intel_pm.c 205.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Copyright © 2012 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eugeni Dodonov <eugeni.dodonov@intel.com>
 *
 */

28
#include <linux/cpufreq.h>
29 30
#include "i915_drv.h"
#include "intel_drv.h"
31 32
#include "../../../platform/x86/intel_ips.h"
#include <linux/module.h>
33

B
Ben Widawsky 已提交
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
/**
 * RC6 is a special power stage which allows the GPU to enter an very
 * low-voltage mode when idle, using down to 0V while at this stage.  This
 * stage is entered automatically when the GPU is idle when RC6 support is
 * enabled, and as soon as new workload arises GPU wakes up automatically as well.
 *
 * There are different RC6 modes available in Intel GPU, which differentiate
 * among each other with the latency required to enter and leave RC6 and
 * voltage consumed by the GPU in different states.
 *
 * The combination of the following flags define which states GPU is allowed
 * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
 * RC6pp is deepest RC6. Their support by hardware varies according to the
 * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
 * which brings the most power savings; deeper states save more power, but
 * require higher latency to switch to and wake up.
 */
#define INTEL_RC6_ENABLE			(1<<0)
#define INTEL_RC6p_ENABLE			(1<<1)
#define INTEL_RC6pp_ENABLE			(1<<2)

55 56
static void gen9_init_clock_gating(struct drm_device *dev)
{
57 58
	struct drm_i915_private *dev_priv = dev->dev_private;

59 60 61
	/* WaEnableLbsSlaRetryTimerDecrement:skl */
	I915_WRITE(BDW_SCRATCH1, I915_READ(BDW_SCRATCH1) |
		   GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE);
62 63 64 65

	/* WaDisableKillLogic:bxt,skl */
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
		   ECOCHK_DIS_TLB);
66
}
67

68
static void skl_init_clock_gating(struct drm_device *dev)
69
{
70
	struct drm_i915_private *dev_priv = dev->dev_private;
71

72 73
	gen9_init_clock_gating(dev);

74
	if (INTEL_REVID(dev) <= SKL_REVID_D0) {
75 76 77 78
		/* WaDisableHDCInvalidation:skl */
		I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
			   BDW_DISABLE_HDC_INVALIDATION);

79 80
		/* WaDisableChickenBitTSGBarrierAckForFFSliceCS:skl */
		I915_WRITE(FF_SLICE_CS_CHICKEN2,
81
			   _MASKED_BIT_ENABLE(GEN9_TSG_BARRIER_ACK_DISABLE));
82
	}
83

84 85 86
	/* GEN8_L3SQCREG4 has a dependency with WA batch so any new changes
	 * involving this register should also be added to WA batch as required.
	 */
87 88 89 90
	if (INTEL_REVID(dev) <= SKL_REVID_E0)
		/* WaDisableLSQCROPERFforOCL:skl */
		I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
			   GEN8_LQSC_RO_PERF_DIS);
91 92 93 94 95 96

	/* WaEnableGapsTsvCreditFix:skl */
	if (IS_SKYLAKE(dev) && (INTEL_REVID(dev) >= SKL_REVID_C0)) {
		I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
					   GEN9_GAPS_TSV_CREDIT_DISABLE));
	}
97 98
}

99 100
static void bxt_init_clock_gating(struct drm_device *dev)
{
101 102
	struct drm_i915_private *dev_priv = dev->dev_private;

103
	gen9_init_clock_gating(dev);
104

105 106 107 108
	/* WaDisableSDEUnitClockGating:bxt */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);

109 110
	/*
	 * FIXME:
111
	 * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
112 113
	 */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
114
		   GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
115

116 117 118
	/* WaStoreMultiplePTEenable:bxt */
	/* This is a requirement according to Hardware specification */
	if (INTEL_REVID(dev) == BXT_REVID_A0)
119
		I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_TLBPF);
120 121 122 123 124 125

	/* WaSetClckGatingDisableMedia:bxt */
	if (INTEL_REVID(dev) == BXT_REVID_A0) {
		I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) &
					    ~GEN8_DOP_CLOCK_GATE_MEDIA_ENABLE));
	}
126 127
}

128 129
static void i915_pineview_get_mem_freq(struct drm_device *dev)
{
130
	struct drm_i915_private *dev_priv = dev->dev_private;
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
	u32 tmp;

	tmp = I915_READ(CLKCFG);

	switch (tmp & CLKCFG_FSB_MASK) {
	case CLKCFG_FSB_533:
		dev_priv->fsb_freq = 533; /* 133*4 */
		break;
	case CLKCFG_FSB_800:
		dev_priv->fsb_freq = 800; /* 200*4 */
		break;
	case CLKCFG_FSB_667:
		dev_priv->fsb_freq =  667; /* 167*4 */
		break;
	case CLKCFG_FSB_400:
		dev_priv->fsb_freq = 400; /* 100*4 */
		break;
	}

	switch (tmp & CLKCFG_MEM_MASK) {
	case CLKCFG_MEM_533:
		dev_priv->mem_freq = 533;
		break;
	case CLKCFG_MEM_667:
		dev_priv->mem_freq = 667;
		break;
	case CLKCFG_MEM_800:
		dev_priv->mem_freq = 800;
		break;
	}

	/* detect pineview DDR3 setting */
	tmp = I915_READ(CSHRDDR3CTL);
	dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
}

static void i915_ironlake_get_mem_freq(struct drm_device *dev)
{
169
	struct drm_i915_private *dev_priv = dev->dev_private;
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
	u16 ddrpll, csipll;

	ddrpll = I915_READ16(DDRMPLL1);
	csipll = I915_READ16(CSIPLL0);

	switch (ddrpll & 0xff) {
	case 0xc:
		dev_priv->mem_freq = 800;
		break;
	case 0x10:
		dev_priv->mem_freq = 1066;
		break;
	case 0x14:
		dev_priv->mem_freq = 1333;
		break;
	case 0x18:
		dev_priv->mem_freq = 1600;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
				 ddrpll & 0xff);
		dev_priv->mem_freq = 0;
		break;
	}

195
	dev_priv->ips.r_t = dev_priv->mem_freq;
196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226

	switch (csipll & 0x3ff) {
	case 0x00c:
		dev_priv->fsb_freq = 3200;
		break;
	case 0x00e:
		dev_priv->fsb_freq = 3733;
		break;
	case 0x010:
		dev_priv->fsb_freq = 4266;
		break;
	case 0x012:
		dev_priv->fsb_freq = 4800;
		break;
	case 0x014:
		dev_priv->fsb_freq = 5333;
		break;
	case 0x016:
		dev_priv->fsb_freq = 5866;
		break;
	case 0x018:
		dev_priv->fsb_freq = 6400;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
				 csipll & 0x3ff);
		dev_priv->fsb_freq = 0;
		break;
	}

	if (dev_priv->fsb_freq == 3200) {
227
		dev_priv->ips.c_m = 0;
228
	} else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
229
		dev_priv->ips.c_m = 1;
230
	} else {
231
		dev_priv->ips.c_m = 2;
232 233 234
	}
}

235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
static const struct cxsr_latency cxsr_latency_table[] = {
	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */

	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */

	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */

	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */

	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */

	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
};

273
static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
							 int is_ddr3,
							 int fsb,
							 int mem)
{
	const struct cxsr_latency *latency;
	int i;

	if (fsb == 0 || mem == 0)
		return NULL;

	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
		latency = &cxsr_latency_table[i];
		if (is_desktop == latency->is_desktop &&
		    is_ddr3 == latency->is_ddr3 &&
		    fsb == latency->fsb_freq && mem == latency->mem_freq)
			return latency;
	}

	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");

	return NULL;
}

297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

	mutex_lock(&dev_priv->rps.hw_lock);

	val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
	if (enable)
		val &= ~FORCE_DDR_HIGH_FREQ;
	else
		val |= FORCE_DDR_HIGH_FREQ;
	val &= ~FORCE_DDR_LOW_FREQ;
	val |= FORCE_DDR_FREQ_REQ_ACK;
	vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

	if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
		      FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
		DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");

	mutex_unlock(&dev_priv->rps.hw_lock);
}

319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

	mutex_lock(&dev_priv->rps.hw_lock);

	val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
	if (enable)
		val |= DSP_MAXFIFO_PM5_ENABLE;
	else
		val &= ~DSP_MAXFIFO_PM5_ENABLE;
	vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);

	mutex_unlock(&dev_priv->rps.hw_lock);
}

335 336 337
#define FW_WM(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)

338
void intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
339
{
340 341
	struct drm_device *dev = dev_priv->dev;
	u32 val;
342

343 344
	if (IS_VALLEYVIEW(dev)) {
		I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
345
		POSTING_READ(FW_BLC_SELF_VLV);
346
		dev_priv->wm.vlv.cxsr = enable;
347 348
	} else if (IS_G4X(dev) || IS_CRESTLINE(dev)) {
		I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
349
		POSTING_READ(FW_BLC_SELF);
350 351 352 353
	} else if (IS_PINEVIEW(dev)) {
		val = I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN;
		val |= enable ? PINEVIEW_SELF_REFRESH_EN : 0;
		I915_WRITE(DSPFW3, val);
354
		POSTING_READ(DSPFW3);
355 356 357 358
	} else if (IS_I945G(dev) || IS_I945GM(dev)) {
		val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
			       _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
		I915_WRITE(FW_BLC_SELF, val);
359
		POSTING_READ(FW_BLC_SELF);
360 361 362 363
	} else if (IS_I915GM(dev)) {
		val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
			       _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
		I915_WRITE(INSTPM, val);
364
		POSTING_READ(INSTPM);
365 366 367
	} else {
		return;
	}
368

369 370
	DRM_DEBUG_KMS("memory self-refresh is %s\n",
		      enable ? "enabled" : "disabled");
371 372
}

373

374 375 376 377 378 379 380 381 382 383 384 385 386 387
/*
 * Latency for FIFO fetches is dependent on several factors:
 *   - memory configuration (speed, channels)
 *   - chipset
 *   - current MCH state
 * It can be fairly high in some situations, so here we assume a fairly
 * pessimal value.  It's a tradeoff between extra memory fetches (if we
 * set this value too high, the FIFO will fetch frequently to stay full)
 * and power consumption (set it too low to save power and we might see
 * FIFO underruns and display "flicker").
 *
 * A value of 5us seems to be a good balance; safe for very low end
 * platforms but not overly aggressive on lower latency configs.
 */
388
static const int pessimal_latency_ns = 5000;
389

390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
#define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
	((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))

static int vlv_get_fifo_size(struct drm_device *dev,
			      enum pipe pipe, int plane)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int sprite0_start, sprite1_start, size;

	switch (pipe) {
		uint32_t dsparb, dsparb2, dsparb3;
	case PIPE_A:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
		break;
	case PIPE_B:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
		break;
	case PIPE_C:
		dsparb2 = I915_READ(DSPARB2);
		dsparb3 = I915_READ(DSPARB3);
		sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
		sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
		break;
	default:
		return 0;
	}

	switch (plane) {
	case 0:
		size = sprite0_start;
		break;
	case 1:
		size = sprite1_start - sprite0_start;
		break;
	case 2:
		size = 512 - 1 - sprite1_start;
		break;
	default:
		return 0;
	}

	DRM_DEBUG_KMS("Pipe %c %s %c FIFO size: %d\n",
		      pipe_name(pipe), plane == 0 ? "primary" : "sprite",
		      plane == 0 ? plane_name(pipe) : sprite_name(pipe, plane - 1),
		      size);

	return size;
}

445
static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	if (plane)
		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

461
static int i830_get_fifo_size(struct drm_device *dev, int plane)
462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x1ff;
	if (plane)
		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
	size >>= 1; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

478
static int i845_get_fifo_size(struct drm_device *dev, int plane)
479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	size >>= 2; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A",
		      size);

	return size;
}

/* Pineview has different values for various configs */
static const struct intel_watermark_params pineview_display_wm = {
496 497 498 499 500
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
501 502
};
static const struct intel_watermark_params pineview_display_hplloff_wm = {
503 504 505 506 507
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_HPLLOFF_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
508 509
};
static const struct intel_watermark_params pineview_cursor_wm = {
510 511 512 513 514
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
515 516
};
static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
517 518 519 520 521
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
522 523
};
static const struct intel_watermark_params g4x_wm_info = {
524 525 526 527 528
	.fifo_size = G4X_FIFO_SIZE,
	.max_wm = G4X_MAX_WM,
	.default_wm = G4X_MAX_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
529 530
};
static const struct intel_watermark_params g4x_cursor_wm_info = {
531 532 533 534 535
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
536 537
};
static const struct intel_watermark_params valleyview_wm_info = {
538 539 540 541 542
	.fifo_size = VALLEYVIEW_FIFO_SIZE,
	.max_wm = VALLEYVIEW_MAX_WM,
	.default_wm = VALLEYVIEW_MAX_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
543 544
};
static const struct intel_watermark_params valleyview_cursor_wm_info = {
545 546 547 548 549
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = VALLEYVIEW_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
550 551
};
static const struct intel_watermark_params i965_cursor_wm_info = {
552 553 554 555 556
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
557 558
};
static const struct intel_watermark_params i945_wm_info = {
559 560 561 562 563
	.fifo_size = I945_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
564 565
};
static const struct intel_watermark_params i915_wm_info = {
566 567 568 569 570
	.fifo_size = I915_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
571
};
572
static const struct intel_watermark_params i830_a_wm_info = {
573 574 575 576 577
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
578
};
579 580 581 582 583 584 585
static const struct intel_watermark_params i830_bc_wm_info = {
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM/2,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
};
586
static const struct intel_watermark_params i845_wm_info = {
587 588 589 590 591
	.fifo_size = I830_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640
};

/**
 * intel_calculate_wm - calculate watermark level
 * @clock_in_khz: pixel clock
 * @wm: chip FIFO params
 * @pixel_size: display pixel size
 * @latency_ns: memory latency for the platform
 *
 * Calculate the watermark level (the level at which the display plane will
 * start fetching from memory again).  Each chip has a different display
 * FIFO size and allocation, so the caller needs to figure that out and pass
 * in the correct intel_watermark_params structure.
 *
 * As the pixel clock runs, the FIFO will be drained at a rate that depends
 * on the pixel size.  When it reaches the watermark level, it'll start
 * fetching FIFO line sized based chunks from memory until the FIFO fills
 * past the watermark point.  If the FIFO drains completely, a FIFO underrun
 * will occur, and a display engine hang could result.
 */
static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
					const struct intel_watermark_params *wm,
					int fifo_size,
					int pixel_size,
					unsigned long latency_ns)
{
	long entries_required, wm_size;

	/*
	 * Note: we need to make sure we don't overflow for various clock &
	 * latency values.
	 * clocks go from a few thousand to several hundred thousand.
	 * latency is usually a few thousand
	 */
	entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
		1000;
	entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);

	DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);

	wm_size = fifo_size - (entries_required + wm->guard_size);

	DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);

	/* Don't promote wm_size to unsigned... */
	if (wm_size > (long)wm->max_wm)
		wm_size = wm->max_wm;
	if (wm_size <= 0)
		wm_size = wm->default_wm;
641 642 643 644 645 646 647 648 649 650 651

	/*
	 * Bspec seems to indicate that the value shouldn't be lower than
	 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
	 * Lets go for 8 which is the burst size since certain platforms
	 * already use a hardcoded 8 (which is what the spec says should be
	 * done).
	 */
	if (wm_size <= 8)
		wm_size = 8;

652 653 654 655 656 657 658
	return wm_size;
}

static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
{
	struct drm_crtc *crtc, *enabled = NULL;

659
	for_each_crtc(dev, crtc) {
660
		if (intel_crtc_active(crtc)) {
661 662 663 664 665 666 667 668 669
			if (enabled)
				return NULL;
			enabled = crtc;
		}
	}

	return enabled;
}

670
static void pineview_update_wm(struct drm_crtc *unused_crtc)
671
{
672
	struct drm_device *dev = unused_crtc->dev;
673 674 675 676 677 678 679 680 681 682
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_crtc *crtc;
	const struct cxsr_latency *latency;
	u32 reg;
	unsigned long wm;

	latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
					 dev_priv->fsb_freq, dev_priv->mem_freq);
	if (!latency) {
		DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
683
		intel_set_memory_cxsr(dev_priv, false);
684 685 686 687 688
		return;
	}

	crtc = single_enabled_crtc(dev);
	if (crtc) {
689
		const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
690
		int pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
691
		int clock = adjusted_mode->crtc_clock;
692 693 694 695 696 697 698

		/* Display SR */
		wm = intel_calculate_wm(clock, &pineview_display_wm,
					pineview_display_wm.fifo_size,
					pixel_size, latency->display_sr);
		reg = I915_READ(DSPFW1);
		reg &= ~DSPFW_SR_MASK;
699
		reg |= FW_WM(wm, SR);
700 701 702 703 704 705 706 707 708
		I915_WRITE(DSPFW1, reg);
		DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);

		/* cursor SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_wm,
					pineview_display_wm.fifo_size,
					pixel_size, latency->cursor_sr);
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_CURSOR_SR_MASK;
709
		reg |= FW_WM(wm, CURSOR_SR);
710 711 712 713 714 715 716 717
		I915_WRITE(DSPFW3, reg);

		/* Display HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
					pixel_size, latency->display_hpll_disable);
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_SR_MASK;
718
		reg |= FW_WM(wm, HPLL_SR);
719 720 721 722 723 724 725 726
		I915_WRITE(DSPFW3, reg);

		/* cursor HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
					pixel_size, latency->cursor_hpll_disable);
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_CURSOR_MASK;
727
		reg |= FW_WM(wm, HPLL_CURSOR);
728 729 730
		I915_WRITE(DSPFW3, reg);
		DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);

731
		intel_set_memory_cxsr(dev_priv, true);
732
	} else {
733
		intel_set_memory_cxsr(dev_priv, false);
734 735 736 737 738 739 740 741 742 743 744 745 746
	}
}

static bool g4x_compute_wm0(struct drm_device *dev,
			    int plane,
			    const struct intel_watermark_params *display,
			    int display_latency_ns,
			    const struct intel_watermark_params *cursor,
			    int cursor_latency_ns,
			    int *plane_wm,
			    int *cursor_wm)
{
	struct drm_crtc *crtc;
747
	const struct drm_display_mode *adjusted_mode;
748 749 750 751 752
	int htotal, hdisplay, clock, pixel_size;
	int line_time_us, line_count;
	int entries, tlb_miss;

	crtc = intel_get_crtc_for_plane(dev, plane);
753
	if (!intel_crtc_active(crtc)) {
754 755 756 757 758
		*cursor_wm = cursor->guard_size;
		*plane_wm = display->guard_size;
		return false;
	}

759
	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
760
	clock = adjusted_mode->crtc_clock;
761
	htotal = adjusted_mode->crtc_htotal;
762
	hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
763
	pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
764 765 766 767 768 769 770 771 772 773 774 775

	/* Use the small buffer method to calculate plane watermark */
	entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
	tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
	if (tlb_miss > 0)
		entries += tlb_miss;
	entries = DIV_ROUND_UP(entries, display->cacheline_size);
	*plane_wm = entries + display->guard_size;
	if (*plane_wm > (int)display->max_wm)
		*plane_wm = display->max_wm;

	/* Use the large buffer method to calculate cursor watermark */
776
	line_time_us = max(htotal * 1000 / clock, 1);
777
	line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
778
	entries = line_count * crtc->cursor->state->crtc_w * pixel_size;
779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832
	tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
	if (tlb_miss > 0)
		entries += tlb_miss;
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
	*cursor_wm = entries + cursor->guard_size;
	if (*cursor_wm > (int)cursor->max_wm)
		*cursor_wm = (int)cursor->max_wm;

	return true;
}

/*
 * Check the wm result.
 *
 * If any calculated watermark values is larger than the maximum value that
 * can be programmed into the associated watermark register, that watermark
 * must be disabled.
 */
static bool g4x_check_srwm(struct drm_device *dev,
			   int display_wm, int cursor_wm,
			   const struct intel_watermark_params *display,
			   const struct intel_watermark_params *cursor)
{
	DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
		      display_wm, cursor_wm);

	if (display_wm > display->max_wm) {
		DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
			      display_wm, display->max_wm);
		return false;
	}

	if (cursor_wm > cursor->max_wm) {
		DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
			      cursor_wm, cursor->max_wm);
		return false;
	}

	if (!(display_wm || cursor_wm)) {
		DRM_DEBUG_KMS("SR latency is 0, disabling\n");
		return false;
	}

	return true;
}

static bool g4x_compute_srwm(struct drm_device *dev,
			     int plane,
			     int latency_ns,
			     const struct intel_watermark_params *display,
			     const struct intel_watermark_params *cursor,
			     int *display_wm, int *cursor_wm)
{
	struct drm_crtc *crtc;
833
	const struct drm_display_mode *adjusted_mode;
834 835 836 837 838 839 840 841 842 843 844 845
	int hdisplay, htotal, pixel_size, clock;
	unsigned long line_time_us;
	int line_count, line_size;
	int small, large;
	int entries;

	if (!latency_ns) {
		*display_wm = *cursor_wm = 0;
		return false;
	}

	crtc = intel_get_crtc_for_plane(dev, plane);
846
	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
847
	clock = adjusted_mode->crtc_clock;
848
	htotal = adjusted_mode->crtc_htotal;
849
	hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
850
	pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
851

852
	line_time_us = max(htotal * 1000 / clock, 1);
853 854 855 856 857 858 859 860 861 862 863
	line_count = (latency_ns / line_time_us + 1000) / 1000;
	line_size = hdisplay * pixel_size;

	/* Use the minimum of the small and large buffer method for primary */
	small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
	large = line_count * line_size;

	entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
	*display_wm = entries + display->guard_size;

	/* calculate the self-refresh watermark for display cursor */
864
	entries = line_count * pixel_size * crtc->cursor->state->crtc_w;
865 866 867 868 869 870 871 872
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
	*cursor_wm = entries + cursor->guard_size;

	return g4x_check_srwm(dev,
			      *display_wm, *cursor_wm,
			      display, cursor);
}

873 874 875
#define FW_WM_VLV(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)

876 877 878 879 880 881 882 883 884 885 886 887
static void vlv_write_wm_values(struct intel_crtc *crtc,
				const struct vlv_wm_values *wm)
{
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	enum pipe pipe = crtc->pipe;

	I915_WRITE(VLV_DDL(pipe),
		   (wm->ddl[pipe].cursor << DDL_CURSOR_SHIFT) |
		   (wm->ddl[pipe].sprite[1] << DDL_SPRITE_SHIFT(1)) |
		   (wm->ddl[pipe].sprite[0] << DDL_SPRITE_SHIFT(0)) |
		   (wm->ddl[pipe].primary << DDL_PLANE_SHIFT));

888
	I915_WRITE(DSPFW1,
889 890 891 892
		   FW_WM(wm->sr.plane, SR) |
		   FW_WM(wm->pipe[PIPE_B].cursor, CURSORB) |
		   FW_WM_VLV(wm->pipe[PIPE_B].primary, PLANEB) |
		   FW_WM_VLV(wm->pipe[PIPE_A].primary, PLANEA));
893
	I915_WRITE(DSPFW2,
894 895 896
		   FW_WM_VLV(wm->pipe[PIPE_A].sprite[1], SPRITEB) |
		   FW_WM(wm->pipe[PIPE_A].cursor, CURSORA) |
		   FW_WM_VLV(wm->pipe[PIPE_A].sprite[0], SPRITEA));
897
	I915_WRITE(DSPFW3,
898
		   FW_WM(wm->sr.cursor, CURSOR_SR));
899 900 901

	if (IS_CHERRYVIEW(dev_priv)) {
		I915_WRITE(DSPFW7_CHV,
902 903
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
904
		I915_WRITE(DSPFW8_CHV,
905 906
			   FW_WM_VLV(wm->pipe[PIPE_C].sprite[1], SPRITEF) |
			   FW_WM_VLV(wm->pipe[PIPE_C].sprite[0], SPRITEE));
907
		I915_WRITE(DSPFW9_CHV,
908 909
			   FW_WM_VLV(wm->pipe[PIPE_C].primary, PLANEC) |
			   FW_WM(wm->pipe[PIPE_C].cursor, CURSORC));
910
		I915_WRITE(DSPHOWM,
911 912 913 914 915 916 917 918 919 920
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
			   FW_WM(wm->pipe[PIPE_C].sprite[1] >> 8, SPRITEF_HI) |
			   FW_WM(wm->pipe[PIPE_C].sprite[0] >> 8, SPRITEE_HI) |
			   FW_WM(wm->pipe[PIPE_C].primary >> 8, PLANEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
921 922
	} else {
		I915_WRITE(DSPFW7,
923 924
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
925
		I915_WRITE(DSPHOWM,
926 927 928 929 930 931 932
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
933 934
	}

935 936 937 938 939 940
	/* zero (unused) WM1 watermarks */
	I915_WRITE(DSPFW4, 0);
	I915_WRITE(DSPFW5, 0);
	I915_WRITE(DSPFW6, 0);
	I915_WRITE(DSPHOWM1, 0);

941
	POSTING_READ(DSPFW1);
942 943
}

944 945
#undef FW_WM_VLV

946 947 948 949 950 951
enum vlv_wm_level {
	VLV_WM_LEVEL_PM2,
	VLV_WM_LEVEL_PM5,
	VLV_WM_LEVEL_DDR_DVFS,
};

952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974
/* latency must be in 0.1us units. */
static unsigned int vlv_wm_method2(unsigned int pixel_rate,
				   unsigned int pipe_htotal,
				   unsigned int horiz_pixels,
				   unsigned int bytes_per_pixel,
				   unsigned int latency)
{
	unsigned int ret;

	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
	ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
	ret = DIV_ROUND_UP(ret, 64);

	return ret;
}

static void vlv_setup_wm_latency(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	/* all latencies in usec */
	dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;

975 976
	dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;

977 978 979
	if (IS_CHERRYVIEW(dev_priv)) {
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
980 981

		dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
	}
}

static uint16_t vlv_compute_wm_level(struct intel_plane *plane,
				     struct intel_crtc *crtc,
				     const struct intel_plane_state *state,
				     int level)
{
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
	int clock, htotal, pixel_size, width, wm;

	if (dev_priv->wm.pri_latency[level] == 0)
		return USHRT_MAX;

	if (!state->visible)
		return 0;

	pixel_size = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
	clock = crtc->config->base.adjusted_mode.crtc_clock;
	htotal = crtc->config->base.adjusted_mode.crtc_htotal;
	width = crtc->config->pipe_src_w;
	if (WARN_ON(htotal == 0))
		htotal = 1;

	if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
		/*
		 * FIXME the formula gives values that are
		 * too big for the cursor FIFO, and hence we
		 * would never be able to use cursors. For
		 * now just hardcode the watermark.
		 */
		wm = 63;
	} else {
		wm = vlv_wm_method2(clock, htotal, width, pixel_size,
				    dev_priv->wm.pri_latency[level] * 10);
	}

	return min_t(int, wm, USHRT_MAX);
}

1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
static void vlv_compute_fifo(struct intel_crtc *crtc)
{
	struct drm_device *dev = crtc->base.dev;
	struct vlv_wm_state *wm_state = &crtc->wm_state;
	struct intel_plane *plane;
	unsigned int total_rate = 0;
	const int fifo_size = 512 - 1;
	int fifo_extra, fifo_left = fifo_size;

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		struct intel_plane_state *state =
			to_intel_plane_state(plane->base.state);

		if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
			continue;

		if (state->visible) {
			wm_state->num_active_planes++;
			total_rate += drm_format_plane_cpp(state->base.fb->pixel_format, 0);
		}
	}

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		struct intel_plane_state *state =
			to_intel_plane_state(plane->base.state);
		unsigned int rate;

		if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
			plane->wm.fifo_size = 63;
			continue;
		}

		if (!state->visible) {
			plane->wm.fifo_size = 0;
			continue;
		}

		rate = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
		plane->wm.fifo_size = fifo_size * rate / total_rate;
		fifo_left -= plane->wm.fifo_size;
	}

	fifo_extra = DIV_ROUND_UP(fifo_left, wm_state->num_active_planes ?: 1);

	/* spread the remainder evenly */
	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		int plane_extra;

		if (fifo_left == 0)
			break;

		if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
			continue;

		/* give it all to the first plane if none are active */
		if (plane->wm.fifo_size == 0 &&
		    wm_state->num_active_planes)
			continue;

		plane_extra = min(fifo_extra, fifo_left);
		plane->wm.fifo_size += plane_extra;
		fifo_left -= plane_extra;
	}

	WARN_ON(fifo_left != 0);
}

1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122
static void vlv_invert_wms(struct intel_crtc *crtc)
{
	struct vlv_wm_state *wm_state = &crtc->wm_state;
	int level;

	for (level = 0; level < wm_state->num_levels; level++) {
		struct drm_device *dev = crtc->base.dev;
		const int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
		struct intel_plane *plane;

		wm_state->sr[level].plane = sr_fifo_size - wm_state->sr[level].plane;
		wm_state->sr[level].cursor = 63 - wm_state->sr[level].cursor;

		for_each_intel_plane_on_crtc(dev, crtc, plane) {
			switch (plane->base.type) {
				int sprite;
			case DRM_PLANE_TYPE_CURSOR:
				wm_state->wm[level].cursor = plane->wm.fifo_size -
					wm_state->wm[level].cursor;
				break;
			case DRM_PLANE_TYPE_PRIMARY:
				wm_state->wm[level].primary = plane->wm.fifo_size -
					wm_state->wm[level].primary;
				break;
			case DRM_PLANE_TYPE_OVERLAY:
				sprite = plane->plane;
				wm_state->wm[level].sprite[sprite] = plane->wm.fifo_size -
					wm_state->wm[level].sprite[sprite];
				break;
			}
		}
	}
}

1123
static void vlv_compute_wm(struct intel_crtc *crtc)
1124 1125 1126 1127 1128 1129 1130 1131 1132
{
	struct drm_device *dev = crtc->base.dev;
	struct vlv_wm_state *wm_state = &crtc->wm_state;
	struct intel_plane *plane;
	int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
	int level;

	memset(wm_state, 0, sizeof(*wm_state));

1133
	wm_state->cxsr = crtc->pipe != PIPE_C && crtc->wm.cxsr_allowed;
1134
	wm_state->num_levels = to_i915(dev)->wm.max_level + 1;
1135 1136 1137

	wm_state->num_active_planes = 0;

1138
	vlv_compute_fifo(crtc);
1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213

	if (wm_state->num_active_planes != 1)
		wm_state->cxsr = false;

	if (wm_state->cxsr) {
		for (level = 0; level < wm_state->num_levels; level++) {
			wm_state->sr[level].plane = sr_fifo_size;
			wm_state->sr[level].cursor = 63;
		}
	}

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		struct intel_plane_state *state =
			to_intel_plane_state(plane->base.state);

		if (!state->visible)
			continue;

		/* normal watermarks */
		for (level = 0; level < wm_state->num_levels; level++) {
			int wm = vlv_compute_wm_level(plane, crtc, state, level);
			int max_wm = plane->base.type == DRM_PLANE_TYPE_CURSOR ? 63 : 511;

			/* hack */
			if (WARN_ON(level == 0 && wm > max_wm))
				wm = max_wm;

			if (wm > plane->wm.fifo_size)
				break;

			switch (plane->base.type) {
				int sprite;
			case DRM_PLANE_TYPE_CURSOR:
				wm_state->wm[level].cursor = wm;
				break;
			case DRM_PLANE_TYPE_PRIMARY:
				wm_state->wm[level].primary = wm;
				break;
			case DRM_PLANE_TYPE_OVERLAY:
				sprite = plane->plane;
				wm_state->wm[level].sprite[sprite] = wm;
				break;
			}
		}

		wm_state->num_levels = level;

		if (!wm_state->cxsr)
			continue;

		/* maxfifo watermarks */
		switch (plane->base.type) {
			int sprite, level;
		case DRM_PLANE_TYPE_CURSOR:
			for (level = 0; level < wm_state->num_levels; level++)
				wm_state->sr[level].cursor =
					wm_state->sr[level].cursor;
			break;
		case DRM_PLANE_TYPE_PRIMARY:
			for (level = 0; level < wm_state->num_levels; level++)
				wm_state->sr[level].plane =
					min(wm_state->sr[level].plane,
					    wm_state->wm[level].primary);
			break;
		case DRM_PLANE_TYPE_OVERLAY:
			sprite = plane->plane;
			for (level = 0; level < wm_state->num_levels; level++)
				wm_state->sr[level].plane =
					min(wm_state->sr[level].plane,
					    wm_state->wm[level].sprite[sprite]);
			break;
		}
	}

	/* clear any (partially) filled invalid levels */
1214
	for (level = wm_state->num_levels; level < to_i915(dev)->wm.max_level + 1; level++) {
1215 1216 1217 1218 1219 1220 1221
		memset(&wm_state->wm[level], 0, sizeof(wm_state->wm[level]));
		memset(&wm_state->sr[level], 0, sizeof(wm_state->sr[level]));
	}

	vlv_invert_wms(crtc);
}

1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
#define VLV_FIFO(plane, value) \
	(((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)

static void vlv_pipe_set_fifo_size(struct intel_crtc *crtc)
{
	struct drm_device *dev = crtc->base.dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_plane *plane;
	int sprite0_start = 0, sprite1_start = 0, fifo_size = 0;

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
			WARN_ON(plane->wm.fifo_size != 63);
			continue;
		}

		if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
			sprite0_start = plane->wm.fifo_size;
		else if (plane->plane == 0)
			sprite1_start = sprite0_start + plane->wm.fifo_size;
		else
			fifo_size = sprite1_start + plane->wm.fifo_size;
	}

	WARN_ON(fifo_size != 512 - 1);

	DRM_DEBUG_KMS("Pipe %c FIFO split %d / %d / %d\n",
		      pipe_name(crtc->pipe), sprite0_start,
		      sprite1_start, fifo_size);

	switch (crtc->pipe) {
		uint32_t dsparb, dsparb2, dsparb3;
	case PIPE_A:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);

		dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
			    VLV_FIFO(SPRITEB, 0xff));
		dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
			   VLV_FIFO(SPRITEB, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
			     VLV_FIFO(SPRITEB_HI, 0x1));
		dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));

		I915_WRITE(DSPARB, dsparb);
		I915_WRITE(DSPARB2, dsparb2);
		break;
	case PIPE_B:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);

		dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
			    VLV_FIFO(SPRITED, 0xff));
		dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
			   VLV_FIFO(SPRITED, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
			     VLV_FIFO(SPRITED_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITED_HI, sprite1_start >> 8));

		I915_WRITE(DSPARB, dsparb);
		I915_WRITE(DSPARB2, dsparb2);
		break;
	case PIPE_C:
		dsparb3 = I915_READ(DSPARB3);
		dsparb2 = I915_READ(DSPARB2);

		dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
			     VLV_FIFO(SPRITEF, 0xff));
		dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
			    VLV_FIFO(SPRITEF, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
			     VLV_FIFO(SPRITEF_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));

		I915_WRITE(DSPARB3, dsparb3);
		I915_WRITE(DSPARB2, dsparb2);
		break;
	default:
		break;
	}
}

#undef VLV_FIFO

1312 1313 1314 1315 1316 1317
static void vlv_merge_wm(struct drm_device *dev,
			 struct vlv_wm_values *wm)
{
	struct intel_crtc *crtc;
	int num_active_crtcs = 0;

1318
	wm->level = to_i915(dev)->wm.max_level;
1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336
	wm->cxsr = true;

	for_each_intel_crtc(dev, crtc) {
		const struct vlv_wm_state *wm_state = &crtc->wm_state;

		if (!crtc->active)
			continue;

		if (!wm_state->cxsr)
			wm->cxsr = false;

		num_active_crtcs++;
		wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
	}

	if (num_active_crtcs != 1)
		wm->cxsr = false;

1337 1338 1339
	if (num_active_crtcs > 1)
		wm->level = VLV_WM_LEVEL_PM2;

1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365
	for_each_intel_crtc(dev, crtc) {
		struct vlv_wm_state *wm_state = &crtc->wm_state;
		enum pipe pipe = crtc->pipe;

		if (!crtc->active)
			continue;

		wm->pipe[pipe] = wm_state->wm[wm->level];
		if (wm->cxsr)
			wm->sr = wm_state->sr[wm->level];

		wm->ddl[pipe].primary = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].sprite[0] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].sprite[1] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].cursor = DDL_PRECISION_HIGH | 2;
	}
}

static void vlv_update_wm(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	enum pipe pipe = intel_crtc->pipe;
	struct vlv_wm_values wm = {};

1366
	vlv_compute_wm(intel_crtc);
1367 1368
	vlv_merge_wm(dev, &wm);

1369 1370 1371
	if (memcmp(&dev_priv->wm.vlv, &wm, sizeof(wm)) == 0) {
		/* FIXME should be part of crtc atomic commit */
		vlv_pipe_set_fifo_size(intel_crtc);
1372
		return;
1373
	}
1374 1375 1376 1377 1378 1379 1380 1381 1382

	if (wm.level < VLV_WM_LEVEL_DDR_DVFS &&
	    dev_priv->wm.vlv.level >= VLV_WM_LEVEL_DDR_DVFS)
		chv_set_memory_dvfs(dev_priv, false);

	if (wm.level < VLV_WM_LEVEL_PM5 &&
	    dev_priv->wm.vlv.level >= VLV_WM_LEVEL_PM5)
		chv_set_memory_pm5(dev_priv, false);

1383
	if (!wm.cxsr && dev_priv->wm.vlv.cxsr)
1384 1385
		intel_set_memory_cxsr(dev_priv, false);

1386 1387 1388
	/* FIXME should be part of crtc atomic commit */
	vlv_pipe_set_fifo_size(intel_crtc);

1389 1390 1391 1392 1393 1394 1395 1396
	vlv_write_wm_values(intel_crtc, &wm);

	DRM_DEBUG_KMS("Setting FIFO watermarks - %c: plane=%d, cursor=%d, "
		      "sprite0=%d, sprite1=%d, SR: plane=%d, cursor=%d level=%d cxsr=%d\n",
		      pipe_name(pipe), wm.pipe[pipe].primary, wm.pipe[pipe].cursor,
		      wm.pipe[pipe].sprite[0], wm.pipe[pipe].sprite[1],
		      wm.sr.plane, wm.sr.cursor, wm.level, wm.cxsr);

1397
	if (wm.cxsr && !dev_priv->wm.vlv.cxsr)
1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408
		intel_set_memory_cxsr(dev_priv, true);

	if (wm.level >= VLV_WM_LEVEL_PM5 &&
	    dev_priv->wm.vlv.level < VLV_WM_LEVEL_PM5)
		chv_set_memory_pm5(dev_priv, true);

	if (wm.level >= VLV_WM_LEVEL_DDR_DVFS &&
	    dev_priv->wm.vlv.level < VLV_WM_LEVEL_DDR_DVFS)
		chv_set_memory_dvfs(dev_priv, true);

	dev_priv->wm.vlv = wm;
1409 1410
}

1411 1412
#define single_plane_enabled(mask) is_power_of_2(mask)

1413
static void g4x_update_wm(struct drm_crtc *crtc)
1414
{
1415
	struct drm_device *dev = crtc->dev;
1416 1417 1418 1419 1420
	static const int sr_latency_ns = 12000;
	struct drm_i915_private *dev_priv = dev->dev_private;
	int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
	int plane_sr, cursor_sr;
	unsigned int enabled = 0;
1421
	bool cxsr_enabled;
1422

1423
	if (g4x_compute_wm0(dev, PIPE_A,
1424 1425
			    &g4x_wm_info, pessimal_latency_ns,
			    &g4x_cursor_wm_info, pessimal_latency_ns,
1426
			    &planea_wm, &cursora_wm))
1427
		enabled |= 1 << PIPE_A;
1428

1429
	if (g4x_compute_wm0(dev, PIPE_B,
1430 1431
			    &g4x_wm_info, pessimal_latency_ns,
			    &g4x_cursor_wm_info, pessimal_latency_ns,
1432
			    &planeb_wm, &cursorb_wm))
1433
		enabled |= 1 << PIPE_B;
1434 1435 1436 1437 1438 1439

	if (single_plane_enabled(enabled) &&
	    g4x_compute_srwm(dev, ffs(enabled) - 1,
			     sr_latency_ns,
			     &g4x_wm_info,
			     &g4x_cursor_wm_info,
1440
			     &plane_sr, &cursor_sr)) {
1441
		cxsr_enabled = true;
1442
	} else {
1443
		cxsr_enabled = false;
1444
		intel_set_memory_cxsr(dev_priv, false);
1445 1446
		plane_sr = cursor_sr = 0;
	}
1447

1448 1449
	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
		      "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1450 1451 1452 1453 1454
		      planea_wm, cursora_wm,
		      planeb_wm, cursorb_wm,
		      plane_sr, cursor_sr);

	I915_WRITE(DSPFW1,
1455 1456 1457 1458
		   FW_WM(plane_sr, SR) |
		   FW_WM(cursorb_wm, CURSORB) |
		   FW_WM(planeb_wm, PLANEB) |
		   FW_WM(planea_wm, PLANEA));
1459
	I915_WRITE(DSPFW2,
1460
		   (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1461
		   FW_WM(cursora_wm, CURSORA));
1462 1463
	/* HPLL off in SR has some issues on G4x... disable it */
	I915_WRITE(DSPFW3,
1464
		   (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1465
		   FW_WM(cursor_sr, CURSOR_SR));
1466 1467 1468

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
1469 1470
}

1471
static void i965_update_wm(struct drm_crtc *unused_crtc)
1472
{
1473
	struct drm_device *dev = unused_crtc->dev;
1474 1475 1476 1477
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_crtc *crtc;
	int srwm = 1;
	int cursor_sr = 16;
1478
	bool cxsr_enabled;
1479 1480 1481 1482 1483 1484

	/* Calc sr entries for one plane configs */
	crtc = single_enabled_crtc(dev);
	if (crtc) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 12000;
1485
		const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1486
		int clock = adjusted_mode->crtc_clock;
1487
		int htotal = adjusted_mode->crtc_htotal;
1488
		int hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
1489
		int pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
1490 1491 1492
		unsigned long line_time_us;
		int entries;

1493
		line_time_us = max(htotal * 1000 / clock, 1);
1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506

		/* Use ns/us then divide to preserve precision */
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
			pixel_size * hdisplay;
		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
		srwm = I965_FIFO_SIZE - entries;
		if (srwm < 0)
			srwm = 1;
		srwm &= 0x1ff;
		DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
			      entries, srwm);

		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1507
			pixel_size * crtc->cursor->state->crtc_w;
1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518
		entries = DIV_ROUND_UP(entries,
					  i965_cursor_wm_info.cacheline_size);
		cursor_sr = i965_cursor_wm_info.fifo_size -
			(entries + i965_cursor_wm_info.guard_size);

		if (cursor_sr > i965_cursor_wm_info.max_wm)
			cursor_sr = i965_cursor_wm_info.max_wm;

		DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
			      "cursor %d\n", srwm, cursor_sr);

1519
		cxsr_enabled = true;
1520
	} else {
1521
		cxsr_enabled = false;
1522
		/* Turn off self refresh if both pipes are enabled */
1523
		intel_set_memory_cxsr(dev_priv, false);
1524 1525 1526 1527 1528 1529
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
		      srwm);

	/* 965 has limitations... */
1530 1531 1532 1533 1534 1535
	I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
		   FW_WM(8, CURSORB) |
		   FW_WM(8, PLANEB) |
		   FW_WM(8, PLANEA));
	I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
		   FW_WM(8, PLANEC_OLD));
1536
	/* update cursor SR watermark */
1537
	I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
1538 1539 1540

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
1541 1542
}

1543 1544
#undef FW_WM

1545
static void i9xx_update_wm(struct drm_crtc *unused_crtc)
1546
{
1547
	struct drm_device *dev = unused_crtc->dev;
1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561
	struct drm_i915_private *dev_priv = dev->dev_private;
	const struct intel_watermark_params *wm_info;
	uint32_t fwater_lo;
	uint32_t fwater_hi;
	int cwm, srwm = 1;
	int fifo_size;
	int planea_wm, planeb_wm;
	struct drm_crtc *crtc, *enabled = NULL;

	if (IS_I945GM(dev))
		wm_info = &i945_wm_info;
	else if (!IS_GEN2(dev))
		wm_info = &i915_wm_info;
	else
1562
		wm_info = &i830_a_wm_info;
1563 1564 1565

	fifo_size = dev_priv->display.get_fifo_size(dev, 0);
	crtc = intel_get_crtc_for_plane(dev, 0);
1566
	if (intel_crtc_active(crtc)) {
1567
		const struct drm_display_mode *adjusted_mode;
1568
		int cpp = crtc->primary->state->fb->bits_per_pixel / 8;
1569 1570 1571
		if (IS_GEN2(dev))
			cpp = 4;

1572
		adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1573
		planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1574
					       wm_info, fifo_size, cpp,
1575
					       pessimal_latency_ns);
1576
		enabled = crtc;
1577
	} else {
1578
		planea_wm = fifo_size - wm_info->guard_size;
1579 1580 1581 1582 1583 1584
		if (planea_wm > (long)wm_info->max_wm)
			planea_wm = wm_info->max_wm;
	}

	if (IS_GEN2(dev))
		wm_info = &i830_bc_wm_info;
1585 1586 1587

	fifo_size = dev_priv->display.get_fifo_size(dev, 1);
	crtc = intel_get_crtc_for_plane(dev, 1);
1588
	if (intel_crtc_active(crtc)) {
1589
		const struct drm_display_mode *adjusted_mode;
1590
		int cpp = crtc->primary->state->fb->bits_per_pixel / 8;
1591 1592 1593
		if (IS_GEN2(dev))
			cpp = 4;

1594
		adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1595
		planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1596
					       wm_info, fifo_size, cpp,
1597
					       pessimal_latency_ns);
1598 1599 1600 1601
		if (enabled == NULL)
			enabled = crtc;
		else
			enabled = NULL;
1602
	} else {
1603
		planeb_wm = fifo_size - wm_info->guard_size;
1604 1605 1606
		if (planeb_wm > (long)wm_info->max_wm)
			planeb_wm = wm_info->max_wm;
	}
1607 1608 1609

	DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);

1610
	if (IS_I915GM(dev) && enabled) {
1611
		struct drm_i915_gem_object *obj;
1612

1613
		obj = intel_fb_obj(enabled->primary->state->fb);
1614 1615

		/* self-refresh seems busted with untiled */
1616
		if (obj->tiling_mode == I915_TILING_NONE)
1617 1618 1619
			enabled = NULL;
	}

1620 1621 1622 1623 1624 1625
	/*
	 * Overlay gets an aggressive default since video jitter is bad.
	 */
	cwm = 2;

	/* Play safe and disable self-refresh before adjusting watermarks. */
1626
	intel_set_memory_cxsr(dev_priv, false);
1627 1628 1629 1630 1631

	/* Calc sr entries for one plane configs */
	if (HAS_FW_BLC(dev) && enabled) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 6000;
1632
		const struct drm_display_mode *adjusted_mode = &to_intel_crtc(enabled)->config->base.adjusted_mode;
1633
		int clock = adjusted_mode->crtc_clock;
1634
		int htotal = adjusted_mode->crtc_htotal;
1635
		int hdisplay = to_intel_crtc(enabled)->config->pipe_src_w;
1636
		int pixel_size = enabled->primary->state->fb->bits_per_pixel / 8;
1637 1638 1639
		unsigned long line_time_us;
		int entries;

1640
		line_time_us = max(htotal * 1000 / clock, 1);
1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670

		/* Use ns/us then divide to preserve precision */
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
			pixel_size * hdisplay;
		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
		DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
		srwm = wm_info->fifo_size - entries;
		if (srwm < 0)
			srwm = 1;

		if (IS_I945G(dev) || IS_I945GM(dev))
			I915_WRITE(FW_BLC_SELF,
				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
		else if (IS_I915GM(dev))
			I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
		      planea_wm, planeb_wm, cwm, srwm);

	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
	fwater_hi = (cwm & 0x1f);

	/* Set request length to 8 cachelines per fetch */
	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
	fwater_hi = fwater_hi | (1 << 8);

	I915_WRITE(FW_BLC, fwater_lo);
	I915_WRITE(FW_BLC2, fwater_hi);

1671 1672
	if (enabled)
		intel_set_memory_cxsr(dev_priv, true);
1673 1674
}

1675
static void i845_update_wm(struct drm_crtc *unused_crtc)
1676
{
1677
	struct drm_device *dev = unused_crtc->dev;
1678 1679
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_crtc *crtc;
1680
	const struct drm_display_mode *adjusted_mode;
1681 1682 1683 1684 1685 1686 1687
	uint32_t fwater_lo;
	int planea_wm;

	crtc = single_enabled_crtc(dev);
	if (crtc == NULL)
		return;

1688
	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1689
	planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1690
				       &i845_wm_info,
1691
				       dev_priv->display.get_fifo_size(dev, 0),
1692
				       4, pessimal_latency_ns);
1693 1694 1695 1696 1697 1698 1699 1700
	fwater_lo = I915_READ(FW_BLC) & ~0xfff;
	fwater_lo |= (3<<8) | planea_wm;

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);

	I915_WRITE(FW_BLC, fwater_lo);
}

1701
uint32_t ilk_pipe_pixel_rate(const struct intel_crtc_state *pipe_config)
1702
{
1703
	uint32_t pixel_rate;
1704

1705
	pixel_rate = pipe_config->base.adjusted_mode.crtc_clock;
1706 1707 1708 1709

	/* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
	 * adjust the pixel_rate here. */

1710
	if (pipe_config->pch_pfit.enabled) {
1711
		uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
1712 1713 1714 1715
		uint32_t pfit_size = pipe_config->pch_pfit.size;

		pipe_w = pipe_config->pipe_src_w;
		pipe_h = pipe_config->pipe_src_h;
1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730

		pfit_w = (pfit_size >> 16) & 0xFFFF;
		pfit_h = pfit_size & 0xFFFF;
		if (pipe_w < pfit_w)
			pipe_w = pfit_w;
		if (pipe_h < pfit_h)
			pipe_h = pfit_h;

		pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
				     pfit_w * pfit_h);
	}

	return pixel_rate;
}

1731
/* latency must be in 0.1us units. */
1732
static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
1733 1734 1735 1736
			       uint32_t latency)
{
	uint64_t ret;

1737 1738 1739
	if (WARN(latency == 0, "Latency value missing\n"))
		return UINT_MAX;

1740 1741 1742 1743 1744 1745
	ret = (uint64_t) pixel_rate * bytes_per_pixel * latency;
	ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;

	return ret;
}

1746
/* latency must be in 0.1us units. */
1747
static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1748 1749 1750 1751 1752
			       uint32_t horiz_pixels, uint8_t bytes_per_pixel,
			       uint32_t latency)
{
	uint32_t ret;

1753 1754 1755
	if (WARN(latency == 0, "Latency value missing\n"))
		return UINT_MAX;

1756 1757 1758 1759 1760 1761
	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
	ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
	ret = DIV_ROUND_UP(ret, 64) + 2;
	return ret;
}

1762
static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1763 1764 1765 1766 1767
			   uint8_t bytes_per_pixel)
{
	return DIV_ROUND_UP(pri_val * 64, horiz_pixels * bytes_per_pixel) + 2;
}

1768
struct ilk_wm_maximums {
1769 1770 1771 1772 1773 1774
	uint16_t pri;
	uint16_t spr;
	uint16_t cur;
	uint16_t fbc;
};

1775 1776 1777 1778
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1779
static uint32_t ilk_compute_pri_wm(const struct intel_crtc_state *cstate,
1780
				   const struct intel_plane_state *pstate,
1781 1782
				   uint32_t mem_value,
				   bool is_lp)
1783
{
1784
	int bpp = pstate->base.fb ? pstate->base.fb->bits_per_pixel / 8 : 0;
1785 1786
	uint32_t method1, method2;

1787
	if (!cstate->base.active || !pstate->visible)
1788 1789
		return 0;

1790
	method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), bpp, mem_value);
1791 1792 1793 1794

	if (!is_lp)
		return method1;

1795 1796
	method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
				 cstate->base.adjusted_mode.crtc_htotal,
1797 1798
				 drm_rect_width(&pstate->dst),
				 bpp,
1799 1800 1801
				 mem_value);

	return min(method1, method2);
1802 1803
}

1804 1805 1806 1807
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1808
static uint32_t ilk_compute_spr_wm(const struct intel_crtc_state *cstate,
1809
				   const struct intel_plane_state *pstate,
1810 1811
				   uint32_t mem_value)
{
1812
	int bpp = pstate->base.fb ? pstate->base.fb->bits_per_pixel / 8 : 0;
1813 1814
	uint32_t method1, method2;

1815
	if (!cstate->base.active || !pstate->visible)
1816 1817
		return 0;

1818 1819 1820
	method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), bpp, mem_value);
	method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
				 cstate->base.adjusted_mode.crtc_htotal,
1821 1822
				 drm_rect_width(&pstate->dst),
				 bpp,
1823 1824 1825 1826
				 mem_value);
	return min(method1, method2);
}

1827 1828 1829 1830
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1831
static uint32_t ilk_compute_cur_wm(const struct intel_crtc_state *cstate,
1832
				   const struct intel_plane_state *pstate,
1833 1834
				   uint32_t mem_value)
{
1835 1836
	int bpp = pstate->base.fb ? pstate->base.fb->bits_per_pixel / 8 : 0;

1837
	if (!cstate->base.active || !pstate->visible)
1838 1839
		return 0;

1840 1841
	return ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
			      cstate->base.adjusted_mode.crtc_htotal,
1842 1843
			      drm_rect_width(&pstate->dst),
			      bpp,
1844 1845 1846
			      mem_value);
}

1847
/* Only for WM_LP. */
1848
static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
1849
				   const struct intel_plane_state *pstate,
1850
				   uint32_t pri_val)
1851
{
1852 1853
	int bpp = pstate->base.fb ? pstate->base.fb->bits_per_pixel / 8 : 0;

1854
	if (!cstate->base.active || !pstate->visible)
1855 1856
		return 0;

1857
	return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->dst), bpp);
1858 1859
}

1860 1861
static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
{
1862 1863 1864
	if (INTEL_INFO(dev)->gen >= 8)
		return 3072;
	else if (INTEL_INFO(dev)->gen >= 7)
1865 1866 1867 1868 1869
		return 768;
	else
		return 512;
}

1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903
static unsigned int ilk_plane_wm_reg_max(const struct drm_device *dev,
					 int level, bool is_sprite)
{
	if (INTEL_INFO(dev)->gen >= 8)
		/* BDW primary/sprite plane watermarks */
		return level == 0 ? 255 : 2047;
	else if (INTEL_INFO(dev)->gen >= 7)
		/* IVB/HSW primary/sprite plane watermarks */
		return level == 0 ? 127 : 1023;
	else if (!is_sprite)
		/* ILK/SNB primary plane watermarks */
		return level == 0 ? 127 : 511;
	else
		/* ILK/SNB sprite plane watermarks */
		return level == 0 ? 63 : 255;
}

static unsigned int ilk_cursor_wm_reg_max(const struct drm_device *dev,
					  int level)
{
	if (INTEL_INFO(dev)->gen >= 7)
		return level == 0 ? 63 : 255;
	else
		return level == 0 ? 31 : 63;
}

static unsigned int ilk_fbc_wm_reg_max(const struct drm_device *dev)
{
	if (INTEL_INFO(dev)->gen >= 8)
		return 31;
	else
		return 15;
}

1904 1905 1906
/* Calculate the maximum primary/sprite plane watermark */
static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
				     int level,
1907
				     const struct intel_wm_config *config,
1908 1909 1910 1911 1912 1913
				     enum intel_ddb_partitioning ddb_partitioning,
				     bool is_sprite)
{
	unsigned int fifo_size = ilk_display_fifo_size(dev);

	/* if sprites aren't enabled, sprites get nothing */
1914
	if (is_sprite && !config->sprites_enabled)
1915 1916 1917
		return 0;

	/* HSW allows LP1+ watermarks even with multiple pipes */
1918
	if (level == 0 || config->num_pipes_active > 1) {
1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929
		fifo_size /= INTEL_INFO(dev)->num_pipes;

		/*
		 * For some reason the non self refresh
		 * FIFO size is only half of the self
		 * refresh FIFO size on ILK/SNB.
		 */
		if (INTEL_INFO(dev)->gen <= 6)
			fifo_size /= 2;
	}

1930
	if (config->sprites_enabled) {
1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941
		/* level 0 is always calculated with 1:1 split */
		if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
			if (is_sprite)
				fifo_size *= 5;
			fifo_size /= 6;
		} else {
			fifo_size /= 2;
		}
	}

	/* clamp to max that the registers can hold */
1942
	return min(fifo_size, ilk_plane_wm_reg_max(dev, level, is_sprite));
1943 1944 1945 1946
}

/* Calculate the maximum cursor plane watermark */
static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
1947 1948
				      int level,
				      const struct intel_wm_config *config)
1949 1950
{
	/* HSW LP1+ watermarks w/ multiple pipes */
1951
	if (level > 0 && config->num_pipes_active > 1)
1952 1953 1954
		return 64;

	/* otherwise just report max that registers can hold */
1955
	return ilk_cursor_wm_reg_max(dev, level);
1956 1957
}

1958
static void ilk_compute_wm_maximums(const struct drm_device *dev,
1959 1960 1961
				    int level,
				    const struct intel_wm_config *config,
				    enum intel_ddb_partitioning ddb_partitioning,
1962
				    struct ilk_wm_maximums *max)
1963
{
1964 1965 1966
	max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
	max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
	max->cur = ilk_cursor_wm_max(dev, level, config);
1967
	max->fbc = ilk_fbc_wm_reg_max(dev);
1968 1969
}

1970 1971 1972 1973 1974 1975 1976 1977 1978 1979
static void ilk_compute_wm_reg_maximums(struct drm_device *dev,
					int level,
					struct ilk_wm_maximums *max)
{
	max->pri = ilk_plane_wm_reg_max(dev, level, false);
	max->spr = ilk_plane_wm_reg_max(dev, level, true);
	max->cur = ilk_cursor_wm_reg_max(dev, level);
	max->fbc = ilk_fbc_wm_reg_max(dev);
}

1980
static bool ilk_validate_wm_level(int level,
1981
				  const struct ilk_wm_maximums *max,
1982
				  struct intel_wm_level *result)
1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
{
	bool ret;

	/* already determined to be invalid? */
	if (!result->enable)
		return false;

	result->enable = result->pri_val <= max->pri &&
			 result->spr_val <= max->spr &&
			 result->cur_val <= max->cur;

	ret = result->enable;

	/*
	 * HACK until we can pre-compute everything,
	 * and thus fail gracefully if LP0 watermarks
	 * are exceeded...
	 */
	if (level == 0 && !result->enable) {
		if (result->pri_val > max->pri)
			DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
				      level, result->pri_val, max->pri);
		if (result->spr_val > max->spr)
			DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
				      level, result->spr_val, max->spr);
		if (result->cur_val > max->cur)
			DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
				      level, result->cur_val, max->cur);

		result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
		result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
		result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
		result->enable = true;
	}

	return ret;
}

2021
static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2022
				 const struct intel_crtc *intel_crtc,
2023
				 int level,
2024
				 struct intel_crtc_state *cstate,
2025 2026 2027
				 struct intel_plane_state *pristate,
				 struct intel_plane_state *sprstate,
				 struct intel_plane_state *curstate,
2028
				 struct intel_wm_level *result)
2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040
{
	uint16_t pri_latency = dev_priv->wm.pri_latency[level];
	uint16_t spr_latency = dev_priv->wm.spr_latency[level];
	uint16_t cur_latency = dev_priv->wm.cur_latency[level];

	/* WM1+ latency values stored in 0.5us units */
	if (level > 0) {
		pri_latency *= 5;
		spr_latency *= 5;
		cur_latency *= 5;
	}

2041 2042 2043 2044 2045
	result->pri_val = ilk_compute_pri_wm(cstate, pristate,
					     pri_latency, level);
	result->spr_val = ilk_compute_spr_wm(cstate, sprstate, spr_latency);
	result->cur_val = ilk_compute_cur_wm(cstate, curstate, cur_latency);
	result->fbc_val = ilk_compute_fbc_wm(cstate, pristate, result->pri_val);
2046 2047 2048
	result->enable = true;
}

2049 2050
static uint32_t
hsw_compute_linetime_wm(struct drm_device *dev, struct drm_crtc *crtc)
2051 2052
{
	struct drm_i915_private *dev_priv = dev->dev_private;
2053
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2054
	const struct drm_display_mode *adjusted_mode = &intel_crtc->config->base.adjusted_mode;
2055
	u32 linetime, ips_linetime;
2056

2057
	if (!intel_crtc->active)
2058
		return 0;
2059

2060 2061 2062
	/* The WM are computed with base on how long it takes to fill a single
	 * row at the given clock rate, multiplied by 8.
	 * */
2063 2064 2065
	linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
				     adjusted_mode->crtc_clock);
	ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2066
					 dev_priv->cdclk_freq);
2067

2068 2069
	return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
	       PIPE_WM_LINETIME_TIME(linetime);
2070 2071
}

2072
static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[8])
2073 2074 2075
{
	struct drm_i915_private *dev_priv = dev->dev_private;

2076 2077
	if (IS_GEN9(dev)) {
		uint32_t val;
2078
		int ret, i;
2079
		int level, max_level = ilk_wm_max_level(dev);
2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121

		/* read the first set of memory latencies[0:3] */
		val = 0; /* data0 to be programmed to 0 for first set */
		mutex_lock(&dev_priv->rps.hw_lock);
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
					     &val);
		mutex_unlock(&dev_priv->rps.hw_lock);

		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

		/* read the second set of memory latencies[4:7] */
		val = 1; /* data0 to be programmed to 1 for second set */
		mutex_lock(&dev_priv->rps.hw_lock);
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
					     &val);
		mutex_unlock(&dev_priv->rps.hw_lock);
		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

2122
		/*
2123 2124
		 * WaWmMemoryReadLatency:skl
		 *
2125 2126 2127 2128 2129 2130 2131 2132
		 * punit doesn't take into account the read latency so we need
		 * to add 2us to the various latency levels we retrieve from
		 * the punit.
		 *   - W0 is a bit special in that it's the only level that
		 *   can't be disabled if we want to have display working, so
		 *   we always add 2us there.
		 *   - For levels >=1, punit returns 0us latency when they are
		 *   disabled, so we respect that and don't add 2us then
2133 2134 2135 2136 2137
		 *
		 * Additionally, if a level n (n > 1) has a 0us latency, all
		 * levels m (m >= n) need to be disabled. We make sure to
		 * sanitize the values out of the punit to satisfy this
		 * requirement.
2138 2139 2140 2141 2142
		 */
		wm[0] += 2;
		for (level = 1; level <= max_level; level++)
			if (wm[level] != 0)
				wm[level] += 2;
2143 2144 2145
			else {
				for (i = level + 1; i <= max_level; i++)
					wm[i] = 0;
2146

2147 2148
				break;
			}
2149
	} else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2150 2151 2152 2153 2154
		uint64_t sskpd = I915_READ64(MCH_SSKPD);

		wm[0] = (sskpd >> 56) & 0xFF;
		if (wm[0] == 0)
			wm[0] = sskpd & 0xF;
2155 2156 2157 2158
		wm[1] = (sskpd >> 4) & 0xFF;
		wm[2] = (sskpd >> 12) & 0xFF;
		wm[3] = (sskpd >> 20) & 0x1FF;
		wm[4] = (sskpd >> 32) & 0x1FF;
2159 2160 2161 2162 2163 2164 2165
	} else if (INTEL_INFO(dev)->gen >= 6) {
		uint32_t sskpd = I915_READ(MCH_SSKPD);

		wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
		wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
		wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
		wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2166 2167 2168 2169 2170 2171 2172
	} else if (INTEL_INFO(dev)->gen >= 5) {
		uint32_t mltr = I915_READ(MLTR_ILK);

		/* ILK primary LP0 latency is 700 ns */
		wm[0] = 7;
		wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
		wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2173 2174 2175
	}
}

2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193
static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
{
	/* ILK sprite LP0 latency is 1300 ns */
	if (INTEL_INFO(dev)->gen == 5)
		wm[0] = 13;
}

static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
{
	/* ILK cursor LP0 latency is 1300 ns */
	if (INTEL_INFO(dev)->gen == 5)
		wm[0] = 13;

	/* WaDoubleCursorLP3Latency:ivb */
	if (IS_IVYBRIDGE(dev))
		wm[3] *= 2;
}

2194
int ilk_wm_max_level(const struct drm_device *dev)
2195 2196
{
	/* how many WM levels are we expecting */
2197
	if (INTEL_INFO(dev)->gen >= 9)
2198 2199
		return 7;
	else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2200
		return 4;
2201
	else if (INTEL_INFO(dev)->gen >= 6)
2202
		return 3;
2203
	else
2204 2205
		return 2;
}
2206

2207 2208
static void intel_print_wm_latency(struct drm_device *dev,
				   const char *name,
2209
				   const uint16_t wm[8])
2210 2211
{
	int level, max_level = ilk_wm_max_level(dev);
2212 2213 2214 2215 2216 2217 2218 2219 2220 2221

	for (level = 0; level <= max_level; level++) {
		unsigned int latency = wm[level];

		if (latency == 0) {
			DRM_ERROR("%s WM%d latency not provided\n",
				  name, level);
			continue;
		}

2222 2223 2224 2225 2226 2227 2228
		/*
		 * - latencies are in us on gen9.
		 * - before then, WM1+ latency values are in 0.5us units
		 */
		if (IS_GEN9(dev))
			latency *= 10;
		else if (level > 0)
2229 2230 2231 2232 2233 2234 2235 2236
			latency *= 5;

		DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
			      name, level, wm[level],
			      latency / 10, latency % 10);
	}
}

2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273
static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
				    uint16_t wm[5], uint16_t min)
{
	int level, max_level = ilk_wm_max_level(dev_priv->dev);

	if (wm[0] >= min)
		return false;

	wm[0] = max(wm[0], min);
	for (level = 1; level <= max_level; level++)
		wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));

	return true;
}

static void snb_wm_latency_quirk(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	bool changed;

	/*
	 * The BIOS provided WM memory latency values are often
	 * inadequate for high resolution displays. Adjust them.
	 */
	changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);

	if (!changed)
		return;

	DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
	intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
}

2274
static void ilk_setup_wm_latency(struct drm_device *dev)
2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	intel_read_wm_latency(dev, dev_priv->wm.pri_latency);

	memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));
	memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));

	intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
	intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
2287 2288 2289 2290

	intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2291 2292 2293

	if (IS_GEN6(dev))
		snb_wm_latency_quirk(dev);
2294 2295
}

2296 2297 2298 2299 2300 2301 2302 2303
static void skl_setup_wm_latency(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	intel_read_wm_latency(dev, dev_priv->wm.skl_latency);
	intel_print_wm_latency(dev, "Gen9 Plane", dev_priv->wm.skl_latency);
}

2304
/* Compute new watermarks for the pipe */
2305 2306
static int ilk_compute_pipe_wm(struct intel_crtc *intel_crtc,
			       struct drm_atomic_state *state)
2307
{
2308 2309
	struct intel_pipe_wm *pipe_wm;
	struct drm_device *dev = intel_crtc->base.dev;
2310
	const struct drm_i915_private *dev_priv = dev->dev_private;
2311
	struct intel_crtc_state *cstate = NULL;
2312
	struct intel_plane *intel_plane;
2313 2314
	struct drm_plane_state *ps;
	struct intel_plane_state *pristate = NULL;
2315
	struct intel_plane_state *sprstate = NULL;
2316
	struct intel_plane_state *curstate = NULL;
2317 2318 2319 2320 2321
	int level, max_level = ilk_wm_max_level(dev);
	/* LP0 watermark maximums depend on this pipe alone */
	struct intel_wm_config config = {
		.num_pipes_active = 1,
	};
2322
	struct ilk_wm_maximums max;
2323

2324 2325 2326 2327 2328 2329
	cstate = intel_atomic_get_crtc_state(state, intel_crtc);
	if (IS_ERR(cstate))
		return PTR_ERR(cstate);

	pipe_wm = &cstate->wm.optimal.ilk;

2330
	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341
		ps = drm_atomic_get_plane_state(state,
						&intel_plane->base);
		if (IS_ERR(ps))
			return PTR_ERR(ps);

		if (intel_plane->base.type == DRM_PLANE_TYPE_PRIMARY)
			pristate = to_intel_plane_state(ps);
		else if (intel_plane->base.type == DRM_PLANE_TYPE_OVERLAY)
			sprstate = to_intel_plane_state(ps);
		else if (intel_plane->base.type == DRM_PLANE_TYPE_CURSOR)
			curstate = to_intel_plane_state(ps);
2342 2343 2344 2345 2346 2347 2348
	}

	config.sprites_enabled = sprstate->visible;
	config.sprites_scaled = sprstate->visible &&
		(drm_rect_width(&sprstate->dst) != drm_rect_width(&sprstate->src) >> 16 ||
		drm_rect_height(&sprstate->dst) != drm_rect_height(&sprstate->src) >> 16);

2349
	pipe_wm->pipe_enabled = cstate->base.active;
2350
	pipe_wm->sprites_enabled = config.sprites_enabled;
2351
	pipe_wm->sprites_scaled = config.sprites_scaled;
2352

2353
	/* ILK/SNB: LP2+ watermarks only w/o sprites */
2354
	if (INTEL_INFO(dev)->gen <= 6 && sprstate->visible)
2355 2356 2357
		max_level = 1;

	/* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
2358
	if (config.sprites_scaled)
2359 2360
		max_level = 0;

2361 2362
	ilk_compute_wm_level(dev_priv, intel_crtc, 0, cstate,
			     pristate, sprstate, curstate, &pipe_wm->wm[0]);
2363

2364
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2365 2366
		pipe_wm->linetime = hsw_compute_linetime_wm(dev,
							    &intel_crtc->base);
2367

2368 2369 2370
	/* LP0 watermarks always use 1/2 DDB partitioning */
	ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);

2371
	/* At least LP0 must be valid */
2372
	if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0]))
2373
		return -EINVAL;
2374 2375 2376 2377 2378 2379

	ilk_compute_wm_reg_maximums(dev, 1, &max);

	for (level = 1; level <= max_level; level++) {
		struct intel_wm_level wm = {};

2380 2381
		ilk_compute_wm_level(dev_priv, intel_crtc, level, cstate,
				     pristate, sprstate, curstate, &wm);
2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393

		/*
		 * Disable any watermark level that exceeds the
		 * register maximums since such watermarks are
		 * always invalid.
		 */
		if (!ilk_validate_wm_level(level, &max, &wm))
			break;

		pipe_wm->wm[level] = wm;
	}

2394
	return 0;
2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405
}

/*
 * Merge the watermarks from all active pipes for a specific level.
 */
static void ilk_merge_wm_level(struct drm_device *dev,
			       int level,
			       struct intel_wm_level *ret_wm)
{
	const struct intel_crtc *intel_crtc;

2406 2407
	ret_wm->enable = true;

2408
	for_each_intel_crtc(dev, intel_crtc) {
2409 2410 2411
		const struct intel_crtc_state *cstate =
			to_intel_crtc_state(intel_crtc->base.state);
		const struct intel_pipe_wm *active = &cstate->wm.optimal.ilk;
2412 2413 2414 2415
		const struct intel_wm_level *wm = &active->wm[level];

		if (!active->pipe_enabled)
			continue;
2416

2417 2418 2419 2420 2421
		/*
		 * The watermark values may have been used in the past,
		 * so we must maintain them in the registers for some
		 * time even if the level is now disabled.
		 */
2422
		if (!wm->enable)
2423
			ret_wm->enable = false;
2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435

		ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
		ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
		ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
		ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
	}
}

/*
 * Merge all low power watermarks for all active pipes.
 */
static void ilk_wm_merge(struct drm_device *dev,
2436
			 const struct intel_wm_config *config,
2437
			 const struct ilk_wm_maximums *max,
2438 2439
			 struct intel_pipe_wm *merged)
{
2440
	struct drm_i915_private *dev_priv = dev->dev_private;
2441
	int level, max_level = ilk_wm_max_level(dev);
2442
	int last_enabled_level = max_level;
2443

2444 2445 2446 2447 2448
	/* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
	if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
	    config->num_pipes_active > 1)
		return;

2449 2450
	/* ILK: FBC WM must be disabled always */
	merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
2451 2452 2453 2454 2455 2456 2457

	/* merge each WM1+ level */
	for (level = 1; level <= max_level; level++) {
		struct intel_wm_level *wm = &merged->wm[level];

		ilk_merge_wm_level(dev, level, wm);

2458 2459 2460 2461 2462
		if (level > last_enabled_level)
			wm->enable = false;
		else if (!ilk_validate_wm_level(level, max, wm))
			/* make sure all following levels get disabled */
			last_enabled_level = level - 1;
2463 2464 2465 2466 2467 2468

		/*
		 * The spec says it is preferred to disable
		 * FBC WMs instead of disabling a WM level.
		 */
		if (wm->fbc_val > max->fbc) {
2469 2470
			if (wm->enable)
				merged->fbc_wm_enabled = false;
2471 2472 2473
			wm->fbc_val = 0;
		}
	}
2474 2475 2476 2477 2478 2479 2480

	/* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
	/*
	 * FIXME this is racy. FBC might get enabled later.
	 * What we should check here is whether FBC can be
	 * enabled sometime later.
	 */
2481 2482
	if (IS_GEN5(dev) && !merged->fbc_wm_enabled &&
	    intel_fbc_enabled(dev_priv)) {
2483 2484 2485 2486 2487 2488
		for (level = 2; level <= max_level; level++) {
			struct intel_wm_level *wm = &merged->wm[level];

			wm->enable = false;
		}
	}
2489 2490
}

2491 2492 2493 2494 2495 2496
static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
{
	/* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
	return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
}

2497 2498 2499 2500 2501
/* The value we need to program into the WM_LPx latency field */
static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

2502
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2503 2504 2505 2506 2507
		return 2 * level;
	else
		return dev_priv->wm.pri_latency[level];
}

2508
static void ilk_compute_wm_results(struct drm_device *dev,
2509
				   const struct intel_pipe_wm *merged,
2510
				   enum intel_ddb_partitioning partitioning,
2511
				   struct ilk_wm_values *results)
2512
{
2513 2514
	struct intel_crtc *intel_crtc;
	int level, wm_lp;
2515

2516
	results->enable_fbc_wm = merged->fbc_wm_enabled;
2517
	results->partitioning = partitioning;
2518

2519
	/* LP1+ register values */
2520
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2521
		const struct intel_wm_level *r;
2522

2523
		level = ilk_wm_lp_to_level(wm_lp, merged);
2524

2525
		r = &merged->wm[level];
2526

2527 2528 2529 2530 2531
		/*
		 * Maintain the watermark values even if the level is
		 * disabled. Doing otherwise could cause underruns.
		 */
		results->wm_lp[wm_lp - 1] =
2532
			(ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2533 2534 2535
			(r->pri_val << WM1_LP_SR_SHIFT) |
			r->cur_val;

2536 2537 2538
		if (r->enable)
			results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;

2539 2540 2541 2542 2543 2544 2545
		if (INTEL_INFO(dev)->gen >= 8)
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
		else
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT;

2546 2547 2548 2549
		/*
		 * Always set WM1S_LP_EN when spr_val != 0, even if the
		 * level is disabled. Doing otherwise could cause underruns.
		 */
2550 2551 2552 2553 2554
		if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
			WARN_ON(wm_lp != 1);
			results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
		} else
			results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2555
	}
2556

2557
	/* LP0 register values */
2558
	for_each_intel_crtc(dev, intel_crtc) {
2559 2560
		const struct intel_crtc_state *cstate =
			to_intel_crtc_state(intel_crtc->base.state);
2561
		enum pipe pipe = intel_crtc->pipe;
2562
		const struct intel_wm_level *r = &cstate->wm.optimal.ilk.wm[0];
2563 2564 2565 2566

		if (WARN_ON(!r->enable))
			continue;

2567
		results->wm_linetime[pipe] = cstate->wm.optimal.ilk.linetime;
2568

2569 2570 2571 2572
		results->wm_pipe[pipe] =
			(r->pri_val << WM0_PIPE_PLANE_SHIFT) |
			(r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
			r->cur_val;
2573 2574 2575
	}
}

2576 2577
/* Find the result with the highest level enabled. Check for enable_fbc_wm in
 * case both are at the same level. Prefer r1 in case they're the same. */
2578
static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2579 2580
						  struct intel_pipe_wm *r1,
						  struct intel_pipe_wm *r2)
2581
{
2582 2583
	int level, max_level = ilk_wm_max_level(dev);
	int level1 = 0, level2 = 0;
2584

2585 2586 2587 2588 2589
	for (level = 1; level <= max_level; level++) {
		if (r1->wm[level].enable)
			level1 = level;
		if (r2->wm[level].enable)
			level2 = level;
2590 2591
	}

2592 2593
	if (level1 == level2) {
		if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2594 2595 2596
			return r2;
		else
			return r1;
2597
	} else if (level1 > level2) {
2598 2599 2600 2601 2602 2603
		return r1;
	} else {
		return r2;
	}
}

2604 2605 2606 2607 2608 2609 2610 2611
/* dirty bits used to track which watermarks need changes */
#define WM_DIRTY_PIPE(pipe) (1 << (pipe))
#define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
#define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
#define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
#define WM_DIRTY_FBC (1 << 24)
#define WM_DIRTY_DDB (1 << 25)

2612
static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
2613 2614
					 const struct ilk_wm_values *old,
					 const struct ilk_wm_values *new)
2615 2616 2617 2618 2619
{
	unsigned int dirty = 0;
	enum pipe pipe;
	int wm_lp;

2620
	for_each_pipe(dev_priv, pipe) {
2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663
		if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
			dirty |= WM_DIRTY_LINETIME(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}

		if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
			dirty |= WM_DIRTY_PIPE(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}
	}

	if (old->enable_fbc_wm != new->enable_fbc_wm) {
		dirty |= WM_DIRTY_FBC;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	if (old->partitioning != new->partitioning) {
		dirty |= WM_DIRTY_DDB;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	/* LP1+ watermarks already deemed dirty, no need to continue */
	if (dirty & WM_DIRTY_LP_ALL)
		return dirty;

	/* Find the lowest numbered LP1+ watermark in need of an update... */
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
		if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
		    old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
			break;
	}

	/* ...and mark it and all higher numbered LP1+ watermarks as dirty */
	for (; wm_lp <= 3; wm_lp++)
		dirty |= WM_DIRTY_LP(wm_lp);

	return dirty;
}

2664 2665
static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
			       unsigned int dirty)
2666
{
2667
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2668
	bool changed = false;
2669

2670 2671 2672
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
		previous->wm_lp[2] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2673
		changed = true;
2674 2675 2676 2677
	}
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
		previous->wm_lp[1] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2678
		changed = true;
2679 2680 2681 2682
	}
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
		previous->wm_lp[0] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2683
		changed = true;
2684
	}
2685

2686 2687 2688 2689
	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
2690

2691 2692 2693 2694 2695 2696 2697
	return changed;
}

/*
 * The spec says we shouldn't write when we don't need, because every write
 * causes WMs to be re-evaluated, expending some power.
 */
2698 2699
static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
				struct ilk_wm_values *results)
2700 2701
{
	struct drm_device *dev = dev_priv->dev;
2702
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2703 2704 2705
	unsigned int dirty;
	uint32_t val;

2706
	dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
2707 2708 2709 2710 2711
	if (!dirty)
		return;

	_ilk_disable_lp_wm(dev_priv, dirty);

2712
	if (dirty & WM_DIRTY_PIPE(PIPE_A))
2713
		I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2714
	if (dirty & WM_DIRTY_PIPE(PIPE_B))
2715
		I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2716
	if (dirty & WM_DIRTY_PIPE(PIPE_C))
2717 2718
		I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);

2719
	if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2720
		I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2721
	if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2722
		I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2723
	if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2724 2725
		I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);

2726
	if (dirty & WM_DIRTY_DDB) {
2727
		if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741
			val = I915_READ(WM_MISC);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~WM_MISC_DATA_PARTITION_5_6;
			else
				val |= WM_MISC_DATA_PARTITION_5_6;
			I915_WRITE(WM_MISC, val);
		} else {
			val = I915_READ(DISP_ARB_CTL2);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~DISP_DATA_PARTITION_5_6;
			else
				val |= DISP_DATA_PARTITION_5_6;
			I915_WRITE(DISP_ARB_CTL2, val);
		}
2742 2743
	}

2744
	if (dirty & WM_DIRTY_FBC) {
2745 2746 2747 2748 2749 2750 2751 2752
		val = I915_READ(DISP_ARB_CTL);
		if (results->enable_fbc_wm)
			val &= ~DISP_FBC_WM_DIS;
		else
			val |= DISP_FBC_WM_DIS;
		I915_WRITE(DISP_ARB_CTL, val);
	}

2753 2754 2755 2756 2757
	if (dirty & WM_DIRTY_LP(1) &&
	    previous->wm_lp_spr[0] != results->wm_lp_spr[0])
		I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);

	if (INTEL_INFO(dev)->gen >= 7) {
2758 2759 2760 2761 2762
		if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
			I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
		if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
			I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
	}
2763

2764
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
2765
		I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2766
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
2767
		I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2768
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
2769
		I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2770 2771

	dev_priv->wm.hw = *results;
2772 2773
}

2774 2775 2776 2777 2778 2779 2780
static bool ilk_disable_lp_wm(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
}

2781 2782 2783 2784 2785 2786
/*
 * On gen9, we need to allocate Display Data Buffer (DDB) portions to the
 * different active planes.
 */

#define SKL_DDB_SIZE		896	/* in blocks */
2787
#define BXT_DDB_SIZE		512
2788

2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810
/*
 * Return the index of a plane in the SKL DDB and wm result arrays.  Primary
 * plane is always in slot 0, cursor is always in slot I915_MAX_PLANES-1, and
 * other universal planes are in indices 1..n.  Note that this may leave unused
 * indices between the top "sprite" plane and the cursor.
 */
static int
skl_wm_plane_id(const struct intel_plane *plane)
{
	switch (plane->base.type) {
	case DRM_PLANE_TYPE_PRIMARY:
		return 0;
	case DRM_PLANE_TYPE_CURSOR:
		return PLANE_CURSOR;
	case DRM_PLANE_TYPE_OVERLAY:
		return plane->plane + 1;
	default:
		MISSING_CASE(plane->base.type);
		return plane->plane;
	}
}

2811 2812
static void
skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
2813
				   const struct intel_crtc_state *cstate,
2814 2815 2816
				   const struct intel_wm_config *config,
				   struct skl_ddb_entry *alloc /* out */)
{
2817
	struct drm_crtc *for_crtc = cstate->base.crtc;
2818 2819 2820 2821
	struct drm_crtc *crtc;
	unsigned int pipe_size, ddb_size;
	int nth_active_pipe;

2822
	if (!cstate->base.active) {
2823 2824 2825 2826 2827
		alloc->start = 0;
		alloc->end = 0;
		return;
	}

2828 2829 2830 2831
	if (IS_BROXTON(dev))
		ddb_size = BXT_DDB_SIZE;
	else
		ddb_size = SKL_DDB_SIZE;
2832 2833 2834 2835 2836

	ddb_size -= 4; /* 4 blocks for bypass path allocation */

	nth_active_pipe = 0;
	for_each_crtc(dev, crtc) {
2837
		if (!to_intel_crtc(crtc)->active)
2838 2839 2840 2841 2842 2843 2844 2845 2846 2847
			continue;

		if (crtc == for_crtc)
			break;

		nth_active_pipe++;
	}

	pipe_size = ddb_size / config->num_pipes_active;
	alloc->start = nth_active_pipe * ddb_size / config->num_pipes_active;
2848
	alloc->end = alloc->start + pipe_size;
2849 2850 2851 2852 2853 2854 2855 2856 2857 2858
}

static unsigned int skl_cursor_allocation(const struct intel_wm_config *config)
{
	if (config->num_pipes_active == 1)
		return 32;

	return 8;
}

2859 2860 2861 2862
static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
{
	entry->start = reg & 0x3ff;
	entry->end = (reg >> 16) & 0x3ff;
2863 2864
	if (entry->end)
		entry->end += 1;
2865 2866
}

2867 2868
void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
			  struct skl_ddb_allocation *ddb /* out */)
2869 2870 2871 2872 2873 2874
{
	enum pipe pipe;
	int plane;
	u32 val;

	for_each_pipe(dev_priv, pipe) {
2875
		for_each_plane(dev_priv, pipe, plane) {
2876 2877 2878 2879 2880 2881
			val = I915_READ(PLANE_BUF_CFG(pipe, plane));
			skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane],
						   val);
		}

		val = I915_READ(CUR_BUF_CFG(pipe));
2882 2883
		skl_ddb_entry_init_from_hw(&ddb->plane[pipe][PLANE_CURSOR],
					   val);
2884 2885 2886
	}
}

2887
static unsigned int
2888 2889 2890
skl_plane_relative_data_rate(const struct intel_crtc_state *cstate,
			     const struct drm_plane_state *pstate,
			     int y)
2891
{
2892 2893
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
	struct drm_framebuffer *fb = pstate->fb;
2894 2895

	/* for planar format */
2896
	if (fb->pixel_format == DRM_FORMAT_NV12) {
2897
		if (y)  /* y-plane data rate */
2898 2899 2900
			return intel_crtc->config->pipe_src_w *
				intel_crtc->config->pipe_src_h *
				drm_format_plane_cpp(fb->pixel_format, 0);
2901
		else    /* uv-plane data rate */
2902 2903 2904
			return (intel_crtc->config->pipe_src_w/2) *
				(intel_crtc->config->pipe_src_h/2) *
				drm_format_plane_cpp(fb->pixel_format, 1);
2905 2906 2907
	}

	/* for packed formats */
2908 2909 2910
	return intel_crtc->config->pipe_src_w *
		intel_crtc->config->pipe_src_h *
		drm_format_plane_cpp(fb->pixel_format, 0);
2911 2912 2913 2914 2915 2916 2917 2918
}

/*
 * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
 * a 8192x4096@32bpp framebuffer:
 *   3 * 4096 * 8192  * 4 < 2^32
 */
static unsigned int
2919
skl_get_total_relative_data_rate(const struct intel_crtc_state *cstate)
2920
{
2921 2922 2923
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
	struct drm_device *dev = intel_crtc->base.dev;
	const struct intel_plane *intel_plane;
2924 2925
	unsigned int total_data_rate = 0;

2926 2927
	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
		const struct drm_plane_state *pstate = intel_plane->base.state;
2928

2929
		if (pstate->fb == NULL)
2930 2931
			continue;

2932 2933 2934 2935 2936 2937 2938 2939 2940 2941
		/* packed/uv */
		total_data_rate += skl_plane_relative_data_rate(cstate,
								pstate,
								0);

		if (pstate->fb->pixel_format == DRM_FORMAT_NV12)
			/* y-plane */
			total_data_rate += skl_plane_relative_data_rate(cstate,
									pstate,
									1);
2942 2943 2944 2945 2946 2947
	}

	return total_data_rate;
}

static void
2948
skl_allocate_pipe_ddb(struct intel_crtc_state *cstate,
2949 2950
		      struct skl_ddb_allocation *ddb /* out */)
{
2951
	struct drm_crtc *crtc = cstate->base.crtc;
2952
	struct drm_device *dev = crtc->dev;
2953 2954
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_wm_config *config = &dev_priv->wm.config;
2955
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2956
	struct intel_plane *intel_plane;
2957
	enum pipe pipe = intel_crtc->pipe;
2958
	struct skl_ddb_entry *alloc = &ddb->pipe[pipe];
2959
	uint16_t alloc_size, start, cursor_blocks;
2960
	uint16_t minimum[I915_MAX_PLANES];
2961
	uint16_t y_minimum[I915_MAX_PLANES];
2962 2963
	unsigned int total_data_rate;

2964
	skl_ddb_get_pipe_allocation_limits(dev, cstate, config, alloc);
2965
	alloc_size = skl_ddb_entry_size(alloc);
2966 2967
	if (alloc_size == 0) {
		memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
2968 2969
		memset(&ddb->plane[pipe][PLANE_CURSOR], 0,
		       sizeof(ddb->plane[pipe][PLANE_CURSOR]));
2970 2971 2972 2973
		return;
	}

	cursor_blocks = skl_cursor_allocation(config);
2974 2975
	ddb->plane[pipe][PLANE_CURSOR].start = alloc->end - cursor_blocks;
	ddb->plane[pipe][PLANE_CURSOR].end = alloc->end;
2976 2977

	alloc_size -= cursor_blocks;
2978
	alloc->end -= cursor_blocks;
2979

2980
	/* 1. Allocate the mininum required blocks for each active plane */
2981 2982 2983 2984
	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
		struct drm_plane *plane = &intel_plane->base;
		struct drm_framebuffer *fb = plane->fb;
		int id = skl_wm_plane_id(intel_plane);
2985

2986 2987 2988
		if (fb == NULL)
			continue;
		if (plane->type == DRM_PLANE_TYPE_CURSOR)
2989 2990
			continue;

2991 2992 2993 2994
		minimum[id] = 8;
		alloc_size -= minimum[id];
		y_minimum[id] = (fb->pixel_format == DRM_FORMAT_NV12) ? 8 : 0;
		alloc_size -= y_minimum[id];
2995 2996
	}

2997
	/*
2998 2999
	 * 2. Distribute the remaining space in proportion to the amount of
	 * data each plane needs to fetch from memory.
3000 3001 3002
	 *
	 * FIXME: we may not allocate every single block here.
	 */
3003
	total_data_rate = skl_get_total_relative_data_rate(cstate);
3004

3005
	start = alloc->start;
3006 3007 3008
	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
		struct drm_plane *plane = &intel_plane->base;
		struct drm_plane_state *pstate = intel_plane->base.state;
3009 3010
		unsigned int data_rate, y_data_rate;
		uint16_t plane_blocks, y_plane_blocks = 0;
3011
		int id = skl_wm_plane_id(intel_plane);
3012

3013 3014 3015
		if (pstate->fb == NULL)
			continue;
		if (plane->type == DRM_PLANE_TYPE_CURSOR)
3016 3017
			continue;

3018
		data_rate = skl_plane_relative_data_rate(cstate, pstate, 0);
3019 3020

		/*
3021
		 * allocation for (packed formats) or (uv-plane part of planar format):
3022 3023 3024
		 * promote the expression to 64 bits to avoid overflowing, the
		 * result is < available as data_rate / total_data_rate < 1
		 */
3025
		plane_blocks = minimum[id];
3026 3027
		plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
					total_data_rate);
3028

3029 3030
		ddb->plane[pipe][id].start = start;
		ddb->plane[pipe][id].end = start + plane_blocks;
3031 3032

		start += plane_blocks;
3033 3034 3035 3036

		/*
		 * allocation for y_plane part of planar format:
		 */
3037 3038 3039 3040 3041
		if (pstate->fb->pixel_format == DRM_FORMAT_NV12) {
			y_data_rate = skl_plane_relative_data_rate(cstate,
								   pstate,
								   1);
			y_plane_blocks = y_minimum[id];
3042 3043 3044
			y_plane_blocks += div_u64((uint64_t)alloc_size * y_data_rate,
						total_data_rate);

3045 3046
			ddb->y_plane[pipe][id].start = start;
			ddb->y_plane[pipe][id].end = start + y_plane_blocks;
3047 3048 3049 3050

			start += y_plane_blocks;
		}

3051 3052 3053 3054
	}

}

3055
static uint32_t skl_pipe_pixel_rate(const struct intel_crtc_state *config)
3056 3057
{
	/* TODO: Take into account the scalers once we support them */
3058
	return config->base.adjusted_mode.crtc_clock;
3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074
}

/*
 * The max latency should be 257 (max the punit can code is 255 and we add 2us
 * for the read latency) and bytes_per_pixel should always be <= 8, so that
 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
*/
static uint32_t skl_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
			       uint32_t latency)
{
	uint32_t wm_intermediate_val, ret;

	if (latency == 0)
		return UINT_MAX;

3075
	wm_intermediate_val = latency * pixel_rate * bytes_per_pixel / 512;
3076 3077 3078 3079 3080 3081 3082
	ret = DIV_ROUND_UP(wm_intermediate_val, 1000);

	return ret;
}

static uint32_t skl_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
			       uint32_t horiz_pixels, uint8_t bytes_per_pixel,
3083
			       uint64_t tiling, uint32_t latency)
3084
{
3085 3086 3087
	uint32_t ret;
	uint32_t plane_bytes_per_line, plane_blocks_per_line;
	uint32_t wm_intermediate_val;
3088 3089 3090 3091 3092

	if (latency == 0)
		return UINT_MAX;

	plane_bytes_per_line = horiz_pixels * bytes_per_pixel;
3093 3094 3095 3096 3097 3098 3099 3100 3101 3102

	if (tiling == I915_FORMAT_MOD_Y_TILED ||
	    tiling == I915_FORMAT_MOD_Yf_TILED) {
		plane_bytes_per_line *= 4;
		plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
		plane_blocks_per_line /= 4;
	} else {
		plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
	}

3103 3104
	wm_intermediate_val = latency * pixel_rate;
	ret = DIV_ROUND_UP(wm_intermediate_val, pipe_htotal * 1000) *
3105
				plane_blocks_per_line;
3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121

	return ret;
}

static bool skl_ddb_allocation_changed(const struct skl_ddb_allocation *new_ddb,
				       const struct intel_crtc *intel_crtc)
{
	struct drm_device *dev = intel_crtc->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	const struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;
	enum pipe pipe = intel_crtc->pipe;

	if (memcmp(new_ddb->plane[pipe], cur_ddb->plane[pipe],
		   sizeof(new_ddb->plane[pipe])))
		return true;

3122 3123
	if (memcmp(&new_ddb->plane[pipe][PLANE_CURSOR], &cur_ddb->plane[pipe][PLANE_CURSOR],
		    sizeof(new_ddb->plane[pipe][PLANE_CURSOR])))
3124 3125 3126 3127 3128
		return true;

	return false;
}

3129
static bool skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
3130 3131
				 struct intel_crtc_state *cstate,
				 struct intel_plane *intel_plane,
3132
				 uint16_t ddb_allocation,
3133
				 int level,
3134 3135
				 uint16_t *out_blocks, /* out */
				 uint8_t *out_lines /* out */)
3136
{
3137 3138
	struct drm_plane *plane = &intel_plane->base;
	struct drm_framebuffer *fb = plane->state->fb;
3139 3140 3141 3142 3143
	uint32_t latency = dev_priv->wm.skl_latency[level];
	uint32_t method1, method2;
	uint32_t plane_bytes_per_line, plane_blocks_per_line;
	uint32_t res_blocks, res_lines;
	uint32_t selected_result;
3144
	uint8_t bytes_per_pixel;
3145

3146
	if (latency == 0 || !cstate->base.active || !fb)
3147 3148
		return false;

3149 3150 3151 3152
	bytes_per_pixel = (fb->pixel_format == DRM_FORMAT_NV12) ?
		drm_format_plane_cpp(DRM_FORMAT_NV12, 0) :
		drm_format_plane_cpp(DRM_FORMAT_NV12, 1);
	method1 = skl_wm_method1(skl_pipe_pixel_rate(cstate),
3153
				 bytes_per_pixel,
3154
				 latency);
3155 3156 3157
	method2 = skl_wm_method2(skl_pipe_pixel_rate(cstate),
				 cstate->base.adjusted_mode.crtc_htotal,
				 cstate->pipe_src_w,
3158
				 bytes_per_pixel,
3159
				 fb->modifier[0],
3160
				 latency);
3161

3162
	plane_bytes_per_line = cstate->pipe_src_w * bytes_per_pixel;
3163
	plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3164

3165 3166
	if (fb->modifier[0] == I915_FORMAT_MOD_Y_TILED ||
	    fb->modifier[0] == I915_FORMAT_MOD_Yf_TILED) {
3167 3168
		uint32_t min_scanlines = 4;
		uint32_t y_tile_minimum;
3169 3170 3171 3172 3173 3174
		if (intel_rotation_90_or_270(plane->state->rotation)) {
			int bpp = (fb->pixel_format == DRM_FORMAT_NV12) ?
				drm_format_plane_cpp(fb->pixel_format, 1) :
				drm_format_plane_cpp(fb->pixel_format, 0);

			switch (bpp) {
3175 3176 3177 3178 3179 3180 3181 3182
			case 1:
				min_scanlines = 16;
				break;
			case 2:
				min_scanlines = 8;
				break;
			case 8:
				WARN(1, "Unsupported pixel depth for rotation");
3183
			}
3184 3185
		}
		y_tile_minimum = plane_blocks_per_line * min_scanlines;
3186 3187 3188 3189 3190 3191 3192
		selected_result = max(method2, y_tile_minimum);
	} else {
		if ((ddb_allocation / plane_blocks_per_line) >= 1)
			selected_result = min(method1, method2);
		else
			selected_result = method1;
	}
3193

3194 3195
	res_blocks = selected_result + 1;
	res_lines = DIV_ROUND_UP(selected_result, plane_blocks_per_line);
3196

3197
	if (level >= 1 && level <= 7) {
3198 3199
		if (fb->modifier[0] == I915_FORMAT_MOD_Y_TILED ||
		    fb->modifier[0] == I915_FORMAT_MOD_Yf_TILED)
3200 3201 3202 3203
			res_lines += 4;
		else
			res_blocks++;
	}
3204

3205
	if (res_blocks >= ddb_allocation || res_lines > 31)
3206 3207 3208 3209
		return false;

	*out_blocks = res_blocks;
	*out_lines = res_lines;
3210 3211 3212 3213 3214 3215

	return true;
}

static void skl_compute_wm_level(const struct drm_i915_private *dev_priv,
				 struct skl_ddb_allocation *ddb,
3216
				 struct intel_crtc_state *cstate,
3217 3218 3219
				 int level,
				 struct skl_wm_level *result)
{
3220 3221 3222
	struct drm_device *dev = dev_priv->dev;
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
	struct intel_plane *intel_plane;
3223
	uint16_t ddb_blocks;
3224 3225 3226 3227
	enum pipe pipe = intel_crtc->pipe;

	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
		int i = skl_wm_plane_id(intel_plane);
3228 3229 3230

		ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][i]);

3231
		result->plane_en[i] = skl_compute_plane_wm(dev_priv,
3232 3233
						cstate,
						intel_plane,
3234
						ddb_blocks,
3235
						level,
3236 3237 3238 3239 3240
						&result->plane_res_b[i],
						&result->plane_res_l[i]);
	}
}

3241
static uint32_t
3242
skl_compute_linetime_wm(struct intel_crtc_state *cstate)
3243
{
3244
	if (!cstate->base.active)
3245 3246
		return 0;

3247
	if (WARN_ON(skl_pipe_pixel_rate(cstate) == 0))
3248
		return 0;
3249

3250 3251
	return DIV_ROUND_UP(8 * cstate->base.adjusted_mode.crtc_htotal * 1000,
			    skl_pipe_pixel_rate(cstate));
3252 3253
}

3254
static void skl_compute_transition_wm(struct intel_crtc_state *cstate,
3255
				      struct skl_wm_level *trans_wm /* out */)
3256
{
3257
	struct drm_crtc *crtc = cstate->base.crtc;
3258
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3259
	struct intel_plane *intel_plane;
3260

3261
	if (!cstate->base.active)
3262
		return;
3263 3264

	/* Until we know more, just disable transition WMs */
3265 3266 3267
	for_each_intel_plane_on_crtc(crtc->dev, intel_crtc, intel_plane) {
		int i = skl_wm_plane_id(intel_plane);

3268
		trans_wm->plane_en[i] = false;
3269
	}
3270 3271
}

3272
static void skl_compute_pipe_wm(struct intel_crtc_state *cstate,
3273 3274 3275
				struct skl_ddb_allocation *ddb,
				struct skl_pipe_wm *pipe_wm)
{
3276
	struct drm_device *dev = cstate->base.crtc->dev;
3277 3278 3279 3280
	const struct drm_i915_private *dev_priv = dev->dev_private;
	int level, max_level = ilk_wm_max_level(dev);

	for (level = 0; level <= max_level; level++) {
3281 3282
		skl_compute_wm_level(dev_priv, ddb, cstate,
				     level, &pipe_wm->wm[level]);
3283
	}
3284
	pipe_wm->linetime = skl_compute_linetime_wm(cstate);
3285

3286
	skl_compute_transition_wm(cstate, &pipe_wm->trans_wm);
3287 3288 3289 3290 3291 3292 3293 3294 3295
}

static void skl_compute_wm_results(struct drm_device *dev,
				   struct skl_pipe_wm *p_wm,
				   struct skl_wm_values *r,
				   struct intel_crtc *intel_crtc)
{
	int level, max_level = ilk_wm_max_level(dev);
	enum pipe pipe = intel_crtc->pipe;
3296 3297
	uint32_t temp;
	int i;
3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313

	for (level = 0; level <= max_level; level++) {
		for (i = 0; i < intel_num_planes(intel_crtc); i++) {
			temp = 0;

			temp |= p_wm->wm[level].plane_res_l[i] <<
					PLANE_WM_LINES_SHIFT;
			temp |= p_wm->wm[level].plane_res_b[i];
			if (p_wm->wm[level].plane_en[i])
				temp |= PLANE_WM_EN;

			r->plane[pipe][i][level] = temp;
		}

		temp = 0;

3314 3315
		temp |= p_wm->wm[level].plane_res_l[PLANE_CURSOR] << PLANE_WM_LINES_SHIFT;
		temp |= p_wm->wm[level].plane_res_b[PLANE_CURSOR];
3316

3317
		if (p_wm->wm[level].plane_en[PLANE_CURSOR])
3318 3319
			temp |= PLANE_WM_EN;

3320
		r->plane[pipe][PLANE_CURSOR][level] = temp;
3321 3322 3323

	}

3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335
	/* transition WMs */
	for (i = 0; i < intel_num_planes(intel_crtc); i++) {
		temp = 0;
		temp |= p_wm->trans_wm.plane_res_l[i] << PLANE_WM_LINES_SHIFT;
		temp |= p_wm->trans_wm.plane_res_b[i];
		if (p_wm->trans_wm.plane_en[i])
			temp |= PLANE_WM_EN;

		r->plane_trans[pipe][i] = temp;
	}

	temp = 0;
3336 3337 3338
	temp |= p_wm->trans_wm.plane_res_l[PLANE_CURSOR] << PLANE_WM_LINES_SHIFT;
	temp |= p_wm->trans_wm.plane_res_b[PLANE_CURSOR];
	if (p_wm->trans_wm.plane_en[PLANE_CURSOR])
3339 3340
		temp |= PLANE_WM_EN;

3341
	r->plane_trans[pipe][PLANE_CURSOR] = temp;
3342

3343 3344 3345
	r->wm_linetime[pipe] = p_wm->linetime;
}

3346 3347 3348 3349 3350 3351 3352 3353 3354
static void skl_ddb_entry_write(struct drm_i915_private *dev_priv, uint32_t reg,
				const struct skl_ddb_entry *entry)
{
	if (entry->end)
		I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
	else
		I915_WRITE(reg, 0);
}

3355 3356 3357 3358 3359 3360 3361 3362 3363 3364
static void skl_write_wm_values(struct drm_i915_private *dev_priv,
				const struct skl_wm_values *new)
{
	struct drm_device *dev = dev_priv->dev;
	struct intel_crtc *crtc;

	list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
		int i, level, max_level = ilk_wm_max_level(dev);
		enum pipe pipe = crtc->pipe;

3365 3366
		if (!new->dirty[pipe])
			continue;
3367

3368
		I915_WRITE(PIPE_WM_LINETIME(pipe), new->wm_linetime[pipe]);
3369

3370 3371 3372 3373 3374
		for (level = 0; level <= max_level; level++) {
			for (i = 0; i < intel_num_planes(crtc); i++)
				I915_WRITE(PLANE_WM(pipe, i, level),
					   new->plane[pipe][i][level]);
			I915_WRITE(CUR_WM(pipe, level),
3375
				   new->plane[pipe][PLANE_CURSOR][level]);
3376
		}
3377 3378 3379
		for (i = 0; i < intel_num_planes(crtc); i++)
			I915_WRITE(PLANE_WM_TRANS(pipe, i),
				   new->plane_trans[pipe][i]);
3380 3381
		I915_WRITE(CUR_WM_TRANS(pipe),
			   new->plane_trans[pipe][PLANE_CURSOR]);
3382

3383
		for (i = 0; i < intel_num_planes(crtc); i++) {
3384 3385 3386
			skl_ddb_entry_write(dev_priv,
					    PLANE_BUF_CFG(pipe, i),
					    &new->ddb.plane[pipe][i]);
3387 3388 3389 3390
			skl_ddb_entry_write(dev_priv,
					    PLANE_NV12_BUF_CFG(pipe, i),
					    &new->ddb.y_plane[pipe][i]);
		}
3391 3392

		skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
3393
				    &new->ddb.plane[pipe][PLANE_CURSOR]);
3394 3395 3396
	}
}

3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420
/*
 * When setting up a new DDB allocation arrangement, we need to correctly
 * sequence the times at which the new allocations for the pipes are taken into
 * account or we'll have pipes fetching from space previously allocated to
 * another pipe.
 *
 * Roughly the sequence looks like:
 *  1. re-allocate the pipe(s) with the allocation being reduced and not
 *     overlapping with a previous light-up pipe (another way to put it is:
 *     pipes with their new allocation strickly included into their old ones).
 *  2. re-allocate the other pipes that get their allocation reduced
 *  3. allocate the pipes having their allocation increased
 *
 * Steps 1. and 2. are here to take care of the following case:
 * - Initially DDB looks like this:
 *     |   B    |   C    |
 * - enable pipe A.
 * - pipe B has a reduced DDB allocation that overlaps with the old pipe C
 *   allocation
 *     |  A  |  B  |  C  |
 *
 * We need to sequence the re-allocation: C, B, A (and not B, C, A).
 */

3421 3422
static void
skl_wm_flush_pipe(struct drm_i915_private *dev_priv, enum pipe pipe, int pass)
3423 3424 3425
{
	int plane;

3426 3427
	DRM_DEBUG_KMS("flush pipe %c (pass %d)\n", pipe_name(pipe), pass);

3428
	for_each_plane(dev_priv, pipe, plane) {
3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454
		I915_WRITE(PLANE_SURF(pipe, plane),
			   I915_READ(PLANE_SURF(pipe, plane)));
	}
	I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
}

static bool
skl_ddb_allocation_included(const struct skl_ddb_allocation *old,
			    const struct skl_ddb_allocation *new,
			    enum pipe pipe)
{
	uint16_t old_size, new_size;

	old_size = skl_ddb_entry_size(&old->pipe[pipe]);
	new_size = skl_ddb_entry_size(&new->pipe[pipe]);

	return old_size != new_size &&
	       new->pipe[pipe].start >= old->pipe[pipe].start &&
	       new->pipe[pipe].end <= old->pipe[pipe].end;
}

static void skl_flush_wm_values(struct drm_i915_private *dev_priv,
				struct skl_wm_values *new_values)
{
	struct drm_device *dev = dev_priv->dev;
	struct skl_ddb_allocation *cur_ddb, *new_ddb;
3455
	bool reallocated[I915_MAX_PIPES] = {};
3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477
	struct intel_crtc *crtc;
	enum pipe pipe;

	new_ddb = &new_values->ddb;
	cur_ddb = &dev_priv->wm.skl_hw.ddb;

	/*
	 * First pass: flush the pipes with the new allocation contained into
	 * the old space.
	 *
	 * We'll wait for the vblank on those pipes to ensure we can safely
	 * re-allocate the freed space without this pipe fetching from it.
	 */
	for_each_intel_crtc(dev, crtc) {
		if (!crtc->active)
			continue;

		pipe = crtc->pipe;

		if (!skl_ddb_allocation_included(cur_ddb, new_ddb, pipe))
			continue;

3478
		skl_wm_flush_pipe(dev_priv, pipe, 1);
3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502
		intel_wait_for_vblank(dev, pipe);

		reallocated[pipe] = true;
	}


	/*
	 * Second pass: flush the pipes that are having their allocation
	 * reduced, but overlapping with a previous allocation.
	 *
	 * Here as well we need to wait for the vblank to make sure the freed
	 * space is not used anymore.
	 */
	for_each_intel_crtc(dev, crtc) {
		if (!crtc->active)
			continue;

		pipe = crtc->pipe;

		if (reallocated[pipe])
			continue;

		if (skl_ddb_entry_size(&new_ddb->pipe[pipe]) <
		    skl_ddb_entry_size(&cur_ddb->pipe[pipe])) {
3503
			skl_wm_flush_pipe(dev_priv, pipe, 2);
3504
			intel_wait_for_vblank(dev, pipe);
3505
			reallocated[pipe] = true;
3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527
		}
	}

	/*
	 * Third pass: flush the pipes that got more space allocated.
	 *
	 * We don't need to actively wait for the update here, next vblank
	 * will just get more DDB space with the correct WM values.
	 */
	for_each_intel_crtc(dev, crtc) {
		if (!crtc->active)
			continue;

		pipe = crtc->pipe;

		/*
		 * At this point, only the pipes more space than before are
		 * left to re-allocate.
		 */
		if (reallocated[pipe])
			continue;

3528
		skl_wm_flush_pipe(dev_priv, pipe, 3);
3529 3530 3531
	}
}

3532 3533 3534 3535 3536
static bool skl_update_pipe_wm(struct drm_crtc *crtc,
			       struct skl_ddb_allocation *ddb, /* out */
			       struct skl_pipe_wm *pipe_wm /* out */)
{
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3537
	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
3538

3539
	skl_allocate_pipe_ddb(cstate, ddb);
3540
	skl_compute_pipe_wm(cstate, ddb, pipe_wm);
3541

3542
	if (!memcmp(&intel_crtc->wm.active.skl, pipe_wm, sizeof(*pipe_wm)))
3543 3544
		return false;

3545
	intel_crtc->wm.active.skl = *pipe_wm;
3546

3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580
	return true;
}

static void skl_update_other_pipe_wm(struct drm_device *dev,
				     struct drm_crtc *crtc,
				     struct skl_wm_values *r)
{
	struct intel_crtc *intel_crtc;
	struct intel_crtc *this_crtc = to_intel_crtc(crtc);

	/*
	 * If the WM update hasn't changed the allocation for this_crtc (the
	 * crtc we are currently computing the new WM values for), other
	 * enabled crtcs will keep the same allocation and we don't need to
	 * recompute anything for them.
	 */
	if (!skl_ddb_allocation_changed(&r->ddb, this_crtc))
		return;

	/*
	 * Otherwise, because of this_crtc being freshly enabled/disabled, the
	 * other active pipes need new DDB allocation and WM values.
	 */
	list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
				base.head) {
		struct skl_pipe_wm pipe_wm = {};
		bool wm_changed;

		if (this_crtc->pipe == intel_crtc->pipe)
			continue;

		if (!intel_crtc->active)
			continue;

3581
		wm_changed = skl_update_pipe_wm(&intel_crtc->base,
3582 3583 3584 3585 3586 3587 3588 3589 3590
						&r->ddb, &pipe_wm);

		/*
		 * If we end up re-computing the other pipe WM values, it's
		 * because it was really needed, so we expect the WM values to
		 * be different.
		 */
		WARN_ON(!wm_changed);

3591
		skl_compute_wm_results(dev, &pipe_wm, r, intel_crtc);
3592 3593 3594 3595
		r->dirty[intel_crtc->pipe] = true;
	}
}

3596 3597 3598 3599 3600 3601 3602
static void skl_clear_wm(struct skl_wm_values *watermarks, enum pipe pipe)
{
	watermarks->wm_linetime[pipe] = 0;
	memset(watermarks->plane[pipe], 0,
	       sizeof(uint32_t) * 8 * I915_MAX_PLANES);
	memset(watermarks->plane_trans[pipe],
	       0, sizeof(uint32_t) * I915_MAX_PLANES);
3603
	watermarks->plane_trans[pipe][PLANE_CURSOR] = 0;
3604 3605 3606 3607 3608 3609 3610

	/* Clear ddb entries for pipe */
	memset(&watermarks->ddb.pipe[pipe], 0, sizeof(struct skl_ddb_entry));
	memset(&watermarks->ddb.plane[pipe], 0,
	       sizeof(struct skl_ddb_entry) * I915_MAX_PLANES);
	memset(&watermarks->ddb.y_plane[pipe], 0,
	       sizeof(struct skl_ddb_entry) * I915_MAX_PLANES);
3611 3612
	memset(&watermarks->ddb.plane[pipe][PLANE_CURSOR], 0,
	       sizeof(struct skl_ddb_entry));
3613 3614 3615

}

3616 3617 3618 3619 3620 3621
static void skl_update_wm(struct drm_crtc *crtc)
{
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct skl_wm_values *results = &dev_priv->wm.skl_results;
3622 3623
	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
	struct skl_pipe_wm *pipe_wm = &cstate->wm.optimal.skl;
3624

3625 3626 3627 3628 3629

	/* Clear all dirty flags */
	memset(results->dirty, 0, sizeof(bool) * I915_MAX_PIPES);

	skl_clear_wm(results, intel_crtc->pipe);
3630

3631
	if (!skl_update_pipe_wm(crtc, &results->ddb, pipe_wm))
3632 3633
		return;

3634
	skl_compute_wm_results(dev, pipe_wm, results, intel_crtc);
3635 3636
	results->dirty[intel_crtc->pipe] = true;

3637
	skl_update_other_pipe_wm(dev, crtc, results);
3638
	skl_write_wm_values(dev_priv, results);
3639
	skl_flush_wm_values(dev_priv, results);
3640 3641 3642

	/* store the new configuration */
	dev_priv->wm.skl_hw = *results;
3643 3644
}

3645
static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
3646
{
3647 3648
	struct drm_device *dev = dev_priv->dev;
	struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
3649
	struct ilk_wm_maximums max;
3650
	struct intel_wm_config *config = &dev_priv->wm.config;
3651
	struct ilk_wm_values results = {};
3652
	enum intel_ddb_partitioning partitioning;
3653

3654 3655
	ilk_compute_wm_maximums(dev, 1, config, INTEL_DDB_PART_1_2, &max);
	ilk_wm_merge(dev, config, &max, &lp_wm_1_2);
3656 3657

	/* 5/6 split only in single pipe config on IVB+ */
3658
	if (INTEL_INFO(dev)->gen >= 7 &&
3659 3660 3661
	    config->num_pipes_active == 1 && config->sprites_enabled) {
		ilk_compute_wm_maximums(dev, 1, config, INTEL_DDB_PART_5_6, &max);
		ilk_wm_merge(dev, config, &max, &lp_wm_5_6);
3662

3663
		best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
3664
	} else {
3665
		best_lp_wm = &lp_wm_1_2;
3666 3667
	}

3668
	partitioning = (best_lp_wm == &lp_wm_1_2) ?
3669
		       INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
3670

3671
	ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
3672

3673
	ilk_write_wm_values(dev_priv, &results);
3674 3675
}

3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695
static void ilk_update_wm(struct drm_crtc *crtc)
{
	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);

	WARN_ON(cstate->base.active != intel_crtc->active);

	/*
	 * IVB workaround: must disable low power watermarks for at least
	 * one frame before enabling scaling.  LP watermarks can be re-enabled
	 * when scaling is disabled.
	 *
	 * WaCxSRDisabledForSpriteScaling:ivb
	 */
	if (cstate->disable_lp_wm) {
		ilk_disable_lp_wm(crtc->dev);
		intel_wait_for_vblank(crtc->dev, intel_crtc->pipe);
	}

3696
	intel_crtc->wm.active.ilk = cstate->wm.optimal.ilk;
3697 3698 3699 3700

	ilk_program_watermarks(dev_priv);
}

3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718
static void skl_pipe_wm_active_state(uint32_t val,
				     struct skl_pipe_wm *active,
				     bool is_transwm,
				     bool is_cursor,
				     int i,
				     int level)
{
	bool is_enabled = (val & PLANE_WM_EN) != 0;

	if (!is_transwm) {
		if (!is_cursor) {
			active->wm[level].plane_en[i] = is_enabled;
			active->wm[level].plane_res_b[i] =
					val & PLANE_WM_BLOCKS_MASK;
			active->wm[level].plane_res_l[i] =
					(val >> PLANE_WM_LINES_SHIFT) &
						PLANE_WM_LINES_MASK;
		} else {
3719 3720
			active->wm[level].plane_en[PLANE_CURSOR] = is_enabled;
			active->wm[level].plane_res_b[PLANE_CURSOR] =
3721
					val & PLANE_WM_BLOCKS_MASK;
3722
			active->wm[level].plane_res_l[PLANE_CURSOR] =
3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734
					(val >> PLANE_WM_LINES_SHIFT) &
						PLANE_WM_LINES_MASK;
		}
	} else {
		if (!is_cursor) {
			active->trans_wm.plane_en[i] = is_enabled;
			active->trans_wm.plane_res_b[i] =
					val & PLANE_WM_BLOCKS_MASK;
			active->trans_wm.plane_res_l[i] =
					(val >> PLANE_WM_LINES_SHIFT) &
						PLANE_WM_LINES_MASK;
		} else {
3735 3736
			active->trans_wm.plane_en[PLANE_CURSOR] = is_enabled;
			active->trans_wm.plane_res_b[PLANE_CURSOR] =
3737
					val & PLANE_WM_BLOCKS_MASK;
3738
			active->trans_wm.plane_res_l[PLANE_CURSOR] =
3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750
					(val >> PLANE_WM_LINES_SHIFT) &
						PLANE_WM_LINES_MASK;
		}
	}
}

static void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3751 3752
	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
	struct skl_pipe_wm *active = &cstate->wm.optimal.skl;
3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764
	enum pipe pipe = intel_crtc->pipe;
	int level, i, max_level;
	uint32_t temp;

	max_level = ilk_wm_max_level(dev);

	hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));

	for (level = 0; level <= max_level; level++) {
		for (i = 0; i < intel_num_planes(intel_crtc); i++)
			hw->plane[pipe][i][level] =
					I915_READ(PLANE_WM(pipe, i, level));
3765
		hw->plane[pipe][PLANE_CURSOR][level] = I915_READ(CUR_WM(pipe, level));
3766 3767 3768 3769
	}

	for (i = 0; i < intel_num_planes(intel_crtc); i++)
		hw->plane_trans[pipe][i] = I915_READ(PLANE_WM_TRANS(pipe, i));
3770
	hw->plane_trans[pipe][PLANE_CURSOR] = I915_READ(CUR_WM_TRANS(pipe));
3771

3772
	if (!intel_crtc->active)
3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784
		return;

	hw->dirty[pipe] = true;

	active->linetime = hw->wm_linetime[pipe];

	for (level = 0; level <= max_level; level++) {
		for (i = 0; i < intel_num_planes(intel_crtc); i++) {
			temp = hw->plane[pipe][i][level];
			skl_pipe_wm_active_state(temp, active, false,
						false, i, level);
		}
3785
		temp = hw->plane[pipe][PLANE_CURSOR][level];
3786 3787 3788 3789 3790 3791 3792 3793
		skl_pipe_wm_active_state(temp, active, false, true, i, level);
	}

	for (i = 0; i < intel_num_planes(intel_crtc); i++) {
		temp = hw->plane_trans[pipe][i];
		skl_pipe_wm_active_state(temp, active, true, false, i, 0);
	}

3794
	temp = hw->plane_trans[pipe][PLANE_CURSOR];
3795
	skl_pipe_wm_active_state(temp, active, true, true, i, 0);
3796 3797

	intel_crtc->wm.active.skl = *active;
3798 3799 3800 3801
}

void skl_wm_get_hw_state(struct drm_device *dev)
{
3802 3803
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
3804 3805
	struct drm_crtc *crtc;

3806
	skl_ddb_get_hw_state(dev_priv, ddb);
3807 3808 3809 3810
	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
		skl_pipe_wm_get_hw_state(crtc);
}

3811 3812 3813 3814
static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
3815
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
3816
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3817 3818
	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
	struct intel_pipe_wm *active = &cstate->wm.optimal.ilk;
3819 3820 3821 3822 3823 3824 3825 3826
	enum pipe pipe = intel_crtc->pipe;
	static const unsigned int wm0_pipe_reg[] = {
		[PIPE_A] = WM0_PIPEA_ILK,
		[PIPE_B] = WM0_PIPEB_ILK,
		[PIPE_C] = WM0_PIPEC_IVB,
	};

	hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
3827
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
3828
		hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
3829

3830
	active->pipe_enabled = intel_crtc->active;
3831 3832

	if (active->pipe_enabled) {
3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856
		u32 tmp = hw->wm_pipe[pipe];

		/*
		 * For active pipes LP0 watermark is marked as
		 * enabled, and LP1+ watermaks as disabled since
		 * we can't really reverse compute them in case
		 * multiple pipes are active.
		 */
		active->wm[0].enable = true;
		active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
		active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
		active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
		active->linetime = hw->wm_linetime[pipe];
	} else {
		int level, max_level = ilk_wm_max_level(dev);

		/*
		 * For inactive pipes, all watermark levels
		 * should be marked as enabled but zeroed,
		 * which is what we'd compute them to.
		 */
		for (level = 0; level <= max_level; level++)
			active->wm[level].enable = true;
	}
3857 3858

	intel_crtc->wm.active.ilk = *active;
3859 3860
}

3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977
#define _FW_WM(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
#define _FW_WM_VLV(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)

static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
			       struct vlv_wm_values *wm)
{
	enum pipe pipe;
	uint32_t tmp;

	for_each_pipe(dev_priv, pipe) {
		tmp = I915_READ(VLV_DDL(pipe));

		wm->ddl[pipe].primary =
			(tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
		wm->ddl[pipe].cursor =
			(tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
		wm->ddl[pipe].sprite[0] =
			(tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
		wm->ddl[pipe].sprite[1] =
			(tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
	}

	tmp = I915_READ(DSPFW1);
	wm->sr.plane = _FW_WM(tmp, SR);
	wm->pipe[PIPE_B].cursor = _FW_WM(tmp, CURSORB);
	wm->pipe[PIPE_B].primary = _FW_WM_VLV(tmp, PLANEB);
	wm->pipe[PIPE_A].primary = _FW_WM_VLV(tmp, PLANEA);

	tmp = I915_READ(DSPFW2);
	wm->pipe[PIPE_A].sprite[1] = _FW_WM_VLV(tmp, SPRITEB);
	wm->pipe[PIPE_A].cursor = _FW_WM(tmp, CURSORA);
	wm->pipe[PIPE_A].sprite[0] = _FW_WM_VLV(tmp, SPRITEA);

	tmp = I915_READ(DSPFW3);
	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);

	if (IS_CHERRYVIEW(dev_priv)) {
		tmp = I915_READ(DSPFW7_CHV);
		wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);

		tmp = I915_READ(DSPFW8_CHV);
		wm->pipe[PIPE_C].sprite[1] = _FW_WM_VLV(tmp, SPRITEF);
		wm->pipe[PIPE_C].sprite[0] = _FW_WM_VLV(tmp, SPRITEE);

		tmp = I915_READ(DSPFW9_CHV);
		wm->pipe[PIPE_C].primary = _FW_WM_VLV(tmp, PLANEC);
		wm->pipe[PIPE_C].cursor = _FW_WM(tmp, CURSORC);

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
		wm->pipe[PIPE_C].sprite[1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
		wm->pipe[PIPE_C].sprite[0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
		wm->pipe[PIPE_C].primary |= _FW_WM(tmp, PLANEC_HI) << 8;
		wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
	} else {
		tmp = I915_READ(DSPFW7);
		wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
		wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
	}
}

#undef _FW_WM
#undef _FW_WM_VLV

void vlv_wm_get_hw_state(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct vlv_wm_values *wm = &dev_priv->wm.vlv;
	struct intel_plane *plane;
	enum pipe pipe;
	u32 val;

	vlv_read_wm_values(dev_priv, wm);

	for_each_intel_plane(dev, plane) {
		switch (plane->base.type) {
			int sprite;
		case DRM_PLANE_TYPE_CURSOR:
			plane->wm.fifo_size = 63;
			break;
		case DRM_PLANE_TYPE_PRIMARY:
			plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, 0);
			break;
		case DRM_PLANE_TYPE_OVERLAY:
			sprite = plane->plane;
			plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, sprite + 1);
			break;
		}
	}

	wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
	wm->level = VLV_WM_LEVEL_PM2;

	if (IS_CHERRYVIEW(dev_priv)) {
		mutex_lock(&dev_priv->rps.hw_lock);

		val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
		if (val & DSP_MAXFIFO_PM5_ENABLE)
			wm->level = VLV_WM_LEVEL_PM5;

3978 3979 3980 3981 3982 3983 3984 3985 3986
		/*
		 * If DDR DVFS is disabled in the BIOS, Punit
		 * will never ack the request. So if that happens
		 * assume we don't have to enable/disable DDR DVFS
		 * dynamically. To test that just set the REQ_ACK
		 * bit to poke the Punit, but don't change the
		 * HIGH/LOW bits so that we don't actually change
		 * the current state.
		 */
3987
		val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000
		val |= FORCE_DDR_FREQ_REQ_ACK;
		vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

		if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
			      FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
			DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
				      "assuming DDR DVFS is disabled\n");
			dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
		} else {
			val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
			if ((val & FORCE_DDR_HIGH_FREQ) == 0)
				wm->level = VLV_WM_LEVEL_DDR_DVFS;
		}
4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013

		mutex_unlock(&dev_priv->rps.hw_lock);
	}

	for_each_pipe(dev_priv, pipe)
		DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
			      pipe_name(pipe), wm->pipe[pipe].primary, wm->pipe[pipe].cursor,
			      wm->pipe[pipe].sprite[0], wm->pipe[pipe].sprite[1]);

	DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
		      wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
}

4014 4015 4016
void ilk_wm_get_hw_state(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4017
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
4018 4019
	struct drm_crtc *crtc;

4020
	for_each_crtc(dev, crtc)
4021 4022 4023 4024 4025 4026 4027
		ilk_pipe_wm_get_hw_state(crtc);

	hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
	hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
	hw->wm_lp[2] = I915_READ(WM3_LP_ILK);

	hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
4028 4029 4030 4031
	if (INTEL_INFO(dev)->gen >= 7) {
		hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
		hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
	}
4032

4033
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4034 4035 4036 4037 4038
		hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
	else if (IS_IVYBRIDGE(dev))
		hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4039 4040 4041 4042 4043

	hw->enable_fbc_wm =
		!(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
}

4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075
/**
 * intel_update_watermarks - update FIFO watermark values based on current modes
 *
 * Calculate watermark values for the various WM regs based on current mode
 * and plane configuration.
 *
 * There are several cases to deal with here:
 *   - normal (i.e. non-self-refresh)
 *   - self-refresh (SR) mode
 *   - lines are large relative to FIFO size (buffer can hold up to 2)
 *   - lines are small relative to FIFO size (buffer can hold more than 2
 *     lines), so need to account for TLB latency
 *
 *   The normal calculation is:
 *     watermark = dotclock * bytes per pixel * latency
 *   where latency is platform & configuration dependent (we assume pessimal
 *   values here).
 *
 *   The SR calculation is:
 *     watermark = (trunc(latency/line time)+1) * surface width *
 *       bytes per pixel
 *   where
 *     line time = htotal / dotclock
 *     surface width = hdisplay for normal plane and 64 for cursor
 *   and latency is assumed to be high, as above.
 *
 * The final value programmed to the register should always be rounded up,
 * and include an extra 2 entries to account for clock crossings.
 *
 * We don't use the sprite, so we can ignore that.  And on Crestline we have
 * to set the non-SR watermarks to 8.
 */
4076
void intel_update_watermarks(struct drm_crtc *crtc)
4077
{
4078
	struct drm_i915_private *dev_priv = crtc->dev->dev_private;
4079 4080

	if (dev_priv->display.update_wm)
4081
		dev_priv->display.update_wm(crtc);
4082 4083
}

4084 4085 4086 4087 4088 4089 4090 4091 4092
/**
 * Lock protecting IPS related data structures
 */
DEFINE_SPINLOCK(mchdev_lock);

/* Global for IPS driver to get at the current i915 device. Protected by
 * mchdev_lock. */
static struct drm_i915_private *i915_mch_dev;

4093 4094 4095 4096 4097
bool ironlake_set_drps(struct drm_device *dev, u8 val)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u16 rgvswctl;

4098 4099
	assert_spin_locked(&mchdev_lock);

4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116
	rgvswctl = I915_READ16(MEMSWCTL);
	if (rgvswctl & MEMCTL_CMD_STS) {
		DRM_DEBUG("gpu busy, RCS change rejected\n");
		return false; /* still busy with another command */
	}

	rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
		(val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
	I915_WRITE16(MEMSWCTL, rgvswctl);
	POSTING_READ16(MEMSWCTL);

	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE16(MEMSWCTL, rgvswctl);

	return true;
}

4117
static void ironlake_enable_drps(struct drm_device *dev)
4118 4119 4120 4121 4122
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 rgvmodectl = I915_READ(MEMMODECTL);
	u8 fmax, fmin, fstart, vstart;

4123 4124
	spin_lock_irq(&mchdev_lock);

4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144
	/* Enable temp reporting */
	I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
	I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);

	/* 100ms RC evaluation intervals */
	I915_WRITE(RCUPEI, 100000);
	I915_WRITE(RCDNEI, 100000);

	/* Set max/min thresholds to 90ms and 80ms respectively */
	I915_WRITE(RCBMAXAVG, 90000);
	I915_WRITE(RCBMINAVG, 80000);

	I915_WRITE(MEMIHYST, 1);

	/* Set up min, max, and cur for interrupt handling */
	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
		MEMMODE_FSTART_SHIFT;

4145
	vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >>
4146 4147
		PXVFREQ_PX_SHIFT;

4148 4149
	dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
	dev_priv->ips.fstart = fstart;
4150

4151 4152 4153
	dev_priv->ips.max_delay = fstart;
	dev_priv->ips.min_delay = fmin;
	dev_priv->ips.cur_delay = fstart;
4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169

	DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
			 fmax, fmin, fstart);

	I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);

	/*
	 * Interrupts will be enabled in ironlake_irq_postinstall
	 */

	I915_WRITE(VIDSTART, vstart);
	POSTING_READ(VIDSTART);

	rgvmodectl |= MEMMODE_SWMODE_EN;
	I915_WRITE(MEMMODECTL, rgvmodectl);

4170
	if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
4171
		DRM_ERROR("stuck trying to change perf mode\n");
4172
	mdelay(1);
4173 4174 4175

	ironlake_set_drps(dev, fstart);

4176 4177
	dev_priv->ips.last_count1 = I915_READ(DMIEC) +
		I915_READ(DDREC) + I915_READ(CSIEC);
4178
	dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
4179
	dev_priv->ips.last_count2 = I915_READ(GFXEC);
4180
	dev_priv->ips.last_time2 = ktime_get_raw_ns();
4181 4182

	spin_unlock_irq(&mchdev_lock);
4183 4184
}

4185
static void ironlake_disable_drps(struct drm_device *dev)
4186 4187
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4188 4189 4190 4191 4192
	u16 rgvswctl;

	spin_lock_irq(&mchdev_lock);

	rgvswctl = I915_READ16(MEMSWCTL);
4193 4194 4195 4196 4197 4198 4199 4200 4201

	/* Ack interrupts, disable EFC interrupt */
	I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
	I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
	I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
	I915_WRITE(DEIIR, DE_PCU_EVENT);
	I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);

	/* Go back to the starting frequency */
4202
	ironlake_set_drps(dev, dev_priv->ips.fstart);
4203
	mdelay(1);
4204 4205
	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE(MEMSWCTL, rgvswctl);
4206
	mdelay(1);
4207

4208
	spin_unlock_irq(&mchdev_lock);
4209 4210
}

4211 4212 4213 4214 4215
/* There's a funny hw issue where the hw returns all 0 when reading from
 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
 * ourselves, instead of doing a rmw cycle (which might result in us clearing
 * all limits and the gpu stuck at whatever frequency it is at atm).
 */
4216
static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
4217
{
4218
	u32 limits;
4219

4220 4221 4222 4223 4224 4225
	/* Only set the down limit when we've reached the lowest level to avoid
	 * getting more interrupts, otherwise leave this clear. This prevents a
	 * race in the hw when coming out of rc6: There's a tiny window where
	 * the hw runs at the minimal clock before selecting the desired
	 * frequency, if the down threshold expires in that window we will not
	 * receive a down interrupt. */
4226 4227 4228 4229 4230 4231 4232 4233 4234
	if (IS_GEN9(dev_priv->dev)) {
		limits = (dev_priv->rps.max_freq_softlimit) << 23;
		if (val <= dev_priv->rps.min_freq_softlimit)
			limits |= (dev_priv->rps.min_freq_softlimit) << 14;
	} else {
		limits = dev_priv->rps.max_freq_softlimit << 24;
		if (val <= dev_priv->rps.min_freq_softlimit)
			limits |= dev_priv->rps.min_freq_softlimit << 16;
	}
4235 4236 4237 4238

	return limits;
}

4239 4240 4241
static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
{
	int new_power;
4242 4243
	u32 threshold_up = 0, threshold_down = 0; /* in % */
	u32 ei_up = 0, ei_down = 0;
4244 4245 4246 4247

	new_power = dev_priv->rps.power;
	switch (dev_priv->rps.power) {
	case LOW_POWER:
4248
		if (val > dev_priv->rps.efficient_freq + 1 && val > dev_priv->rps.cur_freq)
4249 4250 4251 4252
			new_power = BETWEEN;
		break;

	case BETWEEN:
4253
		if (val <= dev_priv->rps.efficient_freq && val < dev_priv->rps.cur_freq)
4254
			new_power = LOW_POWER;
4255
		else if (val >= dev_priv->rps.rp0_freq && val > dev_priv->rps.cur_freq)
4256 4257 4258 4259
			new_power = HIGH_POWER;
		break;

	case HIGH_POWER:
4260
		if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 && val < dev_priv->rps.cur_freq)
4261 4262 4263 4264
			new_power = BETWEEN;
		break;
	}
	/* Max/min bins are special */
4265
	if (val <= dev_priv->rps.min_freq_softlimit)
4266
		new_power = LOW_POWER;
4267
	if (val >= dev_priv->rps.max_freq_softlimit)
4268 4269 4270 4271 4272 4273 4274 4275
		new_power = HIGH_POWER;
	if (new_power == dev_priv->rps.power)
		return;

	/* Note the units here are not exactly 1us, but 1280ns. */
	switch (new_power) {
	case LOW_POWER:
		/* Upclock if more than 95% busy over 16ms */
4276 4277
		ei_up = 16000;
		threshold_up = 95;
4278 4279

		/* Downclock if less than 85% busy over 32ms */
4280 4281
		ei_down = 32000;
		threshold_down = 85;
4282 4283 4284 4285
		break;

	case BETWEEN:
		/* Upclock if more than 90% busy over 13ms */
4286 4287
		ei_up = 13000;
		threshold_up = 90;
4288 4289

		/* Downclock if less than 75% busy over 32ms */
4290 4291
		ei_down = 32000;
		threshold_down = 75;
4292 4293 4294 4295
		break;

	case HIGH_POWER:
		/* Upclock if more than 85% busy over 10ms */
4296 4297
		ei_up = 10000;
		threshold_up = 85;
4298 4299

		/* Downclock if less than 60% busy over 32ms */
4300 4301
		ei_down = 32000;
		threshold_down = 60;
4302 4303 4304
		break;
	}

4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322
	I915_WRITE(GEN6_RP_UP_EI,
		GT_INTERVAL_FROM_US(dev_priv, ei_up));
	I915_WRITE(GEN6_RP_UP_THRESHOLD,
		GT_INTERVAL_FROM_US(dev_priv, (ei_up * threshold_up / 100)));

	I915_WRITE(GEN6_RP_DOWN_EI,
		GT_INTERVAL_FROM_US(dev_priv, ei_down));
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
		GT_INTERVAL_FROM_US(dev_priv, (ei_down * threshold_down / 100)));

	 I915_WRITE(GEN6_RP_CONTROL,
		    GEN6_RP_MEDIA_TURBO |
		    GEN6_RP_MEDIA_HW_NORMAL_MODE |
		    GEN6_RP_MEDIA_IS_GFX |
		    GEN6_RP_ENABLE |
		    GEN6_RP_UP_BUSY_AVG |
		    GEN6_RP_DOWN_IDLE_AVG);

4323
	dev_priv->rps.power = new_power;
4324 4325
	dev_priv->rps.up_threshold = threshold_up;
	dev_priv->rps.down_threshold = threshold_down;
4326 4327 4328
	dev_priv->rps.last_adj = 0;
}

4329 4330 4331 4332 4333
static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
{
	u32 mask = 0;

	if (val > dev_priv->rps.min_freq_softlimit)
4334
		mask |= GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
4335
	if (val < dev_priv->rps.max_freq_softlimit)
4336
		mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
4337

4338 4339
	mask &= dev_priv->pm_rps_events;

4340
	return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
4341 4342
}

4343 4344 4345
/* gen6_set_rps is called to update the frequency request, but should also be
 * called when the range (min_delay and max_delay) is modified so that we can
 * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
4346
static void gen6_set_rps(struct drm_device *dev, u8 val)
4347 4348
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4349

4350 4351 4352 4353
	/* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
	if (IS_BROXTON(dev) && (INTEL_REVID(dev) < BXT_REVID_B0))
		return;

4354
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4355 4356
	WARN_ON(val > dev_priv->rps.max_freq);
	WARN_ON(val < dev_priv->rps.min_freq);
4357

C
Chris Wilson 已提交
4358 4359 4360 4361 4362
	/* min/max delay may still have been modified so be sure to
	 * write the limits value.
	 */
	if (val != dev_priv->rps.cur_freq) {
		gen6_set_rps_thresholds(dev_priv, val);
4363

4364 4365 4366 4367
		if (IS_GEN9(dev))
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN9_FREQUENCY(val));
		else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
C
Chris Wilson 已提交
4368 4369 4370 4371 4372 4373 4374
			I915_WRITE(GEN6_RPNSWREQ,
				   HSW_FREQUENCY(val));
		else
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN6_FREQUENCY(val) |
				   GEN6_OFFSET(0) |
				   GEN6_AGGRESSIVE_TURBO);
4375
	}
4376 4377 4378 4379

	/* Make sure we continue to get interrupts
	 * until we hit the minimum or maximum frequencies.
	 */
4380
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
4381
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
4382

4383 4384
	POSTING_READ(GEN6_RPNSWREQ);

4385
	dev_priv->rps.cur_freq = val;
4386
	trace_intel_gpu_freq_change(val * 50);
4387 4388
}

4389 4390 4391 4392 4393
static void valleyview_set_rps(struct drm_device *dev, u8 val)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4394 4395
	WARN_ON(val > dev_priv->rps.max_freq);
	WARN_ON(val < dev_priv->rps.min_freq);
4396 4397 4398 4399 4400

	if (WARN_ONCE(IS_CHERRYVIEW(dev) && (val & 1),
		      "Odd GPU freq value\n"))
		val &= ~1;

4401 4402
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));

4403
	if (val != dev_priv->rps.cur_freq) {
4404
		vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
4405 4406 4407
		if (!IS_CHERRYVIEW(dev_priv))
			gen6_set_rps_thresholds(dev_priv, val);
	}
4408 4409 4410 4411 4412

	dev_priv->rps.cur_freq = val;
	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
}

4413
/* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
4414 4415
 *
 * * If Gfx is Idle, then
4416 4417 4418
 * 1. Forcewake Media well.
 * 2. Request idle freq.
 * 3. Release Forcewake of Media well.
4419 4420 4421
*/
static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
{
4422
	u32 val = dev_priv->rps.idle_freq;
4423

4424
	if (dev_priv->rps.cur_freq <= val)
4425 4426
		return;

4427 4428 4429 4430 4431
	/* Wake up the media well, as that takes a lot less
	 * power than the Render well. */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
	valleyview_set_rps(dev_priv->dev, val);
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
4432 4433
}

4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445
void gen6_rps_busy(struct drm_i915_private *dev_priv)
{
	mutex_lock(&dev_priv->rps.hw_lock);
	if (dev_priv->rps.enabled) {
		if (dev_priv->pm_rps_events & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED))
			gen6_rps_reset_ei(dev_priv);
		I915_WRITE(GEN6_PMINTRMSK,
			   gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
	}
	mutex_unlock(&dev_priv->rps.hw_lock);
}

4446 4447
void gen6_rps_idle(struct drm_i915_private *dev_priv)
{
4448 4449
	struct drm_device *dev = dev_priv->dev;

4450
	mutex_lock(&dev_priv->rps.hw_lock);
4451
	if (dev_priv->rps.enabled) {
4452
		if (IS_VALLEYVIEW(dev))
4453
			vlv_set_rps_idle(dev_priv);
4454
		else
4455
			gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
4456
		dev_priv->rps.last_adj = 0;
4457
		I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
4458
	}
4459
	mutex_unlock(&dev_priv->rps.hw_lock);
4460

4461
	spin_lock(&dev_priv->rps.client_lock);
4462 4463
	while (!list_empty(&dev_priv->rps.clients))
		list_del_init(dev_priv->rps.clients.next);
4464
	spin_unlock(&dev_priv->rps.client_lock);
4465 4466
}

4467
void gen6_rps_boost(struct drm_i915_private *dev_priv,
4468 4469
		    struct intel_rps_client *rps,
		    unsigned long submitted)
4470
{
4471 4472 4473 4474 4475 4476 4477
	/* This is intentionally racy! We peek at the state here, then
	 * validate inside the RPS worker.
	 */
	if (!(dev_priv->mm.busy &&
	      dev_priv->rps.enabled &&
	      dev_priv->rps.cur_freq < dev_priv->rps.max_freq_softlimit))
		return;
4478

4479 4480 4481
	/* Force a RPS boost (and don't count it against the client) if
	 * the GPU is severely congested.
	 */
4482
	if (rps && time_after(jiffies, submitted + DRM_I915_THROTTLE_JIFFIES))
4483 4484
		rps = NULL;

4485 4486 4487 4488 4489 4490 4491 4492
	spin_lock(&dev_priv->rps.client_lock);
	if (rps == NULL || list_empty(&rps->link)) {
		spin_lock_irq(&dev_priv->irq_lock);
		if (dev_priv->rps.interrupts_enabled) {
			dev_priv->rps.client_boost = true;
			queue_work(dev_priv->wq, &dev_priv->rps.work);
		}
		spin_unlock_irq(&dev_priv->irq_lock);
4493

4494 4495 4496
		if (rps != NULL) {
			list_add(&rps->link, &dev_priv->rps.clients);
			rps->boosts++;
4497 4498
		} else
			dev_priv->rps.boosts++;
4499
	}
4500
	spin_unlock(&dev_priv->rps.client_lock);
4501 4502
}

4503
void intel_set_rps(struct drm_device *dev, u8 val)
4504
{
4505 4506 4507 4508
	if (IS_VALLEYVIEW(dev))
		valleyview_set_rps(dev, val);
	else
		gen6_set_rps(dev, val);
4509 4510
}

Z
Zhe Wang 已提交
4511 4512 4513 4514 4515
static void gen9_disable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(GEN6_RC_CONTROL, 0);
4516
	I915_WRITE(GEN9_PG_ENABLE, 0);
Z
Zhe Wang 已提交
4517 4518
}

4519
static void gen6_disable_rps(struct drm_device *dev)
4520 4521 4522 4523
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(GEN6_RC_CONTROL, 0);
4524 4525 4526
	I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
}

4527 4528 4529 4530 4531 4532 4533
static void cherryview_disable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(GEN6_RC_CONTROL, 0);
}

4534 4535 4536 4537
static void valleyview_disable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

4538 4539
	/* we're doing forcewake before Disabling RC6,
	 * This what the BIOS expects when going into suspend */
4540
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4541

4542
	I915_WRITE(GEN6_RC_CONTROL, 0);
4543

4544
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4545 4546
}

B
Ben Widawsky 已提交
4547 4548
static void intel_print_rc6_info(struct drm_device *dev, u32 mode)
{
4549 4550 4551 4552 4553 4554
	if (IS_VALLEYVIEW(dev)) {
		if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
			mode = GEN6_RC_CTL_RC6_ENABLE;
		else
			mode = 0;
	}
4555 4556 4557 4558 4559 4560 4561 4562 4563
	if (HAS_RC6p(dev))
		DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s RC6p %s RC6pp %s\n",
			      (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
			      (mode & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
			      (mode & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");

	else
		DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s\n",
			      (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off");
B
Ben Widawsky 已提交
4564 4565
}

I
Imre Deak 已提交
4566
static int sanitize_rc6_option(const struct drm_device *dev, int enable_rc6)
4567
{
4568 4569
	/* No RC6 before Ironlake and code is gone for ilk. */
	if (INTEL_INFO(dev)->gen < 6)
I
Imre Deak 已提交
4570 4571
		return 0;

4572
	/* Respect the kernel parameter if it is set */
I
Imre Deak 已提交
4573 4574 4575
	if (enable_rc6 >= 0) {
		int mask;

4576
		if (HAS_RC6p(dev))
I
Imre Deak 已提交
4577 4578 4579 4580 4581 4582
			mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
			       INTEL_RC6pp_ENABLE;
		else
			mask = INTEL_RC6_ENABLE;

		if ((enable_rc6 & mask) != enable_rc6)
4583 4584
			DRM_DEBUG_KMS("Adjusting RC6 mask to %d (requested %d, valid %d)\n",
				      enable_rc6 & mask, enable_rc6, mask);
I
Imre Deak 已提交
4585 4586 4587

		return enable_rc6 & mask;
	}
4588

4589
	if (IS_IVYBRIDGE(dev))
B
Ben Widawsky 已提交
4590
		return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
4591 4592

	return INTEL_RC6_ENABLE;
4593 4594
}

I
Imre Deak 已提交
4595 4596 4597 4598 4599
int intel_enable_rc6(const struct drm_device *dev)
{
	return i915.enable_rc6;
}

4600
static void gen6_init_rps_frequencies(struct drm_device *dev)
4601
{
4602 4603 4604 4605 4606
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t rp_state_cap;
	u32 ddcc_status = 0;
	int ret;

4607 4608
	/* All of these values are in units of 50MHz */
	dev_priv->rps.cur_freq		= 0;
4609
	/* static values from HW: RP0 > RP1 > RPn (min_freq) */
4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621
	if (IS_BROXTON(dev)) {
		rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
		dev_priv->rps.rp0_freq = (rp_state_cap >> 16) & 0xff;
		dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
		dev_priv->rps.min_freq = (rp_state_cap >>  0) & 0xff;
	} else {
		rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
		dev_priv->rps.rp0_freq = (rp_state_cap >>  0) & 0xff;
		dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
		dev_priv->rps.min_freq = (rp_state_cap >> 16) & 0xff;
	}

4622 4623 4624
	/* hw_max = RP0 until we check for overclocking */
	dev_priv->rps.max_freq		= dev_priv->rps.rp0_freq;

4625
	dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
4626
	if (IS_HASWELL(dev) || IS_BROADWELL(dev) || IS_SKYLAKE(dev)) {
4627 4628 4629 4630 4631
		ret = sandybridge_pcode_read(dev_priv,
					HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
					&ddcc_status);
		if (0 == ret)
			dev_priv->rps.efficient_freq =
4632 4633 4634 4635
				clamp_t(u8,
					((ddcc_status >> 8) & 0xff),
					dev_priv->rps.min_freq,
					dev_priv->rps.max_freq);
4636 4637
	}

4638 4639 4640 4641 4642 4643 4644 4645 4646 4647
	if (IS_SKYLAKE(dev)) {
		/* Store the frequency values in 16.66 MHZ units, which is
		   the natural hardware unit for SKL */
		dev_priv->rps.rp0_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.rp1_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.min_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.max_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.efficient_freq *= GEN9_FREQ_SCALER;
	}

4648 4649
	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;

4650 4651 4652 4653
	/* Preserve min/max settings in case of re-init */
	if (dev_priv->rps.max_freq_softlimit == 0)
		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;

4654 4655 4656
	if (dev_priv->rps.min_freq_softlimit == 0) {
		if (IS_HASWELL(dev) || IS_BROADWELL(dev))
			dev_priv->rps.min_freq_softlimit =
4657 4658
				max_t(int, dev_priv->rps.efficient_freq,
				      intel_freq_opcode(dev_priv, 450));
4659 4660 4661 4662
		else
			dev_priv->rps.min_freq_softlimit =
				dev_priv->rps.min_freq;
	}
4663 4664
}

J
Jesse Barnes 已提交
4665
/* See the Gen9_GT_PM_Programming_Guide doc for the below */
Z
Zhe Wang 已提交
4666
static void gen9_enable_rps(struct drm_device *dev)
J
Jesse Barnes 已提交
4667 4668 4669 4670 4671
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4672 4673
	gen6_init_rps_frequencies(dev);

4674 4675 4676 4677 4678 4679
	/* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
	if (IS_BROXTON(dev) && (INTEL_REVID(dev) < BXT_REVID_B0)) {
		intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
		return;
	}

4680 4681 4682 4683 4684 4685 4686 4687
	/* Program defaults and thresholds for RPS*/
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
		GEN9_FREQUENCY(dev_priv->rps.rp1_freq));

	/* 1 second timeout*/
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
		GT_INTERVAL_FROM_US(dev_priv, 1000000));

J
Jesse Barnes 已提交
4688 4689
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);

4690 4691 4692 4693 4694
	/* Leaning on the below call to gen6_set_rps to program/setup the
	 * Up/Down EI & threshold registers, as well as the RP_CONTROL,
	 * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
	dev_priv->rps.power = HIGH_POWER; /* force a reset */
	gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
J
Jesse Barnes 已提交
4695 4696 4697 4698 4699

	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
}

static void gen9_enable_rc6(struct drm_device *dev)
Z
Zhe Wang 已提交
4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_engine_cs *ring;
	uint32_t rc6_mask = 0;
	int unused;

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4711
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
Z
Zhe Wang 已提交
4712 4713 4714 4715 4716

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	/* 2b: Program RC6 thresholds.*/
4717 4718 4719 4720 4721 4722 4723

	/* WaRsDoubleRc6WrlWithCoarsePowerGating: Doubling WRL only when CPG is enabled */
	if (IS_SKYLAKE(dev) && !((IS_SKL_GT3(dev) || IS_SKL_GT4(dev)) &&
				 (INTEL_REVID(dev) <= SKL_REVID_E0)))
		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
	else
		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
Z
Zhe Wang 已提交
4724 4725 4726 4727
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
	for_each_ring(ring, dev_priv, unused)
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4728 4729 4730 4731

	if (HAS_GUC_UCODE(dev))
		I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);

Z
Zhe Wang 已提交
4732 4733 4734
	I915_WRITE(GEN6_RC_SLEEP, 0);
	I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */

4735 4736 4737 4738
	/* 2c: Program Coarse Power Gating Policies. */
	I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25);
	I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25);

Z
Zhe Wang 已提交
4739 4740 4741 4742 4743
	/* 3a: Enable RC6 */
	if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
	DRM_INFO("RC6 %s\n", (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
			"on" : "off");
S
Sagar Arun Kamble 已提交
4744 4745 4746 4747 4748 4749 4750 4751 4752 4753

	if ((IS_SKYLAKE(dev) && INTEL_REVID(dev) <= SKL_REVID_D0) ||
	    (IS_BROXTON(dev) && INTEL_REVID(dev) <= BXT_REVID_A0))
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
			   GEN7_RC_CTL_TO_MODE |
			   rc6_mask);
	else
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
			   GEN6_RC_CTL_EI_MODE(1) |
			   rc6_mask);
Z
Zhe Wang 已提交
4754

4755 4756
	/*
	 * 3b: Enable Coarse Power Gating only when RC6 is enabled.
4757
	 * WaRsDisableCoarsePowerGating:skl,bxt - Render/Media PG need to be disabled with RC6.
4758
	 */
4759 4760 4761 4762 4763 4764
	if ((IS_BROXTON(dev) && (INTEL_REVID(dev) < BXT_REVID_B0)) ||
	    ((IS_SKL_GT3(dev) || IS_SKL_GT4(dev)) && (INTEL_REVID(dev) <= SKL_REVID_E0)))
		I915_WRITE(GEN9_PG_ENABLE, 0);
	else
		I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
				(GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE) : 0);
4765

4766
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
Z
Zhe Wang 已提交
4767 4768 4769

}

4770 4771 4772
static void gen8_enable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4773
	struct intel_engine_cs *ring;
4774
	uint32_t rc6_mask = 0;
4775 4776 4777 4778 4779 4780 4781
	int unused;

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* 1c & 1d: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4782
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4783 4784 4785 4786

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

4787 4788
	/* Initialize rps frequencies */
	gen6_init_rps_frequencies(dev);
4789 4790 4791 4792 4793 4794 4795 4796

	/* 2b: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
	for_each_ring(ring, dev_priv, unused)
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
	I915_WRITE(GEN6_RC_SLEEP, 0);
4797 4798 4799 4800
	if (IS_BROADWELL(dev))
		I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
	else
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
4801 4802 4803 4804

	/* 3: Enable RC6 */
	if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
4805
	intel_print_rc6_info(dev, rc6_mask);
4806 4807 4808 4809 4810 4811 4812 4813
	if (IS_BROADWELL(dev))
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
				GEN7_RC_CTL_TO_MODE |
				rc6_mask);
	else
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
				GEN6_RC_CTL_EI_MODE(1) |
				rc6_mask);
4814 4815

	/* 4 Program defaults and thresholds for RPS*/
4816 4817 4818 4819
	I915_WRITE(GEN6_RPNSWREQ,
		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833
	/* NB: Docs say 1s, and 1000000 - which aren't equivalent */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */

	/* Docs recommend 900MHz, and 300 MHz respectively */
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
		   dev_priv->rps.max_freq_softlimit << 24 |
		   dev_priv->rps.min_freq_softlimit << 16);

	I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
	I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
	I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
4834 4835

	/* 5: Enable RPS */
4836 4837 4838 4839 4840 4841 4842 4843 4844 4845
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

	/* 6: Ring frequency + overclocking (our driver does this later */

4846
	dev_priv->rps.power = HIGH_POWER; /* force a reset */
4847
	gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
4848

4849
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4850 4851
}

4852
static void gen6_enable_rps(struct drm_device *dev)
4853
{
4854
	struct drm_i915_private *dev_priv = dev->dev_private;
4855
	struct intel_engine_cs *ring;
4856
	u32 rc6vids, pcu_mbox = 0, rc6_mask = 0;
4857 4858
	u32 gtfifodbg;
	int rc6_mode;
B
Ben Widawsky 已提交
4859
	int i, ret;
4860

4861
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4862

4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876
	/* Here begins a magic sequence of register writes to enable
	 * auto-downclocking.
	 *
	 * Perhaps there might be some value in exposing these to
	 * userspace...
	 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* Clear the DBG now so we don't confuse earlier errors */
	if ((gtfifodbg = I915_READ(GTFIFODBG))) {
		DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

4877
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4878

4879 4880
	/* Initialize rps frequencies */
	gen6_init_rps_frequencies(dev);
J
Jeff McGee 已提交
4881

4882 4883 4884 4885 4886 4887 4888 4889 4890
	/* disable the counters and set deterministic thresholds */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
	I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

4891 4892
	for_each_ring(ring, dev_priv, i)
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4893 4894 4895

	I915_WRITE(GEN6_RC_SLEEP, 0);
	I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
4896
	if (IS_IVYBRIDGE(dev))
4897 4898 4899
		I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
	else
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
4900
	I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
4901 4902
	I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */

4903
	/* Check if we are enabling RC6 */
4904 4905 4906 4907
	rc6_mode = intel_enable_rc6(dev_priv->dev);
	if (rc6_mode & INTEL_RC6_ENABLE)
		rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;

4908 4909 4910 4911
	/* We don't use those on Haswell */
	if (!IS_HASWELL(dev)) {
		if (rc6_mode & INTEL_RC6p_ENABLE)
			rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
4912

4913 4914 4915
		if (rc6_mode & INTEL_RC6pp_ENABLE)
			rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
	}
4916

B
Ben Widawsky 已提交
4917
	intel_print_rc6_info(dev, rc6_mask);
4918 4919 4920 4921 4922 4923

	I915_WRITE(GEN6_RC_CONTROL,
		   rc6_mask |
		   GEN6_RC_CTL_EI_MODE(1) |
		   GEN6_RC_CTL_HW_ENABLE);

4924 4925
	/* Power down if completely idle for over 50ms */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
4926 4927
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

B
Ben Widawsky 已提交
4928
	ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
4929
	if (ret)
B
Ben Widawsky 已提交
4930
		DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
4931 4932 4933 4934

	ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
	if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
		DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
4935
				 (dev_priv->rps.max_freq_softlimit & 0xff) * 50,
4936
				 (pcu_mbox & 0xff) * 50);
4937
		dev_priv->rps.max_freq = pcu_mbox & 0xff;
4938 4939
	}

4940
	dev_priv->rps.power = HIGH_POWER; /* force a reset */
4941
	gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
4942

4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956
	rc6vids = 0;
	ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
	if (IS_GEN6(dev) && ret) {
		DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
	} else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
		DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
			  GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
		rc6vids &= 0xffff00;
		rc6vids |= GEN6_ENCODE_RC6_VID(450);
		ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
		if (ret)
			DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
	}

4957
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4958 4959
}

4960
static void __gen6_update_ring_freq(struct drm_device *dev)
4961
{
4962
	struct drm_i915_private *dev_priv = dev->dev_private;
4963
	int min_freq = 15;
4964 4965
	unsigned int gpu_freq;
	unsigned int max_ia_freq, min_ring_freq;
4966
	unsigned int max_gpu_freq, min_gpu_freq;
4967
	int scaling_factor = 180;
4968
	struct cpufreq_policy *policy;
4969

4970
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4971

4972 4973 4974 4975 4976 4977 4978 4979 4980
	policy = cpufreq_cpu_get(0);
	if (policy) {
		max_ia_freq = policy->cpuinfo.max_freq;
		cpufreq_cpu_put(policy);
	} else {
		/*
		 * Default to measured freq if none found, PCU will ensure we
		 * don't go over
		 */
4981
		max_ia_freq = tsc_khz;
4982
	}
4983 4984 4985 4986

	/* Convert from kHz to MHz */
	max_ia_freq /= 1000;

4987
	min_ring_freq = I915_READ(DCLK) & 0xf;
4988 4989
	/* convert DDR frequency from units of 266.6MHz to bandwidth */
	min_ring_freq = mult_frac(min_ring_freq, 8, 3);
4990

4991 4992 4993 4994 4995 4996 4997 4998 4999
	if (IS_SKYLAKE(dev)) {
		/* Convert GT frequency to 50 HZ units */
		min_gpu_freq = dev_priv->rps.min_freq / GEN9_FREQ_SCALER;
		max_gpu_freq = dev_priv->rps.max_freq / GEN9_FREQ_SCALER;
	} else {
		min_gpu_freq = dev_priv->rps.min_freq;
		max_gpu_freq = dev_priv->rps.max_freq;
	}

5000 5001 5002 5003 5004
	/*
	 * For each potential GPU frequency, load a ring frequency we'd like
	 * to use for memory access.  We do this by specifying the IA frequency
	 * the PCU should use as a reference to determine the ring frequency.
	 */
5005 5006
	for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
		int diff = max_gpu_freq - gpu_freq;
5007 5008
		unsigned int ia_freq = 0, ring_freq = 0;

5009 5010 5011 5012 5013 5014 5015
		if (IS_SKYLAKE(dev)) {
			/*
			 * ring_freq = 2 * GT. ring_freq is in 100MHz units
			 * No floor required for ring frequency on SKL.
			 */
			ring_freq = gpu_freq;
		} else if (INTEL_INFO(dev)->gen >= 8) {
5016 5017 5018
			/* max(2 * GT, DDR). NB: GT is 50MHz units */
			ring_freq = max(min_ring_freq, gpu_freq);
		} else if (IS_HASWELL(dev)) {
5019
			ring_freq = mult_frac(gpu_freq, 5, 4);
5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035
			ring_freq = max(min_ring_freq, ring_freq);
			/* leave ia_freq as the default, chosen by cpufreq */
		} else {
			/* On older processors, there is no separate ring
			 * clock domain, so in order to boost the bandwidth
			 * of the ring, we need to upclock the CPU (ia_freq).
			 *
			 * For GPU frequencies less than 750MHz,
			 * just use the lowest ring freq.
			 */
			if (gpu_freq < min_freq)
				ia_freq = 800;
			else
				ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
			ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
		}
5036

B
Ben Widawsky 已提交
5037 5038
		sandybridge_pcode_write(dev_priv,
					GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
5039 5040 5041
					ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
					ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
					gpu_freq);
5042 5043 5044
	}
}

5045 5046 5047 5048
void gen6_update_ring_freq(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

5049
	if (!HAS_CORE_RING_FREQ(dev))
5050 5051 5052 5053 5054 5055 5056
		return;

	mutex_lock(&dev_priv->rps.hw_lock);
	__gen6_update_ring_freq(dev);
	mutex_unlock(&dev_priv->rps.hw_lock);
}

5057
static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
5058
{
5059
	struct drm_device *dev = dev_priv->dev;
5060 5061
	u32 val, rp0;

5062 5063
	if (dev->pdev->revision >= 0x20) {
		val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
5064

5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087
		switch (INTEL_INFO(dev)->eu_total) {
		case 8:
				/* (2 * 4) config */
				rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
				break;
		case 12:
				/* (2 * 6) config */
				rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
				break;
		case 16:
				/* (2 * 8) config */
		default:
				/* Setting (2 * 8) Min RP0 for any other combination */
				rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
				break;
		}
		rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);
	} else {
		/* For pre-production hardware */
		val = vlv_punit_read(dev_priv, PUNIT_GPU_STATUS_REG);
		rp0 = (val >> PUNIT_GPU_STATUS_MAX_FREQ_SHIFT) &
		       PUNIT_GPU_STATUS_MAX_FREQ_MASK;
	}
5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100
	return rp0;
}

static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

	val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
	rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;

	return rpe;
}

5101 5102
static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
5103
	struct drm_device *dev = dev_priv->dev;
5104 5105
	u32 val, rp1;

5106 5107 5108 5109 5110 5111 5112 5113 5114
	if (dev->pdev->revision >= 0x20) {
		val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
		rp1 = (val & FB_GFX_FREQ_FUSE_MASK);
	} else {
		/* For pre-production hardware */
		val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
		rp1 = ((val >> PUNIT_GPU_STATUS_MAX_FREQ_SHIFT) &
		       PUNIT_GPU_STATUS_MAX_FREQ_MASK);
	}
5115 5116 5117
	return rp1;
}

5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128
static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);

	rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;

	return rp1;
}

5129
static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
5130 5131 5132
{
	u32 val, rp0;

5133
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145

	rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
	/* Clamp to max */
	rp0 = min_t(u32, rp0, 0xea);

	return rp0;
}

static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

5146
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
5147
	rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
5148
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
5149 5150 5151 5152 5153
	rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;

	return rpe;
}

5154
static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
5155
{
5156
	return vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
5157 5158
}

5159 5160 5161 5162 5163 5164 5165 5166 5167
/* Check that the pctx buffer wasn't move under us. */
static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

	WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
			     dev_priv->vlv_pctx->stolen->start);
}

5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188

/* Check that the pcbr address is not empty. */
static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

	WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
}

static void cherryview_setup_pctx(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	unsigned long pctx_paddr, paddr;
	struct i915_gtt *gtt = &dev_priv->gtt;
	u32 pcbr;
	int pctx_size = 32*1024;

	WARN_ON(!mutex_is_locked(&dev->struct_mutex));

	pcbr = I915_READ(VLV_PCBR);
	if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
5189
		DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5190 5191 5192 5193 5194 5195
		paddr = (dev_priv->mm.stolen_base +
			 (gtt->stolen_size - pctx_size));

		pctx_paddr = (paddr & (~4095));
		I915_WRITE(VLV_PCBR, pctx_paddr);
	}
5196 5197

	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5198 5199
}

5200 5201 5202 5203 5204 5205 5206 5207
static void valleyview_setup_pctx(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *pctx;
	unsigned long pctx_paddr;
	u32 pcbr;
	int pctx_size = 24*1024;

5208 5209
	WARN_ON(!mutex_is_locked(&dev->struct_mutex));

5210 5211 5212 5213 5214 5215 5216 5217
	pcbr = I915_READ(VLV_PCBR);
	if (pcbr) {
		/* BIOS set it up already, grab the pre-alloc'd space */
		int pcbr_offset;

		pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
		pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
								      pcbr_offset,
5218
								      I915_GTT_OFFSET_NONE,
5219 5220 5221 5222
								      pctx_size);
		goto out;
	}

5223 5224
	DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");

5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242
	/*
	 * From the Gunit register HAS:
	 * The Gfx driver is expected to program this register and ensure
	 * proper allocation within Gfx stolen memory.  For example, this
	 * register should be programmed such than the PCBR range does not
	 * overlap with other ranges, such as the frame buffer, protected
	 * memory, or any other relevant ranges.
	 */
	pctx = i915_gem_object_create_stolen(dev, pctx_size);
	if (!pctx) {
		DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
		return;
	}

	pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
	I915_WRITE(VLV_PCBR, pctx_paddr);

out:
5243
	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5244 5245 5246
	dev_priv->vlv_pctx = pctx;
}

5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257
static void valleyview_cleanup_pctx(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (WARN_ON(!dev_priv->vlv_pctx))
		return;

	drm_gem_object_unreference(&dev_priv->vlv_pctx->base);
	dev_priv->vlv_pctx = NULL;
}

5258 5259 5260
static void valleyview_init_gt_powersave(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
5261
	u32 val;
5262 5263 5264 5265 5266

	valleyview_setup_pctx(dev);

	mutex_lock(&dev_priv->rps.hw_lock);

5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
	switch ((val >> 6) & 3) {
	case 0:
	case 1:
		dev_priv->mem_freq = 800;
		break;
	case 2:
		dev_priv->mem_freq = 1066;
		break;
	case 3:
		dev_priv->mem_freq = 1333;
		break;
	}
5280
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5281

5282 5283 5284
	dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5285
			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5286 5287 5288 5289
			 dev_priv->rps.max_freq);

	dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5290
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5291 5292
			 dev_priv->rps.efficient_freq);

5293 5294
	dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
	DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
5295
			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5296 5297
			 dev_priv->rps.rp1_freq);

5298 5299
	dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5300
			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5301 5302
			 dev_priv->rps.min_freq);

5303 5304
	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;

5305 5306 5307 5308 5309 5310 5311 5312 5313 5314
	/* Preserve min/max settings in case of re-init */
	if (dev_priv->rps.max_freq_softlimit == 0)
		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;

	if (dev_priv->rps.min_freq_softlimit == 0)
		dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;

	mutex_unlock(&dev_priv->rps.hw_lock);
}

5315 5316
static void cherryview_init_gt_powersave(struct drm_device *dev)
{
5317
	struct drm_i915_private *dev_priv = dev->dev_private;
5318
	u32 val;
5319

5320
	cherryview_setup_pctx(dev);
5321 5322 5323

	mutex_lock(&dev_priv->rps.hw_lock);

V
Ville Syrjälä 已提交
5324
	mutex_lock(&dev_priv->sb_lock);
5325
	val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
V
Ville Syrjälä 已提交
5326
	mutex_unlock(&dev_priv->sb_lock);
5327

5328 5329 5330 5331
	switch ((val >> 2) & 0x7) {
	case 3:
		dev_priv->mem_freq = 2000;
		break;
5332
	default:
5333 5334 5335
		dev_priv->mem_freq = 1600;
		break;
	}
5336
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5337

5338 5339 5340
	dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5341
			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5342 5343 5344 5345
			 dev_priv->rps.max_freq);

	dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5346
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5347 5348
			 dev_priv->rps.efficient_freq);

5349 5350
	dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
	DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
5351
			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5352 5353
			 dev_priv->rps.rp1_freq);

5354 5355
	/* PUnit validated range is only [RPe, RP0] */
	dev_priv->rps.min_freq = dev_priv->rps.efficient_freq;
5356
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5357
			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5358 5359
			 dev_priv->rps.min_freq);

5360 5361 5362 5363 5364 5365
	WARN_ONCE((dev_priv->rps.max_freq |
		   dev_priv->rps.efficient_freq |
		   dev_priv->rps.rp1_freq |
		   dev_priv->rps.min_freq) & 1,
		  "Odd GPU freq values\n");

5366 5367
	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;

5368 5369 5370 5371 5372 5373 5374 5375
	/* Preserve min/max settings in case of re-init */
	if (dev_priv->rps.max_freq_softlimit == 0)
		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;

	if (dev_priv->rps.min_freq_softlimit == 0)
		dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;

	mutex_unlock(&dev_priv->rps.hw_lock);
5376 5377
}

5378 5379 5380 5381 5382
static void valleyview_cleanup_gt_powersave(struct drm_device *dev)
{
	valleyview_cleanup_pctx(dev);
}

5383 5384 5385 5386
static void cherryview_enable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_engine_cs *ring;
5387
	u32 gtfifodbg, val, rc6_mode = 0, pcbr;
5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402
	int i;

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

	gtfifodbg = I915_READ(GTFIFODBG);
	if (gtfifodbg) {
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

	cherryview_check_pctx(dev_priv);

	/* 1a & 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5403
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5404

5405 5406 5407
	/*  Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

5408 5409 5410 5411 5412 5413 5414 5415 5416
	/* 2a: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */

	for_each_ring(ring, dev_priv, i)
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
	I915_WRITE(GEN6_RC_SLEEP, 0);

5417 5418
	/* TO threshold set to 500 us ( 0x186 * 1.28 us) */
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431

	/* allows RC6 residency counter to work */
	I915_WRITE(VLV_COUNTER_CONTROL,
		   _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));

	/* For now we assume BIOS is allocating and populating the PCBR  */
	pcbr = I915_READ(VLV_PCBR);

	/* 3: Enable RC6 */
	if ((intel_enable_rc6(dev) & INTEL_RC6_ENABLE) &&
						(pcbr >> VLV_PCBR_ADDR_SHIFT))
5432
		rc6_mode = GEN7_RC_CTL_TO_MODE;
5433 5434 5435

	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);

5436
	/* 4 Program defaults and thresholds for RPS*/
5437
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
5438 5439 5440 5441 5442 5443 5444 5445 5446 5447
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	/* 5: Enable RPS */
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
5448
		   GEN6_RP_MEDIA_IS_GFX |
5449 5450 5451 5452
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

D
Deepak S 已提交
5453 5454 5455 5456 5457 5458
	/* Setting Fixed Bias */
	val = VLV_OVERRIDE_EN |
		  VLV_SOC_TDP_EN |
		  CHV_BIAS_CPU_50_SOC_50;
	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);

5459 5460
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);

5461 5462 5463
	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

5464
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
5465 5466 5467 5468
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

	dev_priv->rps.cur_freq = (val >> 8) & 0xff;
	DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
5469
			 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
5470 5471 5472
			 dev_priv->rps.cur_freq);

	DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
5473
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5474 5475 5476 5477
			 dev_priv->rps.efficient_freq);

	valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);

5478
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5479 5480
}

5481 5482 5483
static void valleyview_enable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
5484
	struct intel_engine_cs *ring;
5485
	u32 gtfifodbg, val, rc6_mode = 0;
5486 5487 5488 5489
	int i;

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

5490 5491
	valleyview_check_pctx(dev_priv);

5492
	if ((gtfifodbg = I915_READ(GTFIFODBG))) {
5493 5494
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
5495 5496 5497
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

5498
	/* If VLV, Forcewake all wells, else re-direct to regular path */
5499
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5500

5501 5502 5503
	/*  Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

5504
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_CONT);

	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

	for_each_ring(ring, dev_priv, i)
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);

5527
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
5528 5529

	/* allows RC6 residency counter to work */
5530
	I915_WRITE(VLV_COUNTER_CONTROL,
5531 5532
		   _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
				      VLV_RENDER_RC0_COUNT_EN |
5533 5534
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));
5535

5536
	if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
5537
		rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
B
Ben Widawsky 已提交
5538 5539 5540

	intel_print_rc6_info(dev, rc6_mode);

5541
	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
5542

D
Deepak S 已提交
5543 5544 5545 5546 5547 5548
	/* Setting Fixed Bias */
	val = VLV_OVERRIDE_EN |
		  VLV_SOC_TDP_EN |
		  VLV_BIAS_CPU_125_SOC_875;
	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);

5549
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5550

5551 5552 5553
	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

5554
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
5555 5556
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

5557
	dev_priv->rps.cur_freq = (val >> 8) & 0xff;
5558
	DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
5559
			 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
5560
			 dev_priv->rps.cur_freq);
5561

5562
	DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
5563
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5564
			 dev_priv->rps.efficient_freq);
5565

5566
	valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
5567

5568
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5569 5570
}

5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585
static unsigned long intel_pxfreq(u32 vidfreq)
{
	unsigned long freq;
	int div = (vidfreq & 0x3f0000) >> 16;
	int post = (vidfreq & 0x3000) >> 12;
	int pre = (vidfreq & 0x7);

	if (!pre)
		return 0;

	freq = ((div * 133333) / ((1<<post) * pre));

	return freq;
}

5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599
static const struct cparams {
	u16 i;
	u16 t;
	u16 m;
	u16 c;
} cparams[] = {
	{ 1, 1333, 301, 28664 },
	{ 1, 1066, 294, 24460 },
	{ 1, 800, 294, 25192 },
	{ 0, 1333, 276, 27605 },
	{ 0, 1066, 276, 27605 },
	{ 0, 800, 231, 23784 },
};

5600
static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
5601 5602 5603 5604 5605 5606
{
	u64 total_count, diff, ret;
	u32 count1, count2, count3, m = 0, c = 0;
	unsigned long now = jiffies_to_msecs(jiffies), diff1;
	int i;

5607 5608
	assert_spin_locked(&mchdev_lock);

5609
	diff1 = now - dev_priv->ips.last_time1;
5610 5611 5612 5613 5614 5615 5616

	/* Prevent division-by-zero if we are asking too fast.
	 * Also, we don't get interesting results if we are polling
	 * faster than once in 10ms, so just return the saved value
	 * in such cases.
	 */
	if (diff1 <= 10)
5617
		return dev_priv->ips.chipset_power;
5618 5619 5620 5621 5622 5623 5624 5625

	count1 = I915_READ(DMIEC);
	count2 = I915_READ(DDREC);
	count3 = I915_READ(CSIEC);

	total_count = count1 + count2 + count3;

	/* FIXME: handle per-counter overflow */
5626 5627
	if (total_count < dev_priv->ips.last_count1) {
		diff = ~0UL - dev_priv->ips.last_count1;
5628 5629
		diff += total_count;
	} else {
5630
		diff = total_count - dev_priv->ips.last_count1;
5631 5632 5633
	}

	for (i = 0; i < ARRAY_SIZE(cparams); i++) {
5634 5635
		if (cparams[i].i == dev_priv->ips.c_m &&
		    cparams[i].t == dev_priv->ips.r_t) {
5636 5637 5638 5639 5640 5641 5642 5643 5644 5645
			m = cparams[i].m;
			c = cparams[i].c;
			break;
		}
	}

	diff = div_u64(diff, diff1);
	ret = ((m * diff) + c);
	ret = div_u64(ret, 10);

5646 5647
	dev_priv->ips.last_count1 = total_count;
	dev_priv->ips.last_time1 = now;
5648

5649
	dev_priv->ips.chipset_power = ret;
5650 5651 5652 5653

	return ret;
}

5654 5655
unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
{
5656
	struct drm_device *dev = dev_priv->dev;
5657 5658
	unsigned long val;

5659
	if (INTEL_INFO(dev)->gen != 5)
5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_chipset_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685
unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
{
	unsigned long m, x, b;
	u32 tsfs;

	tsfs = I915_READ(TSFS);

	m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
	x = I915_READ8(TR1);

	b = tsfs & TSFS_INTR_MASK;

	return ((m * x) / 127) - b;
}

5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697
static int _pxvid_to_vd(u8 pxvid)
{
	if (pxvid == 0)
		return 0;

	if (pxvid >= 8 && pxvid < 31)
		pxvid = 31;

	return (pxvid + 2) * 125;
}

static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
5698
{
5699
	struct drm_device *dev = dev_priv->dev;
5700 5701 5702
	const int vd = _pxvid_to_vd(pxvid);
	const int vm = vd - 1125;

5703
	if (INTEL_INFO(dev)->is_mobile)
5704 5705 5706
		return vm > 0 ? vm : 0;

	return vd;
5707 5708
}

5709
static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
5710
{
5711
	u64 now, diff, diffms;
5712 5713
	u32 count;

5714
	assert_spin_locked(&mchdev_lock);
5715

5716 5717 5718
	now = ktime_get_raw_ns();
	diffms = now - dev_priv->ips.last_time2;
	do_div(diffms, NSEC_PER_MSEC);
5719 5720 5721 5722 5723 5724 5725

	/* Don't divide by 0 */
	if (!diffms)
		return;

	count = I915_READ(GFXEC);

5726 5727
	if (count < dev_priv->ips.last_count2) {
		diff = ~0UL - dev_priv->ips.last_count2;
5728 5729
		diff += count;
	} else {
5730
		diff = count - dev_priv->ips.last_count2;
5731 5732
	}

5733 5734
	dev_priv->ips.last_count2 = count;
	dev_priv->ips.last_time2 = now;
5735 5736 5737 5738

	/* More magic constants... */
	diff = diff * 1181;
	diff = div_u64(diff, diffms * 10);
5739
	dev_priv->ips.gfx_power = diff;
5740 5741
}

5742 5743
void i915_update_gfx_val(struct drm_i915_private *dev_priv)
{
5744 5745 5746
	struct drm_device *dev = dev_priv->dev;

	if (INTEL_INFO(dev)->gen != 5)
5747 5748
		return;

5749
	spin_lock_irq(&mchdev_lock);
5750 5751 5752

	__i915_update_gfx_val(dev_priv);

5753
	spin_unlock_irq(&mchdev_lock);
5754 5755
}

5756
static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
5757 5758 5759 5760
{
	unsigned long t, corr, state1, corr2, state2;
	u32 pxvid, ext_v;

5761 5762
	assert_spin_locked(&mchdev_lock);

5763
	pxvid = I915_READ(PXVFREQ(dev_priv->rps.cur_freq));
5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782
	pxvid = (pxvid >> 24) & 0x7f;
	ext_v = pvid_to_extvid(dev_priv, pxvid);

	state1 = ext_v;

	t = i915_mch_val(dev_priv);

	/* Revel in the empirically derived constants */

	/* Correction factor in 1/100000 units */
	if (t > 80)
		corr = ((t * 2349) + 135940);
	else if (t >= 50)
		corr = ((t * 964) + 29317);
	else /* < 50 */
		corr = ((t * 301) + 1004);

	corr = corr * ((150142 * state1) / 10000 - 78642);
	corr /= 100000;
5783
	corr2 = (corr * dev_priv->ips.corr);
5784 5785 5786 5787

	state2 = (corr2 * state1) / 10000;
	state2 /= 100; /* convert to mW */

5788
	__i915_update_gfx_val(dev_priv);
5789

5790
	return dev_priv->ips.gfx_power + state2;
5791 5792
}

5793 5794
unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
{
5795
	struct drm_device *dev = dev_priv->dev;
5796 5797
	unsigned long val;

5798
	if (INTEL_INFO(dev)->gen != 5)
5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_gfx_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820
/**
 * i915_read_mch_val - return value for IPS use
 *
 * Calculate and return a value for the IPS driver to use when deciding whether
 * we have thermal and power headroom to increase CPU or GPU power budget.
 */
unsigned long i915_read_mch_val(void)
{
	struct drm_i915_private *dev_priv;
	unsigned long chipset_val, graphics_val, ret = 0;

5821
	spin_lock_irq(&mchdev_lock);
5822 5823 5824 5825
	if (!i915_mch_dev)
		goto out_unlock;
	dev_priv = i915_mch_dev;

5826 5827
	chipset_val = __i915_chipset_val(dev_priv);
	graphics_val = __i915_gfx_val(dev_priv);
5828 5829 5830 5831

	ret = chipset_val + graphics_val;

out_unlock:
5832
	spin_unlock_irq(&mchdev_lock);
5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847

	return ret;
}
EXPORT_SYMBOL_GPL(i915_read_mch_val);

/**
 * i915_gpu_raise - raise GPU frequency limit
 *
 * Raise the limit; IPS indicates we have thermal headroom.
 */
bool i915_gpu_raise(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

5848
	spin_lock_irq(&mchdev_lock);
5849 5850 5851 5852 5853 5854
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

5855 5856
	if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
		dev_priv->ips.max_delay--;
5857 5858

out_unlock:
5859
	spin_unlock_irq(&mchdev_lock);
5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_raise);

/**
 * i915_gpu_lower - lower GPU frequency limit
 *
 * IPS indicates we're close to a thermal limit, so throttle back the GPU
 * frequency maximum.
 */
bool i915_gpu_lower(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

5876
	spin_lock_irq(&mchdev_lock);
5877 5878 5879 5880 5881 5882
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

5883 5884
	if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
		dev_priv->ips.max_delay++;
5885 5886

out_unlock:
5887
	spin_unlock_irq(&mchdev_lock);
5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_lower);

/**
 * i915_gpu_busy - indicate GPU business to IPS
 *
 * Tell the IPS driver whether or not the GPU is busy.
 */
bool i915_gpu_busy(void)
{
	struct drm_i915_private *dev_priv;
5901
	struct intel_engine_cs *ring;
5902
	bool ret = false;
5903
	int i;
5904

5905
	spin_lock_irq(&mchdev_lock);
5906 5907 5908 5909
	if (!i915_mch_dev)
		goto out_unlock;
	dev_priv = i915_mch_dev;

5910 5911
	for_each_ring(ring, dev_priv, i)
		ret |= !list_empty(&ring->request_list);
5912 5913

out_unlock:
5914
	spin_unlock_irq(&mchdev_lock);
5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_busy);

/**
 * i915_gpu_turbo_disable - disable graphics turbo
 *
 * Disable graphics turbo by resetting the max frequency and setting the
 * current frequency to the default.
 */
bool i915_gpu_turbo_disable(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

5931
	spin_lock_irq(&mchdev_lock);
5932 5933 5934 5935 5936 5937
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

5938
	dev_priv->ips.max_delay = dev_priv->ips.fstart;
5939

5940
	if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
5941 5942 5943
		ret = false;

out_unlock:
5944
	spin_unlock_irq(&mchdev_lock);
5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);

/**
 * Tells the intel_ips driver that the i915 driver is now loaded, if
 * IPS got loaded first.
 *
 * This awkward dance is so that neither module has to depend on the
 * other in order for IPS to do the appropriate communication of
 * GPU turbo limits to i915.
 */
static void
ips_ping_for_i915_load(void)
{
	void (*link)(void);

	link = symbol_get(ips_link_to_i915_driver);
	if (link) {
		link();
		symbol_put(ips_link_to_i915_driver);
	}
}

void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
{
5972 5973
	/* We only register the i915 ips part with intel-ips once everything is
	 * set up, to avoid intel-ips sneaking in and reading bogus values. */
5974
	spin_lock_irq(&mchdev_lock);
5975
	i915_mch_dev = dev_priv;
5976
	spin_unlock_irq(&mchdev_lock);
5977 5978 5979 5980 5981 5982

	ips_ping_for_i915_load();
}

void intel_gpu_ips_teardown(void)
{
5983
	spin_lock_irq(&mchdev_lock);
5984
	i915_mch_dev = NULL;
5985
	spin_unlock_irq(&mchdev_lock);
5986
}
5987

5988
static void intel_init_emon(struct drm_device *dev)
5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 lcfuse;
	u8 pxw[16];
	int i;

	/* Disable to program */
	I915_WRITE(ECR, 0);
	POSTING_READ(ECR);

	/* Program energy weights for various events */
	I915_WRITE(SDEW, 0x15040d00);
	I915_WRITE(CSIEW0, 0x007f0000);
	I915_WRITE(CSIEW1, 0x1e220004);
	I915_WRITE(CSIEW2, 0x04000004);

	for (i = 0; i < 5; i++)
6006
		I915_WRITE(PEW(i), 0);
6007
	for (i = 0; i < 3; i++)
6008
		I915_WRITE(DEW(i), 0);
6009 6010 6011

	/* Program P-state weights to account for frequency power adjustment */
	for (i = 0; i < 16; i++) {
6012
		u32 pxvidfreq = I915_READ(PXVFREQ(i));
6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032
		unsigned long freq = intel_pxfreq(pxvidfreq);
		unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
			PXVFREQ_PX_SHIFT;
		unsigned long val;

		val = vid * vid;
		val *= (freq / 1000);
		val *= 255;
		val /= (127*127*900);
		if (val > 0xff)
			DRM_ERROR("bad pxval: %ld\n", val);
		pxw[i] = val;
	}
	/* Render standby states get 0 weight */
	pxw[14] = 0;
	pxw[15] = 0;

	for (i = 0; i < 4; i++) {
		u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
			(pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
6033
		I915_WRITE(PXW(i), val);
6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048
	}

	/* Adjust magic regs to magic values (more experimental results) */
	I915_WRITE(OGW0, 0);
	I915_WRITE(OGW1, 0);
	I915_WRITE(EG0, 0x00007f00);
	I915_WRITE(EG1, 0x0000000e);
	I915_WRITE(EG2, 0x000e0000);
	I915_WRITE(EG3, 0x68000300);
	I915_WRITE(EG4, 0x42000000);
	I915_WRITE(EG5, 0x00140031);
	I915_WRITE(EG6, 0);
	I915_WRITE(EG7, 0);

	for (i = 0; i < 8; i++)
6049
		I915_WRITE(PXWL(i), 0);
6050 6051 6052 6053 6054 6055

	/* Enable PMON + select events */
	I915_WRITE(ECR, 0x80000019);

	lcfuse = I915_READ(LCFUSE02);

6056
	dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
6057 6058
}

6059 6060
void intel_init_gt_powersave(struct drm_device *dev)
{
I
Imre Deak 已提交
6061 6062
	i915.enable_rc6 = sanitize_rc6_option(dev, i915.enable_rc6);

6063 6064 6065
	if (IS_CHERRYVIEW(dev))
		cherryview_init_gt_powersave(dev);
	else if (IS_VALLEYVIEW(dev))
6066
		valleyview_init_gt_powersave(dev);
6067 6068 6069 6070
}

void intel_cleanup_gt_powersave(struct drm_device *dev)
{
6071 6072 6073
	if (IS_CHERRYVIEW(dev))
		return;
	else if (IS_VALLEYVIEW(dev))
6074
		valleyview_cleanup_gt_powersave(dev);
6075 6076
}

6077 6078 6079 6080 6081 6082
static void gen6_suspend_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	flush_delayed_work(&dev_priv->rps.delayed_resume_work);

6083
	gen6_disable_rps_interrupts(dev);
6084 6085
}

6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097
/**
 * intel_suspend_gt_powersave - suspend PM work and helper threads
 * @dev: drm device
 *
 * We don't want to disable RC6 or other features here, we just want
 * to make sure any work we've queued has finished and won't bother
 * us while we're suspended.
 */
void intel_suspend_gt_powersave(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

I
Imre Deak 已提交
6098 6099 6100
	if (INTEL_INFO(dev)->gen < 6)
		return;

6101
	gen6_suspend_rps(dev);
6102 6103 6104

	/* Force GPU to min freq during suspend */
	gen6_rps_idle(dev_priv);
6105 6106
}

6107 6108
void intel_disable_gt_powersave(struct drm_device *dev)
{
6109 6110
	struct drm_i915_private *dev_priv = dev->dev_private;

6111
	if (IS_IRONLAKE_M(dev)) {
6112
		ironlake_disable_drps(dev);
6113
	} else if (INTEL_INFO(dev)->gen >= 6) {
6114
		intel_suspend_gt_powersave(dev);
6115

6116
		mutex_lock(&dev_priv->rps.hw_lock);
Z
Zhe Wang 已提交
6117 6118 6119
		if (INTEL_INFO(dev)->gen >= 9)
			gen9_disable_rps(dev);
		else if (IS_CHERRYVIEW(dev))
6120 6121
			cherryview_disable_rps(dev);
		else if (IS_VALLEYVIEW(dev))
6122 6123 6124
			valleyview_disable_rps(dev);
		else
			gen6_disable_rps(dev);
6125

6126
		dev_priv->rps.enabled = false;
6127
		mutex_unlock(&dev_priv->rps.hw_lock);
6128
	}
6129 6130
}

6131 6132 6133 6134 6135 6136 6137
static void intel_gen6_powersave_work(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
		container_of(work, struct drm_i915_private,
			     rps.delayed_resume_work.work);
	struct drm_device *dev = dev_priv->dev;

6138
	mutex_lock(&dev_priv->rps.hw_lock);
6139

6140
	gen6_reset_rps_interrupts(dev);
I
Imre Deak 已提交
6141

6142 6143 6144
	if (IS_CHERRYVIEW(dev)) {
		cherryview_enable_rps(dev);
	} else if (IS_VALLEYVIEW(dev)) {
6145
		valleyview_enable_rps(dev);
Z
Zhe Wang 已提交
6146
	} else if (INTEL_INFO(dev)->gen >= 9) {
J
Jesse Barnes 已提交
6147
		gen9_enable_rc6(dev);
Z
Zhe Wang 已提交
6148
		gen9_enable_rps(dev);
6149 6150
		if (IS_SKYLAKE(dev))
			__gen6_update_ring_freq(dev);
6151 6152
	} else if (IS_BROADWELL(dev)) {
		gen8_enable_rps(dev);
6153
		__gen6_update_ring_freq(dev);
6154 6155
	} else {
		gen6_enable_rps(dev);
6156
		__gen6_update_ring_freq(dev);
6157
	}
6158 6159 6160 6161 6162 6163 6164

	WARN_ON(dev_priv->rps.max_freq < dev_priv->rps.min_freq);
	WARN_ON(dev_priv->rps.idle_freq > dev_priv->rps.max_freq);

	WARN_ON(dev_priv->rps.efficient_freq < dev_priv->rps.min_freq);
	WARN_ON(dev_priv->rps.efficient_freq > dev_priv->rps.max_freq);

6165
	dev_priv->rps.enabled = true;
I
Imre Deak 已提交
6166

6167
	gen6_enable_rps_interrupts(dev);
I
Imre Deak 已提交
6168

6169
	mutex_unlock(&dev_priv->rps.hw_lock);
6170 6171

	intel_runtime_pm_put(dev_priv);
6172 6173
}

6174 6175
void intel_enable_gt_powersave(struct drm_device *dev)
{
6176 6177
	struct drm_i915_private *dev_priv = dev->dev_private;

6178 6179 6180 6181
	/* Powersaving is controlled by the host when inside a VM */
	if (intel_vgpu_active(dev))
		return;

6182
	if (IS_IRONLAKE_M(dev)) {
6183
		mutex_lock(&dev->struct_mutex);
6184 6185
		ironlake_enable_drps(dev);
		intel_init_emon(dev);
6186
		mutex_unlock(&dev->struct_mutex);
6187
	} else if (INTEL_INFO(dev)->gen >= 6) {
6188 6189 6190 6191
		/*
		 * PCU communication is slow and this doesn't need to be
		 * done at any specific time, so do this out of our fast path
		 * to make resume and init faster.
6192 6193 6194 6195 6196 6197 6198
		 *
		 * We depend on the HW RC6 power context save/restore
		 * mechanism when entering D3 through runtime PM suspend. So
		 * disable RPM until RPS/RC6 is properly setup. We can only
		 * get here via the driver load/system resume/runtime resume
		 * paths, so the _noresume version is enough (and in case of
		 * runtime resume it's necessary).
6199
		 */
6200 6201 6202
		if (schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
					   round_jiffies_up_relative(HZ)))
			intel_runtime_pm_get_noresume(dev_priv);
6203 6204 6205
	}
}

6206 6207 6208 6209
void intel_reset_gt_powersave(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

6210 6211 6212 6213
	if (INTEL_INFO(dev)->gen < 6)
		return;

	gen6_suspend_rps(dev);
6214 6215 6216
	dev_priv->rps.enabled = false;
}

6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228
static void ibx_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
}

6229 6230 6231
static void g4x_disable_trickle_feed(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
6232
	enum pipe pipe;
6233

6234
	for_each_pipe(dev_priv, pipe) {
6235 6236 6237
		I915_WRITE(DSPCNTR(pipe),
			   I915_READ(DSPCNTR(pipe)) |
			   DISPPLANE_TRICKLE_FEED_DISABLE);
6238 6239 6240

		I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
		POSTING_READ(DSPSURF(pipe));
6241 6242 6243
	}
}

6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257
static void ilk_init_lp_watermarks(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);

	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
}

6258
static void ironlake_init_clock_gating(struct drm_device *dev)
6259 6260
{
	struct drm_i915_private *dev_priv = dev->dev_private;
6261
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6262

6263 6264 6265 6266
	/*
	 * Required for FBC
	 * WaFbcDisableDpfcClockGating:ilk
	 */
6267 6268 6269
	dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286

	I915_WRITE(PCH_3DCGDIS0,
		   MARIUNIT_CLOCK_GATE_DISABLE |
		   SVSMUNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(PCH_3DCGDIS1,
		   VFMUNIT_CLOCK_GATE_DISABLE);

	/*
	 * According to the spec the following bits should be set in
	 * order to enable memory self-refresh
	 * The bit 22/21 of 0x42004
	 * The bit 5 of 0x42020
	 * The bit 15 of 0x45000
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   (I915_READ(ILK_DISPLAY_CHICKEN2) |
		    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
6287
	dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
6288 6289 6290
	I915_WRITE(DISP_ARB_CTL,
		   (I915_READ(DISP_ARB_CTL) |
		    DISP_FBC_WM_DIS));
6291 6292

	ilk_init_lp_watermarks(dev);
6293 6294 6295 6296 6297 6298 6299 6300 6301

	/*
	 * Based on the document from hardware guys the following bits
	 * should be set unconditionally in order to enable FBC.
	 * The bit 22 of 0x42000
	 * The bit 22 of 0x42004
	 * The bit 7,8,9 of 0x42020.
	 */
	if (IS_IRONLAKE_M(dev)) {
6302
		/* WaFbcAsynchFlipDisableFbcQueue:ilk */
6303 6304 6305 6306 6307 6308 6309 6310
		I915_WRITE(ILK_DISPLAY_CHICKEN1,
			   I915_READ(ILK_DISPLAY_CHICKEN1) |
			   ILK_FBCQ_DIS);
		I915_WRITE(ILK_DISPLAY_CHICKEN2,
			   I915_READ(ILK_DISPLAY_CHICKEN2) |
			   ILK_DPARB_GATE);
	}

6311 6312
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);

6313 6314 6315 6316 6317 6318
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);
	I915_WRITE(_3D_CHICKEN2,
		   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
		   _3D_CHICKEN2_WM_READ_PIPELINED);
6319

6320
	/* WaDisableRenderCachePipelinedFlush:ilk */
6321 6322
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6323

6324 6325 6326
	/* WaDisable_RenderCache_OperationalFlush:ilk */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6327
	g4x_disable_trickle_feed(dev);
6328

6329 6330 6331 6332 6333 6334 6335
	ibx_init_clock_gating(dev);
}

static void cpt_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int pipe;
6336
	uint32_t val;
6337 6338 6339 6340 6341 6342

	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
6343 6344 6345
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
		   PCH_DPLUNIT_CLOCK_GATE_DISABLE |
		   PCH_CPUNIT_CLOCK_GATE_DISABLE);
6346 6347
	I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
		   DPLS_EDP_PPS_FIX_DIS);
6348 6349 6350
	/* The below fixes the weird display corruption, a few pixels shifted
	 * downward, on (only) LVDS of some HP laptops with IVY.
	 */
6351
	for_each_pipe(dev_priv, pipe) {
6352 6353 6354
		val = I915_READ(TRANS_CHICKEN2(pipe));
		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
		val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6355
		if (dev_priv->vbt.fdi_rx_polarity_inverted)
6356
			val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6357 6358 6359
		val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
6360 6361
		I915_WRITE(TRANS_CHICKEN2(pipe), val);
	}
6362
	/* WADP0ClockGatingDisable */
6363
	for_each_pipe(dev_priv, pipe) {
6364 6365 6366
		I915_WRITE(TRANS_CHICKEN1(pipe),
			   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
	}
6367 6368
}

6369 6370 6371 6372 6373 6374
static void gen6_check_mch_setup(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t tmp;

	tmp = I915_READ(MCH_SSKPD);
6375 6376 6377
	if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
		DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
			      tmp);
6378 6379
}

6380
static void gen6_init_clock_gating(struct drm_device *dev)
6381 6382
{
	struct drm_i915_private *dev_priv = dev->dev_private;
6383
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6384

6385
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6386 6387 6388 6389 6390

	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);

6391
	/* WaDisableHiZPlanesWhenMSAAEnabled:snb */
6392 6393 6394
	I915_WRITE(_3D_CHICKEN,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));

6395 6396 6397
	/* WaDisable_RenderCache_OperationalFlush:snb */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6398 6399 6400
	/*
	 * BSpec recoomends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
6401 6402 6403 6404
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6405 6406
	 */
	I915_WRITE(GEN6_GT_MODE,
6407
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6408

6409
	ilk_init_lp_watermarks(dev);
6410 6411

	I915_WRITE(CACHE_MODE_0,
6412
		   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427

	I915_WRITE(GEN6_UCGCTL1,
		   I915_READ(GEN6_UCGCTL1) |
		   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);

	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
	 * gating disable must be set.  Failure to set it results in
	 * flickering pixels due to Z write ordering failures after
	 * some amount of runtime in the Mesa "fire" demo, and Unigine
	 * Sanctuary and Tropics, and apparently anything else with
	 * alpha test or pixel discard.
	 *
	 * According to the spec, bit 11 (RCCUNIT) must also be set,
	 * but we didn't debug actual testcases to find it out.
6428
	 *
6429 6430
	 * WaDisableRCCUnitClockGating:snb
	 * WaDisableRCPBUnitClockGating:snb
6431 6432 6433 6434 6435
	 */
	I915_WRITE(GEN6_UCGCTL2,
		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);

6436
	/* WaStripsFansDisableFastClipPerformanceFix:snb */
6437 6438
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
6439

6440 6441 6442 6443 6444 6445 6446 6447
	/*
	 * Bspec says:
	 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
	 * 3DSTATE_SF number of SF output attributes is more than 16."
	 */
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));

6448 6449 6450 6451 6452 6453 6454 6455
	/*
	 * According to the spec the following bits should be
	 * set in order to enable memory self-refresh and fbc:
	 * The bit21 and bit22 of 0x42000
	 * The bit21 and bit22 of 0x42004
	 * The bit5 and bit7 of 0x42020
	 * The bit14 of 0x70180
	 * The bit14 of 0x71180
6456 6457
	 *
	 * WaFbcAsynchFlipDisableFbcQueue:snb
6458 6459 6460 6461 6462 6463 6464
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN1,
		   I915_READ(ILK_DISPLAY_CHICKEN1) |
		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
6465 6466 6467 6468
	I915_WRITE(ILK_DSPCLK_GATE_D,
		   I915_READ(ILK_DSPCLK_GATE_D) |
		   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
6469

6470
	g4x_disable_trickle_feed(dev);
B
Ben Widawsky 已提交
6471

6472
	cpt_init_clock_gating(dev);
6473 6474

	gen6_check_mch_setup(dev);
6475 6476 6477 6478 6479 6480
}

static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
{
	uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);

6481
	/*
6482
	 * WaVSThreadDispatchOverride:ivb,vlv
6483 6484 6485 6486
	 *
	 * This actually overrides the dispatch
	 * mode for all thread types.
	 */
6487 6488 6489 6490 6491 6492 6493 6494
	reg &= ~GEN7_FF_SCHED_MASK;
	reg |= GEN7_FF_TS_SCHED_HW;
	reg |= GEN7_FF_VS_SCHED_HW;
	reg |= GEN7_FF_DS_SCHED_HW;

	I915_WRITE(GEN7_FF_THREAD_MODE, reg);
}

6495 6496 6497 6498 6499 6500 6501 6502
static void lpt_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	/*
	 * TODO: this bit should only be enabled when really needed, then
	 * disabled when not needed anymore in order to save power.
	 */
6503
	if (HAS_PCH_LPT_LP(dev))
6504 6505 6506
		I915_WRITE(SOUTH_DSPCLK_GATE_D,
			   I915_READ(SOUTH_DSPCLK_GATE_D) |
			   PCH_LP_PARTITION_LEVEL_DISABLE);
6507 6508

	/* WADPOClockGatingDisable:hsw */
6509 6510
	I915_WRITE(TRANS_CHICKEN1(PIPE_A),
		   I915_READ(TRANS_CHICKEN1(PIPE_A)) |
6511
		   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
6512 6513
}

6514 6515 6516 6517
static void lpt_suspend_hw(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

6518
	if (HAS_PCH_LPT_LP(dev)) {
6519 6520 6521 6522 6523 6524 6525
		uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);

		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
	}
}

6526
static void broadwell_init_clock_gating(struct drm_device *dev)
B
Ben Widawsky 已提交
6527 6528
{
	struct drm_i915_private *dev_priv = dev->dev_private;
6529
	enum pipe pipe;
6530
	uint32_t misccpctl;
B
Ben Widawsky 已提交
6531

6532
	ilk_init_lp_watermarks(dev);
6533

6534
	/* WaSwitchSolVfFArbitrationPriority:bdw */
6535
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
6536

6537
	/* WaPsrDPAMaskVBlankInSRD:bdw */
6538 6539 6540
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);

6541
	/* WaPsrDPRSUnmaskVBlankInSRD:bdw */
6542
	for_each_pipe(dev_priv, pipe) {
6543
		I915_WRITE(CHICKEN_PIPESL_1(pipe),
6544
			   I915_READ(CHICKEN_PIPESL_1(pipe)) |
6545
			   BDW_DPRS_MASK_VBLANK_SRD);
6546
	}
6547

6548 6549 6550 6551 6552
	/* WaVSRefCountFullforceMissDisable:bdw */
	/* WaDSRefCountFullforceMissDisable:bdw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
6553

6554 6555
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
6556 6557 6558 6559

	/* WaDisableSDEUnitClockGating:bdw */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6560

6561 6562 6563 6564 6565 6566 6567 6568 6569
	/*
	 * WaProgramL3SqcReg1Default:bdw
	 * WaTempDisableDOPClkGating:bdw
	 */
	misccpctl = I915_READ(GEN7_MISCCPCTL);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
	I915_WRITE(GEN8_L3SQCREG1, BDW_WA_L3SQCREG1_DEFAULT);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl);

6570 6571 6572 6573 6574 6575 6576
	/*
	 * WaGttCachingOffByDefault:bdw
	 * GTT cache may not work with big pages, so if those
	 * are ever enabled GTT cache may need to be disabled.
	 */
	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);

6577
	lpt_init_clock_gating(dev);
B
Ben Widawsky 已提交
6578 6579
}

6580 6581 6582 6583
static void haswell_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

6584
	ilk_init_lp_watermarks(dev);
6585

6586 6587 6588 6589 6590
	/* L3 caching of data atomics doesn't work -- disable it. */
	I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
	I915_WRITE(HSW_ROW_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));

6591
	/* This is required by WaCatErrorRejectionIssue:hsw */
6592 6593 6594 6595
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

6596 6597 6598
	/* WaVSRefCountFullforceMissDisable:hsw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
6599

6600 6601 6602
	/* WaDisable_RenderCache_OperationalFlush:hsw */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6603 6604 6605 6606
	/* enable HiZ Raw Stall Optimization */
	I915_WRITE(CACHE_MODE_0_GEN7,
		   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));

6607
	/* WaDisable4x2SubspanOptimization:hsw */
6608 6609
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6610

6611 6612 6613
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
6614 6615 6616 6617
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6618 6619
	 */
	I915_WRITE(GEN7_GT_MODE,
6620
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6621

6622 6623 6624 6625
	/* WaSampleCChickenBitEnable:hsw */
	I915_WRITE(HALF_SLICE_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));

6626
	/* WaSwitchSolVfFArbitrationPriority:hsw */
6627 6628
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);

6629 6630 6631
	/* WaRsPkgCStateDisplayPMReq:hsw */
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
6632

6633
	lpt_init_clock_gating(dev);
6634 6635
}

6636
static void ivybridge_init_clock_gating(struct drm_device *dev)
6637 6638
{
	struct drm_i915_private *dev_priv = dev->dev_private;
6639
	uint32_t snpcr;
6640

6641
	ilk_init_lp_watermarks(dev);
6642

6643
	I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
6644

6645
	/* WaDisableEarlyCull:ivb */
6646 6647 6648
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

6649
	/* WaDisableBackToBackFlipFix:ivb */
6650 6651 6652 6653
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

6654
	/* WaDisablePSDDualDispatchEnable:ivb */
6655 6656 6657 6658
	if (IS_IVB_GT1(dev))
		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));

6659 6660 6661
	/* WaDisable_RenderCache_OperationalFlush:ivb */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6662
	/* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
6663 6664 6665
	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);

6666
	/* WaApplyL3ControlAndL3ChickenMode:ivb */
6667 6668 6669
	I915_WRITE(GEN7_L3CNTLREG1,
			GEN7_WA_FOR_GEN7_L3_CONTROL);
	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
6670 6671 6672 6673
		   GEN7_WA_L3_CHICKEN_MODE);
	if (IS_IVB_GT1(dev))
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6674 6675 6676 6677
	else {
		/* must write both registers */
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6678 6679
		I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6680
	}
6681

6682
	/* WaForceL3Serialization:ivb */
6683 6684 6685
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

6686
	/*
6687
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
6688
	 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
6689 6690
	 */
	I915_WRITE(GEN6_UCGCTL2,
6691
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
6692

6693
	/* This is required by WaCatErrorRejectionIssue:ivb */
6694 6695 6696 6697
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

6698
	g4x_disable_trickle_feed(dev);
6699 6700

	gen7_setup_fixed_func_scheduler(dev_priv);
6701

6702 6703 6704 6705 6706
	if (0) { /* causes HiZ corruption on ivb:gt1 */
		/* enable HiZ Raw Stall Optimization */
		I915_WRITE(CACHE_MODE_0_GEN7,
			   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
	}
6707

6708
	/* WaDisable4x2SubspanOptimization:ivb */
6709 6710
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6711

6712 6713 6714
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
6715 6716 6717 6718
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6719 6720
	 */
	I915_WRITE(GEN7_GT_MODE,
6721
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6722

6723 6724 6725 6726
	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
	snpcr &= ~GEN6_MBC_SNPCR_MASK;
	snpcr |= GEN6_MBC_SNPCR_MED;
	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
6727

6728 6729
	if (!HAS_PCH_NOP(dev))
		cpt_init_clock_gating(dev);
6730 6731

	gen6_check_mch_setup(dev);
6732 6733
}

6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744
static void vlv_init_display_clock_gating(struct drm_i915_private *dev_priv)
{
	I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);

	/*
	 * Disable trickle feed and enable pnd deadline calculation
	 */
	I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
	I915_WRITE(CBR1_VLV, 0);
}

6745
static void valleyview_init_clock_gating(struct drm_device *dev)
6746 6747 6748
{
	struct drm_i915_private *dev_priv = dev->dev_private;

6749
	vlv_init_display_clock_gating(dev_priv);
6750

6751
	/* WaDisableEarlyCull:vlv */
6752 6753 6754
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

6755
	/* WaDisableBackToBackFlipFix:vlv */
6756 6757 6758 6759
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

6760
	/* WaPsdDispatchEnable:vlv */
6761
	/* WaDisablePSDDualDispatchEnable:vlv */
6762
	I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
6763 6764
		   _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
				      GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
6765

6766 6767 6768
	/* WaDisable_RenderCache_OperationalFlush:vlv */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6769
	/* WaForceL3Serialization:vlv */
6770 6771 6772
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

6773
	/* WaDisableDopClockGating:vlv */
6774 6775 6776
	I915_WRITE(GEN7_ROW_CHICKEN2,
		   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));

6777
	/* This is required by WaCatErrorRejectionIssue:vlv */
6778 6779 6780 6781
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
		   I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

6782 6783
	gen7_setup_fixed_func_scheduler(dev_priv);

6784
	/*
6785
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
6786
	 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
6787 6788
	 */
	I915_WRITE(GEN6_UCGCTL2,
6789
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
6790

6791 6792 6793 6794 6795
	/* WaDisableL3Bank2xClockGate:vlv
	 * Disabling L3 clock gating- MMIO 940c[25] = 1
	 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
	I915_WRITE(GEN7_UCGCTL4,
		   I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
6796

6797 6798 6799 6800
	/*
	 * BSpec says this must be set, even though
	 * WaDisable4x2SubspanOptimization isn't listed for VLV.
	 */
6801 6802
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6803

6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
	 */
	I915_WRITE(GEN7_GT_MODE,
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));

6815 6816 6817 6818 6819 6820
	/*
	 * WaIncreaseL3CreditsForVLVB0:vlv
	 * This is the hardware default actually.
	 */
	I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);

6821
	/*
6822
	 * WaDisableVLVClockGating_VBIIssue:vlv
6823 6824 6825
	 * Disable clock gating on th GCFG unit to prevent a delay
	 * in the reporting of vblank events.
	 */
6826
	I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
6827 6828
}

6829 6830 6831 6832
static void cherryview_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

6833
	vlv_init_display_clock_gating(dev_priv);
6834

6835 6836 6837 6838 6839
	/* WaVSRefCountFullforceMissDisable:chv */
	/* WaDSRefCountFullforceMissDisable:chv */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
6840 6841 6842 6843

	/* WaDisableSemaphoreAndSyncFlipWait:chv */
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
6844 6845 6846 6847

	/* WaDisableCSUnitClockGating:chv */
	I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
6848 6849 6850 6851

	/* WaDisableSDEUnitClockGating:chv */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6852 6853 6854 6855 6856 6857

	/*
	 * GTT cache may not work with big pages, so if those
	 * are ever enabled GTT cache may need to be disabled.
	 */
	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
6858 6859
}

6860
static void g4x_init_clock_gating(struct drm_device *dev)
6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dspclk_gate;

	I915_WRITE(RENCLK_GATE_D1, 0);
	I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
		   GS_UNIT_CLOCK_GATE_DISABLE |
		   CL_UNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(RAMCLK_GATE_D, 0);
	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
		OVRUNIT_CLOCK_GATE_DISABLE |
		OVCUNIT_CLOCK_GATE_DISABLE;
	if (IS_GM45(dev))
		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
	I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
6876 6877 6878 6879

	/* WaDisableRenderCachePipelinedFlush */
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6880

6881 6882 6883
	/* WaDisable_RenderCache_OperationalFlush:g4x */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6884
	g4x_disable_trickle_feed(dev);
6885 6886
}

6887
static void crestline_init_clock_gating(struct drm_device *dev)
6888 6889 6890 6891 6892 6893 6894 6895
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
	I915_WRITE(DSPCLK_GATE_D, 0);
	I915_WRITE(RAMCLK_GATE_D, 0);
	I915_WRITE16(DEUC, 0);
6896 6897
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
6898 6899 6900

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6901 6902
}

6903
static void broadwater_init_clock_gating(struct drm_device *dev)
6904 6905 6906 6907 6908 6909 6910 6911 6912
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
		   I965_RCC_CLOCK_GATE_DISABLE |
		   I965_RCPB_CLOCK_GATE_DISABLE |
		   I965_ISC_CLOCK_GATE_DISABLE |
		   I965_FBC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
6913 6914
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
6915 6916 6917

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6918 6919
}

6920
static void gen3_init_clock_gating(struct drm_device *dev)
6921 6922 6923 6924 6925 6926 6927
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 dstate = I915_READ(D_STATE);

	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
		DSTATE_DOT_CLOCK_GATING;
	I915_WRITE(D_STATE, dstate);
6928 6929 6930

	if (IS_PINEVIEW(dev))
		I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
6931 6932 6933

	/* IIR "flip pending" means done if this bit is set */
	I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
6934 6935

	/* interrupts should cause a wake up from C3 */
6936
	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
6937 6938 6939

	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
	I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
6940 6941 6942

	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
6943 6944
}

6945
static void i85x_init_clock_gating(struct drm_device *dev)
6946 6947 6948 6949
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
6950 6951 6952 6953

	/* interrupts should cause a wake up from C3 */
	I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
		   _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
6954 6955 6956

	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
6957 6958
}

6959
static void i830_init_clock_gating(struct drm_device *dev)
6960 6961 6962 6963
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
6964 6965 6966 6967

	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
6968 6969 6970 6971 6972 6973
}

void intel_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

6974 6975
	if (dev_priv->display.init_clock_gating)
		dev_priv->display.init_clock_gating(dev);
6976 6977
}

6978 6979 6980 6981 6982 6983
void intel_suspend_hw(struct drm_device *dev)
{
	if (HAS_PCH_LPT(dev))
		lpt_suspend_hw(dev);
}

6984 6985 6986 6987 6988
/* Set up chip specific power management-related functions */
void intel_init_pm(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

6989
	intel_fbc_init(dev_priv);
6990

6991 6992 6993 6994 6995 6996
	/* For cxsr */
	if (IS_PINEVIEW(dev))
		i915_pineview_get_mem_freq(dev);
	else if (IS_GEN5(dev))
		i915_ironlake_get_mem_freq(dev);

6997
	/* For FIFO watermark updates */
6998
	if (INTEL_INFO(dev)->gen >= 9) {
6999 7000
		skl_setup_wm_latency(dev);

7001 7002 7003 7004 7005 7006
		if (IS_BROXTON(dev))
			dev_priv->display.init_clock_gating =
				bxt_init_clock_gating;
		else if (IS_SKYLAKE(dev))
			dev_priv->display.init_clock_gating =
				skl_init_clock_gating;
7007
		dev_priv->display.update_wm = skl_update_wm;
7008
	} else if (HAS_PCH_SPLIT(dev)) {
7009
		ilk_setup_wm_latency(dev);
7010

7011 7012 7013 7014 7015
		if ((IS_GEN5(dev) && dev_priv->wm.pri_latency[1] &&
		     dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
		    (!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
		     dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
			dev_priv->display.update_wm = ilk_update_wm;
7016
			dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
7017 7018 7019 7020 7021 7022
		} else {
			DRM_DEBUG_KMS("Failed to read display plane latency. "
				      "Disable CxSR\n");
		}

		if (IS_GEN5(dev))
7023
			dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
7024
		else if (IS_GEN6(dev))
7025
			dev_priv->display.init_clock_gating = gen6_init_clock_gating;
7026
		else if (IS_IVYBRIDGE(dev))
7027
			dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
7028
		else if (IS_HASWELL(dev))
7029
			dev_priv->display.init_clock_gating = haswell_init_clock_gating;
7030
		else if (INTEL_INFO(dev)->gen == 8)
7031
			dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
7032
	} else if (IS_CHERRYVIEW(dev)) {
7033 7034 7035
		vlv_setup_wm_latency(dev);

		dev_priv->display.update_wm = vlv_update_wm;
7036 7037
		dev_priv->display.init_clock_gating =
			cherryview_init_clock_gating;
7038
	} else if (IS_VALLEYVIEW(dev)) {
7039 7040 7041
		vlv_setup_wm_latency(dev);

		dev_priv->display.update_wm = vlv_update_wm;
7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054
		dev_priv->display.init_clock_gating =
			valleyview_init_clock_gating;
	} else if (IS_PINEVIEW(dev)) {
		if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
					    dev_priv->is_ddr3,
					    dev_priv->fsb_freq,
					    dev_priv->mem_freq)) {
			DRM_INFO("failed to find known CxSR latency "
				 "(found ddr%s fsb freq %d, mem freq %d), "
				 "disabling CxSR\n",
				 (dev_priv->is_ddr3 == 1) ? "3" : "2",
				 dev_priv->fsb_freq, dev_priv->mem_freq);
			/* Disable CxSR and never update its watermark again */
7055
			intel_set_memory_cxsr(dev_priv, false);
7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072
			dev_priv->display.update_wm = NULL;
		} else
			dev_priv->display.update_wm = pineview_update_wm;
		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
	} else if (IS_G4X(dev)) {
		dev_priv->display.update_wm = g4x_update_wm;
		dev_priv->display.init_clock_gating = g4x_init_clock_gating;
	} else if (IS_GEN4(dev)) {
		dev_priv->display.update_wm = i965_update_wm;
		if (IS_CRESTLINE(dev))
			dev_priv->display.init_clock_gating = crestline_init_clock_gating;
		else if (IS_BROADWATER(dev))
			dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
	} else if (IS_GEN3(dev)) {
		dev_priv->display.update_wm = i9xx_update_wm;
		dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
7073 7074 7075
	} else if (IS_GEN2(dev)) {
		if (INTEL_INFO(dev)->num_pipes == 1) {
			dev_priv->display.update_wm = i845_update_wm;
7076
			dev_priv->display.get_fifo_size = i845_get_fifo_size;
7077 7078
		} else {
			dev_priv->display.update_wm = i9xx_update_wm;
7079
			dev_priv->display.get_fifo_size = i830_get_fifo_size;
7080 7081 7082 7083 7084 7085 7086 7087
		}

		if (IS_I85X(dev) || IS_I865G(dev))
			dev_priv->display.init_clock_gating = i85x_init_clock_gating;
		else
			dev_priv->display.init_clock_gating = i830_init_clock_gating;
	} else {
		DRM_ERROR("unexpected fall-through in intel_init_pm\n");
7088 7089 7090
	}
}

7091
int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
B
Ben Widawsky 已提交
7092
{
7093
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
B
Ben Widawsky 已提交
7094 7095 7096 7097 7098 7099 7100

	if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
		DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
		return -EAGAIN;
	}

	I915_WRITE(GEN6_PCODE_DATA, *val);
7101
	I915_WRITE(GEN6_PCODE_DATA1, 0);
B
Ben Widawsky 已提交
7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115
	I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);

	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
		     500)) {
		DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
		return -ETIMEDOUT;
	}

	*val = I915_READ(GEN6_PCODE_DATA);
	I915_WRITE(GEN6_PCODE_DATA, 0);

	return 0;
}

7116
int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u32 mbox, u32 val)
B
Ben Widawsky 已提交
7117
{
7118
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
B
Ben Widawsky 已提交
7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137

	if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
		DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
		return -EAGAIN;
	}

	I915_WRITE(GEN6_PCODE_DATA, val);
	I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);

	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
		     500)) {
		DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
		return -ETIMEDOUT;
	}

	I915_WRITE(GEN6_PCODE_DATA, 0);

	return 0;
}
7138

7139
static int vlv_gpu_freq_div(unsigned int czclk_freq)
7140
{
7141 7142 7143 7144 7145 7146 7147 7148
	switch (czclk_freq) {
	case 200:
		return 10;
	case 267:
		return 12;
	case 320:
	case 333:
		return 16;
7149 7150
	case 400:
		return 20;
7151 7152 7153
	default:
		return -1;
	}
7154
}
7155

7156 7157
static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
{
7158
	int div, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
7159 7160 7161 7162 7163 7164

	div = vlv_gpu_freq_div(czclk_freq);
	if (div < 0)
		return div;

	return DIV_ROUND_CLOSEST(czclk_freq * (val + 6 - 0xbd), div);
7165 7166
}

7167
static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
7168
{
7169
	int mul, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
7170

7171 7172 7173
	mul = vlv_gpu_freq_div(czclk_freq);
	if (mul < 0)
		return mul;
7174

7175
	return DIV_ROUND_CLOSEST(mul * val, czclk_freq) + 0xbd - 6;
7176 7177
}

7178
static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
7179
{
7180
	int div, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
7181

7182 7183 7184
	div = vlv_gpu_freq_div(czclk_freq) / 2;
	if (div < 0)
		return div;
7185

7186
	return DIV_ROUND_CLOSEST(czclk_freq * val, 2 * div) / 2;
7187 7188
}

7189
static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
7190
{
7191
	int mul, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
7192

7193 7194 7195
	mul = vlv_gpu_freq_div(czclk_freq) / 2;
	if (mul < 0)
		return mul;
7196

7197
	/* CHV needs even values */
7198
	return DIV_ROUND_CLOSEST(val * 2 * mul, czclk_freq) * 2;
7199 7200
}

7201
int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
7202
{
7203 7204 7205
	if (IS_GEN9(dev_priv->dev))
		return (val * GT_FREQUENCY_MULTIPLIER) / GEN9_FREQ_SCALER;
	else if (IS_CHERRYVIEW(dev_priv->dev))
7206
		return chv_gpu_freq(dev_priv, val);
7207
	else if (IS_VALLEYVIEW(dev_priv->dev))
7208 7209 7210
		return byt_gpu_freq(dev_priv, val);
	else
		return val * GT_FREQUENCY_MULTIPLIER;
7211 7212
}

7213 7214
int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
{
7215 7216 7217
	if (IS_GEN9(dev_priv->dev))
		return (val * GEN9_FREQ_SCALER) / GT_FREQUENCY_MULTIPLIER;
	else if (IS_CHERRYVIEW(dev_priv->dev))
7218
		return chv_freq_opcode(dev_priv, val);
7219
	else if (IS_VALLEYVIEW(dev_priv->dev))
7220 7221 7222 7223
		return byt_freq_opcode(dev_priv, val);
	else
		return val / GT_FREQUENCY_MULTIPLIER;
}
7224

7225 7226
struct request_boost {
	struct work_struct work;
D
Daniel Vetter 已提交
7227
	struct drm_i915_gem_request *req;
7228 7229 7230 7231 7232
};

static void __intel_rps_boost_work(struct work_struct *work)
{
	struct request_boost *boost = container_of(work, struct request_boost, work);
7233
	struct drm_i915_gem_request *req = boost->req;
7234

7235 7236 7237
	if (!i915_gem_request_completed(req, true))
		gen6_rps_boost(to_i915(req->ring->dev), NULL,
			       req->emitted_jiffies);
7238

7239
	i915_gem_request_unreference__unlocked(req);
7240 7241 7242 7243
	kfree(boost);
}

void intel_queue_rps_boost_for_request(struct drm_device *dev,
D
Daniel Vetter 已提交
7244
				       struct drm_i915_gem_request *req)
7245 7246 7247
{
	struct request_boost *boost;

D
Daniel Vetter 已提交
7248
	if (req == NULL || INTEL_INFO(dev)->gen < 6)
7249 7250
		return;

7251 7252 7253
	if (i915_gem_request_completed(req, true))
		return;

7254 7255 7256 7257
	boost = kmalloc(sizeof(*boost), GFP_ATOMIC);
	if (boost == NULL)
		return;

D
Daniel Vetter 已提交
7258 7259
	i915_gem_request_reference(req);
	boost->req = req;
7260 7261 7262 7263 7264

	INIT_WORK(&boost->work, __intel_rps_boost_work);
	queue_work(to_i915(dev)->wq, &boost->work);
}

D
Daniel Vetter 已提交
7265
void intel_pm_setup(struct drm_device *dev)
7266 7267 7268
{
	struct drm_i915_private *dev_priv = dev->dev_private;

D
Daniel Vetter 已提交
7269
	mutex_init(&dev_priv->rps.hw_lock);
7270
	spin_lock_init(&dev_priv->rps.client_lock);
D
Daniel Vetter 已提交
7271

7272 7273
	INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
			  intel_gen6_powersave_work);
7274
	INIT_LIST_HEAD(&dev_priv->rps.clients);
7275 7276
	INIT_LIST_HEAD(&dev_priv->rps.semaphores.link);
	INIT_LIST_HEAD(&dev_priv->rps.mmioflips.link);
7277

7278
	dev_priv->pm.suspended = false;
7279
}