cpufreq_governor.c 16.1 KB
Newer Older
1 2 3 4 5
/*
 * drivers/cpufreq/cpufreq_governor.c
 *
 * CPUFREQ governors common code
 *
6 7 8 9 10 11
 * Copyright	(C) 2001 Russell King
 *		(C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
 *		(C) 2003 Jun Nakajima <jun.nakajima@intel.com>
 *		(C) 2009 Alexander Clouter <alex@digriz.org.uk>
 *		(c) 2012 Viresh Kumar <viresh.kumar@linaro.org>
 *
12 13 14 15 16
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

17 18
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

19 20
#include <linux/export.h>
#include <linux/kernel_stat.h>
21
#include <linux/slab.h>
22 23 24

#include "cpufreq_governor.h"

25 26 27 28 29 30 31 32
static struct attribute_group *get_sysfs_attr(struct dbs_data *dbs_data)
{
	if (have_governor_per_policy())
		return dbs_data->cdata->attr_group_gov_pol;
	else
		return dbs_data->cdata->attr_group_gov_sys;
}

33 34
void dbs_check_cpu(struct dbs_data *dbs_data, int cpu)
{
35
	struct cpu_dbs_info *cdbs = dbs_data->cdata->get_cpu_cdbs(cpu);
36 37
	struct od_dbs_tuners *od_tuners = dbs_data->tuners;
	struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
38
	struct cpufreq_policy *policy = cdbs->shared->policy;
39
	unsigned int sampling_rate;
40 41 42 43
	unsigned int max_load = 0;
	unsigned int ignore_nice;
	unsigned int j;

44 45 46 47 48 49 50 51 52 53 54 55 56
	if (dbs_data->cdata->governor == GOV_ONDEMAND) {
		struct od_cpu_dbs_info_s *od_dbs_info =
				dbs_data->cdata->get_cpu_dbs_info_s(cpu);

		/*
		 * Sometimes, the ondemand governor uses an additional
		 * multiplier to give long delays. So apply this multiplier to
		 * the 'sampling_rate', so as to keep the wake-up-from-idle
		 * detection logic a bit conservative.
		 */
		sampling_rate = od_tuners->sampling_rate;
		sampling_rate *= od_dbs_info->rate_mult;

57
		ignore_nice = od_tuners->ignore_nice_load;
58 59
	} else {
		sampling_rate = cs_tuners->sampling_rate;
60
		ignore_nice = cs_tuners->ignore_nice_load;
61
	}
62

63
	/* Get Absolute Load */
64
	for_each_cpu(j, policy->cpus) {
65
		struct cpu_dbs_info *j_cdbs;
66 67
		u64 cur_wall_time, cur_idle_time;
		unsigned int idle_time, wall_time;
68
		unsigned int load;
69
		int io_busy = 0;
70

71
		j_cdbs = dbs_data->cdata->get_cpu_cdbs(j);
72

73 74 75 76 77 78 79 80 81
		/*
		 * For the purpose of ondemand, waiting for disk IO is
		 * an indication that you're performance critical, and
		 * not that the system is actually idle. So do not add
		 * the iowait time to the cpu idle time.
		 */
		if (dbs_data->cdata->governor == GOV_ONDEMAND)
			io_busy = od_tuners->io_is_busy;
		cur_idle_time = get_cpu_idle_time(j, &cur_wall_time, io_busy);
82 83 84 85 86

		wall_time = (unsigned int)
			(cur_wall_time - j_cdbs->prev_cpu_wall);
		j_cdbs->prev_cpu_wall = cur_wall_time;

87 88 89
		if (cur_idle_time < j_cdbs->prev_cpu_idle)
			cur_idle_time = j_cdbs->prev_cpu_idle;

90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
		idle_time = (unsigned int)
			(cur_idle_time - j_cdbs->prev_cpu_idle);
		j_cdbs->prev_cpu_idle = cur_idle_time;

		if (ignore_nice) {
			u64 cur_nice;
			unsigned long cur_nice_jiffies;

			cur_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE] -
					 cdbs->prev_cpu_nice;
			/*
			 * Assumption: nice time between sampling periods will
			 * be less than 2^32 jiffies for 32 bit sys
			 */
			cur_nice_jiffies = (unsigned long)
					cputime64_to_jiffies64(cur_nice);

			cdbs->prev_cpu_nice =
				kcpustat_cpu(j).cpustat[CPUTIME_NICE];
			idle_time += jiffies_to_usecs(cur_nice_jiffies);
		}

		if (unlikely(!wall_time || wall_time < idle_time))
			continue;

115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
		/*
		 * If the CPU had gone completely idle, and a task just woke up
		 * on this CPU now, it would be unfair to calculate 'load' the
		 * usual way for this elapsed time-window, because it will show
		 * near-zero load, irrespective of how CPU intensive that task
		 * actually is. This is undesirable for latency-sensitive bursty
		 * workloads.
		 *
		 * To avoid this, we reuse the 'load' from the previous
		 * time-window and give this task a chance to start with a
		 * reasonably high CPU frequency. (However, we shouldn't over-do
		 * this copy, lest we get stuck at a high load (high frequency)
		 * for too long, even when the current system load has actually
		 * dropped down. So we perform the copy only once, upon the
		 * first wake-up from idle.)
		 *
		 * Detecting this situation is easy: the governor's deferrable
		 * timer would not have fired during CPU-idle periods. Hence
		 * an unusually large 'wall_time' (as compared to the sampling
		 * rate) indicates this scenario.
135 136 137 138 139
		 *
		 * prev_load can be zero in two cases and we must recalculate it
		 * for both cases:
		 * - during long idle intervals
		 * - explicitly set to zero
140
		 */
141 142
		if (unlikely(wall_time > (2 * sampling_rate) &&
			     j_cdbs->prev_load)) {
143
			load = j_cdbs->prev_load;
144 145 146 147 148 149 150

			/*
			 * Perform a destructive copy, to ensure that we copy
			 * the previous load only once, upon the first wake-up
			 * from idle.
			 */
			j_cdbs->prev_load = 0;
151 152 153 154
		} else {
			load = 100 * (wall_time - idle_time) / wall_time;
			j_cdbs->prev_load = load;
		}
155 156 157 158 159

		if (load > max_load)
			max_load = load;
	}

160
	dbs_data->cdata->gov_check_cpu(cpu, max_load);
161 162 163
}
EXPORT_SYMBOL_GPL(dbs_check_cpu);

164
void gov_add_timers(struct cpufreq_policy *policy, unsigned int delay)
165
{
166 167 168
	struct dbs_data *dbs_data = policy->governor_data;
	struct cpu_dbs_info *cdbs;
	int cpu;
169

170 171 172 173
	for_each_cpu(cpu, policy->cpus) {
		cdbs = dbs_data->cdata->get_cpu_cdbs(cpu);
		cdbs->timer.expires = jiffies + delay;
		add_timer_on(&cdbs->timer, cpu);
174 175
	}
}
176
EXPORT_SYMBOL_GPL(gov_add_timers);
177

178
static inline void gov_cancel_timers(struct cpufreq_policy *policy)
179
{
180
	struct dbs_data *dbs_data = policy->governor_data;
181
	struct cpu_dbs_info *cdbs;
182
	int i;
183

184 185
	for_each_cpu(i, policy->cpus) {
		cdbs = dbs_data->cdata->get_cpu_cdbs(i);
186
		del_timer_sync(&cdbs->timer);
187
	}
188 189
}

190 191
void gov_cancel_work(struct cpu_common_dbs_info *shared)
{
192 193
	/* Tell dbs_timer_handler() to skip queuing up work items. */
	atomic_inc(&shared->skip_work);
194
	/*
195 196 197 198 199 200 201 202 203 204 205
	 * If dbs_timer_handler() is already running, it may not notice the
	 * incremented skip_work, so wait for it to complete to prevent its work
	 * item from being queued up after the cancel_work_sync() below.
	 */
	gov_cancel_timers(shared->policy);
	/*
	 * In case dbs_timer_handler() managed to run and spawn a work item
	 * before the timers have been canceled, wait for that work item to
	 * complete and then cancel all of the timers set up by it.  If
	 * dbs_timer_handler() runs again at that point, it will see the
	 * positive value of skip_work and won't spawn any more work items.
206 207 208
	 */
	cancel_work_sync(&shared->work);
	gov_cancel_timers(shared->policy);
209
	atomic_set(&shared->skip_work, 0);
210 211 212
}
EXPORT_SYMBOL_GPL(gov_cancel_work);

213
/* Will return if we need to evaluate cpu load again or not */
214 215
static bool need_load_eval(struct cpu_common_dbs_info *shared,
			   unsigned int sampling_rate)
216
{
217
	if (policy_is_shared(shared->policy)) {
218
		ktime_t time_now = ktime_get();
219
		s64 delta_us = ktime_us_delta(time_now, shared->time_stamp);
220 221 222 223 224

		/* Do nothing if we recently have sampled */
		if (delta_us < (s64)(sampling_rate / 2))
			return false;
		else
225
			shared->time_stamp = time_now;
226 227 228 229
	}

	return true;
}
230

231
static void dbs_work_handler(struct work_struct *work)
232
{
233 234
	struct cpu_common_dbs_info *shared = container_of(work, struct
					cpu_common_dbs_info, work);
235 236
	struct cpufreq_policy *policy;
	struct dbs_data *dbs_data;
237
	unsigned int sampling_rate, delay;
238
	bool eval_load;
239

240 241 242
	policy = shared->policy;
	dbs_data = policy->governor_data;

243 244 245
	/* Kill all timers */
	gov_cancel_timers(policy);

246 247 248 249 250 251 252 253 254 255
	if (dbs_data->cdata->governor == GOV_CONSERVATIVE) {
		struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;

		sampling_rate = cs_tuners->sampling_rate;
	} else {
		struct od_dbs_tuners *od_tuners = dbs_data->tuners;

		sampling_rate = od_tuners->sampling_rate;
	}

256
	eval_load = need_load_eval(shared, sampling_rate);
257

258 259 260 261 262 263
	/*
	 * Make sure cpufreq_governor_limits() isn't evaluating load in
	 * parallel.
	 */
	mutex_lock(&shared->timer_mutex);
	delay = dbs_data->cdata->gov_dbs_timer(policy, eval_load);
264
	mutex_unlock(&shared->timer_mutex);
265

266
	atomic_dec(&shared->skip_work);
267 268 269 270 271 272 273 274 275 276

	gov_add_timers(policy, delay);
}

static void dbs_timer_handler(unsigned long data)
{
	struct cpu_dbs_info *cdbs = (struct cpu_dbs_info *)data;
	struct cpu_common_dbs_info *shared = cdbs->shared;

	/*
277 278
	 * Timer handler may not be allowed to queue the work at the moment,
	 * because:
279 280
	 * - Another timer handler has done that
	 * - We are stopping the governor
281
	 * - Or we are updating the sampling rate of the ondemand governor
282
	 */
283 284 285
	if (atomic_inc_return(&shared->skip_work) > 1)
		atomic_dec(&shared->skip_work);
	else
286
		queue_work(system_wq, &shared->work);
287
}
288

289 290 291 292 293 294 295 296 297 298 299 300
static void set_sampling_rate(struct dbs_data *dbs_data,
		unsigned int sampling_rate)
{
	if (dbs_data->cdata->governor == GOV_CONSERVATIVE) {
		struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
		cs_tuners->sampling_rate = sampling_rate;
	} else {
		struct od_dbs_tuners *od_tuners = dbs_data->tuners;
		od_tuners->sampling_rate = sampling_rate;
	}
}

301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
static int alloc_common_dbs_info(struct cpufreq_policy *policy,
				 struct common_dbs_data *cdata)
{
	struct cpu_common_dbs_info *shared;
	int j;

	/* Allocate memory for the common information for policy->cpus */
	shared = kzalloc(sizeof(*shared), GFP_KERNEL);
	if (!shared)
		return -ENOMEM;

	/* Set shared for all CPUs, online+offline */
	for_each_cpu(j, policy->related_cpus)
		cdata->get_cpu_cdbs(j)->shared = shared;

316
	mutex_init(&shared->timer_mutex);
317
	atomic_set(&shared->skip_work, 0);
318
	INIT_WORK(&shared->work, dbs_work_handler);
319 320 321 322 323 324 325 326 327 328
	return 0;
}

static void free_common_dbs_info(struct cpufreq_policy *policy,
				 struct common_dbs_data *cdata)
{
	struct cpu_dbs_info *cdbs = cdata->get_cpu_cdbs(policy->cpu);
	struct cpu_common_dbs_info *shared = cdbs->shared;
	int j;

329 330
	mutex_destroy(&shared->timer_mutex);

331 332 333 334 335 336
	for_each_cpu(j, policy->cpus)
		cdata->get_cpu_cdbs(j)->shared = NULL;

	kfree(shared);
}

337 338 339
static int cpufreq_governor_init(struct cpufreq_policy *policy,
				 struct dbs_data *dbs_data,
				 struct common_dbs_data *cdata)
340
{
341 342
	unsigned int latency;
	int ret;
343

344 345 346 347
	/* State should be equivalent to EXIT */
	if (policy->governor_data)
		return -EBUSY;

348 349 350
	if (dbs_data) {
		if (WARN_ON(have_governor_per_policy()))
			return -EINVAL;
351 352 353 354 355

		ret = alloc_common_dbs_info(policy, cdata);
		if (ret)
			return ret;

356 357 358 359
		dbs_data->usage_count++;
		policy->governor_data = dbs_data;
		return 0;
	}
360

361 362 363
	dbs_data = kzalloc(sizeof(*dbs_data), GFP_KERNEL);
	if (!dbs_data)
		return -ENOMEM;
364

365 366 367 368
	ret = alloc_common_dbs_info(policy, cdata);
	if (ret)
		goto free_dbs_data;

369 370
	dbs_data->cdata = cdata;
	dbs_data->usage_count = 1;
371

372 373
	ret = cdata->init(dbs_data, !policy->governor->initialized);
	if (ret)
374
		goto free_common_dbs_info;
375

376 377 378 379
	/* policy latency is in ns. Convert it to us first */
	latency = policy->cpuinfo.transition_latency / 1000;
	if (latency == 0)
		latency = 1;
380

381 382 383 384 385
	/* Bring kernel and HW constraints together */
	dbs_data->min_sampling_rate = max(dbs_data->min_sampling_rate,
					  MIN_LATENCY_MULTIPLIER * latency);
	set_sampling_rate(dbs_data, max(dbs_data->min_sampling_rate,
					latency * LATENCY_MULTIPLIER));
386

387
	if (!have_governor_per_policy())
388
		cdata->gdbs_data = dbs_data;
389

390 391
	policy->governor_data = dbs_data;

392 393 394
	ret = sysfs_create_group(get_governor_parent_kobj(policy),
				 get_sysfs_attr(dbs_data));
	if (ret)
395
		goto reset_gdbs_data;
396

397
	return 0;
398

399
reset_gdbs_data:
400 401
	policy->governor_data = NULL;

402
	if (!have_governor_per_policy())
403 404
		cdata->gdbs_data = NULL;
	cdata->exit(dbs_data, !policy->governor->initialized);
405 406
free_common_dbs_info:
	free_common_dbs_info(policy, cdata);
407 408 409 410
free_dbs_data:
	kfree(dbs_data);
	return ret;
}
411

412 413
static int cpufreq_governor_exit(struct cpufreq_policy *policy,
				 struct dbs_data *dbs_data)
414 415
{
	struct common_dbs_data *cdata = dbs_data->cdata;
416 417 418 419 420
	struct cpu_dbs_info *cdbs = cdata->get_cpu_cdbs(policy->cpu);

	/* State should be equivalent to INIT */
	if (!cdbs->shared || cdbs->shared->policy)
		return -EBUSY;
421

422 423 424
	if (!--dbs_data->usage_count) {
		sysfs_remove_group(get_governor_parent_kobj(policy),
				   get_sysfs_attr(dbs_data));
425

426 427
		policy->governor_data = NULL;

428
		if (!have_governor_per_policy())
429
			cdata->gdbs_data = NULL;
430

431 432
		cdata->exit(dbs_data, policy->governor->initialized == 1);
		kfree(dbs_data);
433 434
	} else {
		policy->governor_data = NULL;
435
	}
436 437

	free_common_dbs_info(policy, cdata);
438
	return 0;
439
}
440

441 442 443 444 445
static int cpufreq_governor_start(struct cpufreq_policy *policy,
				  struct dbs_data *dbs_data)
{
	struct common_dbs_data *cdata = dbs_data->cdata;
	unsigned int sampling_rate, ignore_nice, j, cpu = policy->cpu;
446
	struct cpu_dbs_info *cdbs = cdata->get_cpu_cdbs(cpu);
447
	struct cpu_common_dbs_info *shared = cdbs->shared;
448 449 450 451 452
	int io_busy = 0;

	if (!policy->cur)
		return -EINVAL;

453 454 455 456
	/* State should be equivalent to INIT */
	if (!shared || shared->policy)
		return -EBUSY;

457 458
	if (cdata->governor == GOV_CONSERVATIVE) {
		struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
459 460

		sampling_rate = cs_tuners->sampling_rate;
461
		ignore_nice = cs_tuners->ignore_nice_load;
462
	} else {
463 464
		struct od_dbs_tuners *od_tuners = dbs_data->tuners;

465
		sampling_rate = od_tuners->sampling_rate;
466
		ignore_nice = od_tuners->ignore_nice_load;
467
		io_busy = od_tuners->io_is_busy;
468 469
	}

470 471 472
	shared->policy = policy;
	shared->time_stamp = ktime_get();

473
	for_each_cpu(j, policy->cpus) {
474
		struct cpu_dbs_info *j_cdbs = cdata->get_cpu_cdbs(j);
475
		unsigned int prev_load;
476

477 478
		j_cdbs->prev_cpu_idle =
			get_cpu_idle_time(j, &j_cdbs->prev_cpu_wall, io_busy);
479

480 481 482 483
		prev_load = (unsigned int)(j_cdbs->prev_cpu_wall -
					    j_cdbs->prev_cpu_idle);
		j_cdbs->prev_load = 100 * prev_load /
				    (unsigned int)j_cdbs->prev_cpu_wall;
484

485 486
		if (ignore_nice)
			j_cdbs->prev_cpu_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE];
487

488 489 490
		__setup_timer(&j_cdbs->timer, dbs_timer_handler,
			      (unsigned long)j_cdbs,
			      TIMER_DEFERRABLE | TIMER_IRQSAFE);
491
	}
492

493 494 495
	if (cdata->governor == GOV_CONSERVATIVE) {
		struct cs_cpu_dbs_info_s *cs_dbs_info =
			cdata->get_cpu_dbs_info_s(cpu);
496

497 498 499 500 501
		cs_dbs_info->down_skip = 0;
		cs_dbs_info->requested_freq = policy->cur;
	} else {
		struct od_ops *od_ops = cdata->gov_ops;
		struct od_cpu_dbs_info_s *od_dbs_info = cdata->get_cpu_dbs_info_s(cpu);
502

503 504 505 506
		od_dbs_info->rate_mult = 1;
		od_dbs_info->sample_type = OD_NORMAL_SAMPLE;
		od_ops->powersave_bias_init_cpu(cpu);
	}
507

508
	gov_add_timers(policy, delay_for_sampling_rate(sampling_rate));
509 510 511
	return 0;
}

512 513
static int cpufreq_governor_stop(struct cpufreq_policy *policy,
				 struct dbs_data *dbs_data)
514
{
515
	struct cpu_dbs_info *cdbs = dbs_data->cdata->get_cpu_cdbs(policy->cpu);
516 517
	struct cpu_common_dbs_info *shared = cdbs->shared;

518 519 520 521
	/* State should be equivalent to START */
	if (!shared || !shared->policy)
		return -EBUSY;

522
	gov_cancel_work(shared);
523 524
	shared->policy = NULL;

525
	return 0;
526
}
527

528 529
static int cpufreq_governor_limits(struct cpufreq_policy *policy,
				   struct dbs_data *dbs_data)
530 531 532
{
	struct common_dbs_data *cdata = dbs_data->cdata;
	unsigned int cpu = policy->cpu;
533
	struct cpu_dbs_info *cdbs = cdata->get_cpu_cdbs(cpu);
534

535
	/* State should be equivalent to START */
536
	if (!cdbs->shared || !cdbs->shared->policy)
537
		return -EBUSY;
538

539 540 541
	mutex_lock(&cdbs->shared->timer_mutex);
	if (policy->max < cdbs->shared->policy->cur)
		__cpufreq_driver_target(cdbs->shared->policy, policy->max,
542
					CPUFREQ_RELATION_H);
543 544
	else if (policy->min > cdbs->shared->policy->cur)
		__cpufreq_driver_target(cdbs->shared->policy, policy->min,
545 546
					CPUFREQ_RELATION_L);
	dbs_check_cpu(dbs_data, cpu);
547
	mutex_unlock(&cdbs->shared->timer_mutex);
548 549

	return 0;
550
}
551

552 553 554 555
int cpufreq_governor_dbs(struct cpufreq_policy *policy,
			 struct common_dbs_data *cdata, unsigned int event)
{
	struct dbs_data *dbs_data;
556
	int ret;
557

558 559 560
	/* Lock governor to block concurrent initialization of governor */
	mutex_lock(&cdata->mutex);

561 562 563 564 565
	if (have_governor_per_policy())
		dbs_data = policy->governor_data;
	else
		dbs_data = cdata->gdbs_data;

566
	if (!dbs_data && (event != CPUFREQ_GOV_POLICY_INIT)) {
567 568 569
		ret = -EINVAL;
		goto unlock;
	}
570 571 572 573 574 575

	switch (event) {
	case CPUFREQ_GOV_POLICY_INIT:
		ret = cpufreq_governor_init(policy, dbs_data, cdata);
		break;
	case CPUFREQ_GOV_POLICY_EXIT:
576
		ret = cpufreq_governor_exit(policy, dbs_data);
577 578 579 580 581
		break;
	case CPUFREQ_GOV_START:
		ret = cpufreq_governor_start(policy, dbs_data);
		break;
	case CPUFREQ_GOV_STOP:
582
		ret = cpufreq_governor_stop(policy, dbs_data);
583
		break;
584
	case CPUFREQ_GOV_LIMITS:
585
		ret = cpufreq_governor_limits(policy, dbs_data);
586
		break;
587 588
	default:
		ret = -EINVAL;
589
	}
590

591 592 593
unlock:
	mutex_unlock(&cdata->mutex);

594
	return ret;
595 596
}
EXPORT_SYMBOL_GPL(cpufreq_governor_dbs);