intel_pm.c 185.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Copyright © 2012 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eugeni Dodonov <eugeni.dodonov@intel.com>
 *
 */

28
#include <linux/cpufreq.h>
29 30
#include "i915_drv.h"
#include "intel_drv.h"
31 32
#include "../../../platform/x86/intel_ips.h"
#include <linux/module.h>
33

B
Ben Widawsky 已提交
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
/**
 * RC6 is a special power stage which allows the GPU to enter an very
 * low-voltage mode when idle, using down to 0V while at this stage.  This
 * stage is entered automatically when the GPU is idle when RC6 support is
 * enabled, and as soon as new workload arises GPU wakes up automatically as well.
 *
 * There are different RC6 modes available in Intel GPU, which differentiate
 * among each other with the latency required to enter and leave RC6 and
 * voltage consumed by the GPU in different states.
 *
 * The combination of the following flags define which states GPU is allowed
 * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
 * RC6pp is deepest RC6. Their support by hardware varies according to the
 * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
 * which brings the most power savings; deeper states save more power, but
 * require higher latency to switch to and wake up.
 */
#define INTEL_RC6_ENABLE			(1<<0)
#define INTEL_RC6p_ENABLE			(1<<1)
#define INTEL_RC6pp_ENABLE			(1<<2)

55
static void skl_init_clock_gating(struct drm_device *dev)
56
{
57 58
	struct drm_i915_private *dev_priv = dev->dev_private;

59 60 61
	if (INTEL_REVID(dev) == SKL_REVID_A0) {
		/*
		 * WaDisableSDEUnitClockGating:skl
62
		 * WaSetGAPSunitClckGateDisable:skl
63 64
		 */
		I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
65
			   GEN8_GAPSUNIT_CLOCK_GATE_DISABLE |
66 67
			   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
	}
68 69 70 71 72

	if (INTEL_REVID(dev) <= SKL_REVID_E0)
		/* WaDisableLSQCROPERFforOCL:skl */
		I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
			   GEN8_LQSC_RO_PERF_DIS);
73 74
}

75 76
static void i915_pineview_get_mem_freq(struct drm_device *dev)
{
77
	struct drm_i915_private *dev_priv = dev->dev_private;
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
	u32 tmp;

	tmp = I915_READ(CLKCFG);

	switch (tmp & CLKCFG_FSB_MASK) {
	case CLKCFG_FSB_533:
		dev_priv->fsb_freq = 533; /* 133*4 */
		break;
	case CLKCFG_FSB_800:
		dev_priv->fsb_freq = 800; /* 200*4 */
		break;
	case CLKCFG_FSB_667:
		dev_priv->fsb_freq =  667; /* 167*4 */
		break;
	case CLKCFG_FSB_400:
		dev_priv->fsb_freq = 400; /* 100*4 */
		break;
	}

	switch (tmp & CLKCFG_MEM_MASK) {
	case CLKCFG_MEM_533:
		dev_priv->mem_freq = 533;
		break;
	case CLKCFG_MEM_667:
		dev_priv->mem_freq = 667;
		break;
	case CLKCFG_MEM_800:
		dev_priv->mem_freq = 800;
		break;
	}

	/* detect pineview DDR3 setting */
	tmp = I915_READ(CSHRDDR3CTL);
	dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
}

static void i915_ironlake_get_mem_freq(struct drm_device *dev)
{
116
	struct drm_i915_private *dev_priv = dev->dev_private;
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
	u16 ddrpll, csipll;

	ddrpll = I915_READ16(DDRMPLL1);
	csipll = I915_READ16(CSIPLL0);

	switch (ddrpll & 0xff) {
	case 0xc:
		dev_priv->mem_freq = 800;
		break;
	case 0x10:
		dev_priv->mem_freq = 1066;
		break;
	case 0x14:
		dev_priv->mem_freq = 1333;
		break;
	case 0x18:
		dev_priv->mem_freq = 1600;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
				 ddrpll & 0xff);
		dev_priv->mem_freq = 0;
		break;
	}

142
	dev_priv->ips.r_t = dev_priv->mem_freq;
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173

	switch (csipll & 0x3ff) {
	case 0x00c:
		dev_priv->fsb_freq = 3200;
		break;
	case 0x00e:
		dev_priv->fsb_freq = 3733;
		break;
	case 0x010:
		dev_priv->fsb_freq = 4266;
		break;
	case 0x012:
		dev_priv->fsb_freq = 4800;
		break;
	case 0x014:
		dev_priv->fsb_freq = 5333;
		break;
	case 0x016:
		dev_priv->fsb_freq = 5866;
		break;
	case 0x018:
		dev_priv->fsb_freq = 6400;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
				 csipll & 0x3ff);
		dev_priv->fsb_freq = 0;
		break;
	}

	if (dev_priv->fsb_freq == 3200) {
174
		dev_priv->ips.c_m = 0;
175
	} else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
176
		dev_priv->ips.c_m = 1;
177
	} else {
178
		dev_priv->ips.c_m = 2;
179 180 181
	}
}

182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
static const struct cxsr_latency cxsr_latency_table[] = {
	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */

	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */

	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */

	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */

	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */

	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
};

220
static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
							 int is_ddr3,
							 int fsb,
							 int mem)
{
	const struct cxsr_latency *latency;
	int i;

	if (fsb == 0 || mem == 0)
		return NULL;

	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
		latency = &cxsr_latency_table[i];
		if (is_desktop == latency->is_desktop &&
		    is_ddr3 == latency->is_ddr3 &&
		    fsb == latency->fsb_freq && mem == latency->mem_freq)
			return latency;
	}

	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");

	return NULL;
}

244
void intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
245
{
246 247
	struct drm_device *dev = dev_priv->dev;
	u32 val;
248

249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
	if (IS_VALLEYVIEW(dev)) {
		I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
	} else if (IS_G4X(dev) || IS_CRESTLINE(dev)) {
		I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
	} else if (IS_PINEVIEW(dev)) {
		val = I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN;
		val |= enable ? PINEVIEW_SELF_REFRESH_EN : 0;
		I915_WRITE(DSPFW3, val);
	} else if (IS_I945G(dev) || IS_I945GM(dev)) {
		val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
			       _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
		I915_WRITE(FW_BLC_SELF, val);
	} else if (IS_I915GM(dev)) {
		val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
			       _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
		I915_WRITE(INSTPM, val);
	} else {
		return;
	}
268

269 270
	DRM_DEBUG_KMS("memory self-refresh is %s\n",
		      enable ? "enabled" : "disabled");
271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
}

/*
 * Latency for FIFO fetches is dependent on several factors:
 *   - memory configuration (speed, channels)
 *   - chipset
 *   - current MCH state
 * It can be fairly high in some situations, so here we assume a fairly
 * pessimal value.  It's a tradeoff between extra memory fetches (if we
 * set this value too high, the FIFO will fetch frequently to stay full)
 * and power consumption (set it too low to save power and we might see
 * FIFO underruns and display "flicker").
 *
 * A value of 5us seems to be a good balance; safe for very low end
 * platforms but not overly aggressive on lower latency configs.
 */
287
static const int pessimal_latency_ns = 5000;
288

289
static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	if (plane)
		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

305
static int i830_get_fifo_size(struct drm_device *dev, int plane)
306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x1ff;
	if (plane)
		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
	size >>= 1; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

322
static int i845_get_fifo_size(struct drm_device *dev, int plane)
323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	size >>= 2; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A",
		      size);

	return size;
}

/* Pineview has different values for various configs */
static const struct intel_watermark_params pineview_display_wm = {
340 341 342 343 344
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
345 346
};
static const struct intel_watermark_params pineview_display_hplloff_wm = {
347 348 349 350 351
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_HPLLOFF_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
352 353
};
static const struct intel_watermark_params pineview_cursor_wm = {
354 355 356 357 358
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
359 360
};
static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
361 362 363 364 365
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
366 367
};
static const struct intel_watermark_params g4x_wm_info = {
368 369 370 371 372
	.fifo_size = G4X_FIFO_SIZE,
	.max_wm = G4X_MAX_WM,
	.default_wm = G4X_MAX_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
373 374
};
static const struct intel_watermark_params g4x_cursor_wm_info = {
375 376 377 378 379
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
380 381
};
static const struct intel_watermark_params valleyview_wm_info = {
382 383 384 385 386
	.fifo_size = VALLEYVIEW_FIFO_SIZE,
	.max_wm = VALLEYVIEW_MAX_WM,
	.default_wm = VALLEYVIEW_MAX_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
387 388
};
static const struct intel_watermark_params valleyview_cursor_wm_info = {
389 390 391 392 393
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = VALLEYVIEW_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
394 395
};
static const struct intel_watermark_params i965_cursor_wm_info = {
396 397 398 399 400
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
401 402
};
static const struct intel_watermark_params i945_wm_info = {
403 404 405 406 407
	.fifo_size = I945_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
408 409
};
static const struct intel_watermark_params i915_wm_info = {
410 411 412 413 414
	.fifo_size = I915_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
415
};
416
static const struct intel_watermark_params i830_a_wm_info = {
417 418 419 420 421
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
422
};
423 424 425 426 427 428 429
static const struct intel_watermark_params i830_bc_wm_info = {
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM/2,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
};
430
static const struct intel_watermark_params i845_wm_info = {
431 432 433 434 435
	.fifo_size = I830_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484
};

/**
 * intel_calculate_wm - calculate watermark level
 * @clock_in_khz: pixel clock
 * @wm: chip FIFO params
 * @pixel_size: display pixel size
 * @latency_ns: memory latency for the platform
 *
 * Calculate the watermark level (the level at which the display plane will
 * start fetching from memory again).  Each chip has a different display
 * FIFO size and allocation, so the caller needs to figure that out and pass
 * in the correct intel_watermark_params structure.
 *
 * As the pixel clock runs, the FIFO will be drained at a rate that depends
 * on the pixel size.  When it reaches the watermark level, it'll start
 * fetching FIFO line sized based chunks from memory until the FIFO fills
 * past the watermark point.  If the FIFO drains completely, a FIFO underrun
 * will occur, and a display engine hang could result.
 */
static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
					const struct intel_watermark_params *wm,
					int fifo_size,
					int pixel_size,
					unsigned long latency_ns)
{
	long entries_required, wm_size;

	/*
	 * Note: we need to make sure we don't overflow for various clock &
	 * latency values.
	 * clocks go from a few thousand to several hundred thousand.
	 * latency is usually a few thousand
	 */
	entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
		1000;
	entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);

	DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);

	wm_size = fifo_size - (entries_required + wm->guard_size);

	DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);

	/* Don't promote wm_size to unsigned... */
	if (wm_size > (long)wm->max_wm)
		wm_size = wm->max_wm;
	if (wm_size <= 0)
		wm_size = wm->default_wm;
485 486 487 488 489 490 491 492 493 494 495

	/*
	 * Bspec seems to indicate that the value shouldn't be lower than
	 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
	 * Lets go for 8 which is the burst size since certain platforms
	 * already use a hardcoded 8 (which is what the spec says should be
	 * done).
	 */
	if (wm_size <= 8)
		wm_size = 8;

496 497 498 499 500 501 502
	return wm_size;
}

static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
{
	struct drm_crtc *crtc, *enabled = NULL;

503
	for_each_crtc(dev, crtc) {
504
		if (intel_crtc_active(crtc)) {
505 506 507 508 509 510 511 512 513
			if (enabled)
				return NULL;
			enabled = crtc;
		}
	}

	return enabled;
}

514
static void pineview_update_wm(struct drm_crtc *unused_crtc)
515
{
516
	struct drm_device *dev = unused_crtc->dev;
517 518 519 520 521 522 523 524 525 526
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_crtc *crtc;
	const struct cxsr_latency *latency;
	u32 reg;
	unsigned long wm;

	latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
					 dev_priv->fsb_freq, dev_priv->mem_freq);
	if (!latency) {
		DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
527
		intel_set_memory_cxsr(dev_priv, false);
528 529 530 531 532
		return;
	}

	crtc = single_enabled_crtc(dev);
	if (crtc) {
533
		const struct drm_display_mode *adjusted_mode;
534
		int pixel_size = crtc->primary->fb->bits_per_pixel / 8;
535 536
		int clock;

537
		adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
538
		clock = adjusted_mode->crtc_clock;
539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577

		/* Display SR */
		wm = intel_calculate_wm(clock, &pineview_display_wm,
					pineview_display_wm.fifo_size,
					pixel_size, latency->display_sr);
		reg = I915_READ(DSPFW1);
		reg &= ~DSPFW_SR_MASK;
		reg |= wm << DSPFW_SR_SHIFT;
		I915_WRITE(DSPFW1, reg);
		DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);

		/* cursor SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_wm,
					pineview_display_wm.fifo_size,
					pixel_size, latency->cursor_sr);
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_CURSOR_SR_MASK;
		reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
		I915_WRITE(DSPFW3, reg);

		/* Display HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
					pixel_size, latency->display_hpll_disable);
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_SR_MASK;
		reg |= wm & DSPFW_HPLL_SR_MASK;
		I915_WRITE(DSPFW3, reg);

		/* cursor HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
					pixel_size, latency->cursor_hpll_disable);
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_CURSOR_MASK;
		reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
		I915_WRITE(DSPFW3, reg);
		DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);

578
		intel_set_memory_cxsr(dev_priv, true);
579
	} else {
580
		intel_set_memory_cxsr(dev_priv, false);
581 582 583 584 585 586 587 588 589 590 591 592 593
	}
}

static bool g4x_compute_wm0(struct drm_device *dev,
			    int plane,
			    const struct intel_watermark_params *display,
			    int display_latency_ns,
			    const struct intel_watermark_params *cursor,
			    int cursor_latency_ns,
			    int *plane_wm,
			    int *cursor_wm)
{
	struct drm_crtc *crtc;
594
	const struct drm_display_mode *adjusted_mode;
595 596 597 598 599
	int htotal, hdisplay, clock, pixel_size;
	int line_time_us, line_count;
	int entries, tlb_miss;

	crtc = intel_get_crtc_for_plane(dev, plane);
600
	if (!intel_crtc_active(crtc)) {
601 602 603 604 605
		*cursor_wm = cursor->guard_size;
		*plane_wm = display->guard_size;
		return false;
	}

606
	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
607
	clock = adjusted_mode->crtc_clock;
608
	htotal = adjusted_mode->crtc_htotal;
609
	hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
610
	pixel_size = crtc->primary->fb->bits_per_pixel / 8;
611 612 613 614 615 616 617 618 619 620 621 622

	/* Use the small buffer method to calculate plane watermark */
	entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
	tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
	if (tlb_miss > 0)
		entries += tlb_miss;
	entries = DIV_ROUND_UP(entries, display->cacheline_size);
	*plane_wm = entries + display->guard_size;
	if (*plane_wm > (int)display->max_wm)
		*plane_wm = display->max_wm;

	/* Use the large buffer method to calculate cursor watermark */
623
	line_time_us = max(htotal * 1000 / clock, 1);
624
	line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
625
	entries = line_count * to_intel_crtc(crtc)->cursor_width * pixel_size;
626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679
	tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
	if (tlb_miss > 0)
		entries += tlb_miss;
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
	*cursor_wm = entries + cursor->guard_size;
	if (*cursor_wm > (int)cursor->max_wm)
		*cursor_wm = (int)cursor->max_wm;

	return true;
}

/*
 * Check the wm result.
 *
 * If any calculated watermark values is larger than the maximum value that
 * can be programmed into the associated watermark register, that watermark
 * must be disabled.
 */
static bool g4x_check_srwm(struct drm_device *dev,
			   int display_wm, int cursor_wm,
			   const struct intel_watermark_params *display,
			   const struct intel_watermark_params *cursor)
{
	DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
		      display_wm, cursor_wm);

	if (display_wm > display->max_wm) {
		DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
			      display_wm, display->max_wm);
		return false;
	}

	if (cursor_wm > cursor->max_wm) {
		DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
			      cursor_wm, cursor->max_wm);
		return false;
	}

	if (!(display_wm || cursor_wm)) {
		DRM_DEBUG_KMS("SR latency is 0, disabling\n");
		return false;
	}

	return true;
}

static bool g4x_compute_srwm(struct drm_device *dev,
			     int plane,
			     int latency_ns,
			     const struct intel_watermark_params *display,
			     const struct intel_watermark_params *cursor,
			     int *display_wm, int *cursor_wm)
{
	struct drm_crtc *crtc;
680
	const struct drm_display_mode *adjusted_mode;
681 682 683 684 685 686 687 688 689 690 691 692
	int hdisplay, htotal, pixel_size, clock;
	unsigned long line_time_us;
	int line_count, line_size;
	int small, large;
	int entries;

	if (!latency_ns) {
		*display_wm = *cursor_wm = 0;
		return false;
	}

	crtc = intel_get_crtc_for_plane(dev, plane);
693
	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
694
	clock = adjusted_mode->crtc_clock;
695
	htotal = adjusted_mode->crtc_htotal;
696
	hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
697
	pixel_size = crtc->primary->fb->bits_per_pixel / 8;
698

699
	line_time_us = max(htotal * 1000 / clock, 1);
700 701 702 703 704 705 706 707 708 709 710
	line_count = (latency_ns / line_time_us + 1000) / 1000;
	line_size = hdisplay * pixel_size;

	/* Use the minimum of the small and large buffer method for primary */
	small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
	large = line_count * line_size;

	entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
	*display_wm = entries + display->guard_size;

	/* calculate the self-refresh watermark for display cursor */
711
	entries = line_count * pixel_size * to_intel_crtc(crtc)->cursor_width;
712 713 714 715 716 717 718 719
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
	*cursor_wm = entries + cursor->guard_size;

	return g4x_check_srwm(dev,
			      *display_wm, *cursor_wm,
			      display, cursor);
}

720 721 722 723
static bool vlv_compute_drain_latency(struct drm_crtc *crtc,
				      int pixel_size,
				      int *prec_mult,
				      int *drain_latency)
724
{
725
	struct drm_device *dev = crtc->dev;
726
	int entries;
727
	int clock = to_intel_crtc(crtc)->config->base.adjusted_mode.crtc_clock;
728

729
	if (WARN(clock == 0, "Pixel clock is zero!\n"))
730 731
		return false;

732 733
	if (WARN(pixel_size == 0, "Pixel size is zero!\n"))
		return false;
734

735
	entries = DIV_ROUND_UP(clock, 1000) * pixel_size;
736 737 738 739 740 741
	if (IS_CHERRYVIEW(dev))
		*prec_mult = (entries > 128) ? DRAIN_LATENCY_PRECISION_32 :
					       DRAIN_LATENCY_PRECISION_16;
	else
		*prec_mult = (entries > 128) ? DRAIN_LATENCY_PRECISION_64 :
					       DRAIN_LATENCY_PRECISION_32;
742
	*drain_latency = (64 * (*prec_mult) * 4) / entries;
743

744 745
	if (*drain_latency > DRAIN_LATENCY_MASK)
		*drain_latency = DRAIN_LATENCY_MASK;
746 747 748 749 750 751 752 753 754 755 756 757

	return true;
}

/*
 * Update drain latency registers of memory arbiter
 *
 * Valleyview SoC has a new memory arbiter and needs drain latency registers
 * to be programmed. Each plane has a drain latency multiplier and a drain
 * latency value.
 */

758
static void vlv_update_drain_latency(struct drm_crtc *crtc)
759
{
760 761
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
762 763 764 765 766
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	int pixel_size;
	int drain_latency;
	enum pipe pipe = intel_crtc->pipe;
	int plane_prec, prec_mult, plane_dl;
767 768
	const int high_precision = IS_CHERRYVIEW(dev) ?
		DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_64;
769

770 771
	plane_dl = I915_READ(VLV_DDL(pipe)) & ~(DDL_PLANE_PRECISION_HIGH |
		   DRAIN_LATENCY_MASK | DDL_CURSOR_PRECISION_HIGH |
772 773 774 775 776 777
		   (DRAIN_LATENCY_MASK << DDL_CURSOR_SHIFT));

	if (!intel_crtc_active(crtc)) {
		I915_WRITE(VLV_DDL(pipe), plane_dl);
		return;
	}
778

779 780 781
	/* Primary plane Drain Latency */
	pixel_size = crtc->primary->fb->bits_per_pixel / 8;	/* BPP */
	if (vlv_compute_drain_latency(crtc, pixel_size, &prec_mult, &drain_latency)) {
782 783 784
		plane_prec = (prec_mult == high_precision) ?
					   DDL_PLANE_PRECISION_HIGH :
					   DDL_PLANE_PRECISION_LOW;
785
		plane_dl |= plane_prec | drain_latency;
786 787
	}

788 789 790 791
	/* Cursor Drain Latency
	 * BPP is always 4 for cursor
	 */
	pixel_size = 4;
792

793 794 795
	/* Program cursor DL only if it is enabled */
	if (intel_crtc->cursor_base &&
	    vlv_compute_drain_latency(crtc, pixel_size, &prec_mult, &drain_latency)) {
796 797 798
		plane_prec = (prec_mult == high_precision) ?
					   DDL_CURSOR_PRECISION_HIGH :
					   DDL_CURSOR_PRECISION_LOW;
799
		plane_dl |= plane_prec | (drain_latency << DDL_CURSOR_SHIFT);
800
	}
801 802

	I915_WRITE(VLV_DDL(pipe), plane_dl);
803 804 805 806
}

#define single_plane_enabled(mask) is_power_of_2(mask)

807
static void valleyview_update_wm(struct drm_crtc *crtc)
808
{
809
	struct drm_device *dev = crtc->dev;
810 811 812 813
	static const int sr_latency_ns = 12000;
	struct drm_i915_private *dev_priv = dev->dev_private;
	int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
	int plane_sr, cursor_sr;
814
	int ignore_plane_sr, ignore_cursor_sr;
815
	unsigned int enabled = 0;
816
	bool cxsr_enabled;
817

818
	vlv_update_drain_latency(crtc);
819

820
	if (g4x_compute_wm0(dev, PIPE_A,
821 822
			    &valleyview_wm_info, pessimal_latency_ns,
			    &valleyview_cursor_wm_info, pessimal_latency_ns,
823
			    &planea_wm, &cursora_wm))
824
		enabled |= 1 << PIPE_A;
825

826
	if (g4x_compute_wm0(dev, PIPE_B,
827 828
			    &valleyview_wm_info, pessimal_latency_ns,
			    &valleyview_cursor_wm_info, pessimal_latency_ns,
829
			    &planeb_wm, &cursorb_wm))
830
		enabled |= 1 << PIPE_B;
831 832 833 834 835 836

	if (single_plane_enabled(enabled) &&
	    g4x_compute_srwm(dev, ffs(enabled) - 1,
			     sr_latency_ns,
			     &valleyview_wm_info,
			     &valleyview_cursor_wm_info,
837 838 839 840 841
			     &plane_sr, &ignore_cursor_sr) &&
	    g4x_compute_srwm(dev, ffs(enabled) - 1,
			     2*sr_latency_ns,
			     &valleyview_wm_info,
			     &valleyview_cursor_wm_info,
842
			     &ignore_plane_sr, &cursor_sr)) {
843
		cxsr_enabled = true;
844
	} else {
845
		cxsr_enabled = false;
846
		intel_set_memory_cxsr(dev_priv, false);
847 848
		plane_sr = cursor_sr = 0;
	}
849

850 851
	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
		      "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
852 853 854 855 856 857 858 859
		      planea_wm, cursora_wm,
		      planeb_wm, cursorb_wm,
		      plane_sr, cursor_sr);

	I915_WRITE(DSPFW1,
		   (plane_sr << DSPFW_SR_SHIFT) |
		   (cursorb_wm << DSPFW_CURSORB_SHIFT) |
		   (planeb_wm << DSPFW_PLANEB_SHIFT) |
860
		   (planea_wm << DSPFW_PLANEA_SHIFT));
861
	I915_WRITE(DSPFW2,
862
		   (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
863 864
		   (cursora_wm << DSPFW_CURSORA_SHIFT));
	I915_WRITE(DSPFW3,
865 866
		   (I915_READ(DSPFW3) & ~DSPFW_CURSOR_SR_MASK) |
		   (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
867 868 869

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
870 871
}

872 873 874 875 876 877 878 879 880 881 882 883 884 885 886
static void cherryview_update_wm(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
	static const int sr_latency_ns = 12000;
	struct drm_i915_private *dev_priv = dev->dev_private;
	int planea_wm, planeb_wm, planec_wm;
	int cursora_wm, cursorb_wm, cursorc_wm;
	int plane_sr, cursor_sr;
	int ignore_plane_sr, ignore_cursor_sr;
	unsigned int enabled = 0;
	bool cxsr_enabled;

	vlv_update_drain_latency(crtc);

	if (g4x_compute_wm0(dev, PIPE_A,
887 888
			    &valleyview_wm_info, pessimal_latency_ns,
			    &valleyview_cursor_wm_info, pessimal_latency_ns,
889 890 891 892
			    &planea_wm, &cursora_wm))
		enabled |= 1 << PIPE_A;

	if (g4x_compute_wm0(dev, PIPE_B,
893 894
			    &valleyview_wm_info, pessimal_latency_ns,
			    &valleyview_cursor_wm_info, pessimal_latency_ns,
895 896 897 898
			    &planeb_wm, &cursorb_wm))
		enabled |= 1 << PIPE_B;

	if (g4x_compute_wm0(dev, PIPE_C,
899 900
			    &valleyview_wm_info, pessimal_latency_ns,
			    &valleyview_cursor_wm_info, pessimal_latency_ns,
901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950
			    &planec_wm, &cursorc_wm))
		enabled |= 1 << PIPE_C;

	if (single_plane_enabled(enabled) &&
	    g4x_compute_srwm(dev, ffs(enabled) - 1,
			     sr_latency_ns,
			     &valleyview_wm_info,
			     &valleyview_cursor_wm_info,
			     &plane_sr, &ignore_cursor_sr) &&
	    g4x_compute_srwm(dev, ffs(enabled) - 1,
			     2*sr_latency_ns,
			     &valleyview_wm_info,
			     &valleyview_cursor_wm_info,
			     &ignore_plane_sr, &cursor_sr)) {
		cxsr_enabled = true;
	} else {
		cxsr_enabled = false;
		intel_set_memory_cxsr(dev_priv, false);
		plane_sr = cursor_sr = 0;
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
		      "B: plane=%d, cursor=%d, C: plane=%d, cursor=%d, "
		      "SR: plane=%d, cursor=%d\n",
		      planea_wm, cursora_wm,
		      planeb_wm, cursorb_wm,
		      planec_wm, cursorc_wm,
		      plane_sr, cursor_sr);

	I915_WRITE(DSPFW1,
		   (plane_sr << DSPFW_SR_SHIFT) |
		   (cursorb_wm << DSPFW_CURSORB_SHIFT) |
		   (planeb_wm << DSPFW_PLANEB_SHIFT) |
		   (planea_wm << DSPFW_PLANEA_SHIFT));
	I915_WRITE(DSPFW2,
		   (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
		   (cursora_wm << DSPFW_CURSORA_SHIFT));
	I915_WRITE(DSPFW3,
		   (I915_READ(DSPFW3) & ~DSPFW_CURSOR_SR_MASK) |
		   (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
	I915_WRITE(DSPFW9_CHV,
		   (I915_READ(DSPFW9_CHV) & ~(DSPFW_PLANEC_MASK |
					      DSPFW_CURSORC_MASK)) |
		   (planec_wm << DSPFW_PLANEC_SHIFT) |
		   (cursorc_wm << DSPFW_CURSORC_SHIFT));

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
}

951 952 953 954 955 956 957 958 959 960 961 962 963 964 965
static void valleyview_update_sprite_wm(struct drm_plane *plane,
					struct drm_crtc *crtc,
					uint32_t sprite_width,
					uint32_t sprite_height,
					int pixel_size,
					bool enabled, bool scaled)
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	int pipe = to_intel_plane(plane)->pipe;
	int sprite = to_intel_plane(plane)->plane;
	int drain_latency;
	int plane_prec;
	int sprite_dl;
	int prec_mult;
966 967
	const int high_precision = IS_CHERRYVIEW(dev) ?
		DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_64;
968

969
	sprite_dl = I915_READ(VLV_DDL(pipe)) & ~(DDL_SPRITE_PRECISION_HIGH(sprite) |
970 971 972 973
		    (DRAIN_LATENCY_MASK << DDL_SPRITE_SHIFT(sprite)));

	if (enabled && vlv_compute_drain_latency(crtc, pixel_size, &prec_mult,
						 &drain_latency)) {
974 975 976
		plane_prec = (prec_mult == high_precision) ?
					   DDL_SPRITE_PRECISION_HIGH(sprite) :
					   DDL_SPRITE_PRECISION_LOW(sprite);
977 978 979 980 981 982 983
		sprite_dl |= plane_prec |
			     (drain_latency << DDL_SPRITE_SHIFT(sprite));
	}

	I915_WRITE(VLV_DDL(pipe), sprite_dl);
}

984
static void g4x_update_wm(struct drm_crtc *crtc)
985
{
986
	struct drm_device *dev = crtc->dev;
987 988 989 990 991
	static const int sr_latency_ns = 12000;
	struct drm_i915_private *dev_priv = dev->dev_private;
	int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
	int plane_sr, cursor_sr;
	unsigned int enabled = 0;
992
	bool cxsr_enabled;
993

994
	if (g4x_compute_wm0(dev, PIPE_A,
995 996
			    &g4x_wm_info, pessimal_latency_ns,
			    &g4x_cursor_wm_info, pessimal_latency_ns,
997
			    &planea_wm, &cursora_wm))
998
		enabled |= 1 << PIPE_A;
999

1000
	if (g4x_compute_wm0(dev, PIPE_B,
1001 1002
			    &g4x_wm_info, pessimal_latency_ns,
			    &g4x_cursor_wm_info, pessimal_latency_ns,
1003
			    &planeb_wm, &cursorb_wm))
1004
		enabled |= 1 << PIPE_B;
1005 1006 1007 1008 1009 1010

	if (single_plane_enabled(enabled) &&
	    g4x_compute_srwm(dev, ffs(enabled) - 1,
			     sr_latency_ns,
			     &g4x_wm_info,
			     &g4x_cursor_wm_info,
1011
			     &plane_sr, &cursor_sr)) {
1012
		cxsr_enabled = true;
1013
	} else {
1014
		cxsr_enabled = false;
1015
		intel_set_memory_cxsr(dev_priv, false);
1016 1017
		plane_sr = cursor_sr = 0;
	}
1018

1019 1020
	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
		      "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1021 1022 1023 1024 1025 1026 1027 1028
		      planea_wm, cursora_wm,
		      planeb_wm, cursorb_wm,
		      plane_sr, cursor_sr);

	I915_WRITE(DSPFW1,
		   (plane_sr << DSPFW_SR_SHIFT) |
		   (cursorb_wm << DSPFW_CURSORB_SHIFT) |
		   (planeb_wm << DSPFW_PLANEB_SHIFT) |
1029
		   (planea_wm << DSPFW_PLANEA_SHIFT));
1030
	I915_WRITE(DSPFW2,
1031
		   (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1032 1033 1034
		   (cursora_wm << DSPFW_CURSORA_SHIFT));
	/* HPLL off in SR has some issues on G4x... disable it */
	I915_WRITE(DSPFW3,
1035
		   (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1036
		   (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1037 1038 1039

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
1040 1041
}

1042
static void i965_update_wm(struct drm_crtc *unused_crtc)
1043
{
1044
	struct drm_device *dev = unused_crtc->dev;
1045 1046 1047 1048
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_crtc *crtc;
	int srwm = 1;
	int cursor_sr = 16;
1049
	bool cxsr_enabled;
1050 1051 1052 1053 1054 1055

	/* Calc sr entries for one plane configs */
	crtc = single_enabled_crtc(dev);
	if (crtc) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 12000;
1056
		const struct drm_display_mode *adjusted_mode =
1057
			&to_intel_crtc(crtc)->config->base.adjusted_mode;
1058
		int clock = adjusted_mode->crtc_clock;
1059
		int htotal = adjusted_mode->crtc_htotal;
1060
		int hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
1061
		int pixel_size = crtc->primary->fb->bits_per_pixel / 8;
1062 1063 1064
		unsigned long line_time_us;
		int entries;

1065
		line_time_us = max(htotal * 1000 / clock, 1);
1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078

		/* Use ns/us then divide to preserve precision */
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
			pixel_size * hdisplay;
		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
		srwm = I965_FIFO_SIZE - entries;
		if (srwm < 0)
			srwm = 1;
		srwm &= 0x1ff;
		DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
			      entries, srwm);

		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1079
			pixel_size * to_intel_crtc(crtc)->cursor_width;
1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
		entries = DIV_ROUND_UP(entries,
					  i965_cursor_wm_info.cacheline_size);
		cursor_sr = i965_cursor_wm_info.fifo_size -
			(entries + i965_cursor_wm_info.guard_size);

		if (cursor_sr > i965_cursor_wm_info.max_wm)
			cursor_sr = i965_cursor_wm_info.max_wm;

		DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
			      "cursor %d\n", srwm, cursor_sr);

1091
		cxsr_enabled = true;
1092
	} else {
1093
		cxsr_enabled = false;
1094
		/* Turn off self refresh if both pipes are enabled */
1095
		intel_set_memory_cxsr(dev_priv, false);
1096 1097 1098 1099 1100 1101 1102
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
		      srwm);

	/* 965 has limitations... */
	I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
1103 1104 1105 1106 1107
		   (8 << DSPFW_CURSORB_SHIFT) |
		   (8 << DSPFW_PLANEB_SHIFT) |
		   (8 << DSPFW_PLANEA_SHIFT));
	I915_WRITE(DSPFW2, (8 << DSPFW_CURSORA_SHIFT) |
		   (8 << DSPFW_PLANEC_SHIFT_OLD));
1108 1109
	/* update cursor SR watermark */
	I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1110 1111 1112

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
1113 1114
}

1115
static void i9xx_update_wm(struct drm_crtc *unused_crtc)
1116
{
1117
	struct drm_device *dev = unused_crtc->dev;
1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131
	struct drm_i915_private *dev_priv = dev->dev_private;
	const struct intel_watermark_params *wm_info;
	uint32_t fwater_lo;
	uint32_t fwater_hi;
	int cwm, srwm = 1;
	int fifo_size;
	int planea_wm, planeb_wm;
	struct drm_crtc *crtc, *enabled = NULL;

	if (IS_I945GM(dev))
		wm_info = &i945_wm_info;
	else if (!IS_GEN2(dev))
		wm_info = &i915_wm_info;
	else
1132
		wm_info = &i830_a_wm_info;
1133 1134 1135

	fifo_size = dev_priv->display.get_fifo_size(dev, 0);
	crtc = intel_get_crtc_for_plane(dev, 0);
1136
	if (intel_crtc_active(crtc)) {
1137
		const struct drm_display_mode *adjusted_mode;
1138
		int cpp = crtc->primary->fb->bits_per_pixel / 8;
1139 1140 1141
		if (IS_GEN2(dev))
			cpp = 4;

1142
		adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1143
		planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1144
					       wm_info, fifo_size, cpp,
1145
					       pessimal_latency_ns);
1146
		enabled = crtc;
1147
	} else {
1148
		planea_wm = fifo_size - wm_info->guard_size;
1149 1150 1151 1152 1153 1154
		if (planea_wm > (long)wm_info->max_wm)
			planea_wm = wm_info->max_wm;
	}

	if (IS_GEN2(dev))
		wm_info = &i830_bc_wm_info;
1155 1156 1157

	fifo_size = dev_priv->display.get_fifo_size(dev, 1);
	crtc = intel_get_crtc_for_plane(dev, 1);
1158
	if (intel_crtc_active(crtc)) {
1159
		const struct drm_display_mode *adjusted_mode;
1160
		int cpp = crtc->primary->fb->bits_per_pixel / 8;
1161 1162 1163
		if (IS_GEN2(dev))
			cpp = 4;

1164
		adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1165
		planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1166
					       wm_info, fifo_size, cpp,
1167
					       pessimal_latency_ns);
1168 1169 1170 1171
		if (enabled == NULL)
			enabled = crtc;
		else
			enabled = NULL;
1172
	} else {
1173
		planeb_wm = fifo_size - wm_info->guard_size;
1174 1175 1176
		if (planeb_wm > (long)wm_info->max_wm)
			planeb_wm = wm_info->max_wm;
	}
1177 1178 1179

	DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);

1180
	if (IS_I915GM(dev) && enabled) {
1181
		struct drm_i915_gem_object *obj;
1182

1183
		obj = intel_fb_obj(enabled->primary->fb);
1184 1185

		/* self-refresh seems busted with untiled */
1186
		if (obj->tiling_mode == I915_TILING_NONE)
1187 1188 1189
			enabled = NULL;
	}

1190 1191 1192 1193 1194 1195
	/*
	 * Overlay gets an aggressive default since video jitter is bad.
	 */
	cwm = 2;

	/* Play safe and disable self-refresh before adjusting watermarks. */
1196
	intel_set_memory_cxsr(dev_priv, false);
1197 1198 1199 1200 1201

	/* Calc sr entries for one plane configs */
	if (HAS_FW_BLC(dev) && enabled) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 6000;
1202
		const struct drm_display_mode *adjusted_mode =
1203
			&to_intel_crtc(enabled)->config->base.adjusted_mode;
1204
		int clock = adjusted_mode->crtc_clock;
1205
		int htotal = adjusted_mode->crtc_htotal;
1206
		int hdisplay = to_intel_crtc(enabled)->config->pipe_src_w;
1207
		int pixel_size = enabled->primary->fb->bits_per_pixel / 8;
1208 1209 1210
		unsigned long line_time_us;
		int entries;

1211
		line_time_us = max(htotal * 1000 / clock, 1);
1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241

		/* Use ns/us then divide to preserve precision */
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
			pixel_size * hdisplay;
		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
		DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
		srwm = wm_info->fifo_size - entries;
		if (srwm < 0)
			srwm = 1;

		if (IS_I945G(dev) || IS_I945GM(dev))
			I915_WRITE(FW_BLC_SELF,
				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
		else if (IS_I915GM(dev))
			I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
		      planea_wm, planeb_wm, cwm, srwm);

	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
	fwater_hi = (cwm & 0x1f);

	/* Set request length to 8 cachelines per fetch */
	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
	fwater_hi = fwater_hi | (1 << 8);

	I915_WRITE(FW_BLC, fwater_lo);
	I915_WRITE(FW_BLC2, fwater_hi);

1242 1243
	if (enabled)
		intel_set_memory_cxsr(dev_priv, true);
1244 1245
}

1246
static void i845_update_wm(struct drm_crtc *unused_crtc)
1247
{
1248
	struct drm_device *dev = unused_crtc->dev;
1249 1250
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_crtc *crtc;
1251
	const struct drm_display_mode *adjusted_mode;
1252 1253 1254 1255 1256 1257 1258
	uint32_t fwater_lo;
	int planea_wm;

	crtc = single_enabled_crtc(dev);
	if (crtc == NULL)
		return;

1259
	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1260
	planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1261
				       &i845_wm_info,
1262
				       dev_priv->display.get_fifo_size(dev, 0),
1263
				       4, pessimal_latency_ns);
1264 1265 1266 1267 1268 1269 1270 1271
	fwater_lo = I915_READ(FW_BLC) & ~0xfff;
	fwater_lo |= (3<<8) | planea_wm;

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);

	I915_WRITE(FW_BLC, fwater_lo);
}

1272 1273
static uint32_t ilk_pipe_pixel_rate(struct drm_device *dev,
				    struct drm_crtc *crtc)
1274 1275
{
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1276
	uint32_t pixel_rate;
1277

1278
	pixel_rate = intel_crtc->config->base.adjusted_mode.crtc_clock;
1279 1280 1281 1282

	/* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
	 * adjust the pixel_rate here. */

1283
	if (intel_crtc->config->pch_pfit.enabled) {
1284
		uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
1285
		uint32_t pfit_size = intel_crtc->config->pch_pfit.size;
1286

1287 1288
		pipe_w = intel_crtc->config->pipe_src_w;
		pipe_h = intel_crtc->config->pipe_src_h;
1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302
		pfit_w = (pfit_size >> 16) & 0xFFFF;
		pfit_h = pfit_size & 0xFFFF;
		if (pipe_w < pfit_w)
			pipe_w = pfit_w;
		if (pipe_h < pfit_h)
			pipe_h = pfit_h;

		pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
				     pfit_w * pfit_h);
	}

	return pixel_rate;
}

1303
/* latency must be in 0.1us units. */
1304
static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
1305 1306 1307 1308
			       uint32_t latency)
{
	uint64_t ret;

1309 1310 1311
	if (WARN(latency == 0, "Latency value missing\n"))
		return UINT_MAX;

1312 1313 1314 1315 1316 1317
	ret = (uint64_t) pixel_rate * bytes_per_pixel * latency;
	ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;

	return ret;
}

1318
/* latency must be in 0.1us units. */
1319
static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1320 1321 1322 1323 1324
			       uint32_t horiz_pixels, uint8_t bytes_per_pixel,
			       uint32_t latency)
{
	uint32_t ret;

1325 1326 1327
	if (WARN(latency == 0, "Latency value missing\n"))
		return UINT_MAX;

1328 1329 1330 1331 1332 1333
	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
	ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
	ret = DIV_ROUND_UP(ret, 64) + 2;
	return ret;
}

1334
static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1335 1336 1337 1338 1339
			   uint8_t bytes_per_pixel)
{
	return DIV_ROUND_UP(pri_val * 64, horiz_pixels * bytes_per_pixel) + 2;
}

1340 1341 1342 1343 1344 1345 1346 1347
struct skl_pipe_wm_parameters {
	bool active;
	uint32_t pipe_htotal;
	uint32_t pixel_rate; /* in KHz */
	struct intel_plane_wm_parameters plane[I915_MAX_PLANES];
	struct intel_plane_wm_parameters cursor;
};

1348
struct ilk_pipe_wm_parameters {
1349 1350 1351
	bool active;
	uint32_t pipe_htotal;
	uint32_t pixel_rate;
1352 1353 1354
	struct intel_plane_wm_parameters pri;
	struct intel_plane_wm_parameters spr;
	struct intel_plane_wm_parameters cur;
1355 1356
};

1357
struct ilk_wm_maximums {
1358 1359 1360 1361 1362 1363
	uint16_t pri;
	uint16_t spr;
	uint16_t cur;
	uint16_t fbc;
};

1364 1365 1366 1367 1368 1369 1370
/* used in computing the new watermarks state */
struct intel_wm_config {
	unsigned int num_pipes_active;
	bool sprites_enabled;
	bool sprites_scaled;
};

1371 1372 1373 1374
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1375
static uint32_t ilk_compute_pri_wm(const struct ilk_pipe_wm_parameters *params,
1376 1377
				   uint32_t mem_value,
				   bool is_lp)
1378
{
1379 1380
	uint32_t method1, method2;

1381
	if (!params->active || !params->pri.enabled)
1382 1383
		return 0;

1384
	method1 = ilk_wm_method1(params->pixel_rate,
1385
				 params->pri.bytes_per_pixel,
1386 1387 1388 1389 1390
				 mem_value);

	if (!is_lp)
		return method1;

1391
	method2 = ilk_wm_method2(params->pixel_rate,
1392
				 params->pipe_htotal,
1393 1394
				 params->pri.horiz_pixels,
				 params->pri.bytes_per_pixel,
1395 1396 1397
				 mem_value);

	return min(method1, method2);
1398 1399
}

1400 1401 1402 1403
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1404
static uint32_t ilk_compute_spr_wm(const struct ilk_pipe_wm_parameters *params,
1405 1406 1407 1408
				   uint32_t mem_value)
{
	uint32_t method1, method2;

1409
	if (!params->active || !params->spr.enabled)
1410 1411
		return 0;

1412
	method1 = ilk_wm_method1(params->pixel_rate,
1413
				 params->spr.bytes_per_pixel,
1414
				 mem_value);
1415
	method2 = ilk_wm_method2(params->pixel_rate,
1416
				 params->pipe_htotal,
1417 1418
				 params->spr.horiz_pixels,
				 params->spr.bytes_per_pixel,
1419 1420 1421 1422
				 mem_value);
	return min(method1, method2);
}

1423 1424 1425 1426
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1427
static uint32_t ilk_compute_cur_wm(const struct ilk_pipe_wm_parameters *params,
1428 1429
				   uint32_t mem_value)
{
1430
	if (!params->active || !params->cur.enabled)
1431 1432
		return 0;

1433
	return ilk_wm_method2(params->pixel_rate,
1434
			      params->pipe_htotal,
1435 1436
			      params->cur.horiz_pixels,
			      params->cur.bytes_per_pixel,
1437 1438 1439
			      mem_value);
}

1440
/* Only for WM_LP. */
1441
static uint32_t ilk_compute_fbc_wm(const struct ilk_pipe_wm_parameters *params,
1442
				   uint32_t pri_val)
1443
{
1444
	if (!params->active || !params->pri.enabled)
1445 1446
		return 0;

1447
	return ilk_wm_fbc(pri_val,
1448 1449
			  params->pri.horiz_pixels,
			  params->pri.bytes_per_pixel);
1450 1451
}

1452 1453
static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
{
1454 1455 1456
	if (INTEL_INFO(dev)->gen >= 8)
		return 3072;
	else if (INTEL_INFO(dev)->gen >= 7)
1457 1458 1459 1460 1461
		return 768;
	else
		return 512;
}

1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495
static unsigned int ilk_plane_wm_reg_max(const struct drm_device *dev,
					 int level, bool is_sprite)
{
	if (INTEL_INFO(dev)->gen >= 8)
		/* BDW primary/sprite plane watermarks */
		return level == 0 ? 255 : 2047;
	else if (INTEL_INFO(dev)->gen >= 7)
		/* IVB/HSW primary/sprite plane watermarks */
		return level == 0 ? 127 : 1023;
	else if (!is_sprite)
		/* ILK/SNB primary plane watermarks */
		return level == 0 ? 127 : 511;
	else
		/* ILK/SNB sprite plane watermarks */
		return level == 0 ? 63 : 255;
}

static unsigned int ilk_cursor_wm_reg_max(const struct drm_device *dev,
					  int level)
{
	if (INTEL_INFO(dev)->gen >= 7)
		return level == 0 ? 63 : 255;
	else
		return level == 0 ? 31 : 63;
}

static unsigned int ilk_fbc_wm_reg_max(const struct drm_device *dev)
{
	if (INTEL_INFO(dev)->gen >= 8)
		return 31;
	else
		return 15;
}

1496 1497 1498
/* Calculate the maximum primary/sprite plane watermark */
static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
				     int level,
1499
				     const struct intel_wm_config *config,
1500 1501 1502 1503 1504 1505
				     enum intel_ddb_partitioning ddb_partitioning,
				     bool is_sprite)
{
	unsigned int fifo_size = ilk_display_fifo_size(dev);

	/* if sprites aren't enabled, sprites get nothing */
1506
	if (is_sprite && !config->sprites_enabled)
1507 1508 1509
		return 0;

	/* HSW allows LP1+ watermarks even with multiple pipes */
1510
	if (level == 0 || config->num_pipes_active > 1) {
1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521
		fifo_size /= INTEL_INFO(dev)->num_pipes;

		/*
		 * For some reason the non self refresh
		 * FIFO size is only half of the self
		 * refresh FIFO size on ILK/SNB.
		 */
		if (INTEL_INFO(dev)->gen <= 6)
			fifo_size /= 2;
	}

1522
	if (config->sprites_enabled) {
1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533
		/* level 0 is always calculated with 1:1 split */
		if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
			if (is_sprite)
				fifo_size *= 5;
			fifo_size /= 6;
		} else {
			fifo_size /= 2;
		}
	}

	/* clamp to max that the registers can hold */
1534
	return min(fifo_size, ilk_plane_wm_reg_max(dev, level, is_sprite));
1535 1536 1537 1538
}

/* Calculate the maximum cursor plane watermark */
static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
1539 1540
				      int level,
				      const struct intel_wm_config *config)
1541 1542
{
	/* HSW LP1+ watermarks w/ multiple pipes */
1543
	if (level > 0 && config->num_pipes_active > 1)
1544 1545 1546
		return 64;

	/* otherwise just report max that registers can hold */
1547
	return ilk_cursor_wm_reg_max(dev, level);
1548 1549
}

1550
static void ilk_compute_wm_maximums(const struct drm_device *dev,
1551 1552 1553
				    int level,
				    const struct intel_wm_config *config,
				    enum intel_ddb_partitioning ddb_partitioning,
1554
				    struct ilk_wm_maximums *max)
1555
{
1556 1557 1558
	max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
	max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
	max->cur = ilk_cursor_wm_max(dev, level, config);
1559
	max->fbc = ilk_fbc_wm_reg_max(dev);
1560 1561
}

1562 1563 1564 1565 1566 1567 1568 1569 1570 1571
static void ilk_compute_wm_reg_maximums(struct drm_device *dev,
					int level,
					struct ilk_wm_maximums *max)
{
	max->pri = ilk_plane_wm_reg_max(dev, level, false);
	max->spr = ilk_plane_wm_reg_max(dev, level, true);
	max->cur = ilk_cursor_wm_reg_max(dev, level);
	max->fbc = ilk_fbc_wm_reg_max(dev);
}

1572
static bool ilk_validate_wm_level(int level,
1573
				  const struct ilk_wm_maximums *max,
1574
				  struct intel_wm_level *result)
1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612
{
	bool ret;

	/* already determined to be invalid? */
	if (!result->enable)
		return false;

	result->enable = result->pri_val <= max->pri &&
			 result->spr_val <= max->spr &&
			 result->cur_val <= max->cur;

	ret = result->enable;

	/*
	 * HACK until we can pre-compute everything,
	 * and thus fail gracefully if LP0 watermarks
	 * are exceeded...
	 */
	if (level == 0 && !result->enable) {
		if (result->pri_val > max->pri)
			DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
				      level, result->pri_val, max->pri);
		if (result->spr_val > max->spr)
			DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
				      level, result->spr_val, max->spr);
		if (result->cur_val > max->cur)
			DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
				      level, result->cur_val, max->cur);

		result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
		result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
		result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
		result->enable = true;
	}

	return ret;
}

1613
static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
1614
				 int level,
1615
				 const struct ilk_pipe_wm_parameters *p,
1616
				 struct intel_wm_level *result)
1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635
{
	uint16_t pri_latency = dev_priv->wm.pri_latency[level];
	uint16_t spr_latency = dev_priv->wm.spr_latency[level];
	uint16_t cur_latency = dev_priv->wm.cur_latency[level];

	/* WM1+ latency values stored in 0.5us units */
	if (level > 0) {
		pri_latency *= 5;
		spr_latency *= 5;
		cur_latency *= 5;
	}

	result->pri_val = ilk_compute_pri_wm(p, pri_latency, level);
	result->spr_val = ilk_compute_spr_wm(p, spr_latency);
	result->cur_val = ilk_compute_cur_wm(p, cur_latency);
	result->fbc_val = ilk_compute_fbc_wm(p, result->pri_val);
	result->enable = true;
}

1636 1637
static uint32_t
hsw_compute_linetime_wm(struct drm_device *dev, struct drm_crtc *crtc)
1638 1639
{
	struct drm_i915_private *dev_priv = dev->dev_private;
1640
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1641
	struct drm_display_mode *mode = &intel_crtc->config->base.adjusted_mode;
1642
	u32 linetime, ips_linetime;
1643

1644 1645
	if (!intel_crtc_active(crtc))
		return 0;
1646

1647 1648 1649
	/* The WM are computed with base on how long it takes to fill a single
	 * row at the given clock rate, multiplied by 8.
	 * */
1650 1651 1652
	linetime = DIV_ROUND_CLOSEST(mode->crtc_htotal * 1000 * 8,
				     mode->crtc_clock);
	ips_linetime = DIV_ROUND_CLOSEST(mode->crtc_htotal * 1000 * 8,
1653
					 intel_ddi_get_cdclk_freq(dev_priv));
1654

1655 1656
	return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
	       PIPE_WM_LINETIME_TIME(linetime);
1657 1658
}

1659
static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[8])
1660 1661 1662
{
	struct drm_i915_private *dev_priv = dev->dev_private;

1663 1664
	if (IS_GEN9(dev)) {
		uint32_t val;
1665
		int ret, i;
1666
		int level, max_level = ilk_wm_max_level(dev);
1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708

		/* read the first set of memory latencies[0:3] */
		val = 0; /* data0 to be programmed to 0 for first set */
		mutex_lock(&dev_priv->rps.hw_lock);
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
					     &val);
		mutex_unlock(&dev_priv->rps.hw_lock);

		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

		/* read the second set of memory latencies[4:7] */
		val = 1; /* data0 to be programmed to 1 for second set */
		mutex_lock(&dev_priv->rps.hw_lock);
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
					     &val);
		mutex_unlock(&dev_priv->rps.hw_lock);
		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

1709
		/*
1710 1711
		 * WaWmMemoryReadLatency:skl
		 *
1712 1713 1714 1715 1716 1717 1718 1719
		 * punit doesn't take into account the read latency so we need
		 * to add 2us to the various latency levels we retrieve from
		 * the punit.
		 *   - W0 is a bit special in that it's the only level that
		 *   can't be disabled if we want to have display working, so
		 *   we always add 2us there.
		 *   - For levels >=1, punit returns 0us latency when they are
		 *   disabled, so we respect that and don't add 2us then
1720 1721 1722 1723 1724
		 *
		 * Additionally, if a level n (n > 1) has a 0us latency, all
		 * levels m (m >= n) need to be disabled. We make sure to
		 * sanitize the values out of the punit to satisfy this
		 * requirement.
1725 1726 1727 1728 1729
		 */
		wm[0] += 2;
		for (level = 1; level <= max_level; level++)
			if (wm[level] != 0)
				wm[level] += 2;
1730 1731 1732
			else {
				for (i = level + 1; i <= max_level; i++)
					wm[i] = 0;
1733

1734 1735
				break;
			}
1736
	} else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
1737 1738 1739 1740 1741
		uint64_t sskpd = I915_READ64(MCH_SSKPD);

		wm[0] = (sskpd >> 56) & 0xFF;
		if (wm[0] == 0)
			wm[0] = sskpd & 0xF;
1742 1743 1744 1745
		wm[1] = (sskpd >> 4) & 0xFF;
		wm[2] = (sskpd >> 12) & 0xFF;
		wm[3] = (sskpd >> 20) & 0x1FF;
		wm[4] = (sskpd >> 32) & 0x1FF;
1746 1747 1748 1749 1750 1751 1752
	} else if (INTEL_INFO(dev)->gen >= 6) {
		uint32_t sskpd = I915_READ(MCH_SSKPD);

		wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
		wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
		wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
		wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
1753 1754 1755 1756 1757 1758 1759
	} else if (INTEL_INFO(dev)->gen >= 5) {
		uint32_t mltr = I915_READ(MLTR_ILK);

		/* ILK primary LP0 latency is 700 ns */
		wm[0] = 7;
		wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
		wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
1760 1761 1762
	}
}

1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780
static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
{
	/* ILK sprite LP0 latency is 1300 ns */
	if (INTEL_INFO(dev)->gen == 5)
		wm[0] = 13;
}

static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
{
	/* ILK cursor LP0 latency is 1300 ns */
	if (INTEL_INFO(dev)->gen == 5)
		wm[0] = 13;

	/* WaDoubleCursorLP3Latency:ivb */
	if (IS_IVYBRIDGE(dev))
		wm[3] *= 2;
}

1781
int ilk_wm_max_level(const struct drm_device *dev)
1782 1783
{
	/* how many WM levels are we expecting */
1784 1785 1786
	if (IS_GEN9(dev))
		return 7;
	else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1787
		return 4;
1788
	else if (INTEL_INFO(dev)->gen >= 6)
1789
		return 3;
1790
	else
1791 1792
		return 2;
}
1793

1794 1795
static void intel_print_wm_latency(struct drm_device *dev,
				   const char *name,
1796
				   const uint16_t wm[8])
1797 1798
{
	int level, max_level = ilk_wm_max_level(dev);
1799 1800 1801 1802 1803 1804 1805 1806 1807 1808

	for (level = 0; level <= max_level; level++) {
		unsigned int latency = wm[level];

		if (latency == 0) {
			DRM_ERROR("%s WM%d latency not provided\n",
				  name, level);
			continue;
		}

1809 1810 1811 1812 1813 1814 1815
		/*
		 * - latencies are in us on gen9.
		 * - before then, WM1+ latency values are in 0.5us units
		 */
		if (IS_GEN9(dev))
			latency *= 10;
		else if (level > 0)
1816 1817 1818 1819 1820 1821 1822 1823
			latency *= 5;

		DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
			      name, level, wm[level],
			      latency / 10, latency % 10);
	}
}

1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860
static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
				    uint16_t wm[5], uint16_t min)
{
	int level, max_level = ilk_wm_max_level(dev_priv->dev);

	if (wm[0] >= min)
		return false;

	wm[0] = max(wm[0], min);
	for (level = 1; level <= max_level; level++)
		wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));

	return true;
}

static void snb_wm_latency_quirk(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	bool changed;

	/*
	 * The BIOS provided WM memory latency values are often
	 * inadequate for high resolution displays. Adjust them.
	 */
	changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);

	if (!changed)
		return;

	DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
	intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
}

1861
static void ilk_setup_wm_latency(struct drm_device *dev)
1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	intel_read_wm_latency(dev, dev_priv->wm.pri_latency);

	memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));
	memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));

	intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
	intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
1874 1875 1876 1877

	intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
1878 1879 1880

	if (IS_GEN6(dev))
		snb_wm_latency_quirk(dev);
1881 1882
}

1883 1884 1885 1886 1887 1888 1889 1890
static void skl_setup_wm_latency(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	intel_read_wm_latency(dev, dev_priv->wm.skl_latency);
	intel_print_wm_latency(dev, "Gen9 Plane", dev_priv->wm.skl_latency);
}

1891
static void ilk_compute_wm_parameters(struct drm_crtc *crtc,
1892
				      struct ilk_pipe_wm_parameters *p)
1893
{
1894 1895 1896 1897
	struct drm_device *dev = crtc->dev;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	enum pipe pipe = intel_crtc->pipe;
	struct drm_plane *plane;
1898

1899 1900
	if (!intel_crtc_active(crtc))
		return;
1901

1902
	p->active = true;
1903
	p->pipe_htotal = intel_crtc->config->base.adjusted_mode.crtc_htotal;
1904 1905 1906
	p->pixel_rate = ilk_pipe_pixel_rate(dev, crtc);
	p->pri.bytes_per_pixel = crtc->primary->fb->bits_per_pixel / 8;
	p->cur.bytes_per_pixel = 4;
1907
	p->pri.horiz_pixels = intel_crtc->config->pipe_src_w;
1908 1909 1910 1911
	p->cur.horiz_pixels = intel_crtc->cursor_width;
	/* TODO: for now, assume primary and cursor planes are always enabled. */
	p->pri.enabled = true;
	p->cur.enabled = true;
1912

1913
	drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
1914 1915
		struct intel_plane *intel_plane = to_intel_plane(plane);

1916
		if (intel_plane->pipe == pipe) {
1917
			p->spr = intel_plane->wm;
1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928
			break;
		}
	}
}

static void ilk_compute_wm_config(struct drm_device *dev,
				  struct intel_wm_config *config)
{
	struct intel_crtc *intel_crtc;

	/* Compute the currently _active_ config */
1929
	for_each_intel_crtc(dev, intel_crtc) {
1930
		const struct intel_pipe_wm *wm = &intel_crtc->wm.active;
1931

1932 1933
		if (!wm->pipe_enabled)
			continue;
1934

1935 1936 1937
		config->sprites_enabled |= wm->sprites_enabled;
		config->sprites_scaled |= wm->sprites_scaled;
		config->num_pipes_active++;
1938
	}
1939 1940
}

1941 1942
/* Compute new watermarks for the pipe */
static bool intel_compute_pipe_wm(struct drm_crtc *crtc,
1943
				  const struct ilk_pipe_wm_parameters *params,
1944 1945 1946
				  struct intel_pipe_wm *pipe_wm)
{
	struct drm_device *dev = crtc->dev;
1947
	const struct drm_i915_private *dev_priv = dev->dev_private;
1948 1949 1950 1951 1952 1953 1954
	int level, max_level = ilk_wm_max_level(dev);
	/* LP0 watermark maximums depend on this pipe alone */
	struct intel_wm_config config = {
		.num_pipes_active = 1,
		.sprites_enabled = params->spr.enabled,
		.sprites_scaled = params->spr.scaled,
	};
1955
	struct ilk_wm_maximums max;
1956

1957 1958 1959 1960
	pipe_wm->pipe_enabled = params->active;
	pipe_wm->sprites_enabled = params->spr.enabled;
	pipe_wm->sprites_scaled = params->spr.scaled;

1961 1962 1963 1964 1965 1966 1967 1968
	/* ILK/SNB: LP2+ watermarks only w/o sprites */
	if (INTEL_INFO(dev)->gen <= 6 && params->spr.enabled)
		max_level = 1;

	/* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
	if (params->spr.scaled)
		max_level = 0;

1969
	ilk_compute_wm_level(dev_priv, 0, params, &pipe_wm->wm[0]);
1970

1971
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1972
		pipe_wm->linetime = hsw_compute_linetime_wm(dev, crtc);
1973

1974 1975 1976
	/* LP0 watermarks always use 1/2 DDB partitioning */
	ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);

1977
	/* At least LP0 must be valid */
1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
	if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0]))
		return false;

	ilk_compute_wm_reg_maximums(dev, 1, &max);

	for (level = 1; level <= max_level; level++) {
		struct intel_wm_level wm = {};

		ilk_compute_wm_level(dev_priv, level, params, &wm);

		/*
		 * Disable any watermark level that exceeds the
		 * register maximums since such watermarks are
		 * always invalid.
		 */
		if (!ilk_validate_wm_level(level, &max, &wm))
			break;

		pipe_wm->wm[level] = wm;
	}

	return true;
2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010
}

/*
 * Merge the watermarks from all active pipes for a specific level.
 */
static void ilk_merge_wm_level(struct drm_device *dev,
			       int level,
			       struct intel_wm_level *ret_wm)
{
	const struct intel_crtc *intel_crtc;

2011 2012
	ret_wm->enable = true;

2013
	for_each_intel_crtc(dev, intel_crtc) {
2014 2015 2016 2017 2018
		const struct intel_pipe_wm *active = &intel_crtc->wm.active;
		const struct intel_wm_level *wm = &active->wm[level];

		if (!active->pipe_enabled)
			continue;
2019

2020 2021 2022 2023 2024
		/*
		 * The watermark values may have been used in the past,
		 * so we must maintain them in the registers for some
		 * time even if the level is now disabled.
		 */
2025
		if (!wm->enable)
2026
			ret_wm->enable = false;
2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038

		ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
		ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
		ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
		ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
	}
}

/*
 * Merge all low power watermarks for all active pipes.
 */
static void ilk_wm_merge(struct drm_device *dev,
2039
			 const struct intel_wm_config *config,
2040
			 const struct ilk_wm_maximums *max,
2041 2042 2043
			 struct intel_pipe_wm *merged)
{
	int level, max_level = ilk_wm_max_level(dev);
2044
	int last_enabled_level = max_level;
2045

2046 2047 2048 2049 2050
	/* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
	if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
	    config->num_pipes_active > 1)
		return;

2051 2052
	/* ILK: FBC WM must be disabled always */
	merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
2053 2054 2055 2056 2057 2058 2059

	/* merge each WM1+ level */
	for (level = 1; level <= max_level; level++) {
		struct intel_wm_level *wm = &merged->wm[level];

		ilk_merge_wm_level(dev, level, wm);

2060 2061 2062 2063 2064
		if (level > last_enabled_level)
			wm->enable = false;
		else if (!ilk_validate_wm_level(level, max, wm))
			/* make sure all following levels get disabled */
			last_enabled_level = level - 1;
2065 2066 2067 2068 2069 2070

		/*
		 * The spec says it is preferred to disable
		 * FBC WMs instead of disabling a WM level.
		 */
		if (wm->fbc_val > max->fbc) {
2071 2072
			if (wm->enable)
				merged->fbc_wm_enabled = false;
2073 2074 2075
			wm->fbc_val = 0;
		}
	}
2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089

	/* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
	/*
	 * FIXME this is racy. FBC might get enabled later.
	 * What we should check here is whether FBC can be
	 * enabled sometime later.
	 */
	if (IS_GEN5(dev) && !merged->fbc_wm_enabled && intel_fbc_enabled(dev)) {
		for (level = 2; level <= max_level; level++) {
			struct intel_wm_level *wm = &merged->wm[level];

			wm->enable = false;
		}
	}
2090 2091
}

2092 2093 2094 2095 2096 2097
static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
{
	/* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
	return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
}

2098 2099 2100 2101 2102
/* The value we need to program into the WM_LPx latency field */
static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

2103
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2104 2105 2106 2107 2108
		return 2 * level;
	else
		return dev_priv->wm.pri_latency[level];
}

2109
static void ilk_compute_wm_results(struct drm_device *dev,
2110
				   const struct intel_pipe_wm *merged,
2111
				   enum intel_ddb_partitioning partitioning,
2112
				   struct ilk_wm_values *results)
2113
{
2114 2115
	struct intel_crtc *intel_crtc;
	int level, wm_lp;
2116

2117
	results->enable_fbc_wm = merged->fbc_wm_enabled;
2118
	results->partitioning = partitioning;
2119

2120
	/* LP1+ register values */
2121
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2122
		const struct intel_wm_level *r;
2123

2124
		level = ilk_wm_lp_to_level(wm_lp, merged);
2125

2126
		r = &merged->wm[level];
2127

2128 2129 2130 2131 2132
		/*
		 * Maintain the watermark values even if the level is
		 * disabled. Doing otherwise could cause underruns.
		 */
		results->wm_lp[wm_lp - 1] =
2133
			(ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2134 2135 2136
			(r->pri_val << WM1_LP_SR_SHIFT) |
			r->cur_val;

2137 2138 2139
		if (r->enable)
			results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;

2140 2141 2142 2143 2144 2145 2146
		if (INTEL_INFO(dev)->gen >= 8)
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
		else
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT;

2147 2148 2149 2150
		/*
		 * Always set WM1S_LP_EN when spr_val != 0, even if the
		 * level is disabled. Doing otherwise could cause underruns.
		 */
2151 2152 2153 2154 2155
		if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
			WARN_ON(wm_lp != 1);
			results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
		} else
			results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2156
	}
2157

2158
	/* LP0 register values */
2159
	for_each_intel_crtc(dev, intel_crtc) {
2160 2161 2162 2163 2164 2165 2166 2167
		enum pipe pipe = intel_crtc->pipe;
		const struct intel_wm_level *r =
			&intel_crtc->wm.active.wm[0];

		if (WARN_ON(!r->enable))
			continue;

		results->wm_linetime[pipe] = intel_crtc->wm.active.linetime;
2168

2169 2170 2171 2172
		results->wm_pipe[pipe] =
			(r->pri_val << WM0_PIPE_PLANE_SHIFT) |
			(r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
			r->cur_val;
2173 2174 2175
	}
}

2176 2177
/* Find the result with the highest level enabled. Check for enable_fbc_wm in
 * case both are at the same level. Prefer r1 in case they're the same. */
2178
static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2179 2180
						  struct intel_pipe_wm *r1,
						  struct intel_pipe_wm *r2)
2181
{
2182 2183
	int level, max_level = ilk_wm_max_level(dev);
	int level1 = 0, level2 = 0;
2184

2185 2186 2187 2188 2189
	for (level = 1; level <= max_level; level++) {
		if (r1->wm[level].enable)
			level1 = level;
		if (r2->wm[level].enable)
			level2 = level;
2190 2191
	}

2192 2193
	if (level1 == level2) {
		if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2194 2195 2196
			return r2;
		else
			return r1;
2197
	} else if (level1 > level2) {
2198 2199 2200 2201 2202 2203
		return r1;
	} else {
		return r2;
	}
}

2204 2205 2206 2207 2208 2209 2210 2211
/* dirty bits used to track which watermarks need changes */
#define WM_DIRTY_PIPE(pipe) (1 << (pipe))
#define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
#define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
#define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
#define WM_DIRTY_FBC (1 << 24)
#define WM_DIRTY_DDB (1 << 25)

2212
static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
2213 2214
					 const struct ilk_wm_values *old,
					 const struct ilk_wm_values *new)
2215 2216 2217 2218 2219
{
	unsigned int dirty = 0;
	enum pipe pipe;
	int wm_lp;

2220
	for_each_pipe(dev_priv, pipe) {
2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263
		if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
			dirty |= WM_DIRTY_LINETIME(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}

		if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
			dirty |= WM_DIRTY_PIPE(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}
	}

	if (old->enable_fbc_wm != new->enable_fbc_wm) {
		dirty |= WM_DIRTY_FBC;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	if (old->partitioning != new->partitioning) {
		dirty |= WM_DIRTY_DDB;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	/* LP1+ watermarks already deemed dirty, no need to continue */
	if (dirty & WM_DIRTY_LP_ALL)
		return dirty;

	/* Find the lowest numbered LP1+ watermark in need of an update... */
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
		if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
		    old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
			break;
	}

	/* ...and mark it and all higher numbered LP1+ watermarks as dirty */
	for (; wm_lp <= 3; wm_lp++)
		dirty |= WM_DIRTY_LP(wm_lp);

	return dirty;
}

2264 2265
static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
			       unsigned int dirty)
2266
{
2267
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2268
	bool changed = false;
2269

2270 2271 2272
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
		previous->wm_lp[2] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2273
		changed = true;
2274 2275 2276 2277
	}
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
		previous->wm_lp[1] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2278
		changed = true;
2279 2280 2281 2282
	}
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
		previous->wm_lp[0] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2283
		changed = true;
2284
	}
2285

2286 2287 2288 2289
	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
2290

2291 2292 2293 2294 2295 2296 2297
	return changed;
}

/*
 * The spec says we shouldn't write when we don't need, because every write
 * causes WMs to be re-evaluated, expending some power.
 */
2298 2299
static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
				struct ilk_wm_values *results)
2300 2301
{
	struct drm_device *dev = dev_priv->dev;
2302
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2303 2304 2305
	unsigned int dirty;
	uint32_t val;

2306
	dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
2307 2308 2309 2310 2311
	if (!dirty)
		return;

	_ilk_disable_lp_wm(dev_priv, dirty);

2312
	if (dirty & WM_DIRTY_PIPE(PIPE_A))
2313
		I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2314
	if (dirty & WM_DIRTY_PIPE(PIPE_B))
2315
		I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2316
	if (dirty & WM_DIRTY_PIPE(PIPE_C))
2317 2318
		I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);

2319
	if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2320
		I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2321
	if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2322
		I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2323
	if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2324 2325
		I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);

2326
	if (dirty & WM_DIRTY_DDB) {
2327
		if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341
			val = I915_READ(WM_MISC);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~WM_MISC_DATA_PARTITION_5_6;
			else
				val |= WM_MISC_DATA_PARTITION_5_6;
			I915_WRITE(WM_MISC, val);
		} else {
			val = I915_READ(DISP_ARB_CTL2);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~DISP_DATA_PARTITION_5_6;
			else
				val |= DISP_DATA_PARTITION_5_6;
			I915_WRITE(DISP_ARB_CTL2, val);
		}
2342 2343
	}

2344
	if (dirty & WM_DIRTY_FBC) {
2345 2346 2347 2348 2349 2350 2351 2352
		val = I915_READ(DISP_ARB_CTL);
		if (results->enable_fbc_wm)
			val &= ~DISP_FBC_WM_DIS;
		else
			val |= DISP_FBC_WM_DIS;
		I915_WRITE(DISP_ARB_CTL, val);
	}

2353 2354 2355 2356 2357
	if (dirty & WM_DIRTY_LP(1) &&
	    previous->wm_lp_spr[0] != results->wm_lp_spr[0])
		I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);

	if (INTEL_INFO(dev)->gen >= 7) {
2358 2359 2360 2361 2362
		if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
			I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
		if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
			I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
	}
2363

2364
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
2365
		I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2366
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
2367
		I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2368
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
2369
		I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2370 2371

	dev_priv->wm.hw = *results;
2372 2373
}

2374 2375 2376 2377 2378 2379 2380
static bool ilk_disable_lp_wm(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
}

2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421
/*
 * On gen9, we need to allocate Display Data Buffer (DDB) portions to the
 * different active planes.
 */

#define SKL_DDB_SIZE		896	/* in blocks */

static void
skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
				   struct drm_crtc *for_crtc,
				   const struct intel_wm_config *config,
				   const struct skl_pipe_wm_parameters *params,
				   struct skl_ddb_entry *alloc /* out */)
{
	struct drm_crtc *crtc;
	unsigned int pipe_size, ddb_size;
	int nth_active_pipe;

	if (!params->active) {
		alloc->start = 0;
		alloc->end = 0;
		return;
	}

	ddb_size = SKL_DDB_SIZE;

	ddb_size -= 4; /* 4 blocks for bypass path allocation */

	nth_active_pipe = 0;
	for_each_crtc(dev, crtc) {
		if (!intel_crtc_active(crtc))
			continue;

		if (crtc == for_crtc)
			break;

		nth_active_pipe++;
	}

	pipe_size = ddb_size / config->num_pipes_active;
	alloc->start = nth_active_pipe * ddb_size / config->num_pipes_active;
2422
	alloc->end = alloc->start + pipe_size;
2423 2424 2425 2426 2427 2428 2429 2430 2431 2432
}

static unsigned int skl_cursor_allocation(const struct intel_wm_config *config)
{
	if (config->num_pipes_active == 1)
		return 32;

	return 8;
}

2433 2434 2435 2436
static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
{
	entry->start = reg & 0x3ff;
	entry->end = (reg >> 16) & 0x3ff;
2437 2438
	if (entry->end)
		entry->end += 1;
2439 2440
}

2441 2442
void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
			  struct skl_ddb_allocation *ddb /* out */)
2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460
{
	struct drm_device *dev = dev_priv->dev;
	enum pipe pipe;
	int plane;
	u32 val;

	for_each_pipe(dev_priv, pipe) {
		for_each_plane(pipe, plane) {
			val = I915_READ(PLANE_BUF_CFG(pipe, plane));
			skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane],
						   val);
		}

		val = I915_READ(CUR_BUF_CFG(pipe));
		skl_ddb_entry_init_from_hw(&ddb->cursor[pipe], val);
	}
}

2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500
static unsigned int
skl_plane_relative_data_rate(const struct intel_plane_wm_parameters *p)
{
	return p->horiz_pixels * p->vert_pixels * p->bytes_per_pixel;
}

/*
 * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
 * a 8192x4096@32bpp framebuffer:
 *   3 * 4096 * 8192  * 4 < 2^32
 */
static unsigned int
skl_get_total_relative_data_rate(struct intel_crtc *intel_crtc,
				 const struct skl_pipe_wm_parameters *params)
{
	unsigned int total_data_rate = 0;
	int plane;

	for (plane = 0; plane < intel_num_planes(intel_crtc); plane++) {
		const struct intel_plane_wm_parameters *p;

		p = &params->plane[plane];
		if (!p->enabled)
			continue;

		total_data_rate += skl_plane_relative_data_rate(p);
	}

	return total_data_rate;
}

static void
skl_allocate_pipe_ddb(struct drm_crtc *crtc,
		      const struct intel_wm_config *config,
		      const struct skl_pipe_wm_parameters *params,
		      struct skl_ddb_allocation *ddb /* out */)
{
	struct drm_device *dev = crtc->dev;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	enum pipe pipe = intel_crtc->pipe;
2501
	struct skl_ddb_entry *alloc = &ddb->pipe[pipe];
2502 2503 2504 2505
	uint16_t alloc_size, start, cursor_blocks;
	unsigned int total_data_rate;
	int plane;

2506 2507
	skl_ddb_get_pipe_allocation_limits(dev, crtc, config, params, alloc);
	alloc_size = skl_ddb_entry_size(alloc);
2508 2509 2510 2511 2512 2513 2514
	if (alloc_size == 0) {
		memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
		memset(&ddb->cursor[pipe], 0, sizeof(ddb->cursor[pipe]));
		return;
	}

	cursor_blocks = skl_cursor_allocation(config);
2515 2516
	ddb->cursor[pipe].start = alloc->end - cursor_blocks;
	ddb->cursor[pipe].end = alloc->end;
2517 2518

	alloc_size -= cursor_blocks;
2519
	alloc->end -= cursor_blocks;
2520 2521 2522 2523 2524 2525 2526 2527 2528

	/*
	 * Each active plane get a portion of the remaining space, in
	 * proportion to the amount of data they need to fetch from memory.
	 *
	 * FIXME: we may not allocate every single block here.
	 */
	total_data_rate = skl_get_total_relative_data_rate(intel_crtc, params);

2529
	start = alloc->start;
2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548
	for (plane = 0; plane < intel_num_planes(intel_crtc); plane++) {
		const struct intel_plane_wm_parameters *p;
		unsigned int data_rate;
		uint16_t plane_blocks;

		p = &params->plane[plane];
		if (!p->enabled)
			continue;

		data_rate = skl_plane_relative_data_rate(p);

		/*
		 * promote the expression to 64 bits to avoid overflowing, the
		 * result is < available as data_rate / total_data_rate < 1
		 */
		plane_blocks = div_u64((uint64_t)alloc_size * data_rate,
				       total_data_rate);

		ddb->plane[pipe][plane].start = start;
2549
		ddb->plane[pipe][plane].end = start + plane_blocks;
2550 2551 2552 2553 2554 2555

		start += plane_blocks;
	}

}

2556
static uint32_t skl_pipe_pixel_rate(const struct intel_crtc_state *config)
2557 2558
{
	/* TODO: Take into account the scalers once we support them */
2559
	return config->base.adjusted_mode.crtc_clock;
2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646
}

/*
 * The max latency should be 257 (max the punit can code is 255 and we add 2us
 * for the read latency) and bytes_per_pixel should always be <= 8, so that
 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
*/
static uint32_t skl_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
			       uint32_t latency)
{
	uint32_t wm_intermediate_val, ret;

	if (latency == 0)
		return UINT_MAX;

	wm_intermediate_val = latency * pixel_rate * bytes_per_pixel;
	ret = DIV_ROUND_UP(wm_intermediate_val, 1000);

	return ret;
}

static uint32_t skl_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
			       uint32_t horiz_pixels, uint8_t bytes_per_pixel,
			       uint32_t latency)
{
	uint32_t ret, plane_bytes_per_line, wm_intermediate_val;

	if (latency == 0)
		return UINT_MAX;

	plane_bytes_per_line = horiz_pixels * bytes_per_pixel;
	wm_intermediate_val = latency * pixel_rate;
	ret = DIV_ROUND_UP(wm_intermediate_val, pipe_htotal * 1000) *
				plane_bytes_per_line;

	return ret;
}

static bool skl_ddb_allocation_changed(const struct skl_ddb_allocation *new_ddb,
				       const struct intel_crtc *intel_crtc)
{
	struct drm_device *dev = intel_crtc->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	const struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;
	enum pipe pipe = intel_crtc->pipe;

	if (memcmp(new_ddb->plane[pipe], cur_ddb->plane[pipe],
		   sizeof(new_ddb->plane[pipe])))
		return true;

	if (memcmp(&new_ddb->cursor[pipe], &cur_ddb->cursor[pipe],
		    sizeof(new_ddb->cursor[pipe])))
		return true;

	return false;
}

static void skl_compute_wm_global_parameters(struct drm_device *dev,
					     struct intel_wm_config *config)
{
	struct drm_crtc *crtc;
	struct drm_plane *plane;

	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
		config->num_pipes_active += intel_crtc_active(crtc);

	/* FIXME: I don't think we need those two global parameters on SKL */
	list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
		struct intel_plane *intel_plane = to_intel_plane(plane);

		config->sprites_enabled |= intel_plane->wm.enabled;
		config->sprites_scaled |= intel_plane->wm.scaled;
	}
}

static void skl_compute_wm_pipe_parameters(struct drm_crtc *crtc,
					   struct skl_pipe_wm_parameters *p)
{
	struct drm_device *dev = crtc->dev;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	enum pipe pipe = intel_crtc->pipe;
	struct drm_plane *plane;
	int i = 1; /* Index for sprite planes start */

	p->active = intel_crtc_active(crtc);
	if (p->active) {
2647 2648
		p->pipe_htotal = intel_crtc->config->base.adjusted_mode.crtc_htotal;
		p->pixel_rate = skl_pipe_pixel_rate(intel_crtc->config);
2649 2650 2651 2652 2653 2654 2655

		/*
		 * For now, assume primary and cursor planes are always enabled.
		 */
		p->plane[0].enabled = true;
		p->plane[0].bytes_per_pixel =
			crtc->primary->fb->bits_per_pixel / 8;
2656 2657
		p->plane[0].horiz_pixels = intel_crtc->config->pipe_src_w;
		p->plane[0].vert_pixels = intel_crtc->config->pipe_src_h;
2658 2659 2660 2661 2662 2663 2664 2665 2666 2667

		p->cursor.enabled = true;
		p->cursor.bytes_per_pixel = 4;
		p->cursor.horiz_pixels = intel_crtc->cursor_width ?
					 intel_crtc->cursor_width : 64;
	}

	list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
		struct intel_plane *intel_plane = to_intel_plane(plane);

2668 2669
		if (intel_plane->pipe == pipe &&
			plane->type == DRM_PLANE_TYPE_OVERLAY)
2670 2671 2672 2673 2674
			p->plane[i++] = intel_plane->wm;
	}
}

static bool skl_compute_plane_wm(struct skl_pipe_wm_parameters *p,
2675 2676 2677 2678 2679
				 struct intel_plane_wm_parameters *p_params,
				 uint16_t ddb_allocation,
				 uint32_t mem_value,
				 uint16_t *out_blocks, /* out */
				 uint8_t *out_lines /* out */)
2680
{
2681
	uint32_t method1, method2, plane_bytes_per_line, res_blocks, res_lines;
2682 2683
	uint32_t result_bytes;

2684
	if (mem_value == 0 || !p->active || !p_params->enabled)
2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699
		return false;

	method1 = skl_wm_method1(p->pixel_rate,
				 p_params->bytes_per_pixel,
				 mem_value);
	method2 = skl_wm_method2(p->pixel_rate,
				 p->pipe_htotal,
				 p_params->horiz_pixels,
				 p_params->bytes_per_pixel,
				 mem_value);

	plane_bytes_per_line = p_params->horiz_pixels *
					p_params->bytes_per_pixel;

	/* For now xtile and linear */
2700
	if (((ddb_allocation * 512) / plane_bytes_per_line) >= 1)
2701 2702 2703 2704
		result_bytes = min(method1, method2);
	else
		result_bytes = method1;

2705 2706 2707 2708 2709 2710 2711 2712
	res_blocks = DIV_ROUND_UP(result_bytes, 512) + 1;
	res_lines = DIV_ROUND_UP(result_bytes, plane_bytes_per_line);

	if (res_blocks > ddb_allocation || res_lines > 31)
		return false;

	*out_blocks = res_blocks;
	*out_lines = res_lines;
2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744

	return true;
}

static void skl_compute_wm_level(const struct drm_i915_private *dev_priv,
				 struct skl_ddb_allocation *ddb,
				 struct skl_pipe_wm_parameters *p,
				 enum pipe pipe,
				 int level,
				 int num_planes,
				 struct skl_wm_level *result)
{
	uint16_t latency = dev_priv->wm.skl_latency[level];
	uint16_t ddb_blocks;
	int i;

	for (i = 0; i < num_planes; i++) {
		ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][i]);

		result->plane_en[i] = skl_compute_plane_wm(p, &p->plane[i],
						ddb_blocks,
						latency,
						&result->plane_res_b[i],
						&result->plane_res_l[i]);
	}

	ddb_blocks = skl_ddb_entry_size(&ddb->cursor[pipe]);
	result->cursor_en = skl_compute_plane_wm(p, &p->cursor, ddb_blocks,
						 latency, &result->cursor_res_b,
						 &result->cursor_res_l);
}

2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756
static uint32_t
skl_compute_linetime_wm(struct drm_crtc *crtc, struct skl_pipe_wm_parameters *p)
{
	if (!intel_crtc_active(crtc))
		return 0;

	return DIV_ROUND_UP(8 * p->pipe_htotal * 1000, p->pixel_rate);

}

static void skl_compute_transition_wm(struct drm_crtc *crtc,
				      struct skl_pipe_wm_parameters *params,
2757
				      struct skl_wm_level *trans_wm /* out */)
2758
{
2759 2760 2761
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	int i;

2762 2763
	if (!params->active)
		return;
2764 2765 2766 2767 2768

	/* Until we know more, just disable transition WMs */
	for (i = 0; i < intel_num_planes(intel_crtc); i++)
		trans_wm->plane_en[i] = false;
	trans_wm->cursor_en = false;
2769 2770
}

2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787
static void skl_compute_pipe_wm(struct drm_crtc *crtc,
				struct skl_ddb_allocation *ddb,
				struct skl_pipe_wm_parameters *params,
				struct skl_pipe_wm *pipe_wm)
{
	struct drm_device *dev = crtc->dev;
	const struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	int level, max_level = ilk_wm_max_level(dev);

	for (level = 0; level <= max_level; level++) {
		skl_compute_wm_level(dev_priv, ddb, params, intel_crtc->pipe,
				     level, intel_num_planes(intel_crtc),
				     &pipe_wm->wm[level]);
	}
	pipe_wm->linetime = skl_compute_linetime_wm(crtc, params);

2788
	skl_compute_transition_wm(crtc, params, &pipe_wm->trans_wm);
2789 2790 2791 2792 2793 2794 2795 2796 2797 2798
}

static void skl_compute_wm_results(struct drm_device *dev,
				   struct skl_pipe_wm_parameters *p,
				   struct skl_pipe_wm *p_wm,
				   struct skl_wm_values *r,
				   struct intel_crtc *intel_crtc)
{
	int level, max_level = ilk_wm_max_level(dev);
	enum pipe pipe = intel_crtc->pipe;
2799 2800
	uint32_t temp;
	int i;
2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826

	for (level = 0; level <= max_level; level++) {
		for (i = 0; i < intel_num_planes(intel_crtc); i++) {
			temp = 0;

			temp |= p_wm->wm[level].plane_res_l[i] <<
					PLANE_WM_LINES_SHIFT;
			temp |= p_wm->wm[level].plane_res_b[i];
			if (p_wm->wm[level].plane_en[i])
				temp |= PLANE_WM_EN;

			r->plane[pipe][i][level] = temp;
		}

		temp = 0;

		temp |= p_wm->wm[level].cursor_res_l << PLANE_WM_LINES_SHIFT;
		temp |= p_wm->wm[level].cursor_res_b;

		if (p_wm->wm[level].cursor_en)
			temp |= PLANE_WM_EN;

		r->cursor[pipe][level] = temp;

	}

2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845
	/* transition WMs */
	for (i = 0; i < intel_num_planes(intel_crtc); i++) {
		temp = 0;
		temp |= p_wm->trans_wm.plane_res_l[i] << PLANE_WM_LINES_SHIFT;
		temp |= p_wm->trans_wm.plane_res_b[i];
		if (p_wm->trans_wm.plane_en[i])
			temp |= PLANE_WM_EN;

		r->plane_trans[pipe][i] = temp;
	}

	temp = 0;
	temp |= p_wm->trans_wm.cursor_res_l << PLANE_WM_LINES_SHIFT;
	temp |= p_wm->trans_wm.cursor_res_b;
	if (p_wm->trans_wm.cursor_en)
		temp |= PLANE_WM_EN;

	r->cursor_trans[pipe] = temp;

2846 2847 2848
	r->wm_linetime[pipe] = p_wm->linetime;
}

2849 2850 2851 2852 2853 2854 2855 2856 2857
static void skl_ddb_entry_write(struct drm_i915_private *dev_priv, uint32_t reg,
				const struct skl_ddb_entry *entry)
{
	if (entry->end)
		I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
	else
		I915_WRITE(reg, 0);
}

2858 2859 2860 2861 2862 2863 2864 2865 2866 2867
static void skl_write_wm_values(struct drm_i915_private *dev_priv,
				const struct skl_wm_values *new)
{
	struct drm_device *dev = dev_priv->dev;
	struct intel_crtc *crtc;

	list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
		int i, level, max_level = ilk_wm_max_level(dev);
		enum pipe pipe = crtc->pipe;

2868 2869
		if (!new->dirty[pipe])
			continue;
2870

2871
		I915_WRITE(PIPE_WM_LINETIME(pipe), new->wm_linetime[pipe]);
2872

2873 2874 2875 2876 2877 2878
		for (level = 0; level <= max_level; level++) {
			for (i = 0; i < intel_num_planes(crtc); i++)
				I915_WRITE(PLANE_WM(pipe, i, level),
					   new->plane[pipe][i][level]);
			I915_WRITE(CUR_WM(pipe, level),
				   new->cursor[pipe][level]);
2879
		}
2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891
		for (i = 0; i < intel_num_planes(crtc); i++)
			I915_WRITE(PLANE_WM_TRANS(pipe, i),
				   new->plane_trans[pipe][i]);
		I915_WRITE(CUR_WM_TRANS(pipe), new->cursor_trans[pipe]);

		for (i = 0; i < intel_num_planes(crtc); i++)
			skl_ddb_entry_write(dev_priv,
					    PLANE_BUF_CFG(pipe, i),
					    &new->ddb.plane[pipe][i]);

		skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
				    &new->ddb.cursor[pipe]);
2892 2893 2894
	}
}

2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918
/*
 * When setting up a new DDB allocation arrangement, we need to correctly
 * sequence the times at which the new allocations for the pipes are taken into
 * account or we'll have pipes fetching from space previously allocated to
 * another pipe.
 *
 * Roughly the sequence looks like:
 *  1. re-allocate the pipe(s) with the allocation being reduced and not
 *     overlapping with a previous light-up pipe (another way to put it is:
 *     pipes with their new allocation strickly included into their old ones).
 *  2. re-allocate the other pipes that get their allocation reduced
 *  3. allocate the pipes having their allocation increased
 *
 * Steps 1. and 2. are here to take care of the following case:
 * - Initially DDB looks like this:
 *     |   B    |   C    |
 * - enable pipe A.
 * - pipe B has a reduced DDB allocation that overlaps with the old pipe C
 *   allocation
 *     |  A  |  B  |  C  |
 *
 * We need to sequence the re-allocation: C, B, A (and not B, C, A).
 */

2919 2920
static void
skl_wm_flush_pipe(struct drm_i915_private *dev_priv, enum pipe pipe, int pass)
2921 2922 2923 2924
{
	struct drm_device *dev = dev_priv->dev;
	int plane;

2925 2926
	DRM_DEBUG_KMS("flush pipe %c (pass %d)\n", pipe_name(pipe), pass);

2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976
	for_each_plane(pipe, plane) {
		I915_WRITE(PLANE_SURF(pipe, plane),
			   I915_READ(PLANE_SURF(pipe, plane)));
	}
	I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
}

static bool
skl_ddb_allocation_included(const struct skl_ddb_allocation *old,
			    const struct skl_ddb_allocation *new,
			    enum pipe pipe)
{
	uint16_t old_size, new_size;

	old_size = skl_ddb_entry_size(&old->pipe[pipe]);
	new_size = skl_ddb_entry_size(&new->pipe[pipe]);

	return old_size != new_size &&
	       new->pipe[pipe].start >= old->pipe[pipe].start &&
	       new->pipe[pipe].end <= old->pipe[pipe].end;
}

static void skl_flush_wm_values(struct drm_i915_private *dev_priv,
				struct skl_wm_values *new_values)
{
	struct drm_device *dev = dev_priv->dev;
	struct skl_ddb_allocation *cur_ddb, *new_ddb;
	bool reallocated[I915_MAX_PIPES] = {false, false, false};
	struct intel_crtc *crtc;
	enum pipe pipe;

	new_ddb = &new_values->ddb;
	cur_ddb = &dev_priv->wm.skl_hw.ddb;

	/*
	 * First pass: flush the pipes with the new allocation contained into
	 * the old space.
	 *
	 * We'll wait for the vblank on those pipes to ensure we can safely
	 * re-allocate the freed space without this pipe fetching from it.
	 */
	for_each_intel_crtc(dev, crtc) {
		if (!crtc->active)
			continue;

		pipe = crtc->pipe;

		if (!skl_ddb_allocation_included(cur_ddb, new_ddb, pipe))
			continue;

2977
		skl_wm_flush_pipe(dev_priv, pipe, 1);
2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001
		intel_wait_for_vblank(dev, pipe);

		reallocated[pipe] = true;
	}


	/*
	 * Second pass: flush the pipes that are having their allocation
	 * reduced, but overlapping with a previous allocation.
	 *
	 * Here as well we need to wait for the vblank to make sure the freed
	 * space is not used anymore.
	 */
	for_each_intel_crtc(dev, crtc) {
		if (!crtc->active)
			continue;

		pipe = crtc->pipe;

		if (reallocated[pipe])
			continue;

		if (skl_ddb_entry_size(&new_ddb->pipe[pipe]) <
		    skl_ddb_entry_size(&cur_ddb->pipe[pipe])) {
3002
			skl_wm_flush_pipe(dev_priv, pipe, 2);
3003
			intel_wait_for_vblank(dev, pipe);
3004
			reallocated[pipe] = true;
3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026
		}
	}

	/*
	 * Third pass: flush the pipes that got more space allocated.
	 *
	 * We don't need to actively wait for the update here, next vblank
	 * will just get more DDB space with the correct WM values.
	 */
	for_each_intel_crtc(dev, crtc) {
		if (!crtc->active)
			continue;

		pipe = crtc->pipe;

		/*
		 * At this point, only the pipes more space than before are
		 * left to re-allocate.
		 */
		if (reallocated[pipe])
			continue;

3027
		skl_wm_flush_pipe(dev_priv, pipe, 3);
3028 3029 3030
	}
}

3031 3032 3033 3034 3035 3036 3037 3038 3039
static bool skl_update_pipe_wm(struct drm_crtc *crtc,
			       struct skl_pipe_wm_parameters *params,
			       struct intel_wm_config *config,
			       struct skl_ddb_allocation *ddb, /* out */
			       struct skl_pipe_wm *pipe_wm /* out */)
{
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);

	skl_compute_wm_pipe_parameters(crtc, params);
3040
	skl_allocate_pipe_ddb(crtc, config, params, ddb);
3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121
	skl_compute_pipe_wm(crtc, ddb, params, pipe_wm);

	if (!memcmp(&intel_crtc->wm.skl_active, pipe_wm, sizeof(*pipe_wm)))
		return false;

	intel_crtc->wm.skl_active = *pipe_wm;
	return true;
}

static void skl_update_other_pipe_wm(struct drm_device *dev,
				     struct drm_crtc *crtc,
				     struct intel_wm_config *config,
				     struct skl_wm_values *r)
{
	struct intel_crtc *intel_crtc;
	struct intel_crtc *this_crtc = to_intel_crtc(crtc);

	/*
	 * If the WM update hasn't changed the allocation for this_crtc (the
	 * crtc we are currently computing the new WM values for), other
	 * enabled crtcs will keep the same allocation and we don't need to
	 * recompute anything for them.
	 */
	if (!skl_ddb_allocation_changed(&r->ddb, this_crtc))
		return;

	/*
	 * Otherwise, because of this_crtc being freshly enabled/disabled, the
	 * other active pipes need new DDB allocation and WM values.
	 */
	list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
				base.head) {
		struct skl_pipe_wm_parameters params = {};
		struct skl_pipe_wm pipe_wm = {};
		bool wm_changed;

		if (this_crtc->pipe == intel_crtc->pipe)
			continue;

		if (!intel_crtc->active)
			continue;

		wm_changed = skl_update_pipe_wm(&intel_crtc->base,
						&params, config,
						&r->ddb, &pipe_wm);

		/*
		 * If we end up re-computing the other pipe WM values, it's
		 * because it was really needed, so we expect the WM values to
		 * be different.
		 */
		WARN_ON(!wm_changed);

		skl_compute_wm_results(dev, &params, &pipe_wm, r, intel_crtc);
		r->dirty[intel_crtc->pipe] = true;
	}
}

static void skl_update_wm(struct drm_crtc *crtc)
{
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct skl_pipe_wm_parameters params = {};
	struct skl_wm_values *results = &dev_priv->wm.skl_results;
	struct skl_pipe_wm pipe_wm = {};
	struct intel_wm_config config = {};

	memset(results, 0, sizeof(*results));

	skl_compute_wm_global_parameters(dev, &config);

	if (!skl_update_pipe_wm(crtc, &params, &config,
				&results->ddb, &pipe_wm))
		return;

	skl_compute_wm_results(dev, &params, &pipe_wm, results, intel_crtc);
	results->dirty[intel_crtc->pipe] = true;

	skl_update_other_pipe_wm(dev, crtc, &config, results);
	skl_write_wm_values(dev_priv, results);
3122
	skl_flush_wm_values(dev_priv, results);
3123 3124 3125

	/* store the new configuration */
	dev_priv->wm.skl_hw = *results;
3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143
}

static void
skl_update_sprite_wm(struct drm_plane *plane, struct drm_crtc *crtc,
		     uint32_t sprite_width, uint32_t sprite_height,
		     int pixel_size, bool enabled, bool scaled)
{
	struct intel_plane *intel_plane = to_intel_plane(plane);

	intel_plane->wm.enabled = enabled;
	intel_plane->wm.scaled = scaled;
	intel_plane->wm.horiz_pixels = sprite_width;
	intel_plane->wm.vert_pixels = sprite_height;
	intel_plane->wm.bytes_per_pixel = pixel_size;

	skl_update_wm(crtc);
}

3144
static void ilk_update_wm(struct drm_crtc *crtc)
3145
{
3146
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3147
	struct drm_device *dev = crtc->dev;
3148
	struct drm_i915_private *dev_priv = dev->dev_private;
3149 3150 3151
	struct ilk_wm_maximums max;
	struct ilk_pipe_wm_parameters params = {};
	struct ilk_wm_values results = {};
3152
	enum intel_ddb_partitioning partitioning;
3153
	struct intel_pipe_wm pipe_wm = {};
3154
	struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
3155
	struct intel_wm_config config = {};
3156

3157
	ilk_compute_wm_parameters(crtc, &params);
3158 3159 3160 3161 3162

	intel_compute_pipe_wm(crtc, &params, &pipe_wm);

	if (!memcmp(&intel_crtc->wm.active, &pipe_wm, sizeof(pipe_wm)))
		return;
3163

3164
	intel_crtc->wm.active = pipe_wm;
3165

3166 3167
	ilk_compute_wm_config(dev, &config);

3168
	ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
3169
	ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
3170 3171

	/* 5/6 split only in single pipe config on IVB+ */
3172 3173
	if (INTEL_INFO(dev)->gen >= 7 &&
	    config.num_pipes_active == 1 && config.sprites_enabled) {
3174
		ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
3175
		ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
3176

3177
		best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
3178
	} else {
3179
		best_lp_wm = &lp_wm_1_2;
3180 3181
	}

3182
	partitioning = (best_lp_wm == &lp_wm_1_2) ?
3183
		       INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
3184

3185
	ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
3186

3187
	ilk_write_wm_values(dev_priv, &results);
3188 3189
}

3190 3191 3192 3193 3194
static void
ilk_update_sprite_wm(struct drm_plane *plane,
		     struct drm_crtc *crtc,
		     uint32_t sprite_width, uint32_t sprite_height,
		     int pixel_size, bool enabled, bool scaled)
3195
{
3196
	struct drm_device *dev = plane->dev;
3197
	struct intel_plane *intel_plane = to_intel_plane(plane);
3198

3199 3200 3201
	intel_plane->wm.enabled = enabled;
	intel_plane->wm.scaled = scaled;
	intel_plane->wm.horiz_pixels = sprite_width;
3202
	intel_plane->wm.vert_pixels = sprite_width;
3203
	intel_plane->wm.bytes_per_pixel = pixel_size;
3204

3205 3206 3207 3208 3209 3210 3211 3212 3213 3214
	/*
	 * IVB workaround: must disable low power watermarks for at least
	 * one frame before enabling scaling.  LP watermarks can be re-enabled
	 * when scaling is disabled.
	 *
	 * WaCxSRDisabledForSpriteScaling:ivb
	 */
	if (IS_IVYBRIDGE(dev) && scaled && ilk_disable_lp_wm(dev))
		intel_wait_for_vblank(dev, intel_plane->pipe);

3215
	ilk_update_wm(crtc);
3216 3217
}

3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315
static void skl_pipe_wm_active_state(uint32_t val,
				     struct skl_pipe_wm *active,
				     bool is_transwm,
				     bool is_cursor,
				     int i,
				     int level)
{
	bool is_enabled = (val & PLANE_WM_EN) != 0;

	if (!is_transwm) {
		if (!is_cursor) {
			active->wm[level].plane_en[i] = is_enabled;
			active->wm[level].plane_res_b[i] =
					val & PLANE_WM_BLOCKS_MASK;
			active->wm[level].plane_res_l[i] =
					(val >> PLANE_WM_LINES_SHIFT) &
						PLANE_WM_LINES_MASK;
		} else {
			active->wm[level].cursor_en = is_enabled;
			active->wm[level].cursor_res_b =
					val & PLANE_WM_BLOCKS_MASK;
			active->wm[level].cursor_res_l =
					(val >> PLANE_WM_LINES_SHIFT) &
						PLANE_WM_LINES_MASK;
		}
	} else {
		if (!is_cursor) {
			active->trans_wm.plane_en[i] = is_enabled;
			active->trans_wm.plane_res_b[i] =
					val & PLANE_WM_BLOCKS_MASK;
			active->trans_wm.plane_res_l[i] =
					(val >> PLANE_WM_LINES_SHIFT) &
						PLANE_WM_LINES_MASK;
		} else {
			active->trans_wm.cursor_en = is_enabled;
			active->trans_wm.cursor_res_b =
					val & PLANE_WM_BLOCKS_MASK;
			active->trans_wm.cursor_res_l =
					(val >> PLANE_WM_LINES_SHIFT) &
						PLANE_WM_LINES_MASK;
		}
	}
}

static void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct skl_pipe_wm *active = &intel_crtc->wm.skl_active;
	enum pipe pipe = intel_crtc->pipe;
	int level, i, max_level;
	uint32_t temp;

	max_level = ilk_wm_max_level(dev);

	hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));

	for (level = 0; level <= max_level; level++) {
		for (i = 0; i < intel_num_planes(intel_crtc); i++)
			hw->plane[pipe][i][level] =
					I915_READ(PLANE_WM(pipe, i, level));
		hw->cursor[pipe][level] = I915_READ(CUR_WM(pipe, level));
	}

	for (i = 0; i < intel_num_planes(intel_crtc); i++)
		hw->plane_trans[pipe][i] = I915_READ(PLANE_WM_TRANS(pipe, i));
	hw->cursor_trans[pipe] = I915_READ(CUR_WM_TRANS(pipe));

	if (!intel_crtc_active(crtc))
		return;

	hw->dirty[pipe] = true;

	active->linetime = hw->wm_linetime[pipe];

	for (level = 0; level <= max_level; level++) {
		for (i = 0; i < intel_num_planes(intel_crtc); i++) {
			temp = hw->plane[pipe][i][level];
			skl_pipe_wm_active_state(temp, active, false,
						false, i, level);
		}
		temp = hw->cursor[pipe][level];
		skl_pipe_wm_active_state(temp, active, false, true, i, level);
	}

	for (i = 0; i < intel_num_planes(intel_crtc); i++) {
		temp = hw->plane_trans[pipe][i];
		skl_pipe_wm_active_state(temp, active, true, false, i, 0);
	}

	temp = hw->cursor_trans[pipe];
	skl_pipe_wm_active_state(temp, active, true, true, i, 0);
}

void skl_wm_get_hw_state(struct drm_device *dev)
{
3316 3317
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
3318 3319
	struct drm_crtc *crtc;

3320
	skl_ddb_get_hw_state(dev_priv, ddb);
3321 3322 3323 3324
	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
		skl_pipe_wm_get_hw_state(crtc);
}

3325 3326 3327 3328
static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
3329
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
3330 3331 3332 3333 3334 3335 3336 3337 3338 3339
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct intel_pipe_wm *active = &intel_crtc->wm.active;
	enum pipe pipe = intel_crtc->pipe;
	static const unsigned int wm0_pipe_reg[] = {
		[PIPE_A] = WM0_PIPEA_ILK,
		[PIPE_B] = WM0_PIPEB_ILK,
		[PIPE_C] = WM0_PIPEC_IVB,
	};

	hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
3340
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
3341
		hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
3342

3343 3344 3345
	active->pipe_enabled = intel_crtc_active(crtc);

	if (active->pipe_enabled) {
3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374
		u32 tmp = hw->wm_pipe[pipe];

		/*
		 * For active pipes LP0 watermark is marked as
		 * enabled, and LP1+ watermaks as disabled since
		 * we can't really reverse compute them in case
		 * multiple pipes are active.
		 */
		active->wm[0].enable = true;
		active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
		active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
		active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
		active->linetime = hw->wm_linetime[pipe];
	} else {
		int level, max_level = ilk_wm_max_level(dev);

		/*
		 * For inactive pipes, all watermark levels
		 * should be marked as enabled but zeroed,
		 * which is what we'd compute them to.
		 */
		for (level = 0; level <= max_level; level++)
			active->wm[level].enable = true;
	}
}

void ilk_wm_get_hw_state(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
3375
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
3376 3377
	struct drm_crtc *crtc;

3378
	for_each_crtc(dev, crtc)
3379 3380 3381 3382 3383 3384 3385
		ilk_pipe_wm_get_hw_state(crtc);

	hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
	hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
	hw->wm_lp[2] = I915_READ(WM3_LP_ILK);

	hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
3386 3387 3388 3389
	if (INTEL_INFO(dev)->gen >= 7) {
		hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
		hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
	}
3390

3391
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
3392 3393 3394 3395 3396
		hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
	else if (IS_IVYBRIDGE(dev))
		hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
3397 3398 3399 3400 3401

	hw->enable_fbc_wm =
		!(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
}

3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433
/**
 * intel_update_watermarks - update FIFO watermark values based on current modes
 *
 * Calculate watermark values for the various WM regs based on current mode
 * and plane configuration.
 *
 * There are several cases to deal with here:
 *   - normal (i.e. non-self-refresh)
 *   - self-refresh (SR) mode
 *   - lines are large relative to FIFO size (buffer can hold up to 2)
 *   - lines are small relative to FIFO size (buffer can hold more than 2
 *     lines), so need to account for TLB latency
 *
 *   The normal calculation is:
 *     watermark = dotclock * bytes per pixel * latency
 *   where latency is platform & configuration dependent (we assume pessimal
 *   values here).
 *
 *   The SR calculation is:
 *     watermark = (trunc(latency/line time)+1) * surface width *
 *       bytes per pixel
 *   where
 *     line time = htotal / dotclock
 *     surface width = hdisplay for normal plane and 64 for cursor
 *   and latency is assumed to be high, as above.
 *
 * The final value programmed to the register should always be rounded up,
 * and include an extra 2 entries to account for clock crossings.
 *
 * We don't use the sprite, so we can ignore that.  And on Crestline we have
 * to set the non-SR watermarks to 8.
 */
3434
void intel_update_watermarks(struct drm_crtc *crtc)
3435
{
3436
	struct drm_i915_private *dev_priv = crtc->dev->dev_private;
3437 3438

	if (dev_priv->display.update_wm)
3439
		dev_priv->display.update_wm(crtc);
3440 3441
}

3442 3443
void intel_update_sprite_watermarks(struct drm_plane *plane,
				    struct drm_crtc *crtc,
3444 3445 3446
				    uint32_t sprite_width,
				    uint32_t sprite_height,
				    int pixel_size,
3447
				    bool enabled, bool scaled)
3448
{
3449
	struct drm_i915_private *dev_priv = plane->dev->dev_private;
3450 3451

	if (dev_priv->display.update_sprite_wm)
3452 3453
		dev_priv->display.update_sprite_wm(plane, crtc,
						   sprite_width, sprite_height,
3454
						   pixel_size, enabled, scaled);
3455 3456
}

3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470
static struct drm_i915_gem_object *
intel_alloc_context_page(struct drm_device *dev)
{
	struct drm_i915_gem_object *ctx;
	int ret;

	WARN_ON(!mutex_is_locked(&dev->struct_mutex));

	ctx = i915_gem_alloc_object(dev, 4096);
	if (!ctx) {
		DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
		return NULL;
	}

3471
	ret = i915_gem_obj_ggtt_pin(ctx, 4096, 0);
3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485
	if (ret) {
		DRM_ERROR("failed to pin power context: %d\n", ret);
		goto err_unref;
	}

	ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
	if (ret) {
		DRM_ERROR("failed to set-domain on power context: %d\n", ret);
		goto err_unpin;
	}

	return ctx;

err_unpin:
B
Ben Widawsky 已提交
3486
	i915_gem_object_ggtt_unpin(ctx);
3487 3488 3489 3490 3491
err_unref:
	drm_gem_object_unreference(&ctx->base);
	return NULL;
}

3492 3493 3494 3495 3496 3497 3498 3499 3500
/**
 * Lock protecting IPS related data structures
 */
DEFINE_SPINLOCK(mchdev_lock);

/* Global for IPS driver to get at the current i915 device. Protected by
 * mchdev_lock. */
static struct drm_i915_private *i915_mch_dev;

3501 3502 3503 3504 3505
bool ironlake_set_drps(struct drm_device *dev, u8 val)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u16 rgvswctl;

3506 3507
	assert_spin_locked(&mchdev_lock);

3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524
	rgvswctl = I915_READ16(MEMSWCTL);
	if (rgvswctl & MEMCTL_CMD_STS) {
		DRM_DEBUG("gpu busy, RCS change rejected\n");
		return false; /* still busy with another command */
	}

	rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
		(val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
	I915_WRITE16(MEMSWCTL, rgvswctl);
	POSTING_READ16(MEMSWCTL);

	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE16(MEMSWCTL, rgvswctl);

	return true;
}

3525
static void ironlake_enable_drps(struct drm_device *dev)
3526 3527 3528 3529 3530
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 rgvmodectl = I915_READ(MEMMODECTL);
	u8 fmax, fmin, fstart, vstart;

3531 3532
	spin_lock_irq(&mchdev_lock);

3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555
	/* Enable temp reporting */
	I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
	I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);

	/* 100ms RC evaluation intervals */
	I915_WRITE(RCUPEI, 100000);
	I915_WRITE(RCDNEI, 100000);

	/* Set max/min thresholds to 90ms and 80ms respectively */
	I915_WRITE(RCBMAXAVG, 90000);
	I915_WRITE(RCBMINAVG, 80000);

	I915_WRITE(MEMIHYST, 1);

	/* Set up min, max, and cur for interrupt handling */
	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
		MEMMODE_FSTART_SHIFT;

	vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
		PXVFREQ_PX_SHIFT;

3556 3557
	dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
	dev_priv->ips.fstart = fstart;
3558

3559 3560 3561
	dev_priv->ips.max_delay = fstart;
	dev_priv->ips.min_delay = fmin;
	dev_priv->ips.cur_delay = fstart;
3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577

	DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
			 fmax, fmin, fstart);

	I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);

	/*
	 * Interrupts will be enabled in ironlake_irq_postinstall
	 */

	I915_WRITE(VIDSTART, vstart);
	POSTING_READ(VIDSTART);

	rgvmodectl |= MEMMODE_SWMODE_EN;
	I915_WRITE(MEMMODECTL, rgvmodectl);

3578
	if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
3579
		DRM_ERROR("stuck trying to change perf mode\n");
3580
	mdelay(1);
3581 3582 3583

	ironlake_set_drps(dev, fstart);

3584
	dev_priv->ips.last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
3585
		I915_READ(0x112e0);
3586 3587
	dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
	dev_priv->ips.last_count2 = I915_READ(0x112f4);
3588
	dev_priv->ips.last_time2 = ktime_get_raw_ns();
3589 3590

	spin_unlock_irq(&mchdev_lock);
3591 3592
}

3593
static void ironlake_disable_drps(struct drm_device *dev)
3594 3595
{
	struct drm_i915_private *dev_priv = dev->dev_private;
3596 3597 3598 3599 3600
	u16 rgvswctl;

	spin_lock_irq(&mchdev_lock);

	rgvswctl = I915_READ16(MEMSWCTL);
3601 3602 3603 3604 3605 3606 3607 3608 3609

	/* Ack interrupts, disable EFC interrupt */
	I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
	I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
	I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
	I915_WRITE(DEIIR, DE_PCU_EVENT);
	I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);

	/* Go back to the starting frequency */
3610
	ironlake_set_drps(dev, dev_priv->ips.fstart);
3611
	mdelay(1);
3612 3613
	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE(MEMSWCTL, rgvswctl);
3614
	mdelay(1);
3615

3616
	spin_unlock_irq(&mchdev_lock);
3617 3618
}

3619 3620 3621 3622 3623
/* There's a funny hw issue where the hw returns all 0 when reading from
 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
 * ourselves, instead of doing a rmw cycle (which might result in us clearing
 * all limits and the gpu stuck at whatever frequency it is at atm).
 */
3624
static u32 gen6_rps_limits(struct drm_i915_private *dev_priv, u8 val)
3625
{
3626
	u32 limits;
3627

3628 3629 3630 3631 3632 3633
	/* Only set the down limit when we've reached the lowest level to avoid
	 * getting more interrupts, otherwise leave this clear. This prevents a
	 * race in the hw when coming out of rc6: There's a tiny window where
	 * the hw runs at the minimal clock before selecting the desired
	 * frequency, if the down threshold expires in that window we will not
	 * receive a down interrupt. */
3634 3635 3636
	limits = dev_priv->rps.max_freq_softlimit << 24;
	if (val <= dev_priv->rps.min_freq_softlimit)
		limits |= dev_priv->rps.min_freq_softlimit << 16;
3637 3638 3639 3640

	return limits;
}

3641 3642 3643 3644 3645 3646 3647
static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
{
	int new_power;

	new_power = dev_priv->rps.power;
	switch (dev_priv->rps.power) {
	case LOW_POWER:
3648
		if (val > dev_priv->rps.efficient_freq + 1 && val > dev_priv->rps.cur_freq)
3649 3650 3651 3652
			new_power = BETWEEN;
		break;

	case BETWEEN:
3653
		if (val <= dev_priv->rps.efficient_freq && val < dev_priv->rps.cur_freq)
3654
			new_power = LOW_POWER;
3655
		else if (val >= dev_priv->rps.rp0_freq && val > dev_priv->rps.cur_freq)
3656 3657 3658 3659
			new_power = HIGH_POWER;
		break;

	case HIGH_POWER:
3660
		if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 && val < dev_priv->rps.cur_freq)
3661 3662 3663 3664
			new_power = BETWEEN;
		break;
	}
	/* Max/min bins are special */
3665
	if (val == dev_priv->rps.min_freq_softlimit)
3666
		new_power = LOW_POWER;
3667
	if (val == dev_priv->rps.max_freq_softlimit)
3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732
		new_power = HIGH_POWER;
	if (new_power == dev_priv->rps.power)
		return;

	/* Note the units here are not exactly 1us, but 1280ns. */
	switch (new_power) {
	case LOW_POWER:
		/* Upclock if more than 95% busy over 16ms */
		I915_WRITE(GEN6_RP_UP_EI, 12500);
		I915_WRITE(GEN6_RP_UP_THRESHOLD, 11800);

		/* Downclock if less than 85% busy over 32ms */
		I915_WRITE(GEN6_RP_DOWN_EI, 25000);
		I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 21250);

		I915_WRITE(GEN6_RP_CONTROL,
			   GEN6_RP_MEDIA_TURBO |
			   GEN6_RP_MEDIA_HW_NORMAL_MODE |
			   GEN6_RP_MEDIA_IS_GFX |
			   GEN6_RP_ENABLE |
			   GEN6_RP_UP_BUSY_AVG |
			   GEN6_RP_DOWN_IDLE_AVG);
		break;

	case BETWEEN:
		/* Upclock if more than 90% busy over 13ms */
		I915_WRITE(GEN6_RP_UP_EI, 10250);
		I915_WRITE(GEN6_RP_UP_THRESHOLD, 9225);

		/* Downclock if less than 75% busy over 32ms */
		I915_WRITE(GEN6_RP_DOWN_EI, 25000);
		I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 18750);

		I915_WRITE(GEN6_RP_CONTROL,
			   GEN6_RP_MEDIA_TURBO |
			   GEN6_RP_MEDIA_HW_NORMAL_MODE |
			   GEN6_RP_MEDIA_IS_GFX |
			   GEN6_RP_ENABLE |
			   GEN6_RP_UP_BUSY_AVG |
			   GEN6_RP_DOWN_IDLE_AVG);
		break;

	case HIGH_POWER:
		/* Upclock if more than 85% busy over 10ms */
		I915_WRITE(GEN6_RP_UP_EI, 8000);
		I915_WRITE(GEN6_RP_UP_THRESHOLD, 6800);

		/* Downclock if less than 60% busy over 32ms */
		I915_WRITE(GEN6_RP_DOWN_EI, 25000);
		I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 15000);

		I915_WRITE(GEN6_RP_CONTROL,
			   GEN6_RP_MEDIA_TURBO |
			   GEN6_RP_MEDIA_HW_NORMAL_MODE |
			   GEN6_RP_MEDIA_IS_GFX |
			   GEN6_RP_ENABLE |
			   GEN6_RP_UP_BUSY_AVG |
			   GEN6_RP_DOWN_IDLE_AVG);
		break;
	}

	dev_priv->rps.power = new_power;
	dev_priv->rps.last_adj = 0;
}

3733 3734 3735 3736 3737 3738 3739 3740 3741
static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
{
	u32 mask = 0;

	if (val > dev_priv->rps.min_freq_softlimit)
		mask |= GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
	if (val < dev_priv->rps.max_freq_softlimit)
		mask |= GEN6_PM_RP_UP_THRESHOLD;

3742 3743 3744
	mask |= dev_priv->pm_rps_events & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED);
	mask &= dev_priv->pm_rps_events;

3745
	return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
3746 3747
}

3748 3749 3750
/* gen6_set_rps is called to update the frequency request, but should also be
 * called when the range (min_delay and max_delay) is modified so that we can
 * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
3751
static void gen6_set_rps(struct drm_device *dev, u8 val)
3752 3753
{
	struct drm_i915_private *dev_priv = dev->dev_private;
3754

3755
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3756 3757
	WARN_ON(val > dev_priv->rps.max_freq_softlimit);
	WARN_ON(val < dev_priv->rps.min_freq_softlimit);
3758

C
Chris Wilson 已提交
3759 3760 3761 3762 3763
	/* min/max delay may still have been modified so be sure to
	 * write the limits value.
	 */
	if (val != dev_priv->rps.cur_freq) {
		gen6_set_rps_thresholds(dev_priv, val);
3764

3765
		if (IS_HASWELL(dev) || IS_BROADWELL(dev))
C
Chris Wilson 已提交
3766 3767 3768 3769 3770 3771 3772
			I915_WRITE(GEN6_RPNSWREQ,
				   HSW_FREQUENCY(val));
		else
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN6_FREQUENCY(val) |
				   GEN6_OFFSET(0) |
				   GEN6_AGGRESSIVE_TURBO);
3773
	}
3774 3775 3776 3777

	/* Make sure we continue to get interrupts
	 * until we hit the minimum or maximum frequencies.
	 */
C
Chris Wilson 已提交
3778
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, gen6_rps_limits(dev_priv, val));
3779
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
3780

3781 3782
	POSTING_READ(GEN6_RPNSWREQ);

3783
	dev_priv->rps.cur_freq = val;
3784
	trace_intel_gpu_freq_change(val * 50);
3785 3786
}

3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807
static void valleyview_set_rps(struct drm_device *dev, u8 val)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
	WARN_ON(val > dev_priv->rps.max_freq_softlimit);
	WARN_ON(val < dev_priv->rps.min_freq_softlimit);

	if (WARN_ONCE(IS_CHERRYVIEW(dev) && (val & 1),
		      "Odd GPU freq value\n"))
		val &= ~1;

	if (val != dev_priv->rps.cur_freq)
		vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);

	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));

	dev_priv->rps.cur_freq = val;
	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
}

3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818
/* vlv_set_rps_idle: Set the frequency to Rpn if Gfx clocks are down
 *
 * * If Gfx is Idle, then
 * 1. Mask Turbo interrupts
 * 2. Bring up Gfx clock
 * 3. Change the freq to Rpn and wait till P-Unit updates freq
 * 4. Clear the Force GFX CLK ON bit so that Gfx can down
 * 5. Unmask Turbo interrupts
*/
static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
{
3819 3820
	struct drm_device *dev = dev_priv->dev;

3821 3822
	/* CHV and latest VLV don't need to force the gfx clock */
	if (IS_CHERRYVIEW(dev) || dev->pdev->revision >= 0xd) {
3823 3824 3825 3826
		valleyview_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
		return;
	}

3827 3828 3829 3830
	/*
	 * When we are idle.  Drop to min voltage state.
	 */

3831
	if (dev_priv->rps.cur_freq <= dev_priv->rps.min_freq_softlimit)
3832 3833 3834
		return;

	/* Mask turbo interrupt so that they will not come in between */
3835 3836
	I915_WRITE(GEN6_PMINTRMSK,
		   gen6_sanitize_rps_pm_mask(dev_priv, ~0));
3837

3838
	vlv_force_gfx_clock(dev_priv, true);
3839

3840
	dev_priv->rps.cur_freq = dev_priv->rps.min_freq_softlimit;
3841 3842

	vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ,
3843
					dev_priv->rps.min_freq_softlimit);
3844 3845

	if (wait_for(((vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS))
3846
				& GENFREQSTATUS) == 0, 100))
3847 3848
		DRM_ERROR("timed out waiting for Punit\n");

3849
	vlv_force_gfx_clock(dev_priv, false);
3850

3851 3852
	I915_WRITE(GEN6_PMINTRMSK,
		   gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
3853 3854
}

3855 3856
void gen6_rps_idle(struct drm_i915_private *dev_priv)
{
3857 3858
	struct drm_device *dev = dev_priv->dev;

3859
	mutex_lock(&dev_priv->rps.hw_lock);
3860
	if (dev_priv->rps.enabled) {
3861
		if (IS_VALLEYVIEW(dev))
3862
			vlv_set_rps_idle(dev_priv);
3863
		else
3864
			gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
3865 3866
		dev_priv->rps.last_adj = 0;
	}
3867 3868 3869 3870 3871 3872
	mutex_unlock(&dev_priv->rps.hw_lock);
}

void gen6_rps_boost(struct drm_i915_private *dev_priv)
{
	mutex_lock(&dev_priv->rps.hw_lock);
3873
	if (dev_priv->rps.enabled) {
3874
		intel_set_rps(dev_priv->dev, dev_priv->rps.max_freq_softlimit);
3875 3876
		dev_priv->rps.last_adj = 0;
	}
3877 3878 3879
	mutex_unlock(&dev_priv->rps.hw_lock);
}

3880
void intel_set_rps(struct drm_device *dev, u8 val)
3881
{
3882 3883 3884 3885
	if (IS_VALLEYVIEW(dev))
		valleyview_set_rps(dev, val);
	else
		gen6_set_rps(dev, val);
3886 3887
}

Z
Zhe Wang 已提交
3888 3889 3890 3891 3892
static void gen9_disable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(GEN6_RC_CONTROL, 0);
3893
	I915_WRITE(GEN9_PG_ENABLE, 0);
Z
Zhe Wang 已提交
3894 3895
}

3896
static void gen6_disable_rps(struct drm_device *dev)
3897 3898 3899 3900
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(GEN6_RC_CONTROL, 0);
3901 3902 3903
	I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
}

3904 3905 3906 3907 3908 3909 3910
static void cherryview_disable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(GEN6_RC_CONTROL, 0);
}

3911 3912 3913 3914
static void valleyview_disable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

3915 3916
	/* we're doing forcewake before Disabling RC6,
	 * This what the BIOS expects when going into suspend */
3917
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
3918

3919
	I915_WRITE(GEN6_RC_CONTROL, 0);
3920

3921
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
3922 3923
}

B
Ben Widawsky 已提交
3924 3925
static void intel_print_rc6_info(struct drm_device *dev, u32 mode)
{
3926 3927 3928 3929 3930 3931
	if (IS_VALLEYVIEW(dev)) {
		if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
			mode = GEN6_RC_CTL_RC6_ENABLE;
		else
			mode = 0;
	}
3932 3933 3934 3935 3936 3937 3938 3939 3940
	if (HAS_RC6p(dev))
		DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s RC6p %s RC6pp %s\n",
			      (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
			      (mode & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
			      (mode & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");

	else
		DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s\n",
			      (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off");
B
Ben Widawsky 已提交
3941 3942
}

I
Imre Deak 已提交
3943
static int sanitize_rc6_option(const struct drm_device *dev, int enable_rc6)
3944
{
3945 3946 3947 3948
	/* No RC6 before Ironlake */
	if (INTEL_INFO(dev)->gen < 5)
		return 0;

I
Imre Deak 已提交
3949 3950 3951 3952
	/* RC6 is only on Ironlake mobile not on desktop */
	if (INTEL_INFO(dev)->gen == 5 && !IS_IRONLAKE_M(dev))
		return 0;

3953
	/* Respect the kernel parameter if it is set */
I
Imre Deak 已提交
3954 3955 3956
	if (enable_rc6 >= 0) {
		int mask;

3957
		if (HAS_RC6p(dev))
I
Imre Deak 已提交
3958 3959 3960 3961 3962 3963
			mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
			       INTEL_RC6pp_ENABLE;
		else
			mask = INTEL_RC6_ENABLE;

		if ((enable_rc6 & mask) != enable_rc6)
3964 3965
			DRM_DEBUG_KMS("Adjusting RC6 mask to %d (requested %d, valid %d)\n",
				      enable_rc6 & mask, enable_rc6, mask);
I
Imre Deak 已提交
3966 3967 3968

		return enable_rc6 & mask;
	}
3969

3970 3971 3972
	/* Disable RC6 on Ironlake */
	if (INTEL_INFO(dev)->gen == 5)
		return 0;
3973

3974
	if (IS_IVYBRIDGE(dev))
B
Ben Widawsky 已提交
3975
		return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
3976 3977

	return INTEL_RC6_ENABLE;
3978 3979
}

I
Imre Deak 已提交
3980 3981 3982 3983 3984
int intel_enable_rc6(const struct drm_device *dev)
{
	return i915.enable_rc6;
}

3985
static void gen6_init_rps_frequencies(struct drm_device *dev)
3986
{
3987 3988 3989 3990 3991 3992
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t rp_state_cap;
	u32 ddcc_status = 0;
	int ret;

	rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
3993 3994
	/* All of these values are in units of 50MHz */
	dev_priv->rps.cur_freq		= 0;
3995
	/* static values from HW: RP0 > RP1 > RPn (min_freq) */
3996
	dev_priv->rps.rp0_freq		= (rp_state_cap >>  0) & 0xff;
3997
	dev_priv->rps.rp1_freq		= (rp_state_cap >>  8) & 0xff;
3998 3999 4000 4001
	dev_priv->rps.min_freq		= (rp_state_cap >> 16) & 0xff;
	/* hw_max = RP0 until we check for overclocking */
	dev_priv->rps.max_freq		= dev_priv->rps.rp0_freq;

4002 4003 4004 4005 4006 4007 4008 4009 4010 4011
	dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
	if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
		ret = sandybridge_pcode_read(dev_priv,
					HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
					&ddcc_status);
		if (0 == ret)
			dev_priv->rps.efficient_freq =
				(ddcc_status >> 8) & 0xff;
	}

4012 4013 4014 4015
	/* Preserve min/max settings in case of re-init */
	if (dev_priv->rps.max_freq_softlimit == 0)
		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;

4016 4017 4018
	if (dev_priv->rps.min_freq_softlimit == 0) {
		if (IS_HASWELL(dev) || IS_BROADWELL(dev))
			dev_priv->rps.min_freq_softlimit =
4019 4020
				/* max(RPe, 450 MHz) */
				max(dev_priv->rps.efficient_freq, (u8) 9);
4021 4022 4023 4024
		else
			dev_priv->rps.min_freq_softlimit =
				dev_priv->rps.min_freq;
	}
4025 4026
}

J
Jesse Barnes 已提交
4027
/* See the Gen9_GT_PM_Programming_Guide doc for the below */
Z
Zhe Wang 已提交
4028
static void gen9_enable_rps(struct drm_device *dev)
J
Jesse Barnes 已提交
4029 4030 4031 4032 4033
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4034 4035
	gen6_init_rps_frequencies(dev);

J
Jesse Barnes 已提交
4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057
	I915_WRITE(GEN6_RPNSWREQ, 0xc800000);
	I915_WRITE(GEN6_RC_VIDEO_FREQ, 0xc800000);

	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 0xf4240);
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, 0x12060000);
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 0xe808);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 0x3bd08);
	I915_WRITE(GEN6_RP_UP_EI, 0x101d0);
	I915_WRITE(GEN6_RP_DOWN_EI, 0x55730);
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);
	I915_WRITE(GEN6_PMINTRMSK, 0x6);
	I915_WRITE(GEN6_RP_CONTROL, GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_MODE | GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE | GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

	gen6_enable_rps_interrupts(dev);

	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
}

static void gen9_enable_rc6(struct drm_device *dev)
Z
Zhe Wang 已提交
4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_engine_cs *ring;
	uint32_t rc6_mask = 0;
	int unused;

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4069
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
Z
Zhe Wang 已提交
4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	/* 2b: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
	for_each_ring(ring, dev_priv, unused)
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
	I915_WRITE(GEN6_RC_SLEEP, 0);
	I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */

4083 4084 4085 4086
	/* 2c: Program Coarse Power Gating Policies. */
	I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25);
	I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25);

Z
Zhe Wang 已提交
4087 4088 4089 4090 4091 4092 4093 4094 4095
	/* 3a: Enable RC6 */
	if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
	DRM_INFO("RC6 %s\n", (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
			"on" : "off");
	I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
				   GEN6_RC_CTL_EI_MODE(1) |
				   rc6_mask);

4096 4097 4098
	/* 3b: Enable Coarse Power Gating only when RC6 is enabled */
	I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ? 3 : 0);

4099
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
Z
Zhe Wang 已提交
4100 4101 4102

}

4103 4104 4105
static void gen8_enable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4106
	struct intel_engine_cs *ring;
4107
	uint32_t rc6_mask = 0;
4108 4109 4110 4111 4112 4113 4114
	int unused;

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* 1c & 1d: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4115
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4116 4117 4118 4119

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

4120 4121
	/* Initialize rps frequencies */
	gen6_init_rps_frequencies(dev);
4122 4123 4124 4125 4126 4127 4128 4129

	/* 2b: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
	for_each_ring(ring, dev_priv, unused)
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
	I915_WRITE(GEN6_RC_SLEEP, 0);
4130 4131 4132 4133
	if (IS_BROADWELL(dev))
		I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
	else
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
4134 4135 4136 4137

	/* 3: Enable RC6 */
	if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
4138
	intel_print_rc6_info(dev, rc6_mask);
4139 4140 4141 4142 4143 4144 4145 4146
	if (IS_BROADWELL(dev))
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
				GEN7_RC_CTL_TO_MODE |
				rc6_mask);
	else
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
				GEN6_RC_CTL_EI_MODE(1) |
				rc6_mask);
4147 4148

	/* 4 Program defaults and thresholds for RPS*/
4149 4150 4151 4152
	I915_WRITE(GEN6_RPNSWREQ,
		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166
	/* NB: Docs say 1s, and 1000000 - which aren't equivalent */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */

	/* Docs recommend 900MHz, and 300 MHz respectively */
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
		   dev_priv->rps.max_freq_softlimit << 24 |
		   dev_priv->rps.min_freq_softlimit << 16);

	I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
	I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
	I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
4167 4168

	/* 5: Enable RPS */
4169 4170 4171 4172 4173 4174 4175 4176 4177 4178
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

	/* 6: Ring frequency + overclocking (our driver does this later */

4179 4180
	dev_priv->rps.power = HIGH_POWER; /* force a reset */
	gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
4181

4182
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4183 4184
}

4185
static void gen6_enable_rps(struct drm_device *dev)
4186
{
4187
	struct drm_i915_private *dev_priv = dev->dev_private;
4188
	struct intel_engine_cs *ring;
4189
	u32 rc6vids, pcu_mbox = 0, rc6_mask = 0;
4190 4191
	u32 gtfifodbg;
	int rc6_mode;
B
Ben Widawsky 已提交
4192
	int i, ret;
4193

4194
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4195

4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209
	/* Here begins a magic sequence of register writes to enable
	 * auto-downclocking.
	 *
	 * Perhaps there might be some value in exposing these to
	 * userspace...
	 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* Clear the DBG now so we don't confuse earlier errors */
	if ((gtfifodbg = I915_READ(GTFIFODBG))) {
		DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

4210
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4211

4212 4213
	/* Initialize rps frequencies */
	gen6_init_rps_frequencies(dev);
J
Jeff McGee 已提交
4214

4215 4216 4217 4218 4219 4220 4221 4222 4223
	/* disable the counters and set deterministic thresholds */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
	I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

4224 4225
	for_each_ring(ring, dev_priv, i)
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4226 4227 4228

	I915_WRITE(GEN6_RC_SLEEP, 0);
	I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
4229
	if (IS_IVYBRIDGE(dev))
4230 4231 4232
		I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
	else
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
4233
	I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
4234 4235
	I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */

4236
	/* Check if we are enabling RC6 */
4237 4238 4239 4240
	rc6_mode = intel_enable_rc6(dev_priv->dev);
	if (rc6_mode & INTEL_RC6_ENABLE)
		rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;

4241 4242 4243 4244
	/* We don't use those on Haswell */
	if (!IS_HASWELL(dev)) {
		if (rc6_mode & INTEL_RC6p_ENABLE)
			rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
4245

4246 4247 4248
		if (rc6_mode & INTEL_RC6pp_ENABLE)
			rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
	}
4249

B
Ben Widawsky 已提交
4250
	intel_print_rc6_info(dev, rc6_mask);
4251 4252 4253 4254 4255 4256

	I915_WRITE(GEN6_RC_CONTROL,
		   rc6_mask |
		   GEN6_RC_CTL_EI_MODE(1) |
		   GEN6_RC_CTL_HW_ENABLE);

4257 4258
	/* Power down if completely idle for over 50ms */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
4259 4260
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

B
Ben Widawsky 已提交
4261
	ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
4262
	if (ret)
B
Ben Widawsky 已提交
4263
		DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
4264 4265 4266 4267

	ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
	if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
		DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
4268
				 (dev_priv->rps.max_freq_softlimit & 0xff) * 50,
4269
				 (pcu_mbox & 0xff) * 50);
4270
		dev_priv->rps.max_freq = pcu_mbox & 0xff;
4271 4272
	}

4273
	dev_priv->rps.power = HIGH_POWER; /* force a reset */
4274
	gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
4275

4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289
	rc6vids = 0;
	ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
	if (IS_GEN6(dev) && ret) {
		DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
	} else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
		DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
			  GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
		rc6vids &= 0xffff00;
		rc6vids |= GEN6_ENCODE_RC6_VID(450);
		ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
		if (ret)
			DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
	}

4290
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4291 4292
}

4293
static void __gen6_update_ring_freq(struct drm_device *dev)
4294
{
4295
	struct drm_i915_private *dev_priv = dev->dev_private;
4296
	int min_freq = 15;
4297 4298
	unsigned int gpu_freq;
	unsigned int max_ia_freq, min_ring_freq;
4299
	int scaling_factor = 180;
4300
	struct cpufreq_policy *policy;
4301

4302
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4303

4304 4305 4306 4307 4308 4309 4310 4311 4312
	policy = cpufreq_cpu_get(0);
	if (policy) {
		max_ia_freq = policy->cpuinfo.max_freq;
		cpufreq_cpu_put(policy);
	} else {
		/*
		 * Default to measured freq if none found, PCU will ensure we
		 * don't go over
		 */
4313
		max_ia_freq = tsc_khz;
4314
	}
4315 4316 4317 4318

	/* Convert from kHz to MHz */
	max_ia_freq /= 1000;

4319
	min_ring_freq = I915_READ(DCLK) & 0xf;
4320 4321
	/* convert DDR frequency from units of 266.6MHz to bandwidth */
	min_ring_freq = mult_frac(min_ring_freq, 8, 3);
4322

4323 4324 4325 4326 4327
	/*
	 * For each potential GPU frequency, load a ring frequency we'd like
	 * to use for memory access.  We do this by specifying the IA frequency
	 * the PCU should use as a reference to determine the ring frequency.
	 */
4328
	for (gpu_freq = dev_priv->rps.max_freq; gpu_freq >= dev_priv->rps.min_freq;
4329
	     gpu_freq--) {
4330
		int diff = dev_priv->rps.max_freq - gpu_freq;
4331 4332
		unsigned int ia_freq = 0, ring_freq = 0;

4333 4334 4335 4336
		if (INTEL_INFO(dev)->gen >= 8) {
			/* max(2 * GT, DDR). NB: GT is 50MHz units */
			ring_freq = max(min_ring_freq, gpu_freq);
		} else if (IS_HASWELL(dev)) {
4337
			ring_freq = mult_frac(gpu_freq, 5, 4);
4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353
			ring_freq = max(min_ring_freq, ring_freq);
			/* leave ia_freq as the default, chosen by cpufreq */
		} else {
			/* On older processors, there is no separate ring
			 * clock domain, so in order to boost the bandwidth
			 * of the ring, we need to upclock the CPU (ia_freq).
			 *
			 * For GPU frequencies less than 750MHz,
			 * just use the lowest ring freq.
			 */
			if (gpu_freq < min_freq)
				ia_freq = 800;
			else
				ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
			ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
		}
4354

B
Ben Widawsky 已提交
4355 4356
		sandybridge_pcode_write(dev_priv,
					GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
4357 4358 4359
					ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
					ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
					gpu_freq);
4360 4361 4362
	}
}

4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374
void gen6_update_ring_freq(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (INTEL_INFO(dev)->gen < 6 || IS_VALLEYVIEW(dev))
		return;

	mutex_lock(&dev_priv->rps.hw_lock);
	__gen6_update_ring_freq(dev);
	mutex_unlock(&dev_priv->rps.hw_lock);
}

4375
static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
4376
{
4377
	struct drm_device *dev = dev_priv->dev;
4378 4379
	u32 val, rp0;

4380 4381
	if (dev->pdev->revision >= 0x20) {
		val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
4382

4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405
		switch (INTEL_INFO(dev)->eu_total) {
		case 8:
				/* (2 * 4) config */
				rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
				break;
		case 12:
				/* (2 * 6) config */
				rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
				break;
		case 16:
				/* (2 * 8) config */
		default:
				/* Setting (2 * 8) Min RP0 for any other combination */
				rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
				break;
		}
		rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);
	} else {
		/* For pre-production hardware */
		val = vlv_punit_read(dev_priv, PUNIT_GPU_STATUS_REG);
		rp0 = (val >> PUNIT_GPU_STATUS_MAX_FREQ_SHIFT) &
		       PUNIT_GPU_STATUS_MAX_FREQ_MASK;
	}
4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418
	return rp0;
}

static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

	val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
	rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;

	return rpe;
}

4419 4420
static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
4421
	struct drm_device *dev = dev_priv->dev;
4422 4423
	u32 val, rp1;

4424 4425 4426 4427 4428 4429 4430 4431 4432
	if (dev->pdev->revision >= 0x20) {
		val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
		rp1 = (val & FB_GFX_FREQ_FUSE_MASK);
	} else {
		/* For pre-production hardware */
		val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
		rp1 = ((val >> PUNIT_GPU_STATUS_MAX_FREQ_SHIFT) &
		       PUNIT_GPU_STATUS_MAX_FREQ_MASK);
	}
4433 4434 4435
	return rp1;
}

4436
static int cherryview_rps_min_freq(struct drm_i915_private *dev_priv)
4437
{
4438
	struct drm_device *dev = dev_priv->dev;
4439 4440
	u32 val, rpn;

4441 4442 4443 4444 4445 4446 4447 4448 4449 4450
	if (dev->pdev->revision >= 0x20) {
		val = vlv_punit_read(dev_priv, FB_GFX_FMIN_AT_VMIN_FUSE);
		rpn = ((val >> FB_GFX_FMIN_AT_VMIN_FUSE_SHIFT) &
		       FB_GFX_FREQ_FUSE_MASK);
	} else { /* For pre-production hardware */
		val = vlv_punit_read(dev_priv, PUNIT_GPU_STATUS_REG);
		rpn = ((val >> PUNIT_GPU_STATIS_GFX_MIN_FREQ_SHIFT) &
		       PUNIT_GPU_STATUS_GFX_MIN_FREQ_MASK);
	}

4451 4452 4453
	return rpn;
}

4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464
static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);

	rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;

	return rp1;
}

4465
static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
4466 4467 4468
{
	u32 val, rp0;

4469
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481

	rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
	/* Clamp to max */
	rp0 = min_t(u32, rp0, 0xea);

	return rp0;
}

static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

4482
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
4483
	rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
4484
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
4485 4486 4487 4488 4489
	rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;

	return rpe;
}

4490
static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
4491
{
4492
	return vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
4493 4494
}

4495 4496 4497 4498 4499 4500 4501 4502 4503
/* Check that the pctx buffer wasn't move under us. */
static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

	WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
			     dev_priv->vlv_pctx->stolen->start);
}

4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524

/* Check that the pcbr address is not empty. */
static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

	WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
}

static void cherryview_setup_pctx(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	unsigned long pctx_paddr, paddr;
	struct i915_gtt *gtt = &dev_priv->gtt;
	u32 pcbr;
	int pctx_size = 32*1024;

	WARN_ON(!mutex_is_locked(&dev->struct_mutex));

	pcbr = I915_READ(VLV_PCBR);
	if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
4525
		DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
4526 4527 4528 4529 4530 4531
		paddr = (dev_priv->mm.stolen_base +
			 (gtt->stolen_size - pctx_size));

		pctx_paddr = (paddr & (~4095));
		I915_WRITE(VLV_PCBR, pctx_paddr);
	}
4532 4533

	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
4534 4535
}

4536 4537 4538 4539 4540 4541 4542 4543
static void valleyview_setup_pctx(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *pctx;
	unsigned long pctx_paddr;
	u32 pcbr;
	int pctx_size = 24*1024;

4544 4545
	WARN_ON(!mutex_is_locked(&dev->struct_mutex));

4546 4547 4548 4549 4550 4551 4552 4553
	pcbr = I915_READ(VLV_PCBR);
	if (pcbr) {
		/* BIOS set it up already, grab the pre-alloc'd space */
		int pcbr_offset;

		pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
		pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
								      pcbr_offset,
4554
								      I915_GTT_OFFSET_NONE,
4555 4556 4557 4558
								      pctx_size);
		goto out;
	}

4559 4560
	DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");

4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578
	/*
	 * From the Gunit register HAS:
	 * The Gfx driver is expected to program this register and ensure
	 * proper allocation within Gfx stolen memory.  For example, this
	 * register should be programmed such than the PCBR range does not
	 * overlap with other ranges, such as the frame buffer, protected
	 * memory, or any other relevant ranges.
	 */
	pctx = i915_gem_object_create_stolen(dev, pctx_size);
	if (!pctx) {
		DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
		return;
	}

	pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
	I915_WRITE(VLV_PCBR, pctx_paddr);

out:
4579
	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
4580 4581 4582
	dev_priv->vlv_pctx = pctx;
}

4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593
static void valleyview_cleanup_pctx(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (WARN_ON(!dev_priv->vlv_pctx))
		return;

	drm_gem_object_unreference(&dev_priv->vlv_pctx->base);
	dev_priv->vlv_pctx = NULL;
}

4594 4595 4596
static void valleyview_init_gt_powersave(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4597
	u32 val;
4598 4599 4600 4601 4602

	valleyview_setup_pctx(dev);

	mutex_lock(&dev_priv->rps.hw_lock);

4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
	switch ((val >> 6) & 3) {
	case 0:
	case 1:
		dev_priv->mem_freq = 800;
		break;
	case 2:
		dev_priv->mem_freq = 1066;
		break;
	case 3:
		dev_priv->mem_freq = 1333;
		break;
	}
4616
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
4617

4618 4619 4620
	dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
4621
			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
4622 4623 4624 4625
			 dev_priv->rps.max_freq);

	dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
4626
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
4627 4628
			 dev_priv->rps.efficient_freq);

4629 4630
	dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
	DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
4631
			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
4632 4633
			 dev_priv->rps.rp1_freq);

4634 4635
	dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
4636
			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648
			 dev_priv->rps.min_freq);

	/* Preserve min/max settings in case of re-init */
	if (dev_priv->rps.max_freq_softlimit == 0)
		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;

	if (dev_priv->rps.min_freq_softlimit == 0)
		dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;

	mutex_unlock(&dev_priv->rps.hw_lock);
}

4649 4650
static void cherryview_init_gt_powersave(struct drm_device *dev)
{
4651
	struct drm_i915_private *dev_priv = dev->dev_private;
4652
	u32 val;
4653

4654
	cherryview_setup_pctx(dev);
4655 4656 4657

	mutex_lock(&dev_priv->rps.hw_lock);

4658 4659 4660 4661
	mutex_lock(&dev_priv->dpio_lock);
	val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
	mutex_unlock(&dev_priv->dpio_lock);

4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684
	switch ((val >> 2) & 0x7) {
	case 0:
	case 1:
		dev_priv->rps.cz_freq = 200;
		dev_priv->mem_freq = 1600;
		break;
	case 2:
		dev_priv->rps.cz_freq = 267;
		dev_priv->mem_freq = 1600;
		break;
	case 3:
		dev_priv->rps.cz_freq = 333;
		dev_priv->mem_freq = 2000;
		break;
	case 4:
		dev_priv->rps.cz_freq = 320;
		dev_priv->mem_freq = 1600;
		break;
	case 5:
		dev_priv->rps.cz_freq = 400;
		dev_priv->mem_freq = 1600;
		break;
	}
4685
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
4686

4687 4688 4689
	dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
4690
			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
4691 4692 4693 4694
			 dev_priv->rps.max_freq);

	dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
4695
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
4696 4697
			 dev_priv->rps.efficient_freq);

4698 4699
	dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
	DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
4700
			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
4701 4702
			 dev_priv->rps.rp1_freq);

4703 4704
	dev_priv->rps.min_freq = cherryview_rps_min_freq(dev_priv);
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
4705
			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
4706 4707
			 dev_priv->rps.min_freq);

4708 4709 4710 4711 4712 4713
	WARN_ONCE((dev_priv->rps.max_freq |
		   dev_priv->rps.efficient_freq |
		   dev_priv->rps.rp1_freq |
		   dev_priv->rps.min_freq) & 1,
		  "Odd GPU freq values\n");

4714 4715 4716 4717 4718 4719 4720 4721
	/* Preserve min/max settings in case of re-init */
	if (dev_priv->rps.max_freq_softlimit == 0)
		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;

	if (dev_priv->rps.min_freq_softlimit == 0)
		dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;

	mutex_unlock(&dev_priv->rps.hw_lock);
4722 4723
}

4724 4725 4726 4727 4728
static void valleyview_cleanup_gt_powersave(struct drm_device *dev)
{
	valleyview_cleanup_pctx(dev);
}

4729 4730 4731 4732
static void cherryview_enable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_engine_cs *ring;
4733
	u32 gtfifodbg, val, rc6_mode = 0, pcbr;
4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748
	int i;

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

	gtfifodbg = I915_READ(GTFIFODBG);
	if (gtfifodbg) {
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

	cherryview_check_pctx(dev_priv);

	/* 1a & 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4749
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4750

4751 4752 4753
	/*  Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

4754 4755 4756 4757 4758 4759 4760 4761 4762
	/* 2a: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */

	for_each_ring(ring, dev_priv, i)
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
	I915_WRITE(GEN6_RC_SLEEP, 0);

4763 4764
	/* TO threshold set to 1750 us ( 0x557 * 1.28 us) */
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777

	/* allows RC6 residency counter to work */
	I915_WRITE(VLV_COUNTER_CONTROL,
		   _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));

	/* For now we assume BIOS is allocating and populating the PCBR  */
	pcbr = I915_READ(VLV_PCBR);

	/* 3: Enable RC6 */
	if ((intel_enable_rc6(dev) & INTEL_RC6_ENABLE) &&
						(pcbr >> VLV_PCBR_ADDR_SHIFT))
4778
		rc6_mode = GEN7_RC_CTL_TO_MODE;
4779 4780 4781

	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);

4782
	/* 4 Program defaults and thresholds for RPS*/
4783
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
4784 4785 4786 4787 4788 4789 4790 4791 4792 4793
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	/* 5: Enable RPS */
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
4794
		   GEN6_RP_MEDIA_IS_GFX |
4795 4796 4797 4798 4799 4800
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);

4801 4802 4803
	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

4804
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & GPLLENABLE ? "yes" : "no");
4805 4806 4807 4808
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

	dev_priv->rps.cur_freq = (val >> 8) & 0xff;
	DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
4809
			 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
4810 4811 4812
			 dev_priv->rps.cur_freq);

	DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
4813
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
4814 4815 4816 4817
			 dev_priv->rps.efficient_freq);

	valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);

4818
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4819 4820
}

4821 4822 4823
static void valleyview_enable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4824
	struct intel_engine_cs *ring;
4825
	u32 gtfifodbg, val, rc6_mode = 0;
4826 4827 4828 4829
	int i;

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

4830 4831
	valleyview_check_pctx(dev_priv);

4832
	if ((gtfifodbg = I915_READ(GTFIFODBG))) {
4833 4834
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
4835 4836 4837
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

4838
	/* If VLV, Forcewake all wells, else re-direct to regular path */
4839
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4840

4841 4842 4843
	/*  Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

4844
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_CONT);

	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

	for_each_ring(ring, dev_priv, i)
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);

4867
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
4868 4869

	/* allows RC6 residency counter to work */
4870
	I915_WRITE(VLV_COUNTER_CONTROL,
4871 4872
		   _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
				      VLV_RENDER_RC0_COUNT_EN |
4873 4874
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));
4875

4876
	if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
4877
		rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
B
Ben Widawsky 已提交
4878 4879 4880

	intel_print_rc6_info(dev, rc6_mode);

4881
	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
4882

4883
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
4884

4885 4886 4887
	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

4888
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & GPLLENABLE ? "yes" : "no");
4889 4890
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

4891
	dev_priv->rps.cur_freq = (val >> 8) & 0xff;
4892
	DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
4893
			 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
4894
			 dev_priv->rps.cur_freq);
4895

4896
	DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
4897
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
4898
			 dev_priv->rps.efficient_freq);
4899

4900
	valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
4901

4902
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4903 4904
}

4905
void ironlake_teardown_rc6(struct drm_device *dev)
4906 4907 4908
{
	struct drm_i915_private *dev_priv = dev->dev_private;

4909
	if (dev_priv->ips.renderctx) {
B
Ben Widawsky 已提交
4910
		i915_gem_object_ggtt_unpin(dev_priv->ips.renderctx);
4911 4912
		drm_gem_object_unreference(&dev_priv->ips.renderctx->base);
		dev_priv->ips.renderctx = NULL;
4913 4914
	}

4915
	if (dev_priv->ips.pwrctx) {
B
Ben Widawsky 已提交
4916
		i915_gem_object_ggtt_unpin(dev_priv->ips.pwrctx);
4917 4918
		drm_gem_object_unreference(&dev_priv->ips.pwrctx->base);
		dev_priv->ips.pwrctx = NULL;
4919 4920 4921
	}
}

4922
static void ironlake_disable_rc6(struct drm_device *dev)
4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (I915_READ(PWRCTXA)) {
		/* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
		I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
		wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
			 50);

		I915_WRITE(PWRCTXA, 0);
		POSTING_READ(PWRCTXA);

		I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
		POSTING_READ(RSTDBYCTL);
	}
}

static int ironlake_setup_rc6(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

4944 4945 4946
	if (dev_priv->ips.renderctx == NULL)
		dev_priv->ips.renderctx = intel_alloc_context_page(dev);
	if (!dev_priv->ips.renderctx)
4947 4948
		return -ENOMEM;

4949 4950 4951
	if (dev_priv->ips.pwrctx == NULL)
		dev_priv->ips.pwrctx = intel_alloc_context_page(dev);
	if (!dev_priv->ips.pwrctx) {
4952 4953 4954 4955 4956 4957 4958
		ironlake_teardown_rc6(dev);
		return -ENOMEM;
	}

	return 0;
}

4959
static void ironlake_enable_rc6(struct drm_device *dev)
4960 4961
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4962
	struct intel_engine_cs *ring = &dev_priv->ring[RCS];
4963
	bool was_interruptible;
4964 4965 4966 4967 4968 4969 4970 4971
	int ret;

	/* rc6 disabled by default due to repeated reports of hanging during
	 * boot and resume.
	 */
	if (!intel_enable_rc6(dev))
		return;

4972 4973
	WARN_ON(!mutex_is_locked(&dev->struct_mutex));

4974
	ret = ironlake_setup_rc6(dev);
4975
	if (ret)
4976 4977
		return;

4978 4979 4980
	was_interruptible = dev_priv->mm.interruptible;
	dev_priv->mm.interruptible = false;

4981 4982 4983 4984
	/*
	 * GPU can automatically power down the render unit if given a page
	 * to save state.
	 */
4985
	ret = intel_ring_begin(ring, 6);
4986 4987
	if (ret) {
		ironlake_teardown_rc6(dev);
4988
		dev_priv->mm.interruptible = was_interruptible;
4989 4990 4991
		return;
	}

4992 4993
	intel_ring_emit(ring, MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
	intel_ring_emit(ring, MI_SET_CONTEXT);
4994
	intel_ring_emit(ring, i915_gem_obj_ggtt_offset(dev_priv->ips.renderctx) |
4995 4996 4997 4998 4999 5000 5001 5002
			MI_MM_SPACE_GTT |
			MI_SAVE_EXT_STATE_EN |
			MI_RESTORE_EXT_STATE_EN |
			MI_RESTORE_INHIBIT);
	intel_ring_emit(ring, MI_SUSPEND_FLUSH);
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_emit(ring, MI_FLUSH);
	intel_ring_advance(ring);
5003 5004 5005 5006 5007 5008

	/*
	 * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
	 * does an implicit flush, combined with MI_FLUSH above, it should be
	 * safe to assume that renderctx is valid
	 */
5009 5010
	ret = intel_ring_idle(ring);
	dev_priv->mm.interruptible = was_interruptible;
5011
	if (ret) {
5012
		DRM_ERROR("failed to enable ironlake power savings\n");
5013 5014 5015 5016
		ironlake_teardown_rc6(dev);
		return;
	}

5017
	I915_WRITE(PWRCTXA, i915_gem_obj_ggtt_offset(dev_priv->ips.pwrctx) | PWRCTX_EN);
5018
	I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
B
Ben Widawsky 已提交
5019

5020
	intel_print_rc6_info(dev, GEN6_RC_CTL_RC6_ENABLE);
5021 5022
}

5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037
static unsigned long intel_pxfreq(u32 vidfreq)
{
	unsigned long freq;
	int div = (vidfreq & 0x3f0000) >> 16;
	int post = (vidfreq & 0x3000) >> 12;
	int pre = (vidfreq & 0x7);

	if (!pre)
		return 0;

	freq = ((div * 133333) / ((1<<post) * pre));

	return freq;
}

5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051
static const struct cparams {
	u16 i;
	u16 t;
	u16 m;
	u16 c;
} cparams[] = {
	{ 1, 1333, 301, 28664 },
	{ 1, 1066, 294, 24460 },
	{ 1, 800, 294, 25192 },
	{ 0, 1333, 276, 27605 },
	{ 0, 1066, 276, 27605 },
	{ 0, 800, 231, 23784 },
};

5052
static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
5053 5054 5055 5056 5057 5058
{
	u64 total_count, diff, ret;
	u32 count1, count2, count3, m = 0, c = 0;
	unsigned long now = jiffies_to_msecs(jiffies), diff1;
	int i;

5059 5060
	assert_spin_locked(&mchdev_lock);

5061
	diff1 = now - dev_priv->ips.last_time1;
5062 5063 5064 5065 5066 5067 5068

	/* Prevent division-by-zero if we are asking too fast.
	 * Also, we don't get interesting results if we are polling
	 * faster than once in 10ms, so just return the saved value
	 * in such cases.
	 */
	if (diff1 <= 10)
5069
		return dev_priv->ips.chipset_power;
5070 5071 5072 5073 5074 5075 5076 5077

	count1 = I915_READ(DMIEC);
	count2 = I915_READ(DDREC);
	count3 = I915_READ(CSIEC);

	total_count = count1 + count2 + count3;

	/* FIXME: handle per-counter overflow */
5078 5079
	if (total_count < dev_priv->ips.last_count1) {
		diff = ~0UL - dev_priv->ips.last_count1;
5080 5081
		diff += total_count;
	} else {
5082
		diff = total_count - dev_priv->ips.last_count1;
5083 5084 5085
	}

	for (i = 0; i < ARRAY_SIZE(cparams); i++) {
5086 5087
		if (cparams[i].i == dev_priv->ips.c_m &&
		    cparams[i].t == dev_priv->ips.r_t) {
5088 5089 5090 5091 5092 5093 5094 5095 5096 5097
			m = cparams[i].m;
			c = cparams[i].c;
			break;
		}
	}

	diff = div_u64(diff, diff1);
	ret = ((m * diff) + c);
	ret = div_u64(ret, 10);

5098 5099
	dev_priv->ips.last_count1 = total_count;
	dev_priv->ips.last_time1 = now;
5100

5101
	dev_priv->ips.chipset_power = ret;
5102 5103 5104 5105

	return ret;
}

5106 5107
unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
{
5108
	struct drm_device *dev = dev_priv->dev;
5109 5110
	unsigned long val;

5111
	if (INTEL_INFO(dev)->gen != 5)
5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_chipset_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137
unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
{
	unsigned long m, x, b;
	u32 tsfs;

	tsfs = I915_READ(TSFS);

	m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
	x = I915_READ8(TR1);

	b = tsfs & TSFS_INTR_MASK;

	return ((m * x) / 127) - b;
}

5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149
static int _pxvid_to_vd(u8 pxvid)
{
	if (pxvid == 0)
		return 0;

	if (pxvid >= 8 && pxvid < 31)
		pxvid = 31;

	return (pxvid + 2) * 125;
}

static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
5150
{
5151
	struct drm_device *dev = dev_priv->dev;
5152 5153 5154
	const int vd = _pxvid_to_vd(pxvid);
	const int vm = vd - 1125;

5155
	if (INTEL_INFO(dev)->is_mobile)
5156 5157 5158
		return vm > 0 ? vm : 0;

	return vd;
5159 5160
}

5161
static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
5162
{
5163
	u64 now, diff, diffms;
5164 5165
	u32 count;

5166
	assert_spin_locked(&mchdev_lock);
5167

5168 5169 5170
	now = ktime_get_raw_ns();
	diffms = now - dev_priv->ips.last_time2;
	do_div(diffms, NSEC_PER_MSEC);
5171 5172 5173 5174 5175 5176 5177

	/* Don't divide by 0 */
	if (!diffms)
		return;

	count = I915_READ(GFXEC);

5178 5179
	if (count < dev_priv->ips.last_count2) {
		diff = ~0UL - dev_priv->ips.last_count2;
5180 5181
		diff += count;
	} else {
5182
		diff = count - dev_priv->ips.last_count2;
5183 5184
	}

5185 5186
	dev_priv->ips.last_count2 = count;
	dev_priv->ips.last_time2 = now;
5187 5188 5189 5190

	/* More magic constants... */
	diff = diff * 1181;
	diff = div_u64(diff, diffms * 10);
5191
	dev_priv->ips.gfx_power = diff;
5192 5193
}

5194 5195
void i915_update_gfx_val(struct drm_i915_private *dev_priv)
{
5196 5197 5198
	struct drm_device *dev = dev_priv->dev;

	if (INTEL_INFO(dev)->gen != 5)
5199 5200
		return;

5201
	spin_lock_irq(&mchdev_lock);
5202 5203 5204

	__i915_update_gfx_val(dev_priv);

5205
	spin_unlock_irq(&mchdev_lock);
5206 5207
}

5208
static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
5209 5210 5211 5212
{
	unsigned long t, corr, state1, corr2, state2;
	u32 pxvid, ext_v;

5213 5214
	assert_spin_locked(&mchdev_lock);

5215
	pxvid = I915_READ(PXVFREQ_BASE + (dev_priv->rps.cur_freq * 4));
5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234
	pxvid = (pxvid >> 24) & 0x7f;
	ext_v = pvid_to_extvid(dev_priv, pxvid);

	state1 = ext_v;

	t = i915_mch_val(dev_priv);

	/* Revel in the empirically derived constants */

	/* Correction factor in 1/100000 units */
	if (t > 80)
		corr = ((t * 2349) + 135940);
	else if (t >= 50)
		corr = ((t * 964) + 29317);
	else /* < 50 */
		corr = ((t * 301) + 1004);

	corr = corr * ((150142 * state1) / 10000 - 78642);
	corr /= 100000;
5235
	corr2 = (corr * dev_priv->ips.corr);
5236 5237 5238 5239

	state2 = (corr2 * state1) / 10000;
	state2 /= 100; /* convert to mW */

5240
	__i915_update_gfx_val(dev_priv);
5241

5242
	return dev_priv->ips.gfx_power + state2;
5243 5244
}

5245 5246
unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
{
5247
	struct drm_device *dev = dev_priv->dev;
5248 5249
	unsigned long val;

5250
	if (INTEL_INFO(dev)->gen != 5)
5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_gfx_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272
/**
 * i915_read_mch_val - return value for IPS use
 *
 * Calculate and return a value for the IPS driver to use when deciding whether
 * we have thermal and power headroom to increase CPU or GPU power budget.
 */
unsigned long i915_read_mch_val(void)
{
	struct drm_i915_private *dev_priv;
	unsigned long chipset_val, graphics_val, ret = 0;

5273
	spin_lock_irq(&mchdev_lock);
5274 5275 5276 5277
	if (!i915_mch_dev)
		goto out_unlock;
	dev_priv = i915_mch_dev;

5278 5279
	chipset_val = __i915_chipset_val(dev_priv);
	graphics_val = __i915_gfx_val(dev_priv);
5280 5281 5282 5283

	ret = chipset_val + graphics_val;

out_unlock:
5284
	spin_unlock_irq(&mchdev_lock);
5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299

	return ret;
}
EXPORT_SYMBOL_GPL(i915_read_mch_val);

/**
 * i915_gpu_raise - raise GPU frequency limit
 *
 * Raise the limit; IPS indicates we have thermal headroom.
 */
bool i915_gpu_raise(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

5300
	spin_lock_irq(&mchdev_lock);
5301 5302 5303 5304 5305 5306
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

5307 5308
	if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
		dev_priv->ips.max_delay--;
5309 5310

out_unlock:
5311
	spin_unlock_irq(&mchdev_lock);
5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_raise);

/**
 * i915_gpu_lower - lower GPU frequency limit
 *
 * IPS indicates we're close to a thermal limit, so throttle back the GPU
 * frequency maximum.
 */
bool i915_gpu_lower(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

5328
	spin_lock_irq(&mchdev_lock);
5329 5330 5331 5332 5333 5334
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

5335 5336
	if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
		dev_priv->ips.max_delay++;
5337 5338

out_unlock:
5339
	spin_unlock_irq(&mchdev_lock);
5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_lower);

/**
 * i915_gpu_busy - indicate GPU business to IPS
 *
 * Tell the IPS driver whether or not the GPU is busy.
 */
bool i915_gpu_busy(void)
{
	struct drm_i915_private *dev_priv;
5353
	struct intel_engine_cs *ring;
5354
	bool ret = false;
5355
	int i;
5356

5357
	spin_lock_irq(&mchdev_lock);
5358 5359 5360 5361
	if (!i915_mch_dev)
		goto out_unlock;
	dev_priv = i915_mch_dev;

5362 5363
	for_each_ring(ring, dev_priv, i)
		ret |= !list_empty(&ring->request_list);
5364 5365

out_unlock:
5366
	spin_unlock_irq(&mchdev_lock);
5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_busy);

/**
 * i915_gpu_turbo_disable - disable graphics turbo
 *
 * Disable graphics turbo by resetting the max frequency and setting the
 * current frequency to the default.
 */
bool i915_gpu_turbo_disable(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

5383
	spin_lock_irq(&mchdev_lock);
5384 5385 5386 5387 5388 5389
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

5390
	dev_priv->ips.max_delay = dev_priv->ips.fstart;
5391

5392
	if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
5393 5394 5395
		ret = false;

out_unlock:
5396
	spin_unlock_irq(&mchdev_lock);
5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);

/**
 * Tells the intel_ips driver that the i915 driver is now loaded, if
 * IPS got loaded first.
 *
 * This awkward dance is so that neither module has to depend on the
 * other in order for IPS to do the appropriate communication of
 * GPU turbo limits to i915.
 */
static void
ips_ping_for_i915_load(void)
{
	void (*link)(void);

	link = symbol_get(ips_link_to_i915_driver);
	if (link) {
		link();
		symbol_put(ips_link_to_i915_driver);
	}
}

void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
{
5424 5425
	/* We only register the i915 ips part with intel-ips once everything is
	 * set up, to avoid intel-ips sneaking in and reading bogus values. */
5426
	spin_lock_irq(&mchdev_lock);
5427
	i915_mch_dev = dev_priv;
5428
	spin_unlock_irq(&mchdev_lock);
5429 5430 5431 5432 5433 5434

	ips_ping_for_i915_load();
}

void intel_gpu_ips_teardown(void)
{
5435
	spin_lock_irq(&mchdev_lock);
5436
	i915_mch_dev = NULL;
5437
	spin_unlock_irq(&mchdev_lock);
5438
}
5439

5440
static void intel_init_emon(struct drm_device *dev)
5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 lcfuse;
	u8 pxw[16];
	int i;

	/* Disable to program */
	I915_WRITE(ECR, 0);
	POSTING_READ(ECR);

	/* Program energy weights for various events */
	I915_WRITE(SDEW, 0x15040d00);
	I915_WRITE(CSIEW0, 0x007f0000);
	I915_WRITE(CSIEW1, 0x1e220004);
	I915_WRITE(CSIEW2, 0x04000004);

	for (i = 0; i < 5; i++)
		I915_WRITE(PEW + (i * 4), 0);
	for (i = 0; i < 3; i++)
		I915_WRITE(DEW + (i * 4), 0);

	/* Program P-state weights to account for frequency power adjustment */
	for (i = 0; i < 16; i++) {
		u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
		unsigned long freq = intel_pxfreq(pxvidfreq);
		unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
			PXVFREQ_PX_SHIFT;
		unsigned long val;

		val = vid * vid;
		val *= (freq / 1000);
		val *= 255;
		val /= (127*127*900);
		if (val > 0xff)
			DRM_ERROR("bad pxval: %ld\n", val);
		pxw[i] = val;
	}
	/* Render standby states get 0 weight */
	pxw[14] = 0;
	pxw[15] = 0;

	for (i = 0; i < 4; i++) {
		u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
			(pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
		I915_WRITE(PXW + (i * 4), val);
	}

	/* Adjust magic regs to magic values (more experimental results) */
	I915_WRITE(OGW0, 0);
	I915_WRITE(OGW1, 0);
	I915_WRITE(EG0, 0x00007f00);
	I915_WRITE(EG1, 0x0000000e);
	I915_WRITE(EG2, 0x000e0000);
	I915_WRITE(EG3, 0x68000300);
	I915_WRITE(EG4, 0x42000000);
	I915_WRITE(EG5, 0x00140031);
	I915_WRITE(EG6, 0);
	I915_WRITE(EG7, 0);

	for (i = 0; i < 8; i++)
		I915_WRITE(PXWL + (i * 4), 0);

	/* Enable PMON + select events */
	I915_WRITE(ECR, 0x80000019);

	lcfuse = I915_READ(LCFUSE02);

5508
	dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
5509 5510
}

5511 5512
void intel_init_gt_powersave(struct drm_device *dev)
{
I
Imre Deak 已提交
5513 5514
	i915.enable_rc6 = sanitize_rc6_option(dev, i915.enable_rc6);

5515 5516 5517
	if (IS_CHERRYVIEW(dev))
		cherryview_init_gt_powersave(dev);
	else if (IS_VALLEYVIEW(dev))
5518
		valleyview_init_gt_powersave(dev);
5519 5520 5521 5522
}

void intel_cleanup_gt_powersave(struct drm_device *dev)
{
5523 5524 5525
	if (IS_CHERRYVIEW(dev))
		return;
	else if (IS_VALLEYVIEW(dev))
5526
		valleyview_cleanup_gt_powersave(dev);
5527 5528
}

5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542
static void gen6_suspend_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	flush_delayed_work(&dev_priv->rps.delayed_resume_work);

	/*
	 * TODO: disable RPS interrupts on GEN9+ too once RPS support
	 * is added for it.
	 */
	if (INTEL_INFO(dev)->gen < 9)
		gen6_disable_rps_interrupts(dev);
}

5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554
/**
 * intel_suspend_gt_powersave - suspend PM work and helper threads
 * @dev: drm device
 *
 * We don't want to disable RC6 or other features here, we just want
 * to make sure any work we've queued has finished and won't bother
 * us while we're suspended.
 */
void intel_suspend_gt_powersave(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

I
Imre Deak 已提交
5555 5556 5557
	if (INTEL_INFO(dev)->gen < 6)
		return;

5558
	gen6_suspend_rps(dev);
5559 5560 5561

	/* Force GPU to min freq during suspend */
	gen6_rps_idle(dev_priv);
5562 5563
}

5564 5565
void intel_disable_gt_powersave(struct drm_device *dev)
{
5566 5567
	struct drm_i915_private *dev_priv = dev->dev_private;

5568
	if (IS_IRONLAKE_M(dev)) {
5569
		ironlake_disable_drps(dev);
5570
		ironlake_disable_rc6(dev);
5571
	} else if (INTEL_INFO(dev)->gen >= 6) {
5572
		intel_suspend_gt_powersave(dev);
5573

5574
		mutex_lock(&dev_priv->rps.hw_lock);
Z
Zhe Wang 已提交
5575 5576 5577
		if (INTEL_INFO(dev)->gen >= 9)
			gen9_disable_rps(dev);
		else if (IS_CHERRYVIEW(dev))
5578 5579
			cherryview_disable_rps(dev);
		else if (IS_VALLEYVIEW(dev))
5580 5581 5582
			valleyview_disable_rps(dev);
		else
			gen6_disable_rps(dev);
5583

5584
		dev_priv->rps.enabled = false;
5585
		mutex_unlock(&dev_priv->rps.hw_lock);
5586
	}
5587 5588
}

5589 5590 5591 5592 5593 5594 5595
static void intel_gen6_powersave_work(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
		container_of(work, struct drm_i915_private,
			     rps.delayed_resume_work.work);
	struct drm_device *dev = dev_priv->dev;

5596
	mutex_lock(&dev_priv->rps.hw_lock);
5597

I
Imre Deak 已提交
5598 5599 5600 5601 5602 5603 5604
	/*
	 * TODO: reset/enable RPS interrupts on GEN9+ too, once RPS support is
	 * added for it.
	 */
	if (INTEL_INFO(dev)->gen < 9)
		gen6_reset_rps_interrupts(dev);

5605 5606 5607
	if (IS_CHERRYVIEW(dev)) {
		cherryview_enable_rps(dev);
	} else if (IS_VALLEYVIEW(dev)) {
5608
		valleyview_enable_rps(dev);
Z
Zhe Wang 已提交
5609
	} else if (INTEL_INFO(dev)->gen >= 9) {
J
Jesse Barnes 已提交
5610
		gen9_enable_rc6(dev);
Z
Zhe Wang 已提交
5611
		gen9_enable_rps(dev);
J
Jesse Barnes 已提交
5612
		__gen6_update_ring_freq(dev);
5613 5614
	} else if (IS_BROADWELL(dev)) {
		gen8_enable_rps(dev);
5615
		__gen6_update_ring_freq(dev);
5616 5617
	} else {
		gen6_enable_rps(dev);
5618
		__gen6_update_ring_freq(dev);
5619
	}
5620
	dev_priv->rps.enabled = true;
I
Imre Deak 已提交
5621 5622 5623 5624

	if (INTEL_INFO(dev)->gen < 9)
		gen6_enable_rps_interrupts(dev);

5625
	mutex_unlock(&dev_priv->rps.hw_lock);
5626 5627

	intel_runtime_pm_put(dev_priv);
5628 5629
}

5630 5631
void intel_enable_gt_powersave(struct drm_device *dev)
{
5632 5633
	struct drm_i915_private *dev_priv = dev->dev_private;

5634 5635 5636 5637
	/* Powersaving is controlled by the host when inside a VM */
	if (intel_vgpu_active(dev))
		return;

5638
	if (IS_IRONLAKE_M(dev)) {
5639
		mutex_lock(&dev->struct_mutex);
5640 5641 5642
		ironlake_enable_drps(dev);
		ironlake_enable_rc6(dev);
		intel_init_emon(dev);
5643
		mutex_unlock(&dev->struct_mutex);
5644
	} else if (INTEL_INFO(dev)->gen >= 6) {
5645 5646 5647 5648
		/*
		 * PCU communication is slow and this doesn't need to be
		 * done at any specific time, so do this out of our fast path
		 * to make resume and init faster.
5649 5650 5651 5652 5653 5654 5655
		 *
		 * We depend on the HW RC6 power context save/restore
		 * mechanism when entering D3 through runtime PM suspend. So
		 * disable RPM until RPS/RC6 is properly setup. We can only
		 * get here via the driver load/system resume/runtime resume
		 * paths, so the _noresume version is enough (and in case of
		 * runtime resume it's necessary).
5656
		 */
5657 5658 5659
		if (schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
					   round_jiffies_up_relative(HZ)))
			intel_runtime_pm_get_noresume(dev_priv);
5660 5661 5662
	}
}

5663 5664 5665 5666
void intel_reset_gt_powersave(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

5667 5668 5669 5670
	if (INTEL_INFO(dev)->gen < 6)
		return;

	gen6_suspend_rps(dev);
5671 5672 5673
	dev_priv->rps.enabled = false;
}

5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685
static void ibx_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
}

5686 5687 5688 5689 5690
static void g4x_disable_trickle_feed(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int pipe;

5691
	for_each_pipe(dev_priv, pipe) {
5692 5693 5694
		I915_WRITE(DSPCNTR(pipe),
			   I915_READ(DSPCNTR(pipe)) |
			   DISPPLANE_TRICKLE_FEED_DISABLE);
5695
		intel_flush_primary_plane(dev_priv, pipe);
5696 5697 5698
	}
}

5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712
static void ilk_init_lp_watermarks(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);

	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
}

5713
static void ironlake_init_clock_gating(struct drm_device *dev)
5714 5715
{
	struct drm_i915_private *dev_priv = dev->dev_private;
5716
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
5717

5718 5719 5720 5721
	/*
	 * Required for FBC
	 * WaFbcDisableDpfcClockGating:ilk
	 */
5722 5723 5724
	dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741

	I915_WRITE(PCH_3DCGDIS0,
		   MARIUNIT_CLOCK_GATE_DISABLE |
		   SVSMUNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(PCH_3DCGDIS1,
		   VFMUNIT_CLOCK_GATE_DISABLE);

	/*
	 * According to the spec the following bits should be set in
	 * order to enable memory self-refresh
	 * The bit 22/21 of 0x42004
	 * The bit 5 of 0x42020
	 * The bit 15 of 0x45000
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   (I915_READ(ILK_DISPLAY_CHICKEN2) |
		    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
5742
	dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
5743 5744 5745
	I915_WRITE(DISP_ARB_CTL,
		   (I915_READ(DISP_ARB_CTL) |
		    DISP_FBC_WM_DIS));
5746 5747

	ilk_init_lp_watermarks(dev);
5748 5749 5750 5751 5752 5753 5754 5755 5756

	/*
	 * Based on the document from hardware guys the following bits
	 * should be set unconditionally in order to enable FBC.
	 * The bit 22 of 0x42000
	 * The bit 22 of 0x42004
	 * The bit 7,8,9 of 0x42020.
	 */
	if (IS_IRONLAKE_M(dev)) {
5757
		/* WaFbcAsynchFlipDisableFbcQueue:ilk */
5758 5759 5760 5761 5762 5763 5764 5765
		I915_WRITE(ILK_DISPLAY_CHICKEN1,
			   I915_READ(ILK_DISPLAY_CHICKEN1) |
			   ILK_FBCQ_DIS);
		I915_WRITE(ILK_DISPLAY_CHICKEN2,
			   I915_READ(ILK_DISPLAY_CHICKEN2) |
			   ILK_DPARB_GATE);
	}

5766 5767
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);

5768 5769 5770 5771 5772 5773
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);
	I915_WRITE(_3D_CHICKEN2,
		   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
		   _3D_CHICKEN2_WM_READ_PIPELINED);
5774

5775
	/* WaDisableRenderCachePipelinedFlush:ilk */
5776 5777
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
5778

5779 5780 5781
	/* WaDisable_RenderCache_OperationalFlush:ilk */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

5782
	g4x_disable_trickle_feed(dev);
5783

5784 5785 5786 5787 5788 5789 5790
	ibx_init_clock_gating(dev);
}

static void cpt_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int pipe;
5791
	uint32_t val;
5792 5793 5794 5795 5796 5797

	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
5798 5799 5800
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
		   PCH_DPLUNIT_CLOCK_GATE_DISABLE |
		   PCH_CPUNIT_CLOCK_GATE_DISABLE);
5801 5802
	I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
		   DPLS_EDP_PPS_FIX_DIS);
5803 5804 5805
	/* The below fixes the weird display corruption, a few pixels shifted
	 * downward, on (only) LVDS of some HP laptops with IVY.
	 */
5806
	for_each_pipe(dev_priv, pipe) {
5807 5808 5809
		val = I915_READ(TRANS_CHICKEN2(pipe));
		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
		val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
5810
		if (dev_priv->vbt.fdi_rx_polarity_inverted)
5811
			val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
5812 5813 5814
		val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
5815 5816
		I915_WRITE(TRANS_CHICKEN2(pipe), val);
	}
5817
	/* WADP0ClockGatingDisable */
5818
	for_each_pipe(dev_priv, pipe) {
5819 5820 5821
		I915_WRITE(TRANS_CHICKEN1(pipe),
			   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
	}
5822 5823
}

5824 5825 5826 5827 5828 5829
static void gen6_check_mch_setup(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t tmp;

	tmp = I915_READ(MCH_SSKPD);
5830 5831 5832
	if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
		DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
			      tmp);
5833 5834
}

5835
static void gen6_init_clock_gating(struct drm_device *dev)
5836 5837
{
	struct drm_i915_private *dev_priv = dev->dev_private;
5838
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
5839

5840
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
5841 5842 5843 5844 5845

	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);

5846
	/* WaDisableHiZPlanesWhenMSAAEnabled:snb */
5847 5848 5849
	I915_WRITE(_3D_CHICKEN,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));

5850 5851 5852
	/* WaDisable_RenderCache_OperationalFlush:snb */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

5853 5854 5855
	/*
	 * BSpec recoomends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
5856 5857 5858 5859
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
5860 5861
	 */
	I915_WRITE(GEN6_GT_MODE,
5862
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
5863

5864
	ilk_init_lp_watermarks(dev);
5865 5866

	I915_WRITE(CACHE_MODE_0,
5867
		   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882

	I915_WRITE(GEN6_UCGCTL1,
		   I915_READ(GEN6_UCGCTL1) |
		   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);

	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
	 * gating disable must be set.  Failure to set it results in
	 * flickering pixels due to Z write ordering failures after
	 * some amount of runtime in the Mesa "fire" demo, and Unigine
	 * Sanctuary and Tropics, and apparently anything else with
	 * alpha test or pixel discard.
	 *
	 * According to the spec, bit 11 (RCCUNIT) must also be set,
	 * but we didn't debug actual testcases to find it out.
5883
	 *
5884 5885
	 * WaDisableRCCUnitClockGating:snb
	 * WaDisableRCPBUnitClockGating:snb
5886 5887 5888 5889 5890
	 */
	I915_WRITE(GEN6_UCGCTL2,
		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);

5891
	/* WaStripsFansDisableFastClipPerformanceFix:snb */
5892 5893
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
5894

5895 5896 5897 5898 5899 5900 5901 5902
	/*
	 * Bspec says:
	 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
	 * 3DSTATE_SF number of SF output attributes is more than 16."
	 */
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));

5903 5904 5905 5906 5907 5908 5909 5910
	/*
	 * According to the spec the following bits should be
	 * set in order to enable memory self-refresh and fbc:
	 * The bit21 and bit22 of 0x42000
	 * The bit21 and bit22 of 0x42004
	 * The bit5 and bit7 of 0x42020
	 * The bit14 of 0x70180
	 * The bit14 of 0x71180
5911 5912
	 *
	 * WaFbcAsynchFlipDisableFbcQueue:snb
5913 5914 5915 5916 5917 5918 5919
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN1,
		   I915_READ(ILK_DISPLAY_CHICKEN1) |
		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
5920 5921 5922 5923
	I915_WRITE(ILK_DSPCLK_GATE_D,
		   I915_READ(ILK_DSPCLK_GATE_D) |
		   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
5924

5925
	g4x_disable_trickle_feed(dev);
B
Ben Widawsky 已提交
5926

5927
	cpt_init_clock_gating(dev);
5928 5929

	gen6_check_mch_setup(dev);
5930 5931 5932 5933 5934 5935
}

static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
{
	uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);

5936
	/*
5937
	 * WaVSThreadDispatchOverride:ivb,vlv
5938 5939 5940 5941
	 *
	 * This actually overrides the dispatch
	 * mode for all thread types.
	 */
5942 5943 5944 5945 5946 5947 5948 5949
	reg &= ~GEN7_FF_SCHED_MASK;
	reg |= GEN7_FF_TS_SCHED_HW;
	reg |= GEN7_FF_VS_SCHED_HW;
	reg |= GEN7_FF_DS_SCHED_HW;

	I915_WRITE(GEN7_FF_THREAD_MODE, reg);
}

5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961
static void lpt_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	/*
	 * TODO: this bit should only be enabled when really needed, then
	 * disabled when not needed anymore in order to save power.
	 */
	if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
		I915_WRITE(SOUTH_DSPCLK_GATE_D,
			   I915_READ(SOUTH_DSPCLK_GATE_D) |
			   PCH_LP_PARTITION_LEVEL_DISABLE);
5962 5963 5964 5965 5966

	/* WADPOClockGatingDisable:hsw */
	I915_WRITE(_TRANSA_CHICKEN1,
		   I915_READ(_TRANSA_CHICKEN1) |
		   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
5967 5968
}

5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980
static void lpt_suspend_hw(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
		uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);

		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
	}
}

5981
static void broadwell_init_clock_gating(struct drm_device *dev)
B
Ben Widawsky 已提交
5982 5983
{
	struct drm_i915_private *dev_priv = dev->dev_private;
5984
	enum pipe pipe;
B
Ben Widawsky 已提交
5985 5986 5987 5988

	I915_WRITE(WM3_LP_ILK, 0);
	I915_WRITE(WM2_LP_ILK, 0);
	I915_WRITE(WM1_LP_ILK, 0);
5989

5990
	/* WaSwitchSolVfFArbitrationPriority:bdw */
5991
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
5992

5993
	/* WaPsrDPAMaskVBlankInSRD:bdw */
5994 5995 5996
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);

5997
	/* WaPsrDPRSUnmaskVBlankInSRD:bdw */
5998
	for_each_pipe(dev_priv, pipe) {
5999
		I915_WRITE(CHICKEN_PIPESL_1(pipe),
6000
			   I915_READ(CHICKEN_PIPESL_1(pipe)) |
6001
			   BDW_DPRS_MASK_VBLANK_SRD);
6002
	}
6003

6004 6005 6006 6007 6008
	/* WaVSRefCountFullforceMissDisable:bdw */
	/* WaDSRefCountFullforceMissDisable:bdw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
6009

6010 6011
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
6012 6013 6014 6015

	/* WaDisableSDEUnitClockGating:bdw */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6016

6017
	lpt_init_clock_gating(dev);
B
Ben Widawsky 已提交
6018 6019
}

6020 6021 6022 6023
static void haswell_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

6024
	ilk_init_lp_watermarks(dev);
6025

6026 6027 6028 6029 6030
	/* L3 caching of data atomics doesn't work -- disable it. */
	I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
	I915_WRITE(HSW_ROW_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));

6031
	/* This is required by WaCatErrorRejectionIssue:hsw */
6032 6033 6034 6035
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

6036 6037 6038
	/* WaVSRefCountFullforceMissDisable:hsw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
6039

6040 6041 6042
	/* WaDisable_RenderCache_OperationalFlush:hsw */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6043 6044 6045 6046
	/* enable HiZ Raw Stall Optimization */
	I915_WRITE(CACHE_MODE_0_GEN7,
		   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));

6047
	/* WaDisable4x2SubspanOptimization:hsw */
6048 6049
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6050

6051 6052 6053
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
6054 6055 6056 6057
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6058 6059
	 */
	I915_WRITE(GEN7_GT_MODE,
6060
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6061

6062 6063 6064 6065
	/* WaSampleCChickenBitEnable:hsw */
	I915_WRITE(HALF_SLICE_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));

6066
	/* WaSwitchSolVfFArbitrationPriority:hsw */
6067 6068
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);

6069 6070 6071
	/* WaRsPkgCStateDisplayPMReq:hsw */
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
6072

6073
	lpt_init_clock_gating(dev);
6074 6075
}

6076
static void ivybridge_init_clock_gating(struct drm_device *dev)
6077 6078
{
	struct drm_i915_private *dev_priv = dev->dev_private;
6079
	uint32_t snpcr;
6080

6081
	ilk_init_lp_watermarks(dev);
6082

6083
	I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
6084

6085
	/* WaDisableEarlyCull:ivb */
6086 6087 6088
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

6089
	/* WaDisableBackToBackFlipFix:ivb */
6090 6091 6092 6093
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

6094
	/* WaDisablePSDDualDispatchEnable:ivb */
6095 6096 6097 6098
	if (IS_IVB_GT1(dev))
		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));

6099 6100 6101
	/* WaDisable_RenderCache_OperationalFlush:ivb */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6102
	/* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
6103 6104 6105
	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);

6106
	/* WaApplyL3ControlAndL3ChickenMode:ivb */
6107 6108 6109
	I915_WRITE(GEN7_L3CNTLREG1,
			GEN7_WA_FOR_GEN7_L3_CONTROL);
	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
6110 6111 6112 6113
		   GEN7_WA_L3_CHICKEN_MODE);
	if (IS_IVB_GT1(dev))
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6114 6115 6116 6117
	else {
		/* must write both registers */
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6118 6119
		I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6120
	}
6121

6122
	/* WaForceL3Serialization:ivb */
6123 6124 6125
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

6126
	/*
6127
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
6128
	 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
6129 6130
	 */
	I915_WRITE(GEN6_UCGCTL2,
6131
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
6132

6133
	/* This is required by WaCatErrorRejectionIssue:ivb */
6134 6135 6136 6137
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

6138
	g4x_disable_trickle_feed(dev);
6139 6140

	gen7_setup_fixed_func_scheduler(dev_priv);
6141

6142 6143 6144 6145 6146
	if (0) { /* causes HiZ corruption on ivb:gt1 */
		/* enable HiZ Raw Stall Optimization */
		I915_WRITE(CACHE_MODE_0_GEN7,
			   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
	}
6147

6148
	/* WaDisable4x2SubspanOptimization:ivb */
6149 6150
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6151

6152 6153 6154
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
6155 6156 6157 6158
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6159 6160
	 */
	I915_WRITE(GEN7_GT_MODE,
6161
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6162

6163 6164 6165 6166
	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
	snpcr &= ~GEN6_MBC_SNPCR_MASK;
	snpcr |= GEN6_MBC_SNPCR_MED;
	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
6167

6168 6169
	if (!HAS_PCH_NOP(dev))
		cpt_init_clock_gating(dev);
6170 6171

	gen6_check_mch_setup(dev);
6172 6173
}

6174
static void valleyview_init_clock_gating(struct drm_device *dev)
6175 6176 6177
{
	struct drm_i915_private *dev_priv = dev->dev_private;

6178
	I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
6179

6180
	/* WaDisableEarlyCull:vlv */
6181 6182 6183
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

6184
	/* WaDisableBackToBackFlipFix:vlv */
6185 6186 6187 6188
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

6189
	/* WaPsdDispatchEnable:vlv */
6190
	/* WaDisablePSDDualDispatchEnable:vlv */
6191
	I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
6192 6193
		   _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
				      GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
6194

6195 6196 6197
	/* WaDisable_RenderCache_OperationalFlush:vlv */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6198
	/* WaForceL3Serialization:vlv */
6199 6200 6201
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

6202
	/* WaDisableDopClockGating:vlv */
6203 6204 6205
	I915_WRITE(GEN7_ROW_CHICKEN2,
		   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));

6206
	/* This is required by WaCatErrorRejectionIssue:vlv */
6207 6208 6209 6210
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
		   I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

6211 6212
	gen7_setup_fixed_func_scheduler(dev_priv);

6213
	/*
6214
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
6215
	 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
6216 6217
	 */
	I915_WRITE(GEN6_UCGCTL2,
6218
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
6219

6220 6221 6222 6223 6224
	/* WaDisableL3Bank2xClockGate:vlv
	 * Disabling L3 clock gating- MMIO 940c[25] = 1
	 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
	I915_WRITE(GEN7_UCGCTL4,
		   I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
6225

6226
	I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
6227

6228 6229 6230 6231
	/*
	 * BSpec says this must be set, even though
	 * WaDisable4x2SubspanOptimization isn't listed for VLV.
	 */
6232 6233
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6234

6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
	 */
	I915_WRITE(GEN7_GT_MODE,
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));

6246 6247 6248 6249 6250 6251
	/*
	 * WaIncreaseL3CreditsForVLVB0:vlv
	 * This is the hardware default actually.
	 */
	I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);

6252
	/*
6253
	 * WaDisableVLVClockGating_VBIIssue:vlv
6254 6255 6256
	 * Disable clock gating on th GCFG unit to prevent a delay
	 * in the reporting of vblank events.
	 */
6257
	I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
6258 6259
}

6260 6261 6262 6263 6264 6265 6266
static void cherryview_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);

	I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
6267

6268 6269 6270 6271 6272
	/* WaVSRefCountFullforceMissDisable:chv */
	/* WaDSRefCountFullforceMissDisable:chv */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
6273 6274 6275 6276

	/* WaDisableSemaphoreAndSyncFlipWait:chv */
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
6277 6278 6279 6280

	/* WaDisableCSUnitClockGating:chv */
	I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
6281 6282 6283 6284

	/* WaDisableSDEUnitClockGating:chv */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6285 6286
}

6287
static void g4x_init_clock_gating(struct drm_device *dev)
6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dspclk_gate;

	I915_WRITE(RENCLK_GATE_D1, 0);
	I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
		   GS_UNIT_CLOCK_GATE_DISABLE |
		   CL_UNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(RAMCLK_GATE_D, 0);
	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
		OVRUNIT_CLOCK_GATE_DISABLE |
		OVCUNIT_CLOCK_GATE_DISABLE;
	if (IS_GM45(dev))
		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
	I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
6303 6304 6305 6306

	/* WaDisableRenderCachePipelinedFlush */
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6307

6308 6309 6310
	/* WaDisable_RenderCache_OperationalFlush:g4x */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6311
	g4x_disable_trickle_feed(dev);
6312 6313
}

6314
static void crestline_init_clock_gating(struct drm_device *dev)
6315 6316 6317 6318 6319 6320 6321 6322
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
	I915_WRITE(DSPCLK_GATE_D, 0);
	I915_WRITE(RAMCLK_GATE_D, 0);
	I915_WRITE16(DEUC, 0);
6323 6324
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
6325 6326 6327

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6328 6329
}

6330
static void broadwater_init_clock_gating(struct drm_device *dev)
6331 6332 6333 6334 6335 6336 6337 6338 6339
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
		   I965_RCC_CLOCK_GATE_DISABLE |
		   I965_RCPB_CLOCK_GATE_DISABLE |
		   I965_ISC_CLOCK_GATE_DISABLE |
		   I965_FBC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
6340 6341
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
6342 6343 6344

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6345 6346
}

6347
static void gen3_init_clock_gating(struct drm_device *dev)
6348 6349 6350 6351 6352 6353 6354
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 dstate = I915_READ(D_STATE);

	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
		DSTATE_DOT_CLOCK_GATING;
	I915_WRITE(D_STATE, dstate);
6355 6356 6357

	if (IS_PINEVIEW(dev))
		I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
6358 6359 6360

	/* IIR "flip pending" means done if this bit is set */
	I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
6361 6362

	/* interrupts should cause a wake up from C3 */
6363
	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
6364 6365 6366

	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
	I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
6367 6368 6369

	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
6370 6371
}

6372
static void i85x_init_clock_gating(struct drm_device *dev)
6373 6374 6375 6376
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
6377 6378 6379 6380

	/* interrupts should cause a wake up from C3 */
	I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
		   _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
6381 6382 6383

	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
6384 6385
}

6386
static void i830_init_clock_gating(struct drm_device *dev)
6387 6388 6389 6390
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
6391 6392 6393 6394

	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
6395 6396 6397 6398 6399 6400
}

void intel_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

6401 6402
	if (dev_priv->display.init_clock_gating)
		dev_priv->display.init_clock_gating(dev);
6403 6404
}

6405 6406 6407 6408 6409 6410
void intel_suspend_hw(struct drm_device *dev)
{
	if (HAS_PCH_LPT(dev))
		lpt_suspend_hw(dev);
}

6411 6412 6413 6414 6415
/* Set up chip specific power management-related functions */
void intel_init_pm(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

6416
	intel_fbc_init(dev_priv);
6417

6418 6419 6420 6421 6422 6423
	/* For cxsr */
	if (IS_PINEVIEW(dev))
		i915_pineview_get_mem_freq(dev);
	else if (IS_GEN5(dev))
		i915_ironlake_get_mem_freq(dev);

6424
	/* For FIFO watermark updates */
6425
	if (INTEL_INFO(dev)->gen >= 9) {
6426 6427
		skl_setup_wm_latency(dev);

6428
		dev_priv->display.init_clock_gating = skl_init_clock_gating;
6429 6430
		dev_priv->display.update_wm = skl_update_wm;
		dev_priv->display.update_sprite_wm = skl_update_sprite_wm;
6431
	} else if (HAS_PCH_SPLIT(dev)) {
6432
		ilk_setup_wm_latency(dev);
6433

6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445
		if ((IS_GEN5(dev) && dev_priv->wm.pri_latency[1] &&
		     dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
		    (!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
		     dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
			dev_priv->display.update_wm = ilk_update_wm;
			dev_priv->display.update_sprite_wm = ilk_update_sprite_wm;
		} else {
			DRM_DEBUG_KMS("Failed to read display plane latency. "
				      "Disable CxSR\n");
		}

		if (IS_GEN5(dev))
6446
			dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
6447
		else if (IS_GEN6(dev))
6448
			dev_priv->display.init_clock_gating = gen6_init_clock_gating;
6449
		else if (IS_IVYBRIDGE(dev))
6450
			dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
6451
		else if (IS_HASWELL(dev))
6452
			dev_priv->display.init_clock_gating = haswell_init_clock_gating;
6453
		else if (INTEL_INFO(dev)->gen == 8)
6454
			dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
6455
	} else if (IS_CHERRYVIEW(dev)) {
6456
		dev_priv->display.update_wm = cherryview_update_wm;
6457
		dev_priv->display.update_sprite_wm = valleyview_update_sprite_wm;
6458 6459
		dev_priv->display.init_clock_gating =
			cherryview_init_clock_gating;
6460 6461
	} else if (IS_VALLEYVIEW(dev)) {
		dev_priv->display.update_wm = valleyview_update_wm;
6462
		dev_priv->display.update_sprite_wm = valleyview_update_sprite_wm;
6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475
		dev_priv->display.init_clock_gating =
			valleyview_init_clock_gating;
	} else if (IS_PINEVIEW(dev)) {
		if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
					    dev_priv->is_ddr3,
					    dev_priv->fsb_freq,
					    dev_priv->mem_freq)) {
			DRM_INFO("failed to find known CxSR latency "
				 "(found ddr%s fsb freq %d, mem freq %d), "
				 "disabling CxSR\n",
				 (dev_priv->is_ddr3 == 1) ? "3" : "2",
				 dev_priv->fsb_freq, dev_priv->mem_freq);
			/* Disable CxSR and never update its watermark again */
6476
			intel_set_memory_cxsr(dev_priv, false);
6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493
			dev_priv->display.update_wm = NULL;
		} else
			dev_priv->display.update_wm = pineview_update_wm;
		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
	} else if (IS_G4X(dev)) {
		dev_priv->display.update_wm = g4x_update_wm;
		dev_priv->display.init_clock_gating = g4x_init_clock_gating;
	} else if (IS_GEN4(dev)) {
		dev_priv->display.update_wm = i965_update_wm;
		if (IS_CRESTLINE(dev))
			dev_priv->display.init_clock_gating = crestline_init_clock_gating;
		else if (IS_BROADWATER(dev))
			dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
	} else if (IS_GEN3(dev)) {
		dev_priv->display.update_wm = i9xx_update_wm;
		dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
6494 6495 6496
	} else if (IS_GEN2(dev)) {
		if (INTEL_INFO(dev)->num_pipes == 1) {
			dev_priv->display.update_wm = i845_update_wm;
6497
			dev_priv->display.get_fifo_size = i845_get_fifo_size;
6498 6499
		} else {
			dev_priv->display.update_wm = i9xx_update_wm;
6500
			dev_priv->display.get_fifo_size = i830_get_fifo_size;
6501 6502 6503 6504 6505 6506 6507 6508
		}

		if (IS_I85X(dev) || IS_I865G(dev))
			dev_priv->display.init_clock_gating = i85x_init_clock_gating;
		else
			dev_priv->display.init_clock_gating = i830_init_clock_gating;
	} else {
		DRM_ERROR("unexpected fall-through in intel_init_pm\n");
6509 6510 6511
	}
}

6512
int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
B
Ben Widawsky 已提交
6513
{
6514
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
B
Ben Widawsky 已提交
6515 6516 6517 6518 6519 6520 6521

	if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
		DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
		return -EAGAIN;
	}

	I915_WRITE(GEN6_PCODE_DATA, *val);
6522
	I915_WRITE(GEN6_PCODE_DATA1, 0);
B
Ben Widawsky 已提交
6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536
	I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);

	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
		     500)) {
		DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
		return -ETIMEDOUT;
	}

	*val = I915_READ(GEN6_PCODE_DATA);
	I915_WRITE(GEN6_PCODE_DATA, 0);

	return 0;
}

6537
int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u32 mbox, u32 val)
B
Ben Widawsky 已提交
6538
{
6539
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
B
Ben Widawsky 已提交
6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558

	if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
		DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
		return -EAGAIN;
	}

	I915_WRITE(GEN6_PCODE_DATA, val);
	I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);

	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
		     500)) {
		DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
		return -ETIMEDOUT;
	}

	I915_WRITE(GEN6_PCODE_DATA, 0);

	return 0;
}
6559

6560
static int vlv_gpu_freq_div(unsigned int czclk_freq)
6561
{
6562 6563 6564 6565 6566 6567 6568 6569
	switch (czclk_freq) {
	case 200:
		return 10;
	case 267:
		return 12;
	case 320:
	case 333:
		return 16;
6570 6571
	case 400:
		return 20;
6572 6573 6574
	default:
		return -1;
	}
6575
}
6576

6577 6578 6579 6580 6581 6582 6583 6584 6585
static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
{
	int div, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->mem_freq, 4);

	div = vlv_gpu_freq_div(czclk_freq);
	if (div < 0)
		return div;

	return DIV_ROUND_CLOSEST(czclk_freq * (val + 6 - 0xbd), div);
6586 6587
}

6588
static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
6589
{
6590
	int mul, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->mem_freq, 4);
6591

6592 6593 6594
	mul = vlv_gpu_freq_div(czclk_freq);
	if (mul < 0)
		return mul;
6595

6596
	return DIV_ROUND_CLOSEST(mul * val, czclk_freq) + 0xbd - 6;
6597 6598
}

6599
static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
6600
{
6601
	int div, czclk_freq = dev_priv->rps.cz_freq;
6602

6603 6604 6605
	div = vlv_gpu_freq_div(czclk_freq) / 2;
	if (div < 0)
		return div;
6606

6607
	return DIV_ROUND_CLOSEST(czclk_freq * val, 2 * div) / 2;
6608 6609
}

6610
static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
6611
{
6612
	int mul, czclk_freq = dev_priv->rps.cz_freq;
6613

6614 6615 6616
	mul = vlv_gpu_freq_div(czclk_freq) / 2;
	if (mul < 0)
		return mul;
6617

6618
	/* CHV needs even values */
6619
	return DIV_ROUND_CLOSEST(val * 2 * mul, czclk_freq) * 2;
6620 6621
}

6622
int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
6623 6624
{
	if (IS_CHERRYVIEW(dev_priv->dev))
6625
		return chv_gpu_freq(dev_priv, val);
6626
	else if (IS_VALLEYVIEW(dev_priv->dev))
6627 6628 6629
		return byt_gpu_freq(dev_priv, val);
	else
		return val * GT_FREQUENCY_MULTIPLIER;
6630 6631
}

6632 6633
int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
{
6634
	if (IS_CHERRYVIEW(dev_priv->dev))
6635
		return chv_freq_opcode(dev_priv, val);
6636
	else if (IS_VALLEYVIEW(dev_priv->dev))
6637 6638 6639 6640
		return byt_freq_opcode(dev_priv, val);
	else
		return val / GT_FREQUENCY_MULTIPLIER;
}
6641

D
Daniel Vetter 已提交
6642
void intel_pm_setup(struct drm_device *dev)
6643 6644 6645
{
	struct drm_i915_private *dev_priv = dev->dev_private;

D
Daniel Vetter 已提交
6646 6647
	mutex_init(&dev_priv->rps.hw_lock);

6648 6649
	INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
			  intel_gen6_powersave_work);
6650

6651
	dev_priv->pm.suspended = false;
6652
}