cpufreq_governor.c 15.7 KB
Newer Older
1 2 3 4 5
/*
 * drivers/cpufreq/cpufreq_governor.c
 *
 * CPUFREQ governors common code
 *
6 7 8 9 10 11
 * Copyright	(C) 2001 Russell King
 *		(C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
 *		(C) 2003 Jun Nakajima <jun.nakajima@intel.com>
 *		(C) 2009 Alexander Clouter <alex@digriz.org.uk>
 *		(c) 2012 Viresh Kumar <viresh.kumar@linaro.org>
 *
12 13 14 15 16
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

17 18
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

19 20
#include <linux/export.h>
#include <linux/kernel_stat.h>
21
#include <linux/slab.h>
22 23 24

#include "cpufreq_governor.h"

25 26 27 28 29 30 31 32
static struct attribute_group *get_sysfs_attr(struct dbs_data *dbs_data)
{
	if (have_governor_per_policy())
		return dbs_data->cdata->attr_group_gov_pol;
	else
		return dbs_data->cdata->attr_group_gov_sys;
}

33 34
void dbs_check_cpu(struct dbs_data *dbs_data, int cpu)
{
35
	struct cpu_dbs_info *cdbs = dbs_data->cdata->get_cpu_cdbs(cpu);
36 37
	struct od_dbs_tuners *od_tuners = dbs_data->tuners;
	struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
38
	struct cpufreq_policy *policy = cdbs->shared->policy;
39
	unsigned int sampling_rate;
40 41 42 43
	unsigned int max_load = 0;
	unsigned int ignore_nice;
	unsigned int j;

44 45 46 47 48 49 50 51 52 53 54 55 56
	if (dbs_data->cdata->governor == GOV_ONDEMAND) {
		struct od_cpu_dbs_info_s *od_dbs_info =
				dbs_data->cdata->get_cpu_dbs_info_s(cpu);

		/*
		 * Sometimes, the ondemand governor uses an additional
		 * multiplier to give long delays. So apply this multiplier to
		 * the 'sampling_rate', so as to keep the wake-up-from-idle
		 * detection logic a bit conservative.
		 */
		sampling_rate = od_tuners->sampling_rate;
		sampling_rate *= od_dbs_info->rate_mult;

57
		ignore_nice = od_tuners->ignore_nice_load;
58 59
	} else {
		sampling_rate = cs_tuners->sampling_rate;
60
		ignore_nice = cs_tuners->ignore_nice_load;
61
	}
62

63
	/* Get Absolute Load */
64
	for_each_cpu(j, policy->cpus) {
65
		struct cpu_dbs_info *j_cdbs;
66 67
		u64 cur_wall_time, cur_idle_time;
		unsigned int idle_time, wall_time;
68
		unsigned int load;
69
		int io_busy = 0;
70

71
		j_cdbs = dbs_data->cdata->get_cpu_cdbs(j);
72

73 74 75 76 77 78 79 80 81
		/*
		 * For the purpose of ondemand, waiting for disk IO is
		 * an indication that you're performance critical, and
		 * not that the system is actually idle. So do not add
		 * the iowait time to the cpu idle time.
		 */
		if (dbs_data->cdata->governor == GOV_ONDEMAND)
			io_busy = od_tuners->io_is_busy;
		cur_idle_time = get_cpu_idle_time(j, &cur_wall_time, io_busy);
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111

		wall_time = (unsigned int)
			(cur_wall_time - j_cdbs->prev_cpu_wall);
		j_cdbs->prev_cpu_wall = cur_wall_time;

		idle_time = (unsigned int)
			(cur_idle_time - j_cdbs->prev_cpu_idle);
		j_cdbs->prev_cpu_idle = cur_idle_time;

		if (ignore_nice) {
			u64 cur_nice;
			unsigned long cur_nice_jiffies;

			cur_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE] -
					 cdbs->prev_cpu_nice;
			/*
			 * Assumption: nice time between sampling periods will
			 * be less than 2^32 jiffies for 32 bit sys
			 */
			cur_nice_jiffies = (unsigned long)
					cputime64_to_jiffies64(cur_nice);

			cdbs->prev_cpu_nice =
				kcpustat_cpu(j).cpustat[CPUTIME_NICE];
			idle_time += jiffies_to_usecs(cur_nice_jiffies);
		}

		if (unlikely(!wall_time || wall_time < idle_time))
			continue;

112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
		/*
		 * If the CPU had gone completely idle, and a task just woke up
		 * on this CPU now, it would be unfair to calculate 'load' the
		 * usual way for this elapsed time-window, because it will show
		 * near-zero load, irrespective of how CPU intensive that task
		 * actually is. This is undesirable for latency-sensitive bursty
		 * workloads.
		 *
		 * To avoid this, we reuse the 'load' from the previous
		 * time-window and give this task a chance to start with a
		 * reasonably high CPU frequency. (However, we shouldn't over-do
		 * this copy, lest we get stuck at a high load (high frequency)
		 * for too long, even when the current system load has actually
		 * dropped down. So we perform the copy only once, upon the
		 * first wake-up from idle.)
		 *
		 * Detecting this situation is easy: the governor's deferrable
		 * timer would not have fired during CPU-idle periods. Hence
		 * an unusually large 'wall_time' (as compared to the sampling
		 * rate) indicates this scenario.
132 133 134 135 136
		 *
		 * prev_load can be zero in two cases and we must recalculate it
		 * for both cases:
		 * - during long idle intervals
		 * - explicitly set to zero
137
		 */
138 139
		if (unlikely(wall_time > (2 * sampling_rate) &&
			     j_cdbs->prev_load)) {
140
			load = j_cdbs->prev_load;
141 142 143 144 145 146 147

			/*
			 * Perform a destructive copy, to ensure that we copy
			 * the previous load only once, upon the first wake-up
			 * from idle.
			 */
			j_cdbs->prev_load = 0;
148 149 150 151
		} else {
			load = 100 * (wall_time - idle_time) / wall_time;
			j_cdbs->prev_load = load;
		}
152 153 154 155 156

		if (load > max_load)
			max_load = load;
	}

157
	dbs_data->cdata->gov_check_cpu(cpu, max_load);
158 159 160
}
EXPORT_SYMBOL_GPL(dbs_check_cpu);

161
void gov_add_timers(struct cpufreq_policy *policy, unsigned int delay)
162
{
163 164 165
	struct dbs_data *dbs_data = policy->governor_data;
	struct cpu_dbs_info *cdbs;
	int cpu;
166

167 168 169 170
	for_each_cpu(cpu, policy->cpus) {
		cdbs = dbs_data->cdata->get_cpu_cdbs(cpu);
		cdbs->timer.expires = jiffies + delay;
		add_timer_on(&cdbs->timer, cpu);
171 172
	}
}
173
EXPORT_SYMBOL_GPL(gov_add_timers);
174

175
static inline void gov_cancel_timers(struct cpufreq_policy *policy)
176
{
177
	struct dbs_data *dbs_data = policy->governor_data;
178
	struct cpu_dbs_info *cdbs;
179
	int i;
180

181 182
	for_each_cpu(i, policy->cpus) {
		cdbs = dbs_data->cdata->get_cpu_cdbs(i);
183
		del_timer_sync(&cdbs->timer);
184
	}
185 186
}

187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
void gov_cancel_work(struct cpu_common_dbs_info *shared)
{
	unsigned long flags;

	/*
	 * No work will be queued from timer handlers after skip_work is
	 * updated. And so we can safely cancel the work first and then the
	 * timers.
	 */
	spin_lock_irqsave(&shared->timer_lock, flags);
	shared->skip_work++;
	spin_unlock_irqrestore(&shared->timer_lock, flags);

	cancel_work_sync(&shared->work);

	gov_cancel_timers(shared->policy);

	shared->skip_work = 0;
}
EXPORT_SYMBOL_GPL(gov_cancel_work);

208
/* Will return if we need to evaluate cpu load again or not */
209 210
static bool need_load_eval(struct cpu_common_dbs_info *shared,
			   unsigned int sampling_rate)
211
{
212
	if (policy_is_shared(shared->policy)) {
213
		ktime_t time_now = ktime_get();
214
		s64 delta_us = ktime_us_delta(time_now, shared->time_stamp);
215 216 217 218 219

		/* Do nothing if we recently have sampled */
		if (delta_us < (s64)(sampling_rate / 2))
			return false;
		else
220
			shared->time_stamp = time_now;
221 222 223 224
	}

	return true;
}
225

226
static void dbs_work_handler(struct work_struct *work)
227
{
228 229
	struct cpu_common_dbs_info *shared = container_of(work, struct
					cpu_common_dbs_info, work);
230 231
	struct cpufreq_policy *policy;
	struct dbs_data *dbs_data;
232
	unsigned int sampling_rate, delay;
233 234
	unsigned long flags;
	bool eval_load;
235

236 237 238
	policy = shared->policy;
	dbs_data = policy->governor_data;

239 240 241
	/* Kill all timers */
	gov_cancel_timers(policy);

242 243 244 245 246 247 248 249 250 251
	if (dbs_data->cdata->governor == GOV_CONSERVATIVE) {
		struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;

		sampling_rate = cs_tuners->sampling_rate;
	} else {
		struct od_dbs_tuners *od_tuners = dbs_data->tuners;

		sampling_rate = od_tuners->sampling_rate;
	}

252
	eval_load = need_load_eval(shared, sampling_rate);
253

254 255 256 257 258 259
	/*
	 * Make sure cpufreq_governor_limits() isn't evaluating load in
	 * parallel.
	 */
	mutex_lock(&shared->timer_mutex);
	delay = dbs_data->cdata->gov_dbs_timer(policy, eval_load);
260
	mutex_unlock(&shared->timer_mutex);
261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288

	spin_lock_irqsave(&shared->timer_lock, flags);
	shared->skip_work--;
	spin_unlock_irqrestore(&shared->timer_lock, flags);

	gov_add_timers(policy, delay);
}

static void dbs_timer_handler(unsigned long data)
{
	struct cpu_dbs_info *cdbs = (struct cpu_dbs_info *)data;
	struct cpu_common_dbs_info *shared = cdbs->shared;
	unsigned long flags;

	spin_lock_irqsave(&shared->timer_lock, flags);

	/*
	 * Timer handler isn't allowed to queue work at the moment, because:
	 * - Another timer handler has done that
	 * - We are stopping the governor
	 * - Or we are updating the sampling rate of ondemand governor
	 */
	if (!shared->skip_work) {
		shared->skip_work++;
		queue_work(system_wq, &shared->work);
	}

	spin_unlock_irqrestore(&shared->timer_lock, flags);
289
}
290

291 292 293 294 295 296 297 298 299 300 301 302
static void set_sampling_rate(struct dbs_data *dbs_data,
		unsigned int sampling_rate)
{
	if (dbs_data->cdata->governor == GOV_CONSERVATIVE) {
		struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
		cs_tuners->sampling_rate = sampling_rate;
	} else {
		struct od_dbs_tuners *od_tuners = dbs_data->tuners;
		od_tuners->sampling_rate = sampling_rate;
	}
}

303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
static int alloc_common_dbs_info(struct cpufreq_policy *policy,
				 struct common_dbs_data *cdata)
{
	struct cpu_common_dbs_info *shared;
	int j;

	/* Allocate memory for the common information for policy->cpus */
	shared = kzalloc(sizeof(*shared), GFP_KERNEL);
	if (!shared)
		return -ENOMEM;

	/* Set shared for all CPUs, online+offline */
	for_each_cpu(j, policy->related_cpus)
		cdata->get_cpu_cdbs(j)->shared = shared;

318
	mutex_init(&shared->timer_mutex);
319 320
	spin_lock_init(&shared->timer_lock);
	INIT_WORK(&shared->work, dbs_work_handler);
321 322 323 324 325 326 327 328 329 330
	return 0;
}

static void free_common_dbs_info(struct cpufreq_policy *policy,
				 struct common_dbs_data *cdata)
{
	struct cpu_dbs_info *cdbs = cdata->get_cpu_cdbs(policy->cpu);
	struct cpu_common_dbs_info *shared = cdbs->shared;
	int j;

331 332
	mutex_destroy(&shared->timer_mutex);

333 334 335 336 337 338
	for_each_cpu(j, policy->cpus)
		cdata->get_cpu_cdbs(j)->shared = NULL;

	kfree(shared);
}

339 340 341
static int cpufreq_governor_init(struct cpufreq_policy *policy,
				 struct dbs_data *dbs_data,
				 struct common_dbs_data *cdata)
342
{
343 344
	unsigned int latency;
	int ret;
345

346 347 348 349
	/* State should be equivalent to EXIT */
	if (policy->governor_data)
		return -EBUSY;

350 351 352
	if (dbs_data) {
		if (WARN_ON(have_governor_per_policy()))
			return -EINVAL;
353 354 355 356 357

		ret = alloc_common_dbs_info(policy, cdata);
		if (ret)
			return ret;

358 359 360 361
		dbs_data->usage_count++;
		policy->governor_data = dbs_data;
		return 0;
	}
362

363 364 365
	dbs_data = kzalloc(sizeof(*dbs_data), GFP_KERNEL);
	if (!dbs_data)
		return -ENOMEM;
366

367 368 369 370
	ret = alloc_common_dbs_info(policy, cdata);
	if (ret)
		goto free_dbs_data;

371 372
	dbs_data->cdata = cdata;
	dbs_data->usage_count = 1;
373

374 375
	ret = cdata->init(dbs_data, !policy->governor->initialized);
	if (ret)
376
		goto free_common_dbs_info;
377

378 379 380 381
	/* policy latency is in ns. Convert it to us first */
	latency = policy->cpuinfo.transition_latency / 1000;
	if (latency == 0)
		latency = 1;
382

383 384 385 386 387
	/* Bring kernel and HW constraints together */
	dbs_data->min_sampling_rate = max(dbs_data->min_sampling_rate,
					  MIN_LATENCY_MULTIPLIER * latency);
	set_sampling_rate(dbs_data, max(dbs_data->min_sampling_rate,
					latency * LATENCY_MULTIPLIER));
388

389
	if (!have_governor_per_policy())
390
		cdata->gdbs_data = dbs_data;
391

392 393 394
	ret = sysfs_create_group(get_governor_parent_kobj(policy),
				 get_sysfs_attr(dbs_data));
	if (ret)
395
		goto reset_gdbs_data;
396

397
	policy->governor_data = dbs_data;
398

399
	return 0;
400

401 402
reset_gdbs_data:
	if (!have_governor_per_policy())
403 404
		cdata->gdbs_data = NULL;
	cdata->exit(dbs_data, !policy->governor->initialized);
405 406
free_common_dbs_info:
	free_common_dbs_info(policy, cdata);
407 408 409 410
free_dbs_data:
	kfree(dbs_data);
	return ret;
}
411

412 413
static int cpufreq_governor_exit(struct cpufreq_policy *policy,
				 struct dbs_data *dbs_data)
414 415
{
	struct common_dbs_data *cdata = dbs_data->cdata;
416 417 418 419 420
	struct cpu_dbs_info *cdbs = cdata->get_cpu_cdbs(policy->cpu);

	/* State should be equivalent to INIT */
	if (!cdbs->shared || cdbs->shared->policy)
		return -EBUSY;
421

422 423 424 425
	policy->governor_data = NULL;
	if (!--dbs_data->usage_count) {
		sysfs_remove_group(get_governor_parent_kobj(policy),
				   get_sysfs_attr(dbs_data));
426

427
		if (!have_governor_per_policy())
428
			cdata->gdbs_data = NULL;
429

430 431
		cdata->exit(dbs_data, policy->governor->initialized == 1);
		kfree(dbs_data);
432
	}
433 434

	free_common_dbs_info(policy, cdata);
435
	return 0;
436
}
437

438 439 440 441 442
static int cpufreq_governor_start(struct cpufreq_policy *policy,
				  struct dbs_data *dbs_data)
{
	struct common_dbs_data *cdata = dbs_data->cdata;
	unsigned int sampling_rate, ignore_nice, j, cpu = policy->cpu;
443
	struct cpu_dbs_info *cdbs = cdata->get_cpu_cdbs(cpu);
444
	struct cpu_common_dbs_info *shared = cdbs->shared;
445 446 447 448 449
	int io_busy = 0;

	if (!policy->cur)
		return -EINVAL;

450 451 452 453
	/* State should be equivalent to INIT */
	if (!shared || shared->policy)
		return -EBUSY;

454 455
	if (cdata->governor == GOV_CONSERVATIVE) {
		struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
456 457

		sampling_rate = cs_tuners->sampling_rate;
458
		ignore_nice = cs_tuners->ignore_nice_load;
459
	} else {
460 461
		struct od_dbs_tuners *od_tuners = dbs_data->tuners;

462
		sampling_rate = od_tuners->sampling_rate;
463
		ignore_nice = od_tuners->ignore_nice_load;
464
		io_busy = od_tuners->io_is_busy;
465 466
	}

467 468 469
	shared->policy = policy;
	shared->time_stamp = ktime_get();

470
	for_each_cpu(j, policy->cpus) {
471
		struct cpu_dbs_info *j_cdbs = cdata->get_cpu_cdbs(j);
472
		unsigned int prev_load;
473

474 475
		j_cdbs->prev_cpu_idle =
			get_cpu_idle_time(j, &j_cdbs->prev_cpu_wall, io_busy);
476

477 478 479 480
		prev_load = (unsigned int)(j_cdbs->prev_cpu_wall -
					    j_cdbs->prev_cpu_idle);
		j_cdbs->prev_load = 100 * prev_load /
				    (unsigned int)j_cdbs->prev_cpu_wall;
481

482 483
		if (ignore_nice)
			j_cdbs->prev_cpu_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE];
484

485 486 487
		__setup_timer(&j_cdbs->timer, dbs_timer_handler,
			      (unsigned long)j_cdbs,
			      TIMER_DEFERRABLE | TIMER_IRQSAFE);
488
	}
489

490 491 492
	if (cdata->governor == GOV_CONSERVATIVE) {
		struct cs_cpu_dbs_info_s *cs_dbs_info =
			cdata->get_cpu_dbs_info_s(cpu);
493

494 495 496 497 498
		cs_dbs_info->down_skip = 0;
		cs_dbs_info->requested_freq = policy->cur;
	} else {
		struct od_ops *od_ops = cdata->gov_ops;
		struct od_cpu_dbs_info_s *od_dbs_info = cdata->get_cpu_dbs_info_s(cpu);
499

500 501 502 503
		od_dbs_info->rate_mult = 1;
		od_dbs_info->sample_type = OD_NORMAL_SAMPLE;
		od_ops->powersave_bias_init_cpu(cpu);
	}
504

505
	gov_add_timers(policy, delay_for_sampling_rate(sampling_rate));
506 507 508
	return 0;
}

509 510
static int cpufreq_governor_stop(struct cpufreq_policy *policy,
				 struct dbs_data *dbs_data)
511
{
512
	struct cpu_dbs_info *cdbs = dbs_data->cdata->get_cpu_cdbs(policy->cpu);
513 514
	struct cpu_common_dbs_info *shared = cdbs->shared;

515 516 517 518
	/* State should be equivalent to START */
	if (!shared || !shared->policy)
		return -EBUSY;

519
	gov_cancel_work(shared);
520 521
	shared->policy = NULL;

522
	return 0;
523
}
524

525 526
static int cpufreq_governor_limits(struct cpufreq_policy *policy,
				   struct dbs_data *dbs_data)
527 528 529
{
	struct common_dbs_data *cdata = dbs_data->cdata;
	unsigned int cpu = policy->cpu;
530
	struct cpu_dbs_info *cdbs = cdata->get_cpu_cdbs(cpu);
531

532
	/* State should be equivalent to START */
533
	if (!cdbs->shared || !cdbs->shared->policy)
534
		return -EBUSY;
535

536 537 538
	mutex_lock(&cdbs->shared->timer_mutex);
	if (policy->max < cdbs->shared->policy->cur)
		__cpufreq_driver_target(cdbs->shared->policy, policy->max,
539
					CPUFREQ_RELATION_H);
540 541
	else if (policy->min > cdbs->shared->policy->cur)
		__cpufreq_driver_target(cdbs->shared->policy, policy->min,
542 543
					CPUFREQ_RELATION_L);
	dbs_check_cpu(dbs_data, cpu);
544
	mutex_unlock(&cdbs->shared->timer_mutex);
545 546

	return 0;
547
}
548

549 550 551 552
int cpufreq_governor_dbs(struct cpufreq_policy *policy,
			 struct common_dbs_data *cdata, unsigned int event)
{
	struct dbs_data *dbs_data;
553
	int ret;
554

555 556 557
	/* Lock governor to block concurrent initialization of governor */
	mutex_lock(&cdata->mutex);

558 559 560 561 562
	if (have_governor_per_policy())
		dbs_data = policy->governor_data;
	else
		dbs_data = cdata->gdbs_data;

563
	if (!dbs_data && (event != CPUFREQ_GOV_POLICY_INIT)) {
564 565 566
		ret = -EINVAL;
		goto unlock;
	}
567 568 569 570 571 572

	switch (event) {
	case CPUFREQ_GOV_POLICY_INIT:
		ret = cpufreq_governor_init(policy, dbs_data, cdata);
		break;
	case CPUFREQ_GOV_POLICY_EXIT:
573
		ret = cpufreq_governor_exit(policy, dbs_data);
574 575 576 577 578
		break;
	case CPUFREQ_GOV_START:
		ret = cpufreq_governor_start(policy, dbs_data);
		break;
	case CPUFREQ_GOV_STOP:
579
		ret = cpufreq_governor_stop(policy, dbs_data);
580
		break;
581
	case CPUFREQ_GOV_LIMITS:
582
		ret = cpufreq_governor_limits(policy, dbs_data);
583
		break;
584 585
	default:
		ret = -EINVAL;
586
	}
587

588 589 590
unlock:
	mutex_unlock(&cdata->mutex);

591
	return ret;
592 593
}
EXPORT_SYMBOL_GPL(cpufreq_governor_dbs);