rt2800pci.c 35.6 KB
Newer Older
1
/*
2
	Copyright (C) 2009 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
3 4 5 6 7 8 9
	Copyright (C) 2009 Alban Browaeys <prahal@yahoo.com>
	Copyright (C) 2009 Felix Fietkau <nbd@openwrt.org>
	Copyright (C) 2009 Luis Correia <luis.f.correia@gmail.com>
	Copyright (C) 2009 Mattias Nissler <mattias.nissler@gmx.de>
	Copyright (C) 2009 Mark Asselstine <asselsm@gmail.com>
	Copyright (C) 2009 Xose Vazquez Perez <xose.vazquez@gmail.com>
	Copyright (C) 2009 Bart Zolnierkiewicz <bzolnier@gmail.com>
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
	<http://rt2x00.serialmonkey.com>

	This program is free software; you can redistribute it and/or modify
	it under the terms of the GNU General Public License as published by
	the Free Software Foundation; either version 2 of the License, or
	(at your option) any later version.

	This program is distributed in the hope that it will be useful,
	but WITHOUT ANY WARRANTY; without even the implied warranty of
	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
	GNU General Public License for more details.

	You should have received a copy of the GNU General Public License
	along with this program; if not, write to the
	Free Software Foundation, Inc.,
	59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 */

/*
	Module: rt2800pci
	Abstract: rt2800pci device specific routines.
	Supported chipsets: RT2800E & RT2800ED.
 */

#include <linux/delay.h>
#include <linux/etherdevice.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/platform_device.h>
#include <linux/eeprom_93cx6.h>

#include "rt2x00.h"
#include "rt2x00pci.h"
#include "rt2x00soc.h"
46
#include "rt2800lib.h"
47
#include "rt2800.h"
48 49 50 51 52
#include "rt2800pci.h"

/*
 * Allow hardware encryption to be disabled.
 */
53
static int modparam_nohwcrypt = 0;
54 55 56 57 58 59 60 61
module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");

static void rt2800pci_mcu_status(struct rt2x00_dev *rt2x00dev, const u8 token)
{
	unsigned int i;
	u32 reg;

62 63 64 65 66 67
	/*
	 * SOC devices don't support MCU requests.
	 */
	if (rt2x00_is_soc(rt2x00dev))
		return;

68
	for (i = 0; i < 200; i++) {
69
		rt2800_register_read(rt2x00dev, H2M_MAILBOX_CID, &reg);
70 71 72 73 74 75 76 77 78 79 80 81 82

		if ((rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD0) == token) ||
		    (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD1) == token) ||
		    (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD2) == token) ||
		    (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD3) == token))
			break;

		udelay(REGISTER_BUSY_DELAY);
	}

	if (i == 200)
		ERROR(rt2x00dev, "MCU request failed, no response from hardware\n");

83 84
	rt2800_register_write(rt2x00dev, H2M_MAILBOX_STATUS, ~0);
	rt2800_register_write(rt2x00dev, H2M_MAILBOX_CID, ~0);
85 86
}

87
#if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT305X)
88 89
static void rt2800pci_read_eeprom_soc(struct rt2x00_dev *rt2x00dev)
{
90
	void __iomem *base_addr = ioremap(0x1F040000, EEPROM_SIZE);
91 92

	memcpy_fromio(rt2x00dev->eeprom, base_addr, EEPROM_SIZE);
93 94

	iounmap(base_addr);
95 96 97 98 99
}
#else
static inline void rt2800pci_read_eeprom_soc(struct rt2x00_dev *rt2x00dev)
{
}
100
#endif /* CONFIG_RALINK_RT288X || CONFIG_RALINK_RT305X */
101

102
#ifdef CONFIG_PCI
103 104 105 106 107
static void rt2800pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
{
	struct rt2x00_dev *rt2x00dev = eeprom->data;
	u32 reg;

108
	rt2800_register_read(rt2x00dev, E2PROM_CSR, &reg);
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129

	eeprom->reg_data_in = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_IN);
	eeprom->reg_data_out = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_OUT);
	eeprom->reg_data_clock =
	    !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_CLOCK);
	eeprom->reg_chip_select =
	    !!rt2x00_get_field32(reg, E2PROM_CSR_CHIP_SELECT);
}

static void rt2800pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
{
	struct rt2x00_dev *rt2x00dev = eeprom->data;
	u32 reg = 0;

	rt2x00_set_field32(&reg, E2PROM_CSR_DATA_IN, !!eeprom->reg_data_in);
	rt2x00_set_field32(&reg, E2PROM_CSR_DATA_OUT, !!eeprom->reg_data_out);
	rt2x00_set_field32(&reg, E2PROM_CSR_DATA_CLOCK,
			   !!eeprom->reg_data_clock);
	rt2x00_set_field32(&reg, E2PROM_CSR_CHIP_SELECT,
			   !!eeprom->reg_chip_select);

130
	rt2800_register_write(rt2x00dev, E2PROM_CSR, reg);
131 132 133 134 135 136 137
}

static void rt2800pci_read_eeprom_pci(struct rt2x00_dev *rt2x00dev)
{
	struct eeprom_93cx6 eeprom;
	u32 reg;

138
	rt2800_register_read(rt2x00dev, E2PROM_CSR, &reg);
139 140 141 142

	eeprom.data = rt2x00dev;
	eeprom.register_read = rt2800pci_eepromregister_read;
	eeprom.register_write = rt2800pci_eepromregister_write;
143 144 145 146 147 148 149 150 151 152 153 154
	switch (rt2x00_get_field32(reg, E2PROM_CSR_TYPE))
	{
	case 0:
		eeprom.width = PCI_EEPROM_WIDTH_93C46;
		break;
	case 1:
		eeprom.width = PCI_EEPROM_WIDTH_93C66;
		break;
	default:
		eeprom.width = PCI_EEPROM_WIDTH_93C86;
		break;
	}
155 156 157 158 159 160 161 162 163
	eeprom.reg_data_in = 0;
	eeprom.reg_data_out = 0;
	eeprom.reg_data_clock = 0;
	eeprom.reg_chip_select = 0;

	eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
			       EEPROM_SIZE / sizeof(u16));
}

164 165
static int rt2800pci_efuse_detect(struct rt2x00_dev *rt2x00dev)
{
166
	return rt2800_efuse_detect(rt2x00dev);
167 168
}

169
static inline void rt2800pci_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev)
170
{
171
	rt2800_read_eeprom_efuse(rt2x00dev);
172 173 174 175 176 177
}
#else
static inline void rt2800pci_read_eeprom_pci(struct rt2x00_dev *rt2x00dev)
{
}

178 179 180 181 182
static inline int rt2800pci_efuse_detect(struct rt2x00_dev *rt2x00dev)
{
	return 0;
}

183 184 185
static inline void rt2800pci_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev)
{
}
186
#endif /* CONFIG_PCI */
187

188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
/*
 * Queue handlers.
 */
static void rt2800pci_start_queue(struct data_queue *queue)
{
	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
	u32 reg;

	switch (queue->qid) {
	case QID_RX:
		rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
		rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 1);
		rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
		break;
	case QID_BEACON:
203 204 205 206 207 208 209
		/*
		 * Allow beacon tasklets to be scheduled for periodic
		 * beacon updates.
		 */
		tasklet_enable(&rt2x00dev->tbtt_tasklet);
		tasklet_enable(&rt2x00dev->pretbtt_tasklet);

210 211 212 213 214
		rt2800_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
		rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_TICKING, 1);
		rt2x00_set_field32(&reg, BCN_TIME_CFG_TBTT_ENABLE, 1);
		rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 1);
		rt2800_register_write(rt2x00dev, BCN_TIME_CFG, reg);
215 216 217 218

		rt2800_register_read(rt2x00dev, INT_TIMER_EN, &reg);
		rt2x00_set_field32(&reg, INT_TIMER_EN_PRE_TBTT_TIMER, 1);
		rt2800_register_write(rt2x00dev, INT_TIMER_EN, reg);
219 220 221 222 223 224 225 226 227 228 229 230
		break;
	default:
		break;
	};
}

static void rt2800pci_kick_queue(struct data_queue *queue)
{
	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
	struct queue_entry *entry;

	switch (queue->qid) {
I
Ivo van Doorn 已提交
231 232
	case QID_AC_VO:
	case QID_AC_VI:
233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
	case QID_AC_BE:
	case QID_AC_BK:
		entry = rt2x00queue_get_entry(queue, Q_INDEX);
		rt2800_register_write(rt2x00dev, TX_CTX_IDX(queue->qid), entry->entry_idx);
		break;
	case QID_MGMT:
		entry = rt2x00queue_get_entry(queue, Q_INDEX);
		rt2800_register_write(rt2x00dev, TX_CTX_IDX(5), entry->entry_idx);
		break;
	default:
		break;
	}
}

static void rt2800pci_stop_queue(struct data_queue *queue)
{
	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
	u32 reg;

	switch (queue->qid) {
	case QID_RX:
		rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
		rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 0);
		rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
		break;
	case QID_BEACON:
		rt2800_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
		rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_TICKING, 0);
		rt2x00_set_field32(&reg, BCN_TIME_CFG_TBTT_ENABLE, 0);
		rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 0);
		rt2800_register_write(rt2x00dev, BCN_TIME_CFG, reg);
264 265 266 267

		rt2800_register_read(rt2x00dev, INT_TIMER_EN, &reg);
		rt2x00_set_field32(&reg, INT_TIMER_EN_PRE_TBTT_TIMER, 0);
		rt2800_register_write(rt2x00dev, INT_TIMER_EN, reg);
268 269 270 271 272 273

		/*
		 * Wait for tbtt tasklets to finish.
		 */
		tasklet_disable(&rt2x00dev->tbtt_tasklet);
		tasklet_disable(&rt2x00dev->pretbtt_tasklet);
274 275 276 277 278 279
		break;
	default:
		break;
	}
}

280 281 282 283 284 285 286 287
/*
 * Firmware functions
 */
static char *rt2800pci_get_firmware_name(struct rt2x00_dev *rt2x00dev)
{
	return FIRMWARE_RT2860;
}

288
static int rt2800pci_write_firmware(struct rt2x00_dev *rt2x00dev,
289 290 291 292 293 294 295 296 297
				    const u8 *data, const size_t len)
{
	u32 reg;

	/*
	 * enable Host program ram write selection
	 */
	reg = 0;
	rt2x00_set_field32(&reg, PBF_SYS_CTRL_HOST_RAM_WRITE, 1);
298
	rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, reg);
299 300 301 302

	/*
	 * Write firmware to device.
	 */
303
	rt2800_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE,
304
				   data, len);
305

306 307
	rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000);
	rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00001);
308

309 310
	rt2800_register_write(rt2x00dev, H2M_BBP_AGENT, 0);
	rt2800_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337

	return 0;
}

/*
 * Initialization functions.
 */
static bool rt2800pci_get_entry_state(struct queue_entry *entry)
{
	struct queue_entry_priv_pci *entry_priv = entry->priv_data;
	u32 word;

	if (entry->queue->qid == QID_RX) {
		rt2x00_desc_read(entry_priv->desc, 1, &word);

		return (!rt2x00_get_field32(word, RXD_W1_DMA_DONE));
	} else {
		rt2x00_desc_read(entry_priv->desc, 1, &word);

		return (!rt2x00_get_field32(word, TXD_W1_DMA_DONE));
	}
}

static void rt2800pci_clear_entry(struct queue_entry *entry)
{
	struct queue_entry_priv_pci *entry_priv = entry->priv_data;
	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
338
	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
339 340 341 342 343 344 345 346 347 348
	u32 word;

	if (entry->queue->qid == QID_RX) {
		rt2x00_desc_read(entry_priv->desc, 0, &word);
		rt2x00_set_field32(&word, RXD_W0_SDP0, skbdesc->skb_dma);
		rt2x00_desc_write(entry_priv->desc, 0, word);

		rt2x00_desc_read(entry_priv->desc, 1, &word);
		rt2x00_set_field32(&word, RXD_W1_DMA_DONE, 0);
		rt2x00_desc_write(entry_priv->desc, 1, word);
349 350 351 352 353 354 355

		/*
		 * Set RX IDX in register to inform hardware that we have
		 * handled this entry and it is available for reuse again.
		 */
		rt2800_register_write(rt2x00dev, RX_CRX_IDX,
				      entry->entry_idx);
356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
	} else {
		rt2x00_desc_read(entry_priv->desc, 1, &word);
		rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 1);
		rt2x00_desc_write(entry_priv->desc, 1, word);
	}
}

static int rt2800pci_init_queues(struct rt2x00_dev *rt2x00dev)
{
	struct queue_entry_priv_pci *entry_priv;
	u32 reg;

	/*
	 * Initialize registers.
	 */
	entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
372 373 374 375
	rt2800_register_write(rt2x00dev, TX_BASE_PTR0, entry_priv->desc_dma);
	rt2800_register_write(rt2x00dev, TX_MAX_CNT0, rt2x00dev->tx[0].limit);
	rt2800_register_write(rt2x00dev, TX_CTX_IDX0, 0);
	rt2800_register_write(rt2x00dev, TX_DTX_IDX0, 0);
376 377

	entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
378 379 380 381
	rt2800_register_write(rt2x00dev, TX_BASE_PTR1, entry_priv->desc_dma);
	rt2800_register_write(rt2x00dev, TX_MAX_CNT1, rt2x00dev->tx[1].limit);
	rt2800_register_write(rt2x00dev, TX_CTX_IDX1, 0);
	rt2800_register_write(rt2x00dev, TX_DTX_IDX1, 0);
382 383

	entry_priv = rt2x00dev->tx[2].entries[0].priv_data;
384 385 386 387
	rt2800_register_write(rt2x00dev, TX_BASE_PTR2, entry_priv->desc_dma);
	rt2800_register_write(rt2x00dev, TX_MAX_CNT2, rt2x00dev->tx[2].limit);
	rt2800_register_write(rt2x00dev, TX_CTX_IDX2, 0);
	rt2800_register_write(rt2x00dev, TX_DTX_IDX2, 0);
388 389

	entry_priv = rt2x00dev->tx[3].entries[0].priv_data;
390 391 392 393
	rt2800_register_write(rt2x00dev, TX_BASE_PTR3, entry_priv->desc_dma);
	rt2800_register_write(rt2x00dev, TX_MAX_CNT3, rt2x00dev->tx[3].limit);
	rt2800_register_write(rt2x00dev, TX_CTX_IDX3, 0);
	rt2800_register_write(rt2x00dev, TX_DTX_IDX3, 0);
394 395

	entry_priv = rt2x00dev->rx->entries[0].priv_data;
396 397 398 399
	rt2800_register_write(rt2x00dev, RX_BASE_PTR, entry_priv->desc_dma);
	rt2800_register_write(rt2x00dev, RX_MAX_CNT, rt2x00dev->rx[0].limit);
	rt2800_register_write(rt2x00dev, RX_CRX_IDX, rt2x00dev->rx[0].limit - 1);
	rt2800_register_write(rt2x00dev, RX_DRX_IDX, 0);
400 401 402 403

	/*
	 * Enable global DMA configuration
	 */
404
	rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
405 406 407
	rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0);
	rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0);
	rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1);
408
	rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
409

410
	rt2800_register_write(rt2x00dev, DELAY_INT_CFG, 0);
411 412 413 414 415 416 417 418 419 420

	return 0;
}

/*
 * Device state switch handlers.
 */
static void rt2800pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
				 enum dev_state state)
{
421
	int mask = (state == STATE_RADIO_IRQ_ON);
422
	u32 reg;
423
	unsigned long flags;
424 425 426 427 428 429

	/*
	 * When interrupts are being enabled, the interrupt registers
	 * should clear the register to assure a clean state.
	 */
	if (state == STATE_RADIO_IRQ_ON) {
430 431
		rt2800_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
		rt2800_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
432

433 434 435 436
		/*
		 * Enable tasklets. The beacon related tasklets are
		 * enabled when the beacon queue is started.
		 */
437
		tasklet_enable(&rt2x00dev->txstatus_tasklet);
438 439 440
		tasklet_enable(&rt2x00dev->rxdone_tasklet);
		tasklet_enable(&rt2x00dev->autowake_tasklet);
	}
441

442
	spin_lock_irqsave(&rt2x00dev->irqmask_lock, flags);
443
	rt2800_register_read(rt2x00dev, INT_MASK_CSR, &reg);
444 445
	rt2x00_set_field32(&reg, INT_MASK_CSR_RXDELAYINT, 0);
	rt2x00_set_field32(&reg, INT_MASK_CSR_TXDELAYINT, 0);
446
	rt2x00_set_field32(&reg, INT_MASK_CSR_RX_DONE, mask);
447 448 449 450 451 452 453 454
	rt2x00_set_field32(&reg, INT_MASK_CSR_AC0_DMA_DONE, 0);
	rt2x00_set_field32(&reg, INT_MASK_CSR_AC1_DMA_DONE, 0);
	rt2x00_set_field32(&reg, INT_MASK_CSR_AC2_DMA_DONE, 0);
	rt2x00_set_field32(&reg, INT_MASK_CSR_AC3_DMA_DONE, 0);
	rt2x00_set_field32(&reg, INT_MASK_CSR_HCCA_DMA_DONE, 0);
	rt2x00_set_field32(&reg, INT_MASK_CSR_MGMT_DMA_DONE, 0);
	rt2x00_set_field32(&reg, INT_MASK_CSR_MCU_COMMAND, 0);
	rt2x00_set_field32(&reg, INT_MASK_CSR_RXTX_COHERENT, 0);
455 456 457 458
	rt2x00_set_field32(&reg, INT_MASK_CSR_TBTT, mask);
	rt2x00_set_field32(&reg, INT_MASK_CSR_PRE_TBTT, mask);
	rt2x00_set_field32(&reg, INT_MASK_CSR_TX_FIFO_STATUS, mask);
	rt2x00_set_field32(&reg, INT_MASK_CSR_AUTO_WAKEUP, mask);
459 460 461
	rt2x00_set_field32(&reg, INT_MASK_CSR_GPTIMER, 0);
	rt2x00_set_field32(&reg, INT_MASK_CSR_RX_COHERENT, 0);
	rt2x00_set_field32(&reg, INT_MASK_CSR_TX_COHERENT, 0);
462
	rt2800_register_write(rt2x00dev, INT_MASK_CSR, reg);
463 464 465 466 467 468 469 470 471 472 473
	spin_unlock_irqrestore(&rt2x00dev->irqmask_lock, flags);

	if (state == STATE_RADIO_IRQ_OFF) {
		/*
		 * Ensure that all tasklets are finished before
		 * disabling the interrupts.
		 */
		tasklet_disable(&rt2x00dev->txstatus_tasklet);
		tasklet_disable(&rt2x00dev->rxdone_tasklet);
		tasklet_disable(&rt2x00dev->autowake_tasklet);
	}
474 475
}

476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
static int rt2800pci_init_registers(struct rt2x00_dev *rt2x00dev)
{
	u32 reg;

	/*
	 * Reset DMA indexes
	 */
	rt2800_register_read(rt2x00dev, WPDMA_RST_IDX, &reg);
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX0, 1);
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX1, 1);
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX2, 1);
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX3, 1);
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX4, 1);
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX5, 1);
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DRX_IDX0, 1);
	rt2800_register_write(rt2x00dev, WPDMA_RST_IDX, reg);

	rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e1f);
	rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e00);

	rt2800_register_write(rt2x00dev, PWR_PIN_CFG, 0x00000003);

	rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
	rt2x00_set_field32(&reg, MAC_SYS_CTRL_RESET_CSR, 1);
	rt2x00_set_field32(&reg, MAC_SYS_CTRL_RESET_BBP, 1);
	rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg);

	rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, 0x00000000);

	return 0;
}

508 509
static int rt2800pci_enable_radio(struct rt2x00_dev *rt2x00dev)
{
510
	if (unlikely(rt2800_wait_wpdma_ready(rt2x00dev) ||
511
		     rt2800pci_init_queues(rt2x00dev)))
512 513
		return -EIO;

514
	return rt2800_enable_radio(rt2x00dev);
515 516 517 518
}

static void rt2800pci_disable_radio(struct rt2x00_dev *rt2x00dev)
{
519 520 521 522 523
	if (rt2x00_is_soc(rt2x00dev)) {
		rt2800_disable_radio(rt2x00dev);
		rt2800_register_write(rt2x00dev, PWR_PIN_CFG, 0);
		rt2800_register_write(rt2x00dev, TX_PIN_CFG, 0);
	}
524 525 526 527 528 529
}

static int rt2800pci_set_state(struct rt2x00_dev *rt2x00dev,
			       enum dev_state state)
{
	if (state == STATE_AWAKE) {
530
		rt2800_mcu_request(rt2x00dev, MCU_WAKEUP, TOKEN_WAKUP, 0, 0x02);
531
		rt2800pci_mcu_status(rt2x00dev, TOKEN_WAKUP);
532 533 534 535
	} else if (state == STATE_SLEEP) {
		rt2800_register_write(rt2x00dev, H2M_MAILBOX_STATUS, 0xffffffff);
		rt2800_register_write(rt2x00dev, H2M_MAILBOX_CID, 0xffffffff);
		rt2800_mcu_request(rt2x00dev, MCU_SLEEP, 0x01, 0xff, 0x01);
536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589
	}

	return 0;
}

static int rt2800pci_set_device_state(struct rt2x00_dev *rt2x00dev,
				      enum dev_state state)
{
	int retval = 0;

	switch (state) {
	case STATE_RADIO_ON:
		/*
		 * Before the radio can be enabled, the device first has
		 * to be woken up. After that it needs a bit of time
		 * to be fully awake and then the radio can be enabled.
		 */
		rt2800pci_set_state(rt2x00dev, STATE_AWAKE);
		msleep(1);
		retval = rt2800pci_enable_radio(rt2x00dev);
		break;
	case STATE_RADIO_OFF:
		/*
		 * After the radio has been disabled, the device should
		 * be put to sleep for powersaving.
		 */
		rt2800pci_disable_radio(rt2x00dev);
		rt2800pci_set_state(rt2x00dev, STATE_SLEEP);
		break;
	case STATE_RADIO_IRQ_ON:
	case STATE_RADIO_IRQ_OFF:
		rt2800pci_toggle_irq(rt2x00dev, state);
		break;
	case STATE_DEEP_SLEEP:
	case STATE_SLEEP:
	case STATE_STANDBY:
	case STATE_AWAKE:
		retval = rt2800pci_set_state(rt2x00dev, state);
		break;
	default:
		retval = -ENOTSUPP;
		break;
	}

	if (unlikely(retval))
		ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
		      state, retval);

	return retval;
}

/*
 * TX descriptor initialization
 */
590
static __le32 *rt2800pci_get_txwi(struct queue_entry *entry)
591
{
592
	return (__le32 *) entry->skb->data;
593 594
}

595
static void rt2800pci_write_tx_desc(struct queue_entry *entry,
596 597
				    struct txentry_desc *txdesc)
{
598 599
	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
	struct queue_entry_priv_pci *entry_priv = entry->priv_data;
600
	__le32 *txd = entry_priv->desc;
601 602
	u32 word;

603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618
	/*
	 * The buffers pointed by SD_PTR0/SD_LEN0 and SD_PTR1/SD_LEN1
	 * must contains a TXWI structure + 802.11 header + padding + 802.11
	 * data. We choose to have SD_PTR0/SD_LEN0 only contains TXWI and
	 * SD_PTR1/SD_LEN1 contains 802.11 header + padding + 802.11
	 * data. It means that LAST_SEC0 is always 0.
	 */

	/*
	 * Initialize TX descriptor
	 */
	rt2x00_desc_read(txd, 0, &word);
	rt2x00_set_field32(&word, TXD_W0_SD_PTR0, skbdesc->skb_dma);
	rt2x00_desc_write(txd, 0, word);

	rt2x00_desc_read(txd, 1, &word);
619
	rt2x00_set_field32(&word, TXD_W1_SD_LEN1, entry->skb->len);
620 621 622 623
	rt2x00_set_field32(&word, TXD_W1_LAST_SEC1,
			   !test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
	rt2x00_set_field32(&word, TXD_W1_BURST,
			   test_bit(ENTRY_TXD_BURST, &txdesc->flags));
624
	rt2x00_set_field32(&word, TXD_W1_SD_LEN0, TXWI_DESC_SIZE);
625 626 627 628 629 630
	rt2x00_set_field32(&word, TXD_W1_LAST_SEC0, 0);
	rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 0);
	rt2x00_desc_write(txd, 1, word);

	rt2x00_desc_read(txd, 2, &word);
	rt2x00_set_field32(&word, TXD_W2_SD_PTR1,
631
			   skbdesc->skb_dma + TXWI_DESC_SIZE);
632 633 634 635 636 637 638
	rt2x00_desc_write(txd, 2, word);

	rt2x00_desc_read(txd, 3, &word);
	rt2x00_set_field32(&word, TXD_W3_WIV,
			   !test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc->flags));
	rt2x00_set_field32(&word, TXD_W3_QSEL, 2);
	rt2x00_desc_write(txd, 3, word);
639 640 641 642 643 644

	/*
	 * Register descriptor details in skb frame descriptor.
	 */
	skbdesc->desc = txd;
	skbdesc->desc_len = TXD_DESC_SIZE;
645 646 647 648 649 650 651 652 653 654
}

/*
 * RX control handlers
 */
static void rt2800pci_fill_rxdone(struct queue_entry *entry,
				  struct rxdone_entry_desc *rxdesc)
{
	struct queue_entry_priv_pci *entry_priv = entry->priv_data;
	__le32 *rxd = entry_priv->desc;
655 656 657 658 659
	u32 word;

	rt2x00_desc_read(rxd, 3, &word);

	if (rt2x00_get_field32(word, RXD_W3_CRC_ERROR))
660 661
		rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;

662 663 664 665 666
	/*
	 * Unfortunately we don't know the cipher type used during
	 * decryption. This prevents us from correct providing
	 * correct statistics through debugfs.
	 */
667
	rxdesc->cipher_status = rt2x00_get_field32(word, RXD_W3_CIPHER_ERROR);
668

669
	if (rt2x00_get_field32(word, RXD_W3_DECRYPTED)) {
670 671 672 673 674 675 676 677
		/*
		 * Hardware has stripped IV/EIV data from 802.11 frame during
		 * decryption. Unfortunately the descriptor doesn't contain
		 * any fields with the EIV/IV data either, so they can't
		 * be restored by rt2x00lib.
		 */
		rxdesc->flags |= RX_FLAG_IV_STRIPPED;

678 679 680 681 682 683
		/*
		 * The hardware has already checked the Michael Mic and has
		 * stripped it from the frame. Signal this to mac80211.
		 */
		rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;

684 685 686 687 688 689
		if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
			rxdesc->flags |= RX_FLAG_DECRYPTED;
		else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
			rxdesc->flags |= RX_FLAG_MMIC_ERROR;
	}

690
	if (rt2x00_get_field32(word, RXD_W3_MY_BSS))
691 692
		rxdesc->dev_flags |= RXDONE_MY_BSS;

693
	if (rt2x00_get_field32(word, RXD_W3_L2PAD))
694 695 696
		rxdesc->dev_flags |= RXDONE_L2PAD;

	/*
697
	 * Process the RXWI structure that is at the start of the buffer.
698
	 */
699
	rt2800_process_rxwi(entry, rxdesc);
700 701 702 703 704
}

/*
 * Interrupt functions.
 */
705 706 707 708 709 710 711 712
static void rt2800pci_wakeup(struct rt2x00_dev *rt2x00dev)
{
	struct ieee80211_conf conf = { .flags = 0 };
	struct rt2x00lib_conf libconf = { .conf = &conf };

	rt2800_config(rt2x00dev, &libconf, IEEE80211_CONF_CHANGE_PS);
}

713 714 715 716 717 718 719
static void rt2800pci_txdone(struct rt2x00_dev *rt2x00dev)
{
	struct data_queue *queue;
	struct queue_entry *entry;
	u32 status;
	u8 qid;

720
	while (kfifo_get(&rt2x00dev->txstatus_fifo, &status)) {
721
		qid = rt2x00_get_field32(status, TX_STA_FIFO_PID_QUEUE);
722 723 724 725 726 727
		if (qid >= QID_RX) {
			/*
			 * Unknown queue, this shouldn't happen. Just drop
			 * this tx status.
			 */
			WARNING(rt2x00dev, "Got TX status report with "
728
					   "unexpected pid %u, dropping\n", qid);
729 730 731 732 733 734 735 736 737 738
			break;
		}

		queue = rt2x00queue_get_queue(rt2x00dev, qid);
		if (unlikely(queue == NULL)) {
			/*
			 * The queue is NULL, this shouldn't happen. Stop
			 * processing here and drop the tx status
			 */
			WARNING(rt2x00dev, "Got TX status for an unavailable "
739
					   "queue %u, dropping\n", qid);
740 741 742 743 744 745 746 747 748
			break;
		}

		if (rt2x00queue_empty(queue)) {
			/*
			 * The queue is empty. Stop processing here
			 * and drop the tx status.
			 */
			WARNING(rt2x00dev, "Got TX status for an empty "
749
					   "queue %u, dropping\n", qid);
750 751 752 753 754 755 756 757
			break;
		}

		entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
		rt2800_txdone_entry(entry, status);
	}
}

758 759
static void rt2800pci_enable_interrupt(struct rt2x00_dev *rt2x00dev,
				       struct rt2x00_field32 irq_field)
760
{
761 762
	unsigned long flags;
	u32 reg;
763 764

	/*
765 766
	 * Enable a single interrupt. The interrupt mask register
	 * access needs locking.
767
	 */
768 769 770 771 772 773
	spin_lock_irqsave(&rt2x00dev->irqmask_lock, flags);
	rt2800_register_read(rt2x00dev, INT_MASK_CSR, &reg);
	rt2x00_set_field32(&reg, irq_field, 1);
	rt2800_register_write(rt2x00dev, INT_MASK_CSR, reg);
	spin_unlock_irqrestore(&rt2x00dev->irqmask_lock, flags);
}
774

775 776 777
static void rt2800pci_txstatus_tasklet(unsigned long data)
{
	rt2800pci_txdone((struct rt2x00_dev *)data);
778 779

	/*
780 781 782
	 * No need to enable the tx status interrupt here as we always
	 * leave it enabled to minimize the possibility of a tx status
	 * register overflow. See comment in interrupt handler.
783
	 */
784
}
785

786 787 788 789 790 791
static void rt2800pci_pretbtt_tasklet(unsigned long data)
{
	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
	rt2x00lib_pretbtt(rt2x00dev);
	rt2800pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_PRE_TBTT);
}
792

793 794 795 796 797 798
static void rt2800pci_tbtt_tasklet(unsigned long data)
{
	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
	rt2x00lib_beacondone(rt2x00dev);
	rt2800pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_TBTT);
}
799

800 801 802 803 804 805 806 807 808 809 810 811
static void rt2800pci_rxdone_tasklet(unsigned long data)
{
	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
	rt2x00pci_rxdone(rt2x00dev);
	rt2800pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_RX_DONE);
}

static void rt2800pci_autowake_tasklet(unsigned long data)
{
	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
	rt2800pci_wakeup(rt2x00dev);
	rt2800pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_AUTO_WAKEUP);
812 813
}

814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836
static void rt2800pci_txstatus_interrupt(struct rt2x00_dev *rt2x00dev)
{
	u32 status;
	int i;

	/*
	 * The TX_FIFO_STATUS interrupt needs special care. We should
	 * read TX_STA_FIFO but we should do it immediately as otherwise
	 * the register can overflow and we would lose status reports.
	 *
	 * Hence, read the TX_STA_FIFO register and copy all tx status
	 * reports into a kernel FIFO which is handled in the txstatus
	 * tasklet. We use a tasklet to process the tx status reports
	 * because we can schedule the tasklet multiple times (when the
	 * interrupt fires again during tx status processing).
	 *
	 * Furthermore we don't disable the TX_FIFO_STATUS
	 * interrupt here but leave it enabled so that the TX_STA_FIFO
	 * can also be read while the interrupt thread gets executed.
	 *
	 * Since we have only one producer and one consumer we don't
	 * need to lock the kfifo.
	 */
837
	for (i = 0; i < rt2x00dev->ops->tx->entry_num; i++) {
838 839 840 841 842
		rt2800_register_read(rt2x00dev, TX_STA_FIFO, &status);

		if (!rt2x00_get_field32(status, TX_STA_FIFO_VALID))
			break;

843
		if (!kfifo_put(&rt2x00dev->txstatus_fifo, &status)) {
844 845 846 847 848 849 850 851 852 853
			WARNING(rt2x00dev, "TX status FIFO overrun,"
				"drop tx status report.\n");
			break;
		}
	}

	/* Schedule the tasklet for processing the tx status. */
	tasklet_schedule(&rt2x00dev->txstatus_tasklet);
}

854 855 856
static irqreturn_t rt2800pci_interrupt(int irq, void *dev_instance)
{
	struct rt2x00_dev *rt2x00dev = dev_instance;
857 858
	u32 reg, mask;
	unsigned long flags;
859 860 861 862 863 864 865 866 867 868 869

	/* Read status and ACK all interrupts */
	rt2800_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
	rt2800_register_write(rt2x00dev, INT_SOURCE_CSR, reg);

	if (!reg)
		return IRQ_NONE;

	if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
		return IRQ_HANDLED;

870 871 872 873 874 875
	/*
	 * Since INT_MASK_CSR and INT_SOURCE_CSR use the same bits
	 * for interrupts and interrupt masks we can just use the value of
	 * INT_SOURCE_CSR to create the interrupt mask.
	 */
	mask = ~reg;
876

877 878
	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TX_FIFO_STATUS)) {
		rt2800pci_txstatus_interrupt(rt2x00dev);
879
		/*
880
		 * Never disable the TX_FIFO_STATUS interrupt.
881
		 */
882 883
		rt2x00_set_field32(&mask, INT_MASK_CSR_TX_FIFO_STATUS, 1);
	}
884

885 886
	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_PRE_TBTT))
		tasklet_hi_schedule(&rt2x00dev->pretbtt_tasklet);
887

888 889
	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TBTT))
		tasklet_hi_schedule(&rt2x00dev->tbtt_tasklet);
890

891 892
	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RX_DONE))
		tasklet_schedule(&rt2x00dev->rxdone_tasklet);
893

894 895 896 897 898 899 900 901 902 903 904 905 906 907
	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_AUTO_WAKEUP))
		tasklet_schedule(&rt2x00dev->autowake_tasklet);

	/*
	 * Disable all interrupts for which a tasklet was scheduled right now,
	 * the tasklet will reenable the appropriate interrupts.
	 */
	spin_lock_irqsave(&rt2x00dev->irqmask_lock, flags);
	rt2800_register_read(rt2x00dev, INT_MASK_CSR, &reg);
	reg &= mask;
	rt2800_register_write(rt2x00dev, INT_MASK_CSR, reg);
	spin_unlock_irqrestore(&rt2x00dev->irqmask_lock, flags);

	return IRQ_HANDLED;
908 909
}

910 911 912
/*
 * Device probe functions.
 */
913 914 915 916 917
static int rt2800pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
{
	/*
	 * Read EEPROM into buffer
	 */
918
	if (rt2x00_is_soc(rt2x00dev))
919
		rt2800pci_read_eeprom_soc(rt2x00dev);
920 921 922 923
	else if (rt2800pci_efuse_detect(rt2x00dev))
		rt2800pci_read_eeprom_efuse(rt2x00dev);
	else
		rt2800pci_read_eeprom_pci(rt2x00dev);
924 925 926 927

	return rt2800_validate_eeprom(rt2x00dev);
}

928 929 930 931 932 933 934 935 936 937 938
static int rt2800pci_probe_hw(struct rt2x00_dev *rt2x00dev)
{
	int retval;

	/*
	 * Allocate eeprom data.
	 */
	retval = rt2800pci_validate_eeprom(rt2x00dev);
	if (retval)
		return retval;

939
	retval = rt2800_init_eeprom(rt2x00dev);
940 941 942 943 944 945
	if (retval)
		return retval;

	/*
	 * Initialize hw specifications.
	 */
946
	retval = rt2800_probe_hw_mode(rt2x00dev);
947 948 949 950 951 952 953 954 955 956
	if (retval)
		return retval;

	/*
	 * This device has multiple filters for control frames
	 * and has a separate filter for PS Poll frames.
	 */
	__set_bit(DRIVER_SUPPORT_CONTROL_FILTERS, &rt2x00dev->flags);
	__set_bit(DRIVER_SUPPORT_CONTROL_FILTER_PSPOLL, &rt2x00dev->flags);

957 958 959 960 961 962
	/*
	 * This device has a pre tbtt interrupt and thus fetches
	 * a new beacon directly prior to transmission.
	 */
	__set_bit(DRIVER_SUPPORT_PRE_TBTT_INTERRUPT, &rt2x00dev->flags);

963 964 965
	/*
	 * This device requires firmware.
	 */
966
	if (!rt2x00_is_soc(rt2x00dev))
967 968 969
		__set_bit(DRIVER_REQUIRE_FIRMWARE, &rt2x00dev->flags);
	__set_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags);
	__set_bit(DRIVER_REQUIRE_L2PAD, &rt2x00dev->flags);
970
	__set_bit(DRIVER_REQUIRE_TXSTATUS_FIFO, &rt2x00dev->flags);
971
	__set_bit(DRIVER_REQUIRE_TASKLET_CONTEXT, &rt2x00dev->flags);
972 973
	if (!modparam_nohwcrypt)
		__set_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags);
974
	__set_bit(DRIVER_SUPPORT_LINK_TUNING, &rt2x00dev->flags);
975 976 977 978 979 980 981 982 983

	/*
	 * Set the rssi offset.
	 */
	rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;

	return 0;
}

984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002
static const struct ieee80211_ops rt2800pci_mac80211_ops = {
	.tx			= rt2x00mac_tx,
	.start			= rt2x00mac_start,
	.stop			= rt2x00mac_stop,
	.add_interface		= rt2x00mac_add_interface,
	.remove_interface	= rt2x00mac_remove_interface,
	.config			= rt2x00mac_config,
	.configure_filter	= rt2x00mac_configure_filter,
	.set_key		= rt2x00mac_set_key,
	.sw_scan_start		= rt2x00mac_sw_scan_start,
	.sw_scan_complete	= rt2x00mac_sw_scan_complete,
	.get_stats		= rt2x00mac_get_stats,
	.get_tkip_seq		= rt2800_get_tkip_seq,
	.set_rts_threshold	= rt2800_set_rts_threshold,
	.bss_info_changed	= rt2x00mac_bss_info_changed,
	.conf_tx		= rt2800_conf_tx,
	.get_tsf		= rt2800_get_tsf,
	.rfkill_poll		= rt2x00mac_rfkill_poll,
	.ampdu_action		= rt2800_ampdu_action,
I
Ivo van Doorn 已提交
1003
	.flush			= rt2x00mac_flush,
1004
	.get_survey		= rt2800_get_survey,
1005 1006
};

1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
static const struct rt2800_ops rt2800pci_rt2800_ops = {
	.register_read		= rt2x00pci_register_read,
	.register_read_lock	= rt2x00pci_register_read, /* same for PCI */
	.register_write		= rt2x00pci_register_write,
	.register_write_lock	= rt2x00pci_register_write, /* same for PCI */
	.register_multiread	= rt2x00pci_register_multiread,
	.register_multiwrite	= rt2x00pci_register_multiwrite,
	.regbusy_read		= rt2x00pci_regbusy_read,
	.drv_write_firmware	= rt2800pci_write_firmware,
	.drv_init_registers	= rt2800pci_init_registers,
1017
	.drv_get_txwi		= rt2800pci_get_txwi,
1018 1019
};

1020 1021
static const struct rt2x00lib_ops rt2800pci_rt2x00_ops = {
	.irq_handler		= rt2800pci_interrupt,
1022 1023 1024 1025 1026
	.txstatus_tasklet	= rt2800pci_txstatus_tasklet,
	.pretbtt_tasklet	= rt2800pci_pretbtt_tasklet,
	.tbtt_tasklet		= rt2800pci_tbtt_tasklet,
	.rxdone_tasklet		= rt2800pci_rxdone_tasklet,
	.autowake_tasklet	= rt2800pci_autowake_tasklet,
1027 1028
	.probe_hw		= rt2800pci_probe_hw,
	.get_firmware_name	= rt2800pci_get_firmware_name,
1029 1030
	.check_firmware		= rt2800_check_firmware,
	.load_firmware		= rt2800_load_firmware,
1031 1032 1033 1034 1035
	.initialize		= rt2x00pci_initialize,
	.uninitialize		= rt2x00pci_uninitialize,
	.get_entry_state	= rt2800pci_get_entry_state,
	.clear_entry		= rt2800pci_clear_entry,
	.set_device_state	= rt2800pci_set_device_state,
1036 1037 1038 1039
	.rfkill_poll		= rt2800_rfkill_poll,
	.link_stats		= rt2800_link_stats,
	.reset_tuner		= rt2800_reset_tuner,
	.link_tuner		= rt2800_link_tuner,
1040 1041 1042
	.start_queue		= rt2800pci_start_queue,
	.kick_queue		= rt2800pci_kick_queue,
	.stop_queue		= rt2800pci_stop_queue,
1043
	.write_tx_desc		= rt2800pci_write_tx_desc,
1044
	.write_tx_data		= rt2800_write_tx_data,
1045
	.write_beacon		= rt2800_write_beacon,
1046
	.clear_beacon		= rt2800_clear_beacon,
1047
	.fill_rxdone		= rt2800pci_fill_rxdone,
1048 1049 1050 1051 1052 1053 1054
	.config_shared_key	= rt2800_config_shared_key,
	.config_pairwise_key	= rt2800_config_pairwise_key,
	.config_filter		= rt2800_config_filter,
	.config_intf		= rt2800_config_intf,
	.config_erp		= rt2800_config_erp,
	.config_ant		= rt2800_config_ant,
	.config			= rt2800_config,
1055 1056 1057
};

static const struct data_queue_desc rt2800pci_queue_rx = {
1058
	.entry_num		= 128,
1059 1060 1061 1062 1063 1064
	.data_size		= AGGREGATION_SIZE,
	.desc_size		= RXD_DESC_SIZE,
	.priv_size		= sizeof(struct queue_entry_priv_pci),
};

static const struct data_queue_desc rt2800pci_queue_tx = {
1065
	.entry_num		= 64,
1066 1067 1068 1069 1070 1071
	.data_size		= AGGREGATION_SIZE,
	.desc_size		= TXD_DESC_SIZE,
	.priv_size		= sizeof(struct queue_entry_priv_pci),
};

static const struct data_queue_desc rt2800pci_queue_bcn = {
1072
	.entry_num		= 8,
1073 1074 1075 1076 1077 1078
	.data_size		= 0, /* No DMA required for beacons */
	.desc_size		= TXWI_DESC_SIZE,
	.priv_size		= sizeof(struct queue_entry_priv_pci),
};

static const struct rt2x00_ops rt2800pci_ops = {
G
Gertjan van Wingerde 已提交
1079 1080 1081 1082 1083 1084
	.name			= KBUILD_MODNAME,
	.max_sta_intf		= 1,
	.max_ap_intf		= 8,
	.eeprom_size		= EEPROM_SIZE,
	.rf_size		= RF_SIZE,
	.tx_queues		= NUM_TX_QUEUES,
1085
	.extra_tx_headroom	= TXWI_DESC_SIZE,
G
Gertjan van Wingerde 已提交
1086 1087 1088 1089
	.rx			= &rt2800pci_queue_rx,
	.tx			= &rt2800pci_queue_tx,
	.bcn			= &rt2800pci_queue_bcn,
	.lib			= &rt2800pci_rt2x00_ops,
1090
	.drv			= &rt2800pci_rt2800_ops,
1091
	.hw			= &rt2800pci_mac80211_ops,
1092
#ifdef CONFIG_RT2X00_LIB_DEBUGFS
G
Gertjan van Wingerde 已提交
1093
	.debugfs		= &rt2800_rt2x00debug,
1094 1095 1096 1097 1098 1099
#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
};

/*
 * RT2800pci module information.
 */
1100
#ifdef CONFIG_PCI
1101
static DEFINE_PCI_DEVICE_TABLE(rt2800pci_device_table) = {
1102 1103 1104 1105
	{ PCI_DEVICE(0x1814, 0x0601), PCI_DEVICE_DATA(&rt2800pci_ops) },
	{ PCI_DEVICE(0x1814, 0x0681), PCI_DEVICE_DATA(&rt2800pci_ops) },
	{ PCI_DEVICE(0x1814, 0x0701), PCI_DEVICE_DATA(&rt2800pci_ops) },
	{ PCI_DEVICE(0x1814, 0x0781), PCI_DEVICE_DATA(&rt2800pci_ops) },
1106 1107 1108
	{ PCI_DEVICE(0x1814, 0x3090), PCI_DEVICE_DATA(&rt2800pci_ops) },
	{ PCI_DEVICE(0x1814, 0x3091), PCI_DEVICE_DATA(&rt2800pci_ops) },
	{ PCI_DEVICE(0x1814, 0x3092), PCI_DEVICE_DATA(&rt2800pci_ops) },
1109 1110 1111 1112 1113 1114 1115
	{ PCI_DEVICE(0x1432, 0x7708), PCI_DEVICE_DATA(&rt2800pci_ops) },
	{ PCI_DEVICE(0x1432, 0x7727), PCI_DEVICE_DATA(&rt2800pci_ops) },
	{ PCI_DEVICE(0x1432, 0x7728), PCI_DEVICE_DATA(&rt2800pci_ops) },
	{ PCI_DEVICE(0x1432, 0x7738), PCI_DEVICE_DATA(&rt2800pci_ops) },
	{ PCI_DEVICE(0x1432, 0x7748), PCI_DEVICE_DATA(&rt2800pci_ops) },
	{ PCI_DEVICE(0x1432, 0x7758), PCI_DEVICE_DATA(&rt2800pci_ops) },
	{ PCI_DEVICE(0x1432, 0x7768), PCI_DEVICE_DATA(&rt2800pci_ops) },
1116
	{ PCI_DEVICE(0x1462, 0x891a), PCI_DEVICE_DATA(&rt2800pci_ops) },
1117
	{ PCI_DEVICE(0x1a3b, 0x1059), PCI_DEVICE_DATA(&rt2800pci_ops) },
1118 1119 1120
#ifdef CONFIG_RT2800PCI_RT33XX
	{ PCI_DEVICE(0x1814, 0x3390), PCI_DEVICE_DATA(&rt2800pci_ops) },
#endif
1121 1122 1123
#ifdef CONFIG_RT2800PCI_RT35XX
	{ PCI_DEVICE(0x1814, 0x3060), PCI_DEVICE_DATA(&rt2800pci_ops) },
	{ PCI_DEVICE(0x1814, 0x3062), PCI_DEVICE_DATA(&rt2800pci_ops) },
1124 1125
	{ PCI_DEVICE(0x1814, 0x3562), PCI_DEVICE_DATA(&rt2800pci_ops) },
	{ PCI_DEVICE(0x1814, 0x3592), PCI_DEVICE_DATA(&rt2800pci_ops) },
1126
	{ PCI_DEVICE(0x1814, 0x3593), PCI_DEVICE_DATA(&rt2800pci_ops) },
1127
#endif
1128 1129
	{ 0, }
};
1130
#endif /* CONFIG_PCI */
1131 1132 1133 1134 1135

MODULE_AUTHOR(DRV_PROJECT);
MODULE_VERSION(DRV_VERSION);
MODULE_DESCRIPTION("Ralink RT2800 PCI & PCMCIA Wireless LAN driver.");
MODULE_SUPPORTED_DEVICE("Ralink RT2860 PCI & PCMCIA chipset based cards");
1136
#ifdef CONFIG_PCI
1137 1138
MODULE_FIRMWARE(FIRMWARE_RT2860);
MODULE_DEVICE_TABLE(pci, rt2800pci_device_table);
1139
#endif /* CONFIG_PCI */
1140 1141
MODULE_LICENSE("GPL");

1142
#if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT305X)
1143 1144
static int rt2800soc_probe(struct platform_device *pdev)
{
1145
	return rt2x00soc_probe(pdev, &rt2800pci_ops);
1146
}
1147 1148 1149 1150 1151 1152 1153

static struct platform_driver rt2800soc_driver = {
	.driver		= {
		.name		= "rt2800_wmac",
		.owner		= THIS_MODULE,
		.mod_name	= KBUILD_MODNAME,
	},
1154
	.probe		= rt2800soc_probe,
1155 1156 1157 1158
	.remove		= __devexit_p(rt2x00soc_remove),
	.suspend	= rt2x00soc_suspend,
	.resume		= rt2x00soc_resume,
};
1159
#endif /* CONFIG_RALINK_RT288X || CONFIG_RALINK_RT305X */
1160

1161
#ifdef CONFIG_PCI
1162 1163 1164 1165 1166 1167 1168 1169
static struct pci_driver rt2800pci_driver = {
	.name		= KBUILD_MODNAME,
	.id_table	= rt2800pci_device_table,
	.probe		= rt2x00pci_probe,
	.remove		= __devexit_p(rt2x00pci_remove),
	.suspend	= rt2x00pci_suspend,
	.resume		= rt2x00pci_resume,
};
1170
#endif /* CONFIG_PCI */
1171 1172 1173 1174 1175

static int __init rt2800pci_init(void)
{
	int ret = 0;

1176
#if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT305X)
1177 1178 1179 1180
	ret = platform_driver_register(&rt2800soc_driver);
	if (ret)
		return ret;
#endif
1181
#ifdef CONFIG_PCI
1182 1183
	ret = pci_register_driver(&rt2800pci_driver);
	if (ret) {
1184
#if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT305X)
1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195
		platform_driver_unregister(&rt2800soc_driver);
#endif
		return ret;
	}
#endif

	return ret;
}

static void __exit rt2800pci_exit(void)
{
1196
#ifdef CONFIG_PCI
1197 1198
	pci_unregister_driver(&rt2800pci_driver);
#endif
1199
#if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT305X)
1200 1201 1202 1203 1204 1205
	platform_driver_unregister(&rt2800soc_driver);
#endif
}

module_init(rt2800pci_init);
module_exit(rt2800pci_exit);