unlock(&li->lock);
1729 1730 1731
	if (!rc)
		kvm_s390_vcpu_wakeup(vcpu);
	return rc;
1732
}
1733

1734
static inline void clear_irq_list(struct list_head *_list)
1735
{
1736
	struct kvm_s390_interrupt_info *inti, *n;
1737

1738
	list_for_each_entry_safe(inti, n, _list, list) {
1739 1740 1741 1742 1743
		list_del(&inti->list);
		kfree(inti);
	}
}

1744 1745
static void inti_to_irq(struct kvm_s390_interrupt_info *inti,
		       struct kvm_s390_irq *irq)
1746
{
1747
	irq->type = inti->type;
1748
	switch (inti->type) {
1749 1750
	case KVM_S390_INT_PFAULT_INIT:
	case KVM_S390_INT_PFAULT_DONE:
1751
	case KVM_S390_INT_VIRTIO:
1752
		irq->u.ext = inti->ext;
1753 1754
		break;
	case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
1755
		irq->u.io = inti->io;
1756 1757 1758 1759
		break;
	}
}

1760 1761 1762 1763 1764 1765
void kvm_s390_clear_float_irqs(struct kvm *kvm)
{
	struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
	int i;

	spin_lock(&fi->lock);
1766 1767 1768
	fi->pending_irqs = 0;
	memset(&fi->srv_signal, 0, sizeof(fi->srv_signal));
	memset(&fi->mchk, 0, sizeof(fi->mchk));
1769 1770 1771 1772 1773 1774 1775
	for (i = 0; i < FIRQ_LIST_COUNT; i++)
		clear_irq_list(&fi->lists[i]);
	for (i = 0; i < FIRQ_MAX_COUNT; i++)
		fi->counters[i] = 0;
	spin_unlock(&fi->lock);
};

1776
static int get_all_floating_irqs(struct kvm *kvm, u8 __user *usrbuf, u64 len)
1777 1778 1779
{
	struct kvm_s390_interrupt_info *inti;
	struct kvm_s390_float_interrupt *fi;
1780
	struct kvm_s390_irq *buf;
1781
	struct kvm_s390_irq *irq;
1782
	int max_irqs;
1783 1784
	int ret = 0;
	int n = 0;
1785
	int i;
1786

1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800
	if (len > KVM_S390_FLIC_MAX_BUFFER || len == 0)
		return -EINVAL;

	/*
	 * We are already using -ENOMEM to signal
	 * userspace it may retry with a bigger buffer,
	 * so we need to use something else for this case
	 */
	buf = vzalloc(len);
	if (!buf)
		return -ENOBUFS;

	max_irqs = len / sizeof(struct kvm_s390_irq);

1801 1802
	fi = &kvm->arch.float_int;
	spin_lock(&fi->lock);
1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814
	for (i = 0; i < FIRQ_LIST_COUNT; i++) {
		list_for_each_entry(inti, &fi->lists[i], list) {
			if (n == max_irqs) {
				/* signal userspace to try again */
				ret = -ENOMEM;
				goto out;
			}
			inti_to_irq(inti, &buf[n]);
			n++;
		}
	}
	if (test_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs)) {
1815
		if (n == max_irqs) {
1816 1817
			/* signal userspace to try again */
			ret = -ENOMEM;
1818
			goto out;
1819
		}
1820 1821 1822
		irq = (struct kvm_s390_irq *) &buf[n];
		irq->type = KVM_S390_INT_SERVICE;
		irq->u.ext = fi->srv_signal;
1823 1824
		n++;
	}
1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837
	if (test_bit(IRQ_PEND_MCHK_REP, &fi->pending_irqs)) {
		if (n == max_irqs) {
				/* signal userspace to try again */
				ret = -ENOMEM;
				goto out;
		}
		irq = (struct kvm_s390_irq *) &buf[n];
		irq->type = KVM_S390_MCHK;
		irq->u.mchk = fi->mchk;
		n++;
}

out:
1838
	spin_unlock(&fi->lock);
1839 1840 1841 1842 1843
	if (!ret && n > 0) {
		if (copy_to_user(usrbuf, buf, sizeof(struct kvm_s390_irq) * n))
			ret = -EFAULT;
	}
	vfree(buf);
1844 1845 1846 1847 1848 1849 1850 1851 1852 1853

	return ret < 0 ? ret : n;
}

static int flic_get_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
{
	int r;

	switch (attr->group) {
	case KVM_DEV_FLIC_GET_ALL_IRQS:
1854
		r = get_all_floating_irqs(dev->kvm, (u8 __user *) attr->addr,
1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875
					  attr->attr);
		break;
	default:
		r = -EINVAL;
	}

	return r;
}

static inline int copy_irq_from_user(struct kvm_s390_interrupt_info *inti,
				     u64 addr)
{
	struct kvm_s390_irq __user *uptr = (struct kvm_s390_irq __user *) addr;
	void *target = NULL;
	void __user *source;
	u64 size;

	if (get_user(inti->type, (u64 __user *)addr))
		return -EFAULT;

	switch (inti->type) {
1876 1877
	case KVM_S390_INT_PFAULT_INIT:
	case KVM_S390_INT_PFAULT_DONE:
1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925
	case KVM_S390_INT_VIRTIO:
	case KVM_S390_INT_SERVICE:
		target = (void *) &inti->ext;
		source = &uptr->u.ext;
		size = sizeof(inti->ext);
		break;
	case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
		target = (void *) &inti->io;
		source = &uptr->u.io;
		size = sizeof(inti->io);
		break;
	case KVM_S390_MCHK:
		target = (void *) &inti->mchk;
		source = &uptr->u.mchk;
		size = sizeof(inti->mchk);
		break;
	default:
		return -EINVAL;
	}

	if (copy_from_user(target, source, size))
		return -EFAULT;

	return 0;
}

static int enqueue_floating_irq(struct kvm_device *dev,
				struct kvm_device_attr *attr)
{
	struct kvm_s390_interrupt_info *inti = NULL;
	int r = 0;
	int len = attr->attr;

	if (len % sizeof(struct kvm_s390_irq) != 0)
		return -EINVAL;
	else if (len > KVM_S390_FLIC_MAX_BUFFER)
		return -EINVAL;

	while (len >= sizeof(struct kvm_s390_irq)) {
		inti = kzalloc(sizeof(*inti), GFP_KERNEL);
		if (!inti)
			return -ENOMEM;

		r = copy_irq_from_user(inti, attr->addr);
		if (r) {
			kfree(inti);
			return r;
		}
J
Jens Freimann 已提交
1926 1927 1928 1929 1930
		r = __inject_vm(dev->kvm, inti);
		if (r) {
			kfree(inti);
			return r;
		}
1931 1932 1933 1934 1935 1936 1937
		len -= sizeof(struct kvm_s390_irq);
		attr->addr += sizeof(struct kvm_s390_irq);
	}

	return r;
}

1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003
static struct s390_io_adapter *get_io_adapter(struct kvm *kvm, unsigned int id)
{
	if (id >= MAX_S390_IO_ADAPTERS)
		return NULL;
	return kvm->arch.adapters[id];
}

static int register_io_adapter(struct kvm_device *dev,
			       struct kvm_device_attr *attr)
{
	struct s390_io_adapter *adapter;
	struct kvm_s390_io_adapter adapter_info;

	if (copy_from_user(&adapter_info,
			   (void __user *)attr->addr, sizeof(adapter_info)))
		return -EFAULT;

	if ((adapter_info.id >= MAX_S390_IO_ADAPTERS) ||
	    (dev->kvm->arch.adapters[adapter_info.id] != NULL))
		return -EINVAL;

	adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
	if (!adapter)
		return -ENOMEM;

	INIT_LIST_HEAD(&adapter->maps);
	init_rwsem(&adapter->maps_lock);
	atomic_set(&adapter->nr_maps, 0);
	adapter->id = adapter_info.id;
	adapter->isc = adapter_info.isc;
	adapter->maskable = adapter_info.maskable;
	adapter->masked = false;
	adapter->swap = adapter_info.swap;
	dev->kvm->arch.adapters[adapter->id] = adapter;

	return 0;
}

int kvm_s390_mask_adapter(struct kvm *kvm, unsigned int id, bool masked)
{
	int ret;
	struct s390_io_adapter *adapter = get_io_adapter(kvm, id);

	if (!adapter || !adapter->maskable)
		return -EINVAL;
	ret = adapter->masked;
	adapter->masked = masked;
	return ret;
}

static int kvm_s390_adapter_map(struct kvm *kvm, unsigned int id, __u64 addr)
{
	struct s390_io_adapter *adapter = get_io_adapter(kvm, id);
	struct s390_map_info *map;
	int ret;

	if (!adapter || !addr)
		return -EINVAL;

	map = kzalloc(sizeof(*map), GFP_KERNEL);
	if (!map) {
		ret = -ENOMEM;
		goto out;
	}
	INIT_LIST_HEAD(&map->list);
	map->guest_addr = addr;
2004
	map->addr = gmap_translate(kvm->arch.gmap, addr);
2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102
	if (map->addr == -EFAULT) {
		ret = -EFAULT;
		goto out;
	}
	ret = get_user_pages_fast(map->addr, 1, 1, &map->page);
	if (ret < 0)
		goto out;
	BUG_ON(ret != 1);
	down_write(&adapter->maps_lock);
	if (atomic_inc_return(&adapter->nr_maps) < MAX_S390_ADAPTER_MAPS) {
		list_add_tail(&map->list, &adapter->maps);
		ret = 0;
	} else {
		put_page(map->page);
		ret = -EINVAL;
	}
	up_write(&adapter->maps_lock);
out:
	if (ret)
		kfree(map);
	return ret;
}

static int kvm_s390_adapter_unmap(struct kvm *kvm, unsigned int id, __u64 addr)
{
	struct s390_io_adapter *adapter = get_io_adapter(kvm, id);
	struct s390_map_info *map, *tmp;
	int found = 0;

	if (!adapter || !addr)
		return -EINVAL;

	down_write(&adapter->maps_lock);
	list_for_each_entry_safe(map, tmp, &adapter->maps, list) {
		if (map->guest_addr == addr) {
			found = 1;
			atomic_dec(&adapter->nr_maps);
			list_del(&map->list);
			put_page(map->page);
			kfree(map);
			break;
		}
	}
	up_write(&adapter->maps_lock);

	return found ? 0 : -EINVAL;
}

void kvm_s390_destroy_adapters(struct kvm *kvm)
{
	int i;
	struct s390_map_info *map, *tmp;

	for (i = 0; i < MAX_S390_IO_ADAPTERS; i++) {
		if (!kvm->arch.adapters[i])
			continue;
		list_for_each_entry_safe(map, tmp,
					 &kvm->arch.adapters[i]->maps, list) {
			list_del(&map->list);
			put_page(map->page);
			kfree(map);
		}
		kfree(kvm->arch.adapters[i]);
	}
}

static int modify_io_adapter(struct kvm_device *dev,
			     struct kvm_device_attr *attr)
{
	struct kvm_s390_io_adapter_req req;
	struct s390_io_adapter *adapter;
	int ret;

	if (copy_from_user(&req, (void __user *)attr->addr, sizeof(req)))
		return -EFAULT;

	adapter = get_io_adapter(dev->kvm, req.id);
	if (!adapter)
		return -EINVAL;
	switch (req.type) {
	case KVM_S390_IO_ADAPTER_MASK:
		ret = kvm_s390_mask_adapter(dev->kvm, req.id, req.mask);
		if (ret > 0)
			ret = 0;
		break;
	case KVM_S390_IO_ADAPTER_MAP:
		ret = kvm_s390_adapter_map(dev->kvm, req.id, req.addr);
		break;
	case KVM_S390_IO_ADAPTER_UNMAP:
		ret = kvm_s390_adapter_unmap(dev->kvm, req.id, req.addr);
		break;
	default:
		ret = -EINVAL;
	}

	return ret;
}

2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123
static int clear_io_irq(struct kvm *kvm, struct kvm_device_attr *attr)

{
	const u64 isc_mask = 0xffUL << 24; /* all iscs set */
	u32 schid;

	if (attr->flags)
		return -EINVAL;
	if (attr->attr != sizeof(schid))
		return -EINVAL;
	if (copy_from_user(&schid, (void __user *) attr->addr, sizeof(schid)))
		return -EFAULT;
	kfree(kvm_s390_get_io_int(kvm, isc_mask, schid));
	/*
	 * If userspace is conforming to the architecture, we can have at most
	 * one pending I/O interrupt per subchannel, so this is effectively a
	 * clear all.
	 */
	return 0;
}

2124 2125 2126
static int flic_set_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
{
	int r = 0;
2127 2128
	unsigned int i;
	struct kvm_vcpu *vcpu;
2129 2130 2131 2132 2133 2134

	switch (attr->group) {
	case KVM_DEV_FLIC_ENQUEUE:
		r = enqueue_floating_irq(dev, attr);
		break;
	case KVM_DEV_FLIC_CLEAR_IRQS:
2135
		kvm_s390_clear_float_irqs(dev->kvm);
2136
		break;
2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150
	case KVM_DEV_FLIC_APF_ENABLE:
		dev->kvm->arch.gmap->pfault_enabled = 1;
		break;
	case KVM_DEV_FLIC_APF_DISABLE_WAIT:
		dev->kvm->arch.gmap->pfault_enabled = 0;
		/*
		 * Make sure no async faults are in transition when
		 * clearing the queues. So we don't need to worry
		 * about late coming workers.
		 */
		synchronize_srcu(&dev->kvm->srcu);
		kvm_for_each_vcpu(i, vcpu, dev->kvm)
			kvm_clear_async_pf_completion_queue(vcpu);
		break;
2151 2152 2153 2154 2155 2156
	case KVM_DEV_FLIC_ADAPTER_REGISTER:
		r = register_io_adapter(dev, attr);
		break;
	case KVM_DEV_FLIC_ADAPTER_MODIFY:
		r = modify_io_adapter(dev, attr);
		break;
2157 2158 2159
	case KVM_DEV_FLIC_CLEAR_IO_IRQ:
		r = clear_io_irq(dev->kvm, attr);
		break;
2160 2161 2162 2163 2164 2165 2166
	default:
		r = -EINVAL;
	}

	return r;
}

2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177
static int flic_has_attr(struct kvm_device *dev,
			     struct kvm_device_attr *attr)
{
	switch (attr->group) {
	case KVM_DEV_FLIC_GET_ALL_IRQS:
	case KVM_DEV_FLIC_ENQUEUE:
	case KVM_DEV_FLIC_CLEAR_IRQS:
	case KVM_DEV_FLIC_APF_ENABLE:
	case KVM_DEV_FLIC_APF_DISABLE_WAIT:
	case KVM_DEV_FLIC_ADAPTER_REGISTER:
	case KVM_DEV_FLIC_ADAPTER_MODIFY:
2178
	case KVM_DEV_FLIC_CLEAR_IO_IRQ:
2179 2180 2181 2182 2183
		return 0;
	}
	return -ENXIO;
}

2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204
static int flic_create(struct kvm_device *dev, u32 type)
{
	if (!dev)
		return -EINVAL;
	if (dev->kvm->arch.flic)
		return -EINVAL;
	dev->kvm->arch.flic = dev;
	return 0;
}

static void flic_destroy(struct kvm_device *dev)
{
	dev->kvm->arch.flic = NULL;
	kfree(dev);
}

/* s390 floating irq controller (flic) */
struct kvm_device_ops kvm_flic_ops = {
	.name = "kvm-flic",
	.get_attr = flic_get_attr,
	.set_attr = flic_set_attr,
2205
	.has_attr = flic_has_attr,
2206 2207 2208
	.create = flic_create,
	.destroy = flic_destroy,
};
2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300

static unsigned long get_ind_bit(__u64 addr, unsigned long bit_nr, bool swap)
{
	unsigned long bit;

	bit = bit_nr + (addr % PAGE_SIZE) * 8;

	return swap ? (bit ^ (BITS_PER_LONG - 1)) : bit;
}

static struct s390_map_info *get_map_info(struct s390_io_adapter *adapter,
					  u64 addr)
{
	struct s390_map_info *map;

	if (!adapter)
		return NULL;

	list_for_each_entry(map, &adapter->maps, list) {
		if (map->guest_addr == addr)
			return map;
	}
	return NULL;
}

static int adapter_indicators_set(struct kvm *kvm,
				  struct s390_io_adapter *adapter,
				  struct kvm_s390_adapter_int *adapter_int)
{
	unsigned long bit;
	int summary_set, idx;
	struct s390_map_info *info;
	void *map;

	info = get_map_info(adapter, adapter_int->ind_addr);
	if (!info)
		return -1;
	map = page_address(info->page);
	bit = get_ind_bit(info->addr, adapter_int->ind_offset, adapter->swap);
	set_bit(bit, map);
	idx = srcu_read_lock(&kvm->srcu);
	mark_page_dirty(kvm, info->guest_addr >> PAGE_SHIFT);
	set_page_dirty_lock(info->page);
	info = get_map_info(adapter, adapter_int->summary_addr);
	if (!info) {
		srcu_read_unlock(&kvm->srcu, idx);
		return -1;
	}
	map = page_address(info->page);
	bit = get_ind_bit(info->addr, adapter_int->summary_offset,
			  adapter->swap);
	summary_set = test_and_set_bit(bit, map);
	mark_page_dirty(kvm, info->guest_addr >> PAGE_SHIFT);
	set_page_dirty_lock(info->page);
	srcu_read_unlock(&kvm->srcu, idx);
	return summary_set ? 0 : 1;
}

/*
 * < 0 - not injected due to error
 * = 0 - coalesced, summary indicator already active
 * > 0 - injected interrupt
 */
static int set_adapter_int(struct kvm_kernel_irq_routing_entry *e,
			   struct kvm *kvm, int irq_source_id, int level,
			   bool line_status)
{
	int ret;
	struct s390_io_adapter *adapter;

	/* We're only interested in the 0->1 transition. */
	if (!level)
		return 0;
	adapter = get_io_adapter(kvm, e->adapter.adapter_id);
	if (!adapter)
		return -1;
	down_read(&adapter->maps_lock);
	ret = adapter_indicators_set(kvm, adapter, &e->adapter);
	up_read(&adapter->maps_lock);
	if ((ret > 0) && !adapter->masked) {
		struct kvm_s390_interrupt s390int = {
			.type = KVM_S390_INT_IO(1, 0, 0, 0),
			.parm = 0,
			.parm64 = (adapter->isc << 27) | 0x80000000,
		};
		ret = kvm_s390_inject_vm(kvm, &s390int);
		if (ret == 0)
			ret = 1;
	}
	return ret;
}

2301 2302
int kvm_set_routing_entry(struct kvm *kvm,
			  struct kvm_kernel_irq_routing_entry *e,
2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328
			  const struct kvm_irq_routing_entry *ue)
{
	int ret;

	switch (ue->type) {
	case KVM_IRQ_ROUTING_S390_ADAPTER:
		e->set = set_adapter_int;
		e->adapter.summary_addr = ue->u.adapter.summary_addr;
		e->adapter.ind_addr = ue->u.adapter.ind_addr;
		e->adapter.summary_offset = ue->u.adapter.summary_offset;
		e->adapter.ind_offset = ue->u.adapter.ind_offset;
		e->adapter.adapter_id = ue->u.adapter.adapter_id;
		ret = 0;
		break;
	default:
		ret = -EINVAL;
	}

	return ret;
}

int kvm_set_msi(struct kvm_kernel_irq_routing_entry *e, struct kvm *kvm,
		int irq_source_id, int level, bool line_status)
{
	return -EINVAL;
}
2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413

int kvm_s390_set_irq_state(struct kvm_vcpu *vcpu, void __user *irqstate, int len)
{
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
	struct kvm_s390_irq *buf;
	int r = 0;
	int n;

	buf = vmalloc(len);
	if (!buf)
		return -ENOMEM;

	if (copy_from_user((void *) buf, irqstate, len)) {
		r = -EFAULT;
		goto out_free;
	}

	/*
	 * Don't allow setting the interrupt state
	 * when there are already interrupts pending
	 */
	spin_lock(&li->lock);
	if (li->pending_irqs) {
		r = -EBUSY;
		goto out_unlock;
	}

	for (n = 0; n < len / sizeof(*buf); n++) {
		r = do_inject_vcpu(vcpu, &buf[n]);
		if (r)
			break;
	}

out_unlock:
	spin_unlock(&li->lock);
out_free:
	vfree(buf);

	return r;
}

static void store_local_irq(struct kvm_s390_local_interrupt *li,
			    struct kvm_s390_irq *irq,
			    unsigned long irq_type)
{
	switch (irq_type) {
	case IRQ_PEND_MCHK_EX:
	case IRQ_PEND_MCHK_REP:
		irq->type = KVM_S390_MCHK;
		irq->u.mchk = li->irq.mchk;
		break;
	case IRQ_PEND_PROG:
		irq->type = KVM_S390_PROGRAM_INT;
		irq->u.pgm = li->irq.pgm;
		break;
	case IRQ_PEND_PFAULT_INIT:
		irq->type = KVM_S390_INT_PFAULT_INIT;
		irq->u.ext = li->irq.ext;
		break;
	case IRQ_PEND_EXT_EXTERNAL:
		irq->type = KVM_S390_INT_EXTERNAL_CALL;
		irq->u.extcall = li->irq.extcall;
		break;
	case IRQ_PEND_EXT_CLOCK_COMP:
		irq->type = KVM_S390_INT_CLOCK_COMP;
		break;
	case IRQ_PEND_EXT_CPU_TIMER:
		irq->type = KVM_S390_INT_CPU_TIMER;
		break;
	case IRQ_PEND_SIGP_STOP:
		irq->type = KVM_S390_SIGP_STOP;
		irq->u.stop = li->irq.stop;
		break;
	case IRQ_PEND_RESTART:
		irq->type = KVM_S390_RESTART;
		break;
	case IRQ_PEND_SET_PREFIX:
		irq->type = KVM_S390_SIGP_SET_PREFIX;
		irq->u.prefix = li->irq.prefix;
		break;
	}
}

int kvm_s390_get_irq_state(struct kvm_vcpu *vcpu, __u8 __user *buf, int len)
{
2414
	int scn;
2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453
	unsigned long sigp_emerg_pending[BITS_TO_LONGS(KVM_MAX_VCPUS)];
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
	unsigned long pending_irqs;
	struct kvm_s390_irq irq;
	unsigned long irq_type;
	int cpuaddr;
	int n = 0;

	spin_lock(&li->lock);
	pending_irqs = li->pending_irqs;
	memcpy(&sigp_emerg_pending, &li->sigp_emerg_pending,
	       sizeof(sigp_emerg_pending));
	spin_unlock(&li->lock);

	for_each_set_bit(irq_type, &pending_irqs, IRQ_PEND_COUNT) {
		memset(&irq, 0, sizeof(irq));
		if (irq_type == IRQ_PEND_EXT_EMERGENCY)
			continue;
		if (n + sizeof(irq) > len)
			return -ENOBUFS;
		store_local_irq(&vcpu->arch.local_int, &irq, irq_type);
		if (copy_to_user(&buf[n], &irq, sizeof(irq)))
			return -EFAULT;
		n += sizeof(irq);
	}

	if (test_bit(IRQ_PEND_EXT_EMERGENCY, &pending_irqs)) {
		for_each_set_bit(cpuaddr, sigp_emerg_pending, KVM_MAX_VCPUS) {
			memset(&irq, 0, sizeof(irq));
			if (n + sizeof(irq) > len)
				return -ENOBUFS;
			irq.type = KVM_S390_INT_EMERGENCY;
			irq.u.emerg.code = cpuaddr;
			if (copy_to_user(&buf[n], &irq, sizeof(irq)))
				return -EFAULT;
			n += sizeof(irq);
		}
	}

2454
	if (sca_ext_call_pending(vcpu, &scn)) {
2455 2456 2457 2458
		if (n + sizeof(irq) > len)
			return -ENOBUFS;
		memset(&irq, 0, sizeof(irq));
		irq.type = KVM_S390_INT_EXTERNAL_CALL;
2459
		irq.u.extcall.code = scn;
2460 2461 2462 2463 2464 2465 2466
		if (copy_to_user(&buf[n], &irq, sizeof(irq)))
			return -EFAULT;
		n += sizeof(irq);
	}

	return n;
}