intel_guc_submission.c 32.3 KB
Newer Older
1
// SPDX-License-Identifier: MIT
2 3 4 5
/*
 * Copyright © 2014 Intel Corporation
 */

6
#include <linux/circ_buf.h>
7

8
#include "gem/i915_gem_context.h"
9

10 11
#include "gt/intel_context.h"
#include "gt/intel_engine_pm.h"
12
#include "gt/intel_gt.h"
13
#include "gt/intel_gt_pm.h"
14
#include "gt/intel_lrc_reg.h"
15
#include "intel_guc_submission.h"
16

17
#include "i915_drv.h"
18
#include "i915_trace.h"
19

20 21 22 23 24
enum {
	GUC_PREEMPT_NONE = 0,
	GUC_PREEMPT_INPROGRESS,
	GUC_PREEMPT_FINISHED,
};
25 26 27 28
#define GUC_PREEMPT_BREADCRUMB_DWORDS	0x8
#define GUC_PREEMPT_BREADCRUMB_BYTES	\
	(sizeof(u32) * GUC_PREEMPT_BREADCRUMB_DWORDS)

29
/**
A
Alex Dai 已提交
30
 * DOC: GuC-based command submission
31
 *
32
 * GuC client:
33
 * A intel_guc_client refers to a submission path through GuC. Currently, there
34 35 36 37
 * is only one client, which is charged with all submissions to the GuC. This
 * struct is the owner of a doorbell, a process descriptor and a workqueue (all
 * of them inside a single gem object that contains all required pages for these
 * elements).
38
 *
39
 * GuC stage descriptor:
40 41
 * During initialization, the driver allocates a static pool of 1024 such
 * descriptors, and shares them with the GuC.
42
 * Currently, there exists a 1:1 mapping between a intel_guc_client and a
43 44 45 46
 * guc_stage_desc (via the client's stage_id), so effectively only one
 * gets used. This stage descriptor lets the GuC know about the doorbell,
 * workqueue and process descriptor. Theoretically, it also lets the GuC
 * know about our HW contexts (context ID, etc...), but we actually
47
 * employ a kind of submission where the GuC uses the LRCA sent via the work
48
 * item instead (the single guc_stage_desc associated to execbuf client
49 50
 * contains information about the default kernel context only, but this is
 * essentially unused). This is called a "proxy" submission.
51 52 53 54 55 56 57 58
 *
 * The Scratch registers:
 * There are 16 MMIO-based registers start from 0xC180. The kernel driver writes
 * a value to the action register (SOFT_SCRATCH_0) along with any data. It then
 * triggers an interrupt on the GuC via another register write (0xC4C8).
 * Firmware writes a success/fail code back to the action register after
 * processes the request. The kernel driver polls waiting for this update and
 * then proceeds.
59
 * See intel_guc_send()
60 61 62 63 64 65 66 67 68 69 70
 *
 * Doorbells:
 * Doorbells are interrupts to uKernel. A doorbell is a single cache line (QW)
 * mapped into process space.
 *
 * Work Items:
 * There are several types of work items that the host may place into a
 * workqueue, each with its own requirements and limitations. Currently only
 * WQ_TYPE_INORDER is needed to support legacy submission via GuC, which
 * represents in-order queue. The kernel driver packs ring tail pointer and an
 * ELSP context descriptor dword into Work Item.
71
 * See guc_add_request()
72 73 74
 *
 */

75 76 77 78 79
static inline struct i915_priolist *to_priolist(struct rb_node *rb)
{
	return rb_entry(rb, struct i915_priolist, node);
}

80
static inline bool is_high_priority(struct intel_guc_client *client)
81
{
82 83
	return (client->priority == GUC_CLIENT_PRIORITY_KMD_HIGH ||
		client->priority == GUC_CLIENT_PRIORITY_HIGH);
84 85
}

86
static int reserve_doorbell(struct intel_guc_client *client)
87 88 89 90 91 92 93 94 95 96 97 98 99
{
	unsigned long offset;
	unsigned long end;
	u16 id;

	GEM_BUG_ON(client->doorbell_id != GUC_DOORBELL_INVALID);

	/*
	 * The bitmap tracks which doorbell registers are currently in use.
	 * It is split into two halves; the first half is used for normal
	 * priority contexts, the second half for high-priority ones.
	 */
	offset = 0;
100
	end = GUC_NUM_DOORBELLS / 2;
101 102 103 104 105
	if (is_high_priority(client)) {
		offset = end;
		end += offset;
	}

106
	id = find_next_zero_bit(client->guc->doorbell_bitmap, end, offset);
107 108 109 110 111 112
	if (id == end)
		return -ENOSPC;

	__set_bit(id, client->guc->doorbell_bitmap);
	client->doorbell_id = id;
	DRM_DEBUG_DRIVER("client %u (high prio=%s) reserved doorbell: %d\n",
113
			 client->stage_id, yesno(is_high_priority(client)),
114 115 116 117
			 id);
	return 0;
}

118 119 120 121 122 123 124 125
static bool has_doorbell(struct intel_guc_client *client)
{
	if (client->doorbell_id == GUC_DOORBELL_INVALID)
		return false;

	return test_bit(client->doorbell_id, client->guc->doorbell_bitmap);
}

126
static void unreserve_doorbell(struct intel_guc_client *client)
127
{
128
	GEM_BUG_ON(!has_doorbell(client));
129 130 131 132 133

	__clear_bit(client->doorbell_id, client->guc->doorbell_bitmap);
	client->doorbell_id = GUC_DOORBELL_INVALID;
}

134 135 136 137
/*
 * Tell the GuC to allocate or deallocate a specific doorbell
 */

138
static int __guc_allocate_doorbell(struct intel_guc *guc, u32 stage_id)
139
{
140 141
	u32 action[] = {
		INTEL_GUC_ACTION_ALLOCATE_DOORBELL,
142
		stage_id
143
	};
144

145
	return intel_guc_send(guc, action, ARRAY_SIZE(action));
146 147
}

148
static int __guc_deallocate_doorbell(struct intel_guc *guc, u32 stage_id)
149
{
150 151
	u32 action[] = {
		INTEL_GUC_ACTION_DEALLOCATE_DOORBELL,
152
		stage_id
153
	};
154

155
	return intel_guc_send(guc, action, ARRAY_SIZE(action));
156 157
}

158
static struct guc_stage_desc *__get_stage_desc(struct intel_guc_client *client)
159
{
160
	struct guc_stage_desc *base = client->guc->stage_desc_pool_vaddr;
161

162
	return &base[client->stage_id];
163 164
}

165 166 167 168 169 170 171
/*
 * Initialise, update, or clear doorbell data shared with the GuC
 *
 * These functions modify shared data and so need access to the mapped
 * client object which contains the page being used for the doorbell
 */

172
static void __update_doorbell_desc(struct intel_guc_client *client, u16 new_id)
173
{
174
	struct guc_stage_desc *desc;
175

176
	/* Update the GuC's idea of the doorbell ID */
177
	desc = __get_stage_desc(client);
178
	desc->db_id = new_id;
179
}
180

181
static struct guc_doorbell_info *__get_doorbell(struct intel_guc_client *client)
182 183 184 185
{
	return client->vaddr + client->doorbell_offset;
}

186 187
static bool __doorbell_valid(struct intel_guc *guc, u16 db_id)
{
188
	struct intel_uncore *uncore = guc_to_gt(guc)->uncore;
189 190

	GEM_BUG_ON(db_id >= GUC_NUM_DOORBELLS);
191
	return intel_uncore_read(uncore, GEN8_DRBREGL(db_id)) & GEN8_DRB_VALID;
192 193
}

194
static void __init_doorbell(struct intel_guc_client *client)
195 196 197 198
{
	struct guc_doorbell_info *doorbell;

	doorbell = __get_doorbell(client);
199
	doorbell->db_status = GUC_DOORBELL_ENABLED;
200
	doorbell->cookie = 0;
201 202
}

203
static void __fini_doorbell(struct intel_guc_client *client)
204
{
205
	struct guc_doorbell_info *doorbell;
206 207
	u16 db_id = client->doorbell_id;

208 209 210
	doorbell = __get_doorbell(client);
	doorbell->db_status = GUC_DOORBELL_DISABLED;

211 212
	/* Doorbell release flow requires that we wait for GEN8_DRB_VALID bit
	 * to go to zero after updating db_status before we call the GuC to
213 214
	 * release the doorbell
	 */
215
	if (wait_for_us(!__doorbell_valid(client->guc, db_id), 10))
216
		WARN_ONCE(true, "Doorbell never became invalid after disable\n");
217 218
}

219
static int create_doorbell(struct intel_guc_client *client)
220 221 222
{
	int ret;

223 224 225
	if (WARN_ON(!has_doorbell(client)))
		return -ENODEV; /* internal setup error, should never happen */

226
	__update_doorbell_desc(client, client->doorbell_id);
227
	__init_doorbell(client);
228

229 230
	ret = __guc_allocate_doorbell(client->guc, client->stage_id);
	if (ret) {
231
		__fini_doorbell(client);
232
		__update_doorbell_desc(client, GUC_DOORBELL_INVALID);
233 234
		DRM_DEBUG_DRIVER("Couldn't create client %u doorbell: %d\n",
				 client->stage_id, ret);
235 236
		return ret;
	}
237 238 239 240

	return 0;
}

241
static int destroy_doorbell(struct intel_guc_client *client)
242
{
243
	int ret;
244

245 246
	GEM_BUG_ON(!has_doorbell(client));

247
	__fini_doorbell(client);
248 249 250 251
	ret = __guc_deallocate_doorbell(client->guc, client->stage_id);
	if (ret)
		DRM_ERROR("Couldn't destroy client %u doorbell: %d\n",
			  client->stage_id, ret);
252

253
	__update_doorbell_desc(client, GUC_DOORBELL_INVALID);
254

255
	return ret;
256
}
257

258
static unsigned long __select_cacheline(struct intel_guc *guc)
259
{
260
	unsigned long offset;
261 262 263 264 265

	/* Doorbell uses a single cache line within a page */
	offset = offset_in_page(guc->db_cacheline);

	/* Moving to next cache line to reduce contention */
266
	guc->db_cacheline += cache_line_size();
267

268
	DRM_DEBUG_DRIVER("reserved cacheline 0x%lx, next 0x%x, linesize %u\n",
269
			 offset, guc->db_cacheline, cache_line_size());
270 271 272
	return offset;
}

273
static inline struct guc_process_desc *
274
__get_process_desc(struct intel_guc_client *client)
275 276 277 278
{
	return client->vaddr + client->proc_desc_offset;
}

279 280 281
/*
 * Initialise the process descriptor shared with the GuC firmware.
 */
282
static void guc_proc_desc_init(struct intel_guc_client *client)
283 284 285
{
	struct guc_process_desc *desc;

286
	desc = memset(__get_process_desc(client), 0, sizeof(*desc));
287 288 289 290 291 292 293 294 295 296

	/*
	 * XXX: pDoorbell and WQVBaseAddress are pointers in process address
	 * space for ring3 clients (set them as in mmap_ioctl) or kernel
	 * space for kernel clients (map on demand instead? May make debug
	 * easier to have it mapped).
	 */
	desc->wq_base_addr = 0;
	desc->db_base_addr = 0;

297
	desc->stage_id = client->stage_id;
298
	desc->wq_size_bytes = GUC_WQ_SIZE;
299 300 301 302
	desc->wq_status = WQ_STATUS_ACTIVE;
	desc->priority = client->priority;
}

303 304 305 306 307 308 309 310
static void guc_proc_desc_fini(struct intel_guc_client *client)
{
	struct guc_process_desc *desc;

	desc = __get_process_desc(client);
	memset(desc, 0, sizeof(*desc));
}

311 312 313 314 315 316 317 318 319 320 321 322 323
static int guc_stage_desc_pool_create(struct intel_guc *guc)
{
	struct i915_vma *vma;
	void *vaddr;

	vma = intel_guc_allocate_vma(guc,
				     PAGE_ALIGN(sizeof(struct guc_stage_desc) *
				     GUC_MAX_STAGE_DESCRIPTORS));
	if (IS_ERR(vma))
		return PTR_ERR(vma);

	vaddr = i915_gem_object_pin_map(vma->obj, I915_MAP_WB);
	if (IS_ERR(vaddr)) {
324
		i915_vma_unpin_and_release(&vma, 0);
325 326 327 328 329 330 331 332 333 334 335 336 337
		return PTR_ERR(vaddr);
	}

	guc->stage_desc_pool = vma;
	guc->stage_desc_pool_vaddr = vaddr;
	ida_init(&guc->stage_ids);

	return 0;
}

static void guc_stage_desc_pool_destroy(struct intel_guc *guc)
{
	ida_destroy(&guc->stage_ids);
338
	i915_vma_unpin_and_release(&guc->stage_desc_pool, I915_VMA_RELEASE_MAP);
339 340
}

341
/*
342
 * Initialise/clear the stage descriptor shared with the GuC firmware.
343 344 345 346 347
 *
 * This descriptor tells the GuC where (in GGTT space) to find the important
 * data structures relating to this client (doorbell, process descriptor,
 * write queue, etc).
 */
348
static void guc_stage_desc_init(struct intel_guc_client *client)
349
{
350
	struct intel_guc *guc = client->guc;
351
	struct guc_stage_desc *desc;
352
	u32 gfx_addr;
353

354
	desc = __get_stage_desc(client);
355
	memset(desc, 0, sizeof(*desc));
356

357 358
	desc->attribute = GUC_STAGE_DESC_ATTR_ACTIVE |
			  GUC_STAGE_DESC_ATTR_KERNEL;
359 360
	if (is_high_priority(client))
		desc->attribute |= GUC_STAGE_DESC_ATTR_PREEMPT;
361
	desc->stage_id = client->stage_id;
362 363
	desc->priority = client->priority;
	desc->db_id = client->doorbell_id;
364 365

	/*
366 367
	 * The doorbell, process descriptor, and workqueue are all parts
	 * of the client object, which the GuC will reference via the GGTT
368
	 */
369
	gfx_addr = intel_guc_ggtt_offset(guc, client->vma);
370
	desc->db_trigger_phy = sg_dma_address(client->vma->pages->sgl) +
371
				client->doorbell_offset;
372
	desc->db_trigger_cpu = ptr_to_u64(__get_doorbell(client));
373 374
	desc->db_trigger_uk = gfx_addr + client->doorbell_offset;
	desc->process_desc = gfx_addr + client->proc_desc_offset;
375 376
	desc->wq_addr = gfx_addr + GUC_DB_SIZE;
	desc->wq_size = GUC_WQ_SIZE;
377

378
	desc->desc_private = ptr_to_u64(client);
379 380
}

381
static void guc_stage_desc_fini(struct intel_guc_client *client)
382
{
383
	struct guc_stage_desc *desc;
384

385
	desc = __get_stage_desc(client);
386
	memset(desc, 0, sizeof(*desc));
387 388
}

389
/* Construct a Work Item and append it to the GuC's Work Queue */
390
static void guc_wq_item_append(struct intel_guc_client *client,
391 392
			       u32 target_engine, u32 context_desc,
			       u32 ring_tail, u32 fence_id)
393
{
394 395
	/* wqi_len is in DWords, and does not include the one-word header */
	const size_t wqi_size = sizeof(struct guc_wq_item);
396
	const u32 wqi_len = wqi_size / sizeof(u32) - 1;
397
	struct guc_process_desc *desc = __get_process_desc(client);
398
	struct guc_wq_item *wqi;
399
	u32 wq_off;
400

401
	lockdep_assert_held(&client->wq_lock);
402

403 404 405 406 407 408 409
	/* For now workqueue item is 4 DWs; workqueue buffer is 2 pages. So we
	 * should not have the case where structure wqi is across page, neither
	 * wrapped to the beginning. This simplifies the implementation below.
	 *
	 * XXX: if not the case, we need save data to a temp wqi and copy it to
	 * workqueue buffer dw by dw.
	 */
410
	BUILD_BUG_ON(wqi_size != 16);
411

412 413 414
	/* We expect the WQ to be active if we're appending items to it */
	GEM_BUG_ON(desc->wq_status != WQ_STATUS_ACTIVE);

415 416 417 418
	/* Free space is guaranteed. */
	wq_off = READ_ONCE(desc->tail);
	GEM_BUG_ON(CIRC_SPACE(wq_off, READ_ONCE(desc->head),
			      GUC_WQ_SIZE) < wqi_size);
419
	GEM_BUG_ON(wq_off & (wqi_size - 1));
420 421

	/* WQ starts from the page after doorbell / process_desc */
422
	wqi = client->vaddr + wq_off + GUC_DB_SIZE;
423

424 425 426 427 428 429 430 431 432 433 434 435 436
	if (I915_SELFTEST_ONLY(client->use_nop_wqi)) {
		wqi->header = WQ_TYPE_NOOP | (wqi_len << WQ_LEN_SHIFT);
	} else {
		/* Now fill in the 4-word work queue item */
		wqi->header = WQ_TYPE_INORDER |
			      (wqi_len << WQ_LEN_SHIFT) |
			      (target_engine << WQ_TARGET_SHIFT) |
			      WQ_NO_WCFLUSH_WAIT;
		wqi->context_desc = context_desc;
		wqi->submit_element_info = ring_tail << WQ_RING_TAIL_SHIFT;
		GEM_BUG_ON(ring_tail > WQ_RING_TAIL_MAX);
		wqi->fence_id = fence_id;
	}
437

438
	/* Make the update visible to GuC */
439
	WRITE_ONCE(desc->tail, (wq_off + wqi_size) & (GUC_WQ_SIZE - 1));
440 441
}

442
static void guc_ring_doorbell(struct intel_guc_client *client)
443
{
444 445
	struct guc_doorbell_info *db;
	u32 cookie;
446

447
	lockdep_assert_held(&client->wq_lock);
448 449

	/* pointer of current doorbell cacheline */
450
	db = __get_doorbell(client);
451

452 453 454 455
	/*
	 * We're not expecting the doorbell cookie to change behind our back,
	 * we also need to treat 0 as a reserved value.
	 */
456
	cookie = READ_ONCE(db->cookie);
457
	WARN_ON_ONCE(xchg(&db->cookie, cookie + 1 ?: cookie + 2) != cookie);
458

459 460
	/* XXX: doorbell was lost and need to acquire it again */
	GEM_BUG_ON(db->db_status != GUC_DOORBELL_ENABLED);
461 462
}

463
static void guc_add_request(struct intel_guc *guc, struct i915_request *rq)
464
{
465
	struct intel_guc_client *client = guc->execbuf_client;
466
	struct intel_engine_cs *engine = rq->engine;
467
	u32 ctx_desc = lower_32_bits(rq->hw_context->lrc_desc);
468 469 470
	u32 ring_tail = intel_ring_set_tail(rq->ring, rq->tail) / sizeof(u64);

	guc_wq_item_append(client, engine->guc_id, ctx_desc,
471
			   ring_tail, rq->fence.seqno);
472 473
	guc_ring_doorbell(client);

474
	client->submissions[engine->guc_id] += 1;
475 476
}

477 478 479 480 481 482 483 484 485
/*
 * When we're doing submissions using regular execlists backend, writing to
 * ELSP from CPU side is enough to make sure that writes to ringbuffer pages
 * pinned in mappable aperture portion of GGTT are visible to command streamer.
 * Writes done by GuC on our behalf are not guaranteeing such ordering,
 * therefore, to ensure the flush, we're issuing a POSTING READ.
 */
static void flush_ggtt_writes(struct i915_vma *vma)
{
486
	struct drm_i915_private *i915 = vma->vm->i915;
487 488

	if (i915_vma_is_map_and_fenceable(vma))
489
		intel_uncore_posting_read_fw(&i915->uncore, GUC_STATUS);
490 491
}

492 493 494
static void guc_submit(struct intel_engine_cs *engine,
		       struct i915_request **out,
		       struct i915_request **end)
495
{
496
	struct intel_guc *guc = &engine->gt->uc.guc;
497
	struct intel_guc_client *client = guc->execbuf_client;
498

499
	spin_lock(&client->wq_lock);
500

501 502
	do {
		struct i915_request *rq = *out++;
503

504 505 506
		flush_ggtt_writes(rq->ring->vma);
		guc_add_request(guc, rq);
	} while (out != end);
507

508
	spin_unlock(&client->wq_lock);
509 510
}

511
static inline int rq_prio(const struct i915_request *rq)
512
{
513
	return rq->sched.attr.priority | __NO_PREEMPTION;
514 515
}

516
static struct i915_request *schedule_in(struct i915_request *rq, int idx)
517
{
518 519 520 521 522
	trace_i915_request_in(rq, idx);

	if (!rq->hw_context->inflight)
		rq->hw_context->inflight = rq->engine;
	intel_context_inflight_inc(rq->hw_context);
523
	intel_gt_pm_get(rq->engine->gt);
524 525

	return i915_request_get(rq);
526 527
}

528
static void schedule_out(struct i915_request *rq)
529
{
530 531 532 533 534 535
	trace_i915_request_out(rq);

	intel_context_inflight_dec(rq->hw_context);
	if (!intel_context_inflight_count(rq->hw_context))
		rq->hw_context->inflight = NULL;

536
	intel_gt_pm_put(rq->engine->gt);
537
	i915_request_put(rq);
538 539
}

540
static void __guc_dequeue(struct intel_engine_cs *engine)
541
{
542
	struct intel_engine_execlists * const execlists = &engine->execlists;
543 544 545 546
	struct i915_request **first = execlists->inflight;
	struct i915_request ** const last_port = first + execlists->port_mask;
	struct i915_request *last = first[0];
	struct i915_request **port;
547
	bool submit = false;
548 549
	struct rb_node *rb;

550
	lockdep_assert_held(&engine->active.lock);
551

552 553 554 555 556
	if (last) {
		if (*++first)
			return;

		last = NULL;
557 558
	}

559
	port = first;
560
	while ((rb = rb_first_cached(&execlists->queue))) {
561
		struct i915_priolist *p = to_priolist(rb);
562
		struct i915_request *rq, *rn;
563
		int i;
564

565
		priolist_for_each_request_consume(rq, rn, p, i) {
566
			if (last && rq->hw_context != last->hw_context) {
567
				if (port == last_port)
568 569
					goto done;

570 571
				*port = schedule_in(last,
						    port - execlists->inflight);
572 573 574
				port++;
			}

575
			list_del_init(&rq->sched.link);
576
			__i915_request_submit(rq);
577
			submit = true;
578
			last = rq;
579 580
		}

581
		rb_erase_cached(&p->node, &execlists->queue);
582
		i915_priolist_free(p);
583
	}
584
done:
585 586
	execlists->queue_priority_hint =
		rb ? to_priolist(rb)->priority : INT_MIN;
587 588 589 590 591 592
	if (submit) {
		*port = schedule_in(last, port - execlists->inflight);
		*++port = NULL;
		guc_submit(engine, first, port);
	}
	execlists->active = execlists->inflight;
593 594
}

595
static void guc_submission_tasklet(unsigned long data)
596
{
597
	struct intel_engine_cs * const engine = (struct intel_engine_cs *)data;
598
	struct intel_engine_execlists * const execlists = &engine->execlists;
599
	struct i915_request **port, *rq;
600 601
	unsigned long flags;

602
	spin_lock_irqsave(&engine->active.lock, flags);
603

604 605 606
	for (port = execlists->inflight; (rq = *port); port++) {
		if (!i915_request_completed(rq))
			break;
607

608 609 610 611 612 613
		schedule_out(rq);
	}
	if (port != execlists->inflight) {
		int idx = port - execlists->inflight;
		int rem = ARRAY_SIZE(execlists->inflight) - idx;
		memmove(execlists->inflight, port, rem * sizeof(*port));
614
	}
615

616
	__guc_dequeue(engine);
617

618
	spin_unlock_irqrestore(&engine->active.lock, flags);
619 620
}

621
static void guc_reset_prepare(struct intel_engine_cs *engine)
622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638
{
	struct intel_engine_execlists * const execlists = &engine->execlists;

	GEM_TRACE("%s\n", engine->name);

	/*
	 * Prevent request submission to the hardware until we have
	 * completed the reset in i915_gem_reset_finish(). If a request
	 * is completed by one engine, it may then queue a request
	 * to a second via its execlists->tasklet *just* as we are
	 * calling engine->init_hw() and also writing the ELSP.
	 * Turning off the execlists->tasklet until the reset is over
	 * prevents the race.
	 */
	__tasklet_disable_sync_once(&execlists->tasklet);
}

639 640 641 642 643 644
static void guc_reset(struct intel_engine_cs *engine, bool stalled)
{
	struct intel_engine_execlists * const execlists = &engine->execlists;
	struct i915_request *rq;
	unsigned long flags;

645
	spin_lock_irqsave(&engine->active.lock, flags);
646 647 648 649 650 651 652 653 654 655 656

	execlists_cancel_port_requests(execlists);

	/* Push back any incomplete requests for replay after the reset. */
	rq = execlists_unwind_incomplete_requests(execlists);
	if (!rq)
		goto out_unlock;

	if (!i915_request_started(rq))
		stalled = false;

657
	__i915_request_reset(rq, stalled);
658 659 660
	intel_lr_context_reset(engine, rq->hw_context, rq->head, stalled);

out_unlock:
661
	spin_unlock_irqrestore(&engine->active.lock, flags);
662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686
}

static void guc_cancel_requests(struct intel_engine_cs *engine)
{
	struct intel_engine_execlists * const execlists = &engine->execlists;
	struct i915_request *rq, *rn;
	struct rb_node *rb;
	unsigned long flags;

	GEM_TRACE("%s\n", engine->name);

	/*
	 * Before we call engine->cancel_requests(), we should have exclusive
	 * access to the submission state. This is arranged for us by the
	 * caller disabling the interrupt generation, the tasklet and other
	 * threads that may then access the same state, giving us a free hand
	 * to reset state. However, we still need to let lockdep be aware that
	 * we know this state may be accessed in hardirq context, so we
	 * disable the irq around this manipulation and we want to keep
	 * the spinlock focused on its duties and not accidentally conflate
	 * coverage to the submission's irq state. (Similarly, although we
	 * shouldn't need to disable irq around the manipulation of the
	 * submission's irq state, we also wish to remind ourselves that
	 * it is irq state.)
	 */
687
	spin_lock_irqsave(&engine->active.lock, flags);
688 689 690 691 692

	/* Cancel the requests on the HW and clear the ELSP tracker. */
	execlists_cancel_port_requests(execlists);

	/* Mark all executing requests as skipped. */
693
	list_for_each_entry(rq, &engine->active.requests, sched.link) {
694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720
		if (!i915_request_signaled(rq))
			dma_fence_set_error(&rq->fence, -EIO);

		i915_request_mark_complete(rq);
	}

	/* Flush the queued requests to the timeline list (for retiring). */
	while ((rb = rb_first_cached(&execlists->queue))) {
		struct i915_priolist *p = to_priolist(rb);
		int i;

		priolist_for_each_request_consume(rq, rn, p, i) {
			list_del_init(&rq->sched.link);
			__i915_request_submit(rq);
			dma_fence_set_error(&rq->fence, -EIO);
			i915_request_mark_complete(rq);
		}

		rb_erase_cached(&p->node, &execlists->queue);
		i915_priolist_free(p);
	}

	/* Remaining _unready_ requests will be nop'ed when submitted */

	execlists->queue_priority_hint = INT_MIN;
	execlists->queue = RB_ROOT_CACHED;

721
	spin_unlock_irqrestore(&engine->active.lock, flags);
722 723 724 725 726 727 728 729 730 731 732 733 734 735
}

static void guc_reset_finish(struct intel_engine_cs *engine)
{
	struct intel_engine_execlists * const execlists = &engine->execlists;

	if (__tasklet_enable(&execlists->tasklet))
		/* And kick in case we missed a new request submission. */
		tasklet_hi_schedule(&execlists->tasklet);

	GEM_TRACE("%s: depth->%d\n", engine->name,
		  atomic_read(&execlists->tasklet.count));
}

736 737 738
/*
 * Everything below here is concerned with setup & teardown, and is
 * therefore not part of the somewhat time-critical batch-submission
739
 * path of guc_submit() above.
740 741
 */

742
/* Check that a doorbell register is in the expected state */
743
static bool doorbell_ok(struct intel_guc *guc, u16 db_id)
744
{
745 746
	bool valid;

747
	GEM_BUG_ON(db_id >= GUC_NUM_DOORBELLS);
748

749
	valid = __doorbell_valid(guc, db_id);
750

751
	if (test_bit(db_id, guc->doorbell_bitmap) == valid)
752 753
		return true;

754 755
	DRM_DEBUG_DRIVER("Doorbell %u has unexpected state: valid=%s\n",
			 db_id, yesno(valid));
756 757 758 759

	return false;
}

760
static bool guc_verify_doorbells(struct intel_guc *guc)
761
{
762
	bool doorbells_ok = true;
763
	u16 db_id;
764 765 766

	for (db_id = 0; db_id < GUC_NUM_DOORBELLS; ++db_id)
		if (!doorbell_ok(guc, db_id))
767
			doorbells_ok = false;
768

769
	return doorbells_ok;
770 771
}

772
/**
773
 * guc_client_alloc() - Allocate an intel_guc_client
774
 * @guc:	the intel_guc structure
775
 * @priority:	four levels priority _CRITICAL, _HIGH, _NORMAL and _LOW
776 777 778
 *		The kernel client to replace ExecList submission is created with
 *		NORMAL priority. Priority of a client for scheduler can be HIGH,
 *		while a preemption context can use CRITICAL.
779
 *
780
 * Return:	An intel_guc_client object if success, else NULL.
781
 */
782
static struct intel_guc_client *
783
guc_client_alloc(struct intel_guc *guc, u32 priority)
784
{
785
	struct intel_guc_client *client;
786
	struct i915_vma *vma;
787
	void *vaddr;
788
	int ret;
789 790 791

	client = kzalloc(sizeof(*client), GFP_KERNEL);
	if (!client)
792
		return ERR_PTR(-ENOMEM);
793 794

	client->guc = guc;
795
	client->priority = priority;
796 797
	client->doorbell_id = GUC_DOORBELL_INVALID;
	spin_lock_init(&client->wq_lock);
798

799
	ret = ida_simple_get(&guc->stage_ids, 0, GUC_MAX_STAGE_DESCRIPTORS,
800
			     GFP_KERNEL);
801 802 803
	if (ret < 0)
		goto err_client;

804
	client->stage_id = ret;
805 806

	/* The first page is doorbell/proc_desc. Two followed pages are wq. */
807
	vma = intel_guc_allocate_vma(guc, GUC_DB_SIZE + GUC_WQ_SIZE);
808 809 810 811
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto err_id;
	}
812

813
	/* We'll keep just the first (doorbell/proc) page permanently kmap'd. */
814
	client->vma = vma;
815 816

	vaddr = i915_gem_object_pin_map(vma->obj, I915_MAP_WB);
817 818 819 820
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
		goto err_vma;
	}
821
	client->vaddr = vaddr;
822

823 824 825 826
	ret = reserve_doorbell(client);
	if (ret)
		goto err_vaddr;

827
	client->doorbell_offset = __select_cacheline(guc);
828 829 830 831 832 833 834 835 836 837 838

	/*
	 * Since the doorbell only requires a single cacheline, we can save
	 * space by putting the application process descriptor in the same
	 * page. Use the half of the page that doesn't include the doorbell.
	 */
	if (client->doorbell_offset >= (GUC_DB_SIZE / 2))
		client->proc_desc_offset = 0;
	else
		client->proc_desc_offset = (GUC_DB_SIZE / 2);

839 840
	DRM_DEBUG_DRIVER("new priority %u client %p: stage_id %u\n",
			 priority, client, client->stage_id);
841 842
	DRM_DEBUG_DRIVER("doorbell id %u, cacheline offset 0x%lx\n",
			 client->doorbell_id, client->doorbell_offset);
843 844

	return client;
845 846 847

err_vaddr:
	i915_gem_object_unpin_map(client->vma->obj);
848
err_vma:
849
	i915_vma_unpin_and_release(&client->vma, 0);
850
err_id:
851
	ida_simple_remove(&guc->stage_ids, client->stage_id);
852 853 854
err_client:
	kfree(client);
	return ERR_PTR(ret);
855 856
}

857
static void guc_client_free(struct intel_guc_client *client)
858
{
859
	unreserve_doorbell(client);
860
	i915_vma_unpin_and_release(&client->vma, I915_VMA_RELEASE_MAP);
861
	ida_simple_remove(&client->guc->stage_ids, client->stage_id);
862 863 864
	kfree(client);
}

865 866 867 868 869 870 871 872 873 874 875 876 877
static inline bool ctx_save_restore_disabled(struct intel_context *ce)
{
	u32 sr = ce->lrc_reg_state[CTX_CONTEXT_CONTROL + 1];

#define SR_DISABLED \
	_MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT | \
			   CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT)

	return (sr & SR_DISABLED) == SR_DISABLED;

#undef SR_DISABLED
}

878 879
static int guc_clients_create(struct intel_guc *guc)
{
880
	struct intel_guc_client *client;
881 882 883

	GEM_BUG_ON(guc->execbuf_client);

884
	client = guc_client_alloc(guc, GUC_CLIENT_PRIORITY_KMD_NORMAL);
885 886 887 888 889 890 891 892 893 894 895
	if (IS_ERR(client)) {
		DRM_ERROR("Failed to create GuC client for submission!\n");
		return PTR_ERR(client);
	}
	guc->execbuf_client = client;

	return 0;
}

static void guc_clients_destroy(struct intel_guc *guc)
{
896
	struct intel_guc_client *client;
897

898
	client = fetch_and_zero(&guc->execbuf_client);
899 900
	if (client)
		guc_client_free(client);
901 902
}

903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928
static int __guc_client_enable(struct intel_guc_client *client)
{
	int ret;

	guc_proc_desc_init(client);
	guc_stage_desc_init(client);

	ret = create_doorbell(client);
	if (ret)
		goto fail;

	return 0;

fail:
	guc_stage_desc_fini(client);
	guc_proc_desc_fini(client);
	return ret;
}

static void __guc_client_disable(struct intel_guc_client *client)
{
	/*
	 * By the time we're here, GuC may have already been reset. if that is
	 * the case, instead of trying (in vain) to communicate with it, let's
	 * just cleanup the doorbell HW and our internal state.
	 */
929
	if (intel_guc_is_running(client->guc))
930 931
		destroy_doorbell(client);
	else
932
		__fini_doorbell(client);
933 934 935 936 937 938 939

	guc_stage_desc_fini(client);
	guc_proc_desc_fini(client);
}

static int guc_clients_enable(struct intel_guc *guc)
{
940
	return __guc_client_enable(guc->execbuf_client);
941 942 943 944 945 946 947 948
}

static void guc_clients_disable(struct intel_guc *guc)
{
	if (guc->execbuf_client)
		__guc_client_disable(guc->execbuf_client);
}

949
/*
950 951
 * Set up the memory resources to be shared with the GuC (via the GGTT)
 * at firmware loading time.
952
 */
953
int intel_guc_submission_init(struct intel_guc *guc)
954
{
955
	int ret;
956

957
	if (guc->stage_desc_pool)
958
		return 0;
959

960 961 962
	ret = guc_stage_desc_pool_create(guc);
	if (ret)
		return ret;
963 964 965 966 967
	/*
	 * Keep static analysers happy, let them know that we allocated the
	 * vma after testing that it didn't exist earlier.
	 */
	GEM_BUG_ON(!guc->stage_desc_pool);
968

969
	WARN_ON(!guc_verify_doorbells(guc));
970 971
	ret = guc_clients_create(guc);
	if (ret)
972
		goto err_pool;
973

974
	return 0;
975

976 977 978
err_pool:
	guc_stage_desc_pool_destroy(guc);
	return ret;
979 980
}

981
void intel_guc_submission_fini(struct intel_guc *guc)
982
{
983
	guc_clients_destroy(guc);
984 985
	WARN_ON(!guc_verify_doorbells(guc));

986 987
	if (guc->stage_desc_pool)
		guc_stage_desc_pool_destroy(guc);
988 989
}

990
static void guc_interrupts_capture(struct intel_gt *gt)
991
{
992 993
	struct intel_rps *rps = &gt->i915->gt_pm.rps;
	struct intel_uncore *uncore = gt->uncore;
994 995 996 997
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
	int irqs;

998 999 1000
	/* tell all command streamers to forward interrupts (but not vblank)
	 * to GuC
	 */
1001
	irqs = _MASKED_BIT_ENABLE(GFX_INTERRUPT_STEERING);
1002
	for_each_engine(engine, gt->i915, id)
1003
		ENGINE_WRITE(engine, RING_MODE_GEN7, irqs);
1004 1005 1006 1007 1008

	/* route USER_INTERRUPT to Host, all others are sent to GuC. */
	irqs = GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
	       GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
	/* These three registers have the same bit definitions */
1009 1010 1011
	intel_uncore_write(uncore, GUC_BCS_RCS_IER, ~irqs);
	intel_uncore_write(uncore, GUC_VCS2_VCS1_IER, ~irqs);
	intel_uncore_write(uncore, GUC_WD_VECS_IER, ~irqs);
1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031

	/*
	 * The REDIRECT_TO_GUC bit of the PMINTRMSK register directs all
	 * (unmasked) PM interrupts to the GuC. All other bits of this
	 * register *disable* generation of a specific interrupt.
	 *
	 * 'pm_intrmsk_mbz' indicates bits that are NOT to be set when
	 * writing to the PM interrupt mask register, i.e. interrupts
	 * that must not be disabled.
	 *
	 * If the GuC is handling these interrupts, then we must not let
	 * the PM code disable ANY interrupt that the GuC is expecting.
	 * So for each ENABLED (0) bit in this register, we must SET the
	 * bit in pm_intrmsk_mbz so that it's left enabled for the GuC.
	 * GuC needs ARAT expired interrupt unmasked hence it is set in
	 * pm_intrmsk_mbz.
	 *
	 * Here we CLEAR REDIRECT_TO_GUC bit in pm_intrmsk_mbz, which will
	 * result in the register bit being left SET!
	 */
1032 1033
	rps->pm_intrmsk_mbz |= ARAT_EXPIRED_INTRMSK;
	rps->pm_intrmsk_mbz &= ~GEN8_PMINTR_DISABLE_REDIRECT_TO_GUC;
1034 1035
}

1036
static void guc_interrupts_release(struct intel_gt *gt)
1037
{
1038 1039
	struct intel_rps *rps = &gt->i915->gt_pm.rps;
	struct intel_uncore *uncore = gt->uncore;
1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
	int irqs;

	/*
	 * tell all command streamers NOT to forward interrupts or vblank
	 * to GuC.
	 */
	irqs = _MASKED_FIELD(GFX_FORWARD_VBLANK_MASK, GFX_FORWARD_VBLANK_NEVER);
	irqs |= _MASKED_BIT_DISABLE(GFX_INTERRUPT_STEERING);
1050
	for_each_engine(engine, gt->i915, id)
1051
		ENGINE_WRITE(engine, RING_MODE_GEN7, irqs);
1052 1053

	/* route all GT interrupts to the host */
1054 1055 1056
	intel_uncore_write(uncore, GUC_BCS_RCS_IER, 0);
	intel_uncore_write(uncore, GUC_VCS2_VCS1_IER, 0);
	intel_uncore_write(uncore, GUC_WD_VECS_IER, 0);
1057

1058 1059
	rps->pm_intrmsk_mbz |= GEN8_PMINTR_DISABLE_REDIRECT_TO_GUC;
	rps->pm_intrmsk_mbz &= ~ARAT_EXPIRED_INTRMSK;
1060 1061
}

1062
static void guc_submission_park(struct intel_engine_cs *engine)
1063 1064
{
	intel_engine_unpin_breadcrumbs_irq(engine);
1065
	engine->flags &= ~I915_ENGINE_NEEDS_BREADCRUMB_TASKLET;
1066 1067
}

1068
static void guc_submission_unpark(struct intel_engine_cs *engine)
1069
{
1070
	engine->flags |= I915_ENGINE_NEEDS_BREADCRUMB_TASKLET;
1071 1072 1073
	intel_engine_pin_breadcrumbs_irq(engine);
}

1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094
static void guc_set_default_submission(struct intel_engine_cs *engine)
{
	/*
	 * We inherit a bunch of functions from execlists that we'd like
	 * to keep using:
	 *
	 *    engine->submit_request = execlists_submit_request;
	 *    engine->cancel_requests = execlists_cancel_requests;
	 *    engine->schedule = execlists_schedule;
	 *
	 * But we need to override the actual submission backend in order
	 * to talk to the GuC.
	 */
	intel_execlists_set_default_submission(engine);

	engine->execlists.tasklet.func = guc_submission_tasklet;

	engine->park = guc_submission_park;
	engine->unpark = guc_submission_unpark;

	engine->reset.prepare = guc_reset_prepare;
1095 1096 1097 1098
	engine->reset.reset = guc_reset;
	engine->reset.finish = guc_reset_finish;

	engine->cancel_requests = guc_cancel_requests;
1099 1100 1101 1102

	engine->flags &= ~I915_ENGINE_SUPPORTS_STATS;
}

1103
int intel_guc_submission_enable(struct intel_guc *guc)
1104
{
1105
	struct intel_gt *gt = guc_to_gt(guc);
1106
	struct intel_engine_cs *engine;
1107
	enum intel_engine_id id;
1108
	int err;
1109

1110 1111 1112 1113
	err = i915_inject_load_error(gt->i915, -ENXIO);
	if (err)
		return err;

1114 1115 1116 1117 1118 1119 1120 1121 1122
	/*
	 * We're using GuC work items for submitting work through GuC. Since
	 * we're coalescing multiple requests from a single context into a
	 * single work item prior to assigning it to execlist_port, we can
	 * never have more work items than the total number of ports (for all
	 * engines). The GuC firmware is controlling the HEAD of work queue,
	 * and it is guaranteed that it will remove the work item from the
	 * queue before our request is completed.
	 */
1123
	BUILD_BUG_ON(ARRAY_SIZE(engine->execlists.inflight) *
1124 1125 1126
		     sizeof(struct guc_wq_item) *
		     I915_NUM_ENGINES > GUC_WQ_SIZE);

1127 1128
	GEM_BUG_ON(!guc->execbuf_client);

1129
	err = guc_clients_enable(guc);
1130
	if (err)
1131
		return err;
A
Alex Dai 已提交
1132

1133
	/* Take over from manual control of ELSP (execlists) */
1134
	guc_interrupts_capture(gt);
1135

1136
	for_each_engine(engine, gt->i915, id) {
1137 1138
		engine->set_default_submission = guc_set_default_submission;
		engine->set_default_submission(engine);
1139 1140
	}

1141 1142 1143
	return 0;
}

1144
void intel_guc_submission_disable(struct intel_guc *guc)
1145
{
1146
	struct intel_gt *gt = guc_to_gt(guc);
1147

1148
	GEM_BUG_ON(gt->awake); /* GT should be parked first */
1149

1150
	guc_interrupts_release(gt);
1151
	guc_clients_disable(guc);
1152
}
1153

1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169
static bool __guc_submission_support(struct intel_guc *guc)
{
	/* XXX: GuC submission is unavailable for now */
	return false;

	if (!intel_guc_is_supported(guc))
		return false;

	return i915_modparams.enable_guc & ENABLE_GUC_SUBMISSION;
}

void intel_guc_submission_init_early(struct intel_guc *guc)
{
	guc->submission_supported = __guc_submission_support(guc);
}

1170
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1171
#include "selftest_guc.c"
1172
#endif