cpufreq_governor.c 15.3 KB
Newer Older
1 2 3 4 5
/*
 * drivers/cpufreq/cpufreq_governor.c
 *
 * CPUFREQ governors common code
 *
6 7 8 9 10 11
 * Copyright	(C) 2001 Russell King
 *		(C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
 *		(C) 2003 Jun Nakajima <jun.nakajima@intel.com>
 *		(C) 2009 Alexander Clouter <alex@digriz.org.uk>
 *		(c) 2012 Viresh Kumar <viresh.kumar@linaro.org>
 *
12 13 14 15 16
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

17 18
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

19 20
#include <linux/export.h>
#include <linux/kernel_stat.h>
21
#include <linux/slab.h>
22 23 24

#include "cpufreq_governor.h"

25 26 27 28 29 30 31 32
static struct attribute_group *get_sysfs_attr(struct dbs_data *dbs_data)
{
	if (have_governor_per_policy())
		return dbs_data->cdata->attr_group_gov_pol;
	else
		return dbs_data->cdata->attr_group_gov_sys;
}

33 34
void dbs_check_cpu(struct dbs_data *dbs_data, int cpu)
{
35
	struct cpu_dbs_info *cdbs = dbs_data->cdata->get_cpu_cdbs(cpu);
36 37
	struct od_dbs_tuners *od_tuners = dbs_data->tuners;
	struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
38
	struct cpufreq_policy *policy = cdbs->shared->policy;
39
	unsigned int sampling_rate;
40 41 42 43
	unsigned int max_load = 0;
	unsigned int ignore_nice;
	unsigned int j;

44 45 46 47 48 49 50 51 52 53 54 55 56
	if (dbs_data->cdata->governor == GOV_ONDEMAND) {
		struct od_cpu_dbs_info_s *od_dbs_info =
				dbs_data->cdata->get_cpu_dbs_info_s(cpu);

		/*
		 * Sometimes, the ondemand governor uses an additional
		 * multiplier to give long delays. So apply this multiplier to
		 * the 'sampling_rate', so as to keep the wake-up-from-idle
		 * detection logic a bit conservative.
		 */
		sampling_rate = od_tuners->sampling_rate;
		sampling_rate *= od_dbs_info->rate_mult;

57
		ignore_nice = od_tuners->ignore_nice_load;
58 59
	} else {
		sampling_rate = cs_tuners->sampling_rate;
60
		ignore_nice = cs_tuners->ignore_nice_load;
61
	}
62

63
	/* Get Absolute Load */
64
	for_each_cpu(j, policy->cpus) {
65
		struct cpu_dbs_info *j_cdbs;
66 67
		u64 cur_wall_time, cur_idle_time;
		unsigned int idle_time, wall_time;
68
		unsigned int load;
69
		int io_busy = 0;
70

71
		j_cdbs = dbs_data->cdata->get_cpu_cdbs(j);
72

73 74 75 76 77 78 79 80 81
		/*
		 * For the purpose of ondemand, waiting for disk IO is
		 * an indication that you're performance critical, and
		 * not that the system is actually idle. So do not add
		 * the iowait time to the cpu idle time.
		 */
		if (dbs_data->cdata->governor == GOV_ONDEMAND)
			io_busy = od_tuners->io_is_busy;
		cur_idle_time = get_cpu_idle_time(j, &cur_wall_time, io_busy);
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111

		wall_time = (unsigned int)
			(cur_wall_time - j_cdbs->prev_cpu_wall);
		j_cdbs->prev_cpu_wall = cur_wall_time;

		idle_time = (unsigned int)
			(cur_idle_time - j_cdbs->prev_cpu_idle);
		j_cdbs->prev_cpu_idle = cur_idle_time;

		if (ignore_nice) {
			u64 cur_nice;
			unsigned long cur_nice_jiffies;

			cur_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE] -
					 cdbs->prev_cpu_nice;
			/*
			 * Assumption: nice time between sampling periods will
			 * be less than 2^32 jiffies for 32 bit sys
			 */
			cur_nice_jiffies = (unsigned long)
					cputime64_to_jiffies64(cur_nice);

			cdbs->prev_cpu_nice =
				kcpustat_cpu(j).cpustat[CPUTIME_NICE];
			idle_time += jiffies_to_usecs(cur_nice_jiffies);
		}

		if (unlikely(!wall_time || wall_time < idle_time))
			continue;

112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
		/*
		 * If the CPU had gone completely idle, and a task just woke up
		 * on this CPU now, it would be unfair to calculate 'load' the
		 * usual way for this elapsed time-window, because it will show
		 * near-zero load, irrespective of how CPU intensive that task
		 * actually is. This is undesirable for latency-sensitive bursty
		 * workloads.
		 *
		 * To avoid this, we reuse the 'load' from the previous
		 * time-window and give this task a chance to start with a
		 * reasonably high CPU frequency. (However, we shouldn't over-do
		 * this copy, lest we get stuck at a high load (high frequency)
		 * for too long, even when the current system load has actually
		 * dropped down. So we perform the copy only once, upon the
		 * first wake-up from idle.)
		 *
		 * Detecting this situation is easy: the governor's deferrable
		 * timer would not have fired during CPU-idle periods. Hence
		 * an unusually large 'wall_time' (as compared to the sampling
		 * rate) indicates this scenario.
132 133 134 135 136
		 *
		 * prev_load can be zero in two cases and we must recalculate it
		 * for both cases:
		 * - during long idle intervals
		 * - explicitly set to zero
137
		 */
138 139
		if (unlikely(wall_time > (2 * sampling_rate) &&
			     j_cdbs->prev_load)) {
140
			load = j_cdbs->prev_load;
141 142 143 144 145 146 147

			/*
			 * Perform a destructive copy, to ensure that we copy
			 * the previous load only once, upon the first wake-up
			 * from idle.
			 */
			j_cdbs->prev_load = 0;
148 149 150 151
		} else {
			load = 100 * (wall_time - idle_time) / wall_time;
			j_cdbs->prev_load = load;
		}
152 153 154 155 156

		if (load > max_load)
			max_load = load;
	}

157
	dbs_data->cdata->gov_check_cpu(cpu, max_load);
158 159 160
}
EXPORT_SYMBOL_GPL(dbs_check_cpu);

161 162
static inline void __gov_queue_work(int cpu, struct dbs_data *dbs_data,
		unsigned int delay)
163
{
164
	struct cpu_dbs_info *cdbs = dbs_data->cdata->get_cpu_cdbs(cpu);
165

166
	mod_delayed_work_on(cpu, system_wq, &cdbs->dwork, delay);
167 168
}

169 170
void gov_queue_work(struct dbs_data *dbs_data, struct cpufreq_policy *policy,
		unsigned int delay, bool all_cpus)
171
{
172 173
	int i;

174
	mutex_lock(&cpufreq_governor_lock);
175
	if (!policy->governor_enabled)
176
		goto out_unlock;
177

178
	if (!all_cpus) {
179 180 181 182 183 184 185 186
		/*
		 * Use raw_smp_processor_id() to avoid preemptible warnings.
		 * We know that this is only called with all_cpus == false from
		 * works that have been queued with *_work_on() functions and
		 * those works are canceled during CPU_DOWN_PREPARE so they
		 * can't possibly run on any other CPU.
		 */
		__gov_queue_work(raw_smp_processor_id(), dbs_data, delay);
187 188 189 190
	} else {
		for_each_cpu(i, policy->cpus)
			__gov_queue_work(i, dbs_data, delay);
	}
191 192 193

out_unlock:
	mutex_unlock(&cpufreq_governor_lock);
194 195 196 197 198 199
}
EXPORT_SYMBOL_GPL(gov_queue_work);

static inline void gov_cancel_work(struct dbs_data *dbs_data,
		struct cpufreq_policy *policy)
{
200
	struct cpu_dbs_info *cdbs;
201
	int i;
202

203 204
	for_each_cpu(i, policy->cpus) {
		cdbs = dbs_data->cdata->get_cpu_cdbs(i);
205
		cancel_delayed_work_sync(&cdbs->dwork);
206
	}
207 208
}

209
/* Will return if we need to evaluate cpu load again or not */
210 211
static bool need_load_eval(struct cpu_common_dbs_info *shared,
			   unsigned int sampling_rate)
212
{
213
	if (policy_is_shared(shared->policy)) {
214
		ktime_t time_now = ktime_get();
215
		s64 delta_us = ktime_us_delta(time_now, shared->time_stamp);
216 217 218 219 220

		/* Do nothing if we recently have sampled */
		if (delta_us < (s64)(sampling_rate / 2))
			return false;
		else
221
			shared->time_stamp = time_now;
222 223 224 225
	}

	return true;
}
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256

static void dbs_timer(struct work_struct *work)
{
	struct cpu_dbs_info *cdbs = container_of(work, struct cpu_dbs_info,
						 dwork.work);
	struct cpu_common_dbs_info *shared = cdbs->shared;
	struct cpufreq_policy *policy = shared->policy;
	struct dbs_data *dbs_data = policy->governor_data;
	unsigned int sampling_rate, delay;
	bool modify_all = true;

	mutex_lock(&shared->timer_mutex);

	if (dbs_data->cdata->governor == GOV_CONSERVATIVE) {
		struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;

		sampling_rate = cs_tuners->sampling_rate;
	} else {
		struct od_dbs_tuners *od_tuners = dbs_data->tuners;

		sampling_rate = od_tuners->sampling_rate;
	}

	if (!need_load_eval(cdbs->shared, sampling_rate))
		modify_all = false;

	delay = dbs_data->cdata->gov_dbs_timer(cdbs, dbs_data, modify_all);
	gov_queue_work(dbs_data, policy, delay, modify_all);

	mutex_unlock(&shared->timer_mutex);
}
257

258 259 260 261 262 263 264 265 266 267 268 269
static void set_sampling_rate(struct dbs_data *dbs_data,
		unsigned int sampling_rate)
{
	if (dbs_data->cdata->governor == GOV_CONSERVATIVE) {
		struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
		cs_tuners->sampling_rate = sampling_rate;
	} else {
		struct od_dbs_tuners *od_tuners = dbs_data->tuners;
		od_tuners->sampling_rate = sampling_rate;
	}
}

270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
static int alloc_common_dbs_info(struct cpufreq_policy *policy,
				 struct common_dbs_data *cdata)
{
	struct cpu_common_dbs_info *shared;
	int j;

	/* Allocate memory for the common information for policy->cpus */
	shared = kzalloc(sizeof(*shared), GFP_KERNEL);
	if (!shared)
		return -ENOMEM;

	/* Set shared for all CPUs, online+offline */
	for_each_cpu(j, policy->related_cpus)
		cdata->get_cpu_cdbs(j)->shared = shared;

	return 0;
}

static void free_common_dbs_info(struct cpufreq_policy *policy,
				 struct common_dbs_data *cdata)
{
	struct cpu_dbs_info *cdbs = cdata->get_cpu_cdbs(policy->cpu);
	struct cpu_common_dbs_info *shared = cdbs->shared;
	int j;

	for_each_cpu(j, policy->cpus)
		cdata->get_cpu_cdbs(j)->shared = NULL;

	kfree(shared);
}

301 302 303
static int cpufreq_governor_init(struct cpufreq_policy *policy,
				 struct dbs_data *dbs_data,
				 struct common_dbs_data *cdata)
304
{
305 306
	unsigned int latency;
	int ret;
307

308 309 310 311
	/* State should be equivalent to EXIT */
	if (policy->governor_data)
		return -EBUSY;

312 313 314
	if (dbs_data) {
		if (WARN_ON(have_governor_per_policy()))
			return -EINVAL;
315 316 317 318 319

		ret = alloc_common_dbs_info(policy, cdata);
		if (ret)
			return ret;

320 321 322 323
		dbs_data->usage_count++;
		policy->governor_data = dbs_data;
		return 0;
	}
324

325 326 327
	dbs_data = kzalloc(sizeof(*dbs_data), GFP_KERNEL);
	if (!dbs_data)
		return -ENOMEM;
328

329 330 331 332
	ret = alloc_common_dbs_info(policy, cdata);
	if (ret)
		goto free_dbs_data;

333 334
	dbs_data->cdata = cdata;
	dbs_data->usage_count = 1;
335

336 337
	ret = cdata->init(dbs_data, !policy->governor->initialized);
	if (ret)
338
		goto free_common_dbs_info;
339

340 341 342 343
	/* policy latency is in ns. Convert it to us first */
	latency = policy->cpuinfo.transition_latency / 1000;
	if (latency == 0)
		latency = 1;
344

345 346 347 348 349
	/* Bring kernel and HW constraints together */
	dbs_data->min_sampling_rate = max(dbs_data->min_sampling_rate,
					  MIN_LATENCY_MULTIPLIER * latency);
	set_sampling_rate(dbs_data, max(dbs_data->min_sampling_rate,
					latency * LATENCY_MULTIPLIER));
350

351 352 353 354
	if (!have_governor_per_policy()) {
		if (WARN_ON(cpufreq_get_global_kobject())) {
			ret = -EINVAL;
			goto cdata_exit;
355
		}
356 357
		cdata->gdbs_data = dbs_data;
	}
358

359 360 361 362
	ret = sysfs_create_group(get_governor_parent_kobj(policy),
				 get_sysfs_attr(dbs_data));
	if (ret)
		goto put_kobj;
363

364
	policy->governor_data = dbs_data;
365

366
	return 0;
367

368 369 370 371 372 373 374
put_kobj:
	if (!have_governor_per_policy()) {
		cdata->gdbs_data = NULL;
		cpufreq_put_global_kobject();
	}
cdata_exit:
	cdata->exit(dbs_data, !policy->governor->initialized);
375 376
free_common_dbs_info:
	free_common_dbs_info(policy, cdata);
377 378 379 380
free_dbs_data:
	kfree(dbs_data);
	return ret;
}
381

382 383
static int cpufreq_governor_exit(struct cpufreq_policy *policy,
				 struct dbs_data *dbs_data)
384 385
{
	struct common_dbs_data *cdata = dbs_data->cdata;
386 387 388 389 390
	struct cpu_dbs_info *cdbs = cdata->get_cpu_cdbs(policy->cpu);

	/* State should be equivalent to INIT */
	if (!cdbs->shared || cdbs->shared->policy)
		return -EBUSY;
391

392 393 394 395
	policy->governor_data = NULL;
	if (!--dbs_data->usage_count) {
		sysfs_remove_group(get_governor_parent_kobj(policy),
				   get_sysfs_attr(dbs_data));
396

397
		if (!have_governor_per_policy()) {
398
			cdata->gdbs_data = NULL;
399
			cpufreq_put_global_kobject();
400
		}
401

402 403
		cdata->exit(dbs_data, policy->governor->initialized == 1);
		kfree(dbs_data);
404
	}
405 406

	free_common_dbs_info(policy, cdata);
407
	return 0;
408
}
409

410 411 412 413 414
static int cpufreq_governor_start(struct cpufreq_policy *policy,
				  struct dbs_data *dbs_data)
{
	struct common_dbs_data *cdata = dbs_data->cdata;
	unsigned int sampling_rate, ignore_nice, j, cpu = policy->cpu;
415
	struct cpu_dbs_info *cdbs = cdata->get_cpu_cdbs(cpu);
416
	struct cpu_common_dbs_info *shared = cdbs->shared;
417 418 419 420 421
	int io_busy = 0;

	if (!policy->cur)
		return -EINVAL;

422 423 424 425
	/* State should be equivalent to INIT */
	if (!shared || shared->policy)
		return -EBUSY;

426 427
	if (cdata->governor == GOV_CONSERVATIVE) {
		struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
428 429

		sampling_rate = cs_tuners->sampling_rate;
430
		ignore_nice = cs_tuners->ignore_nice_load;
431
	} else {
432 433
		struct od_dbs_tuners *od_tuners = dbs_data->tuners;

434
		sampling_rate = od_tuners->sampling_rate;
435
		ignore_nice = od_tuners->ignore_nice_load;
436
		io_busy = od_tuners->io_is_busy;
437 438
	}

439 440 441 442
	shared->policy = policy;
	shared->time_stamp = ktime_get();
	mutex_init(&shared->timer_mutex);

443
	for_each_cpu(j, policy->cpus) {
444
		struct cpu_dbs_info *j_cdbs = cdata->get_cpu_cdbs(j);
445
		unsigned int prev_load;
446

447 448
		j_cdbs->prev_cpu_idle =
			get_cpu_idle_time(j, &j_cdbs->prev_cpu_wall, io_busy);
449

450 451 452 453
		prev_load = (unsigned int)(j_cdbs->prev_cpu_wall -
					    j_cdbs->prev_cpu_idle);
		j_cdbs->prev_load = 100 * prev_load /
				    (unsigned int)j_cdbs->prev_cpu_wall;
454

455 456
		if (ignore_nice)
			j_cdbs->prev_cpu_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE];
457

458
		INIT_DEFERRABLE_WORK(&j_cdbs->dwork, dbs_timer);
459
	}
460

461 462 463
	if (cdata->governor == GOV_CONSERVATIVE) {
		struct cs_cpu_dbs_info_s *cs_dbs_info =
			cdata->get_cpu_dbs_info_s(cpu);
464

465 466 467 468 469 470
		cs_dbs_info->down_skip = 0;
		cs_dbs_info->enable = 1;
		cs_dbs_info->requested_freq = policy->cur;
	} else {
		struct od_ops *od_ops = cdata->gov_ops;
		struct od_cpu_dbs_info_s *od_dbs_info = cdata->get_cpu_dbs_info_s(cpu);
471

472 473 474 475
		od_dbs_info->rate_mult = 1;
		od_dbs_info->sample_type = OD_NORMAL_SAMPLE;
		od_ops->powersave_bias_init_cpu(cpu);
	}
476

477 478 479 480 481
	gov_queue_work(dbs_data, policy, delay_for_sampling_rate(sampling_rate),
		       true);
	return 0;
}

482 483
static int cpufreq_governor_stop(struct cpufreq_policy *policy,
				 struct dbs_data *dbs_data)
484 485 486
{
	struct common_dbs_data *cdata = dbs_data->cdata;
	unsigned int cpu = policy->cpu;
487
	struct cpu_dbs_info *cdbs = cdata->get_cpu_cdbs(cpu);
488 489
	struct cpu_common_dbs_info *shared = cdbs->shared;

490 491 492 493
	/* State should be equivalent to START */
	if (!shared || !shared->policy)
		return -EBUSY;

494
	gov_cancel_work(dbs_data, policy);
495 496 497 498

	if (cdata->governor == GOV_CONSERVATIVE) {
		struct cs_cpu_dbs_info_s *cs_dbs_info =
			cdata->get_cpu_dbs_info_s(cpu);
499

500 501 502
		cs_dbs_info->enable = 0;
	}

503 504
	shared->policy = NULL;
	mutex_destroy(&shared->timer_mutex);
505
	return 0;
506
}
507

508 509
static int cpufreq_governor_limits(struct cpufreq_policy *policy,
				   struct dbs_data *dbs_data)
510 511 512
{
	struct common_dbs_data *cdata = dbs_data->cdata;
	unsigned int cpu = policy->cpu;
513
	struct cpu_dbs_info *cdbs = cdata->get_cpu_cdbs(cpu);
514

515
	/* State should be equivalent to START */
516
	if (!cdbs->shared || !cdbs->shared->policy)
517
		return -EBUSY;
518

519 520 521
	mutex_lock(&cdbs->shared->timer_mutex);
	if (policy->max < cdbs->shared->policy->cur)
		__cpufreq_driver_target(cdbs->shared->policy, policy->max,
522
					CPUFREQ_RELATION_H);
523 524
	else if (policy->min > cdbs->shared->policy->cur)
		__cpufreq_driver_target(cdbs->shared->policy, policy->min,
525 526
					CPUFREQ_RELATION_L);
	dbs_check_cpu(dbs_data, cpu);
527
	mutex_unlock(&cdbs->shared->timer_mutex);
528 529

	return 0;
530
}
531

532 533 534 535
int cpufreq_governor_dbs(struct cpufreq_policy *policy,
			 struct common_dbs_data *cdata, unsigned int event)
{
	struct dbs_data *dbs_data;
536
	int ret;
537

538 539 540
	/* Lock governor to block concurrent initialization of governor */
	mutex_lock(&cdata->mutex);

541 542 543 544 545
	if (have_governor_per_policy())
		dbs_data = policy->governor_data;
	else
		dbs_data = cdata->gdbs_data;

546 547 548 549
	if (WARN_ON(!dbs_data && (event != CPUFREQ_GOV_POLICY_INIT))) {
		ret = -EINVAL;
		goto unlock;
	}
550 551 552 553 554 555

	switch (event) {
	case CPUFREQ_GOV_POLICY_INIT:
		ret = cpufreq_governor_init(policy, dbs_data, cdata);
		break;
	case CPUFREQ_GOV_POLICY_EXIT:
556
		ret = cpufreq_governor_exit(policy, dbs_data);
557 558 559 560 561
		break;
	case CPUFREQ_GOV_START:
		ret = cpufreq_governor_start(policy, dbs_data);
		break;
	case CPUFREQ_GOV_STOP:
562
		ret = cpufreq_governor_stop(policy, dbs_data);
563
		break;
564
	case CPUFREQ_GOV_LIMITS:
565
		ret = cpufreq_governor_limits(policy, dbs_data);
566
		break;
567 568
	default:
		ret = -EINVAL;
569
	}
570

571 572 573
unlock:
	mutex_unlock(&cdata->mutex);

574
	return ret;
575 576
}
EXPORT_SYMBOL_GPL(cpufreq_governor_dbs);