base.c 59.6 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0+
2 3 4 5 6 7 8 9 10 11 12
/*
 * Procedures for creating, accessing and interpreting the device tree.
 *
 * Paul Mackerras	August 1996.
 * Copyright (C) 1996-2005 Paul Mackerras.
 *
 *  Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
 *    {engebret|bergner}@us.ibm.com
 *
 *  Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
 *
13 14
 *  Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
 *  Grant Likely.
15
 */
16 17 18

#define pr_fmt(fmt)	"OF: " fmt

19
#include <linux/bitmap.h>
20
#include <linux/console.h>
21
#include <linux/ctype.h>
22
#include <linux/cpu.h>
23 24
#include <linux/module.h>
#include <linux/of.h>
25
#include <linux/of_device.h>
26
#include <linux/of_graph.h>
S
Stephen Rothwell 已提交
27
#include <linux/spinlock.h>
28
#include <linux/slab.h>
29
#include <linux/string.h>
J
Jeremy Kerr 已提交
30
#include <linux/proc_fs.h>
S
Stephen Rothwell 已提交
31

32
#include "of_private.h"
33

34
LIST_HEAD(aliases_lookup);
35

G
Grant Likely 已提交
36 37
struct device_node *of_root;
EXPORT_SYMBOL(of_root);
38
struct device_node *of_chosen;
39
struct device_node *of_aliases;
40
struct device_node *of_stdout;
41
static const char *of_stdout_options;
42

43
struct kset *of_kset;
44 45

/*
46 47 48 49
 * Used to protect the of_aliases, to hold off addition of nodes to sysfs.
 * This mutex must be held whenever modifications are being made to the
 * device tree. The of_{attach,detach}_node() and
 * of_{add,remove,update}_property() helpers make sure this happens.
50
 */
51
DEFINE_MUTEX(of_mutex);
52

G
Grant Likely 已提交
53
/* use when traversing tree through the child, sibling,
S
Stephen Rothwell 已提交
54 55
 * or parent members of struct device_node.
 */
56
DEFINE_RAW_SPINLOCK(devtree_lock);
57

58 59 60 61 62 63 64 65 66 67 68 69 70
bool of_node_name_eq(const struct device_node *np, const char *name)
{
	const char *node_name;
	size_t len;

	if (!np)
		return false;

	node_name = kbasename(np->full_name);
	len = strchrnul(node_name, '@') - node_name;

	return (strlen(name) == len) && (strncmp(node_name, name, len) == 0);
}
71
EXPORT_SYMBOL(of_node_name_eq);
72 73 74 75 76 77 78 79

bool of_node_name_prefix(const struct device_node *np, const char *prefix)
{
	if (!np)
		return false;

	return strncmp(kbasename(np->full_name), prefix, strlen(prefix)) == 0;
}
80
EXPORT_SYMBOL(of_node_name_prefix);
81

82 83 84 85 86 87 88
static bool __of_node_is_type(const struct device_node *np, const char *type)
{
	const char *match = __of_get_property(np, "device_type", NULL);

	return np && match && type && !strcmp(match, type);
}

89
int of_bus_n_addr_cells(struct device_node *np)
90
{
91
	u32 cells;
92

93
	for (; np; np = np->parent)
94 95
		if (!of_property_read_u32(np, "#address-cells", &cells))
			return cells;
96

97 98 99
	/* No #address-cells property for the root node */
	return OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
}
100 101 102 103 104 105 106 107

int of_n_addr_cells(struct device_node *np)
{
	if (np->parent)
		np = np->parent;

	return of_bus_n_addr_cells(np);
}
108 109
EXPORT_SYMBOL(of_n_addr_cells);

110
int of_bus_n_size_cells(struct device_node *np)
111
{
112
	u32 cells;
113

114
	for (; np; np = np->parent)
115 116
		if (!of_property_read_u32(np, "#size-cells", &cells))
			return cells;
117

118 119 120
	/* No #size-cells property for the root node */
	return OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
}
121 122 123 124 125 126 127 128

int of_n_size_cells(struct device_node *np)
{
	if (np->parent)
		np = np->parent;

	return of_bus_n_size_cells(np);
}
129 130
EXPORT_SYMBOL(of_n_size_cells);

131 132 133
#ifdef CONFIG_NUMA
int __weak of_node_to_nid(struct device_node *np)
{
134
	return NUMA_NO_NODE;
135 136 137
}
#endif

138 139
#define OF_PHANDLE_CACHE_BITS	7
#define OF_PHANDLE_CACHE_SZ	BIT(OF_PHANDLE_CACHE_BITS)
140

141
static struct device_node *phandle_cache[OF_PHANDLE_CACHE_SZ];
142

143
static u32 of_phandle_cache_hash(phandle handle)
144
{
145
	return hash_32(handle, OF_PHANDLE_CACHE_BITS);
146 147
}

148 149 150
/*
 * Caller must hold devtree_lock.
 */
151
void __of_phandle_cache_inv_entry(phandle handle)
152
{
153
	u32 handle_hash;
154 155 156 157 158
	struct device_node *np;

	if (!handle)
		return;

159
	handle_hash = of_phandle_cache_hash(handle);
160

161 162 163
	np = phandle_cache[handle_hash];
	if (np && handle == np->phandle)
		phandle_cache[handle_hash] = NULL;
164 165
}

166
void __init of_core_init(void)
167 168 169
{
	struct device_node *np;

170

171
	/* Create the kset, and register existing nodes */
172
	mutex_lock(&of_mutex);
173 174
	of_kset = kset_create_and_add("devicetree", NULL, firmware_kobj);
	if (!of_kset) {
175
		mutex_unlock(&of_mutex);
176
		pr_err("failed to register existing nodes\n");
177
		return;
178
	}
179
	for_each_of_allnodes(np) {
180
		__of_attach_node_sysfs(np);
181 182 183
		if (np->phandle && !phandle_cache[of_phandle_cache_hash(np->phandle)])
			phandle_cache[of_phandle_cache_hash(np->phandle)] = np;
	}
184
	mutex_unlock(&of_mutex);
185

G
Grant Likely 已提交
186
	/* Symlink in /proc as required by userspace ABI */
G
Grant Likely 已提交
187
	if (of_root)
188 189 190
		proc_symlink("device-tree", NULL, "/sys/firmware/devicetree/base");
}

191 192
static struct property *__of_find_property(const struct device_node *np,
					   const char *name, int *lenp)
S
Stephen Rothwell 已提交
193 194 195
{
	struct property *pp;

196 197 198
	if (!np)
		return NULL;

199
	for (pp = np->properties; pp; pp = pp->next) {
S
Stephen Rothwell 已提交
200
		if (of_prop_cmp(pp->name, name) == 0) {
201
			if (lenp)
S
Stephen Rothwell 已提交
202 203 204 205
				*lenp = pp->length;
			break;
		}
	}
206 207 208 209 210 211 212 213 214

	return pp;
}

struct property *of_find_property(const struct device_node *np,
				  const char *name,
				  int *lenp)
{
	struct property *pp;
215
	unsigned long flags;
216

217
	raw_spin_lock_irqsave(&devtree_lock, flags);
218
	pp = __of_find_property(np, name, lenp);
219
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
S
Stephen Rothwell 已提交
220 221 222 223 224

	return pp;
}
EXPORT_SYMBOL(of_find_property);

G
Grant Likely 已提交
225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
struct device_node *__of_find_all_nodes(struct device_node *prev)
{
	struct device_node *np;
	if (!prev) {
		np = of_root;
	} else if (prev->child) {
		np = prev->child;
	} else {
		/* Walk back up looking for a sibling, or the end of the structure */
		np = prev;
		while (np->parent && !np->sibling)
			np = np->parent;
		np = np->sibling; /* Might be null at the end of the tree */
	}
	return np;
}

242 243 244 245 246
/**
 * of_find_all_nodes - Get next node in global list
 * @prev:	Previous node or NULL to start iteration
 *		of_node_put() will be called on it
 *
247
 * Return: A node pointer with refcount incremented, use
248 249 250 251 252
 * of_node_put() on it when done.
 */
struct device_node *of_find_all_nodes(struct device_node *prev)
{
	struct device_node *np;
253
	unsigned long flags;
254

255
	raw_spin_lock_irqsave(&devtree_lock, flags);
G
Grant Likely 已提交
256 257
	np = __of_find_all_nodes(prev);
	of_node_get(np);
258
	of_node_put(prev);
259
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
260 261 262 263
	return np;
}
EXPORT_SYMBOL(of_find_all_nodes);

264 265 266 267
/*
 * Find a property with a given name for a given node
 * and return the value.
 */
268 269
const void *__of_get_property(const struct device_node *np,
			      const char *name, int *lenp)
270 271 272 273 274 275
{
	struct property *pp = __of_find_property(np, name, lenp);

	return pp ? pp->value : NULL;
}

276 277 278 279 280
/*
 * Find a property with a given name for a given node
 * and return the value.
 */
const void *of_get_property(const struct device_node *np, const char *name,
281
			    int *lenp)
282 283 284 285 286 287
{
	struct property *pp = of_find_property(np, name, lenp);

	return pp ? pp->value : NULL;
}
EXPORT_SYMBOL(of_get_property);
288

289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
/*
 * arch_match_cpu_phys_id - Match the given logical CPU and physical id
 *
 * @cpu: logical cpu index of a core/thread
 * @phys_id: physical identifier of a core/thread
 *
 * CPU logical to physical index mapping is architecture specific.
 * However this __weak function provides a default match of physical
 * id to logical cpu index. phys_id provided here is usually values read
 * from the device tree which must match the hardware internal registers.
 *
 * Returns true if the physical identifier and the logical cpu index
 * correspond to the same core/thread, false otherwise.
 */
bool __weak arch_match_cpu_phys_id(int cpu, u64 phys_id)
{
	return (u32)phys_id == cpu;
}

308
/*
309 310 311 312 313 314 315 316 317 318 319 320 321
 * Checks if the given "prop_name" property holds the physical id of the
 * core/thread corresponding to the logical cpu 'cpu'. If 'thread' is not
 * NULL, local thread number within the core is returned in it.
 */
static bool __of_find_n_match_cpu_property(struct device_node *cpun,
			const char *prop_name, int cpu, unsigned int *thread)
{
	const __be32 *cell;
	int ac, prop_len, tid;
	u64 hwid;

	ac = of_n_addr_cells(cpun);
	cell = of_get_property(cpun, prop_name, &prop_len);
322 323
	if (!cell && !ac && arch_match_cpu_phys_id(cpu, 0))
		return true;
324
	if (!cell || !ac)
325
		return false;
326
	prop_len /= sizeof(*cell) * ac;
327 328 329 330 331 332 333 334 335 336 337 338
	for (tid = 0; tid < prop_len; tid++) {
		hwid = of_read_number(cell, ac);
		if (arch_match_cpu_phys_id(cpu, hwid)) {
			if (thread)
				*thread = tid;
			return true;
		}
		cell += ac;
	}
	return false;
}

339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
/*
 * arch_find_n_match_cpu_physical_id - See if the given device node is
 * for the cpu corresponding to logical cpu 'cpu'.  Return true if so,
 * else false.  If 'thread' is non-NULL, the local thread number within the
 * core is returned in it.
 */
bool __weak arch_find_n_match_cpu_physical_id(struct device_node *cpun,
					      int cpu, unsigned int *thread)
{
	/* Check for non-standard "ibm,ppc-interrupt-server#s" property
	 * for thread ids on PowerPC. If it doesn't exist fallback to
	 * standard "reg" property.
	 */
	if (IS_ENABLED(CONFIG_PPC) &&
	    __of_find_n_match_cpu_property(cpun,
					   "ibm,ppc-interrupt-server#s",
					   cpu, thread))
		return true;

358
	return __of_find_n_match_cpu_property(cpun, "reg", cpu, thread);
359 360
}

361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
/**
 * of_get_cpu_node - Get device node associated with the given logical CPU
 *
 * @cpu: CPU number(logical index) for which device node is required
 * @thread: if not NULL, local thread number within the physical core is
 *          returned
 *
 * The main purpose of this function is to retrieve the device node for the
 * given logical CPU index. It should be used to initialize the of_node in
 * cpu device. Once of_node in cpu device is populated, all the further
 * references can use that instead.
 *
 * CPU logical to physical index mapping is architecture specific and is built
 * before booting secondary cores. This function uses arch_match_cpu_phys_id
 * which can be overridden by architecture specific implementation.
 *
377
 * Return: A node pointer for the logical cpu with refcount incremented, use
378
 * of_node_put() on it when done. Returns NULL if not found.
379 380 381
 */
struct device_node *of_get_cpu_node(int cpu, unsigned int *thread)
{
382
	struct device_node *cpun;
383

384
	for_each_of_cpu_node(cpun) {
385
		if (arch_find_n_match_cpu_physical_id(cpun, cpu, thread))
386 387 388 389 390 391
			return cpun;
	}
	return NULL;
}
EXPORT_SYMBOL(of_get_cpu_node);

392 393 394 395 396
/**
 * of_cpu_node_to_id: Get the logical CPU number for a given device_node
 *
 * @cpu_node: Pointer to the device_node for CPU.
 *
397 398
 * Return: The logical CPU number of the given CPU device_node or -ENODEV if the
 * CPU is not found.
399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417
 */
int of_cpu_node_to_id(struct device_node *cpu_node)
{
	int cpu;
	bool found = false;
	struct device_node *np;

	for_each_possible_cpu(cpu) {
		np = of_cpu_device_node_get(cpu);
		found = (cpu_node == np);
		of_node_put(np);
		if (found)
			return cpu;
	}

	return -ENODEV;
}
EXPORT_SYMBOL(of_cpu_node_to_id);

418 419 420 421 422 423 424 425 426 427 428 429
/**
 * of_get_cpu_state_node - Get CPU's idle state node at the given index
 *
 * @cpu_node: The device node for the CPU
 * @index: The index in the list of the idle states
 *
 * Two generic methods can be used to describe a CPU's idle states, either via
 * a flattened description through the "cpu-idle-states" binding or via the
 * hierarchical layout, using the "power-domains" and the "domain-idle-states"
 * bindings. This function check for both and returns the idle state node for
 * the requested index.
 *
430
 * Return: An idle state node if found at @index. The refcount is incremented
431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
 * for it, so call of_node_put() on it when done. Returns NULL if not found.
 */
struct device_node *of_get_cpu_state_node(struct device_node *cpu_node,
					  int index)
{
	struct of_phandle_args args;
	int err;

	err = of_parse_phandle_with_args(cpu_node, "power-domains",
					"#power-domain-cells", 0, &args);
	if (!err) {
		struct device_node *state_node =
			of_parse_phandle(args.np, "domain-idle-states", index);

		of_node_put(args.np);
		if (state_node)
			return state_node;
	}

	return of_parse_phandle(cpu_node, "cpu-idle-states", index);
}
EXPORT_SYMBOL(of_get_cpu_state_node);

454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482
/**
 * __of_device_is_compatible() - Check if the node matches given constraints
 * @device: pointer to node
 * @compat: required compatible string, NULL or "" for any match
 * @type: required device_type value, NULL or "" for any match
 * @name: required node name, NULL or "" for any match
 *
 * Checks if the given @compat, @type and @name strings match the
 * properties of the given @device. A constraints can be skipped by
 * passing NULL or an empty string as the constraint.
 *
 * Returns 0 for no match, and a positive integer on match. The return
 * value is a relative score with larger values indicating better
 * matches. The score is weighted for the most specific compatible value
 * to get the highest score. Matching type is next, followed by matching
 * name. Practically speaking, this results in the following priority
 * order for matches:
 *
 * 1. specific compatible && type && name
 * 2. specific compatible && type
 * 3. specific compatible && name
 * 4. specific compatible
 * 5. general compatible && type && name
 * 6. general compatible && type
 * 7. general compatible && name
 * 8. general compatible
 * 9. type && name
 * 10. type
 * 11. name
483
 */
484
static int __of_device_is_compatible(const struct device_node *device,
485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
				     const char *compat, const char *type, const char *name)
{
	struct property *prop;
	const char *cp;
	int index = 0, score = 0;

	/* Compatible match has highest priority */
	if (compat && compat[0]) {
		prop = __of_find_property(device, "compatible", NULL);
		for (cp = of_prop_next_string(prop, NULL); cp;
		     cp = of_prop_next_string(prop, cp), index++) {
			if (of_compat_cmp(cp, compat, strlen(compat)) == 0) {
				score = INT_MAX/2 - (index << 2);
				break;
			}
		}
		if (!score)
			return 0;
	}
504

505 506
	/* Matching type is better than matching name */
	if (type && type[0]) {
507
		if (!__of_node_is_type(device, type))
508 509
			return 0;
		score += 2;
510 511
	}

512 513
	/* Matching name is a bit better than not */
	if (name && name[0]) {
514
		if (!of_node_name_eq(device, name))
515 516 517 518 519
			return 0;
		score++;
	}

	return score;
520
}
521 522 523 524 525 526 527

/** Checks if the given "compat" string matches one of the strings in
 * the device's "compatible" property
 */
int of_device_is_compatible(const struct device_node *device,
		const char *compat)
{
528
	unsigned long flags;
529 530
	int res;

531
	raw_spin_lock_irqsave(&devtree_lock, flags);
532
	res = __of_device_is_compatible(device, compat, NULL, NULL);
533
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
534 535
	return res;
}
536
EXPORT_SYMBOL(of_device_is_compatible);
S
Stephen Rothwell 已提交
537

538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559
/** Checks if the device is compatible with any of the entries in
 *  a NULL terminated array of strings. Returns the best match
 *  score or 0.
 */
int of_device_compatible_match(struct device_node *device,
			       const char *const *compat)
{
	unsigned int tmp, score = 0;

	if (!compat)
		return 0;

	while (*compat) {
		tmp = of_device_is_compatible(device, *compat);
		if (tmp > score)
			score = tmp;
		compat++;
	}

	return score;
}

G
Grant Likely 已提交
560
/**
561
 * of_machine_is_compatible - Test root of device tree for a given compatible value
G
Grant Likely 已提交
562 563
 * @compat: compatible string to look for in root node's compatible property.
 *
564
 * Return: A positive integer if the root node has the given value in its
G
Grant Likely 已提交
565 566
 * compatible property.
 */
567
int of_machine_is_compatible(const char *compat)
G
Grant Likely 已提交
568 569 570 571 572 573 574 575 576 577 578
{
	struct device_node *root;
	int rc = 0;

	root = of_find_node_by_path("/");
	if (root) {
		rc = of_device_is_compatible(root, compat);
		of_node_put(root);
	}
	return rc;
}
579
EXPORT_SYMBOL(of_machine_is_compatible);
G
Grant Likely 已提交
580

581
/**
582
 *  __of_device_is_available - check if a device is available for use
583
 *
584
 *  @device: Node to check for availability, with locks already held
585
 *
586
 *  Return: True if the status property is absent or set to "okay" or "ok",
587
 *  false otherwise
588
 */
589
static bool __of_device_is_available(const struct device_node *device)
590 591 592 593
{
	const char *status;
	int statlen;

594
	if (!device)
595
		return false;
596

597
	status = __of_get_property(device, "status", &statlen);
598
	if (status == NULL)
599
		return true;
600 601 602

	if (statlen > 0) {
		if (!strcmp(status, "okay") || !strcmp(status, "ok"))
603
			return true;
604 605
	}

606
	return false;
607
}
608 609 610 611 612 613

/**
 *  of_device_is_available - check if a device is available for use
 *
 *  @device: Node to check for availability
 *
614
 *  Return: True if the status property is absent or set to "okay" or "ok",
615
 *  false otherwise
616
 */
617
bool of_device_is_available(const struct device_node *device)
618 619
{
	unsigned long flags;
620
	bool res;
621 622 623 624 625 626 627

	raw_spin_lock_irqsave(&devtree_lock, flags);
	res = __of_device_is_available(device);
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
	return res;

}
628 629
EXPORT_SYMBOL(of_device_is_available);

630 631 632 633 634
/**
 *  of_device_is_big_endian - check if a device has BE registers
 *
 *  @device: Node to check for endianness
 *
635
 *  Return: True if the device has a "big-endian" property, or if the kernel
636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652
 *  was compiled for BE *and* the device has a "native-endian" property.
 *  Returns false otherwise.
 *
 *  Callers would nominally use ioread32be/iowrite32be if
 *  of_device_is_big_endian() == true, or readl/writel otherwise.
 */
bool of_device_is_big_endian(const struct device_node *device)
{
	if (of_property_read_bool(device, "big-endian"))
		return true;
	if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) &&
	    of_property_read_bool(device, "native-endian"))
		return true;
	return false;
}
EXPORT_SYMBOL(of_device_is_big_endian);

S
Stephen Rothwell 已提交
653
/**
654 655
 * of_get_parent - Get a node's parent if any
 * @node:	Node to get parent
S
Stephen Rothwell 已提交
656
 *
657 658
 * Return: A node pointer with refcount incremented, use
 * of_node_put() on it when done.
S
Stephen Rothwell 已提交
659 660 661 662
 */
struct device_node *of_get_parent(const struct device_node *node)
{
	struct device_node *np;
663
	unsigned long flags;
S
Stephen Rothwell 已提交
664 665 666 667

	if (!node)
		return NULL;

668
	raw_spin_lock_irqsave(&devtree_lock, flags);
S
Stephen Rothwell 已提交
669
	np = of_node_get(node->parent);
670
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
S
Stephen Rothwell 已提交
671 672 673
	return np;
}
EXPORT_SYMBOL(of_get_parent);
S
Stephen Rothwell 已提交
674

675
/**
676 677
 * of_get_next_parent - Iterate to a node's parent
 * @node:	Node to get parent of
678
 *
679 680 681
 * This is like of_get_parent() except that it drops the
 * refcount on the passed node, making it suitable for iterating
 * through a node's parents.
682
 *
683 684
 * Return: A node pointer with refcount incremented, use
 * of_node_put() on it when done.
685 686 687 688
 */
struct device_node *of_get_next_parent(struct device_node *node)
{
	struct device_node *parent;
689
	unsigned long flags;
690 691 692 693

	if (!node)
		return NULL;

694
	raw_spin_lock_irqsave(&devtree_lock, flags);
695 696
	parent = of_node_get(node->parent);
	of_node_put(node);
697
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
698 699
	return parent;
}
700
EXPORT_SYMBOL(of_get_next_parent);
701

702 703 704 705 706
static struct device_node *__of_get_next_child(const struct device_node *node,
						struct device_node *prev)
{
	struct device_node *next;

707 708 709
	if (!node)
		return NULL;

710
	next = prev ? prev->sibling : node->child;
711
	of_node_get(next);
712 713 714 715 716 717 718
	of_node_put(prev);
	return next;
}
#define __for_each_child_of_node(parent, child) \
	for (child = __of_get_next_child(parent, NULL); child != NULL; \
	     child = __of_get_next_child(parent, child))

S
Stephen Rothwell 已提交
719
/**
720 721 722
 * of_get_next_child - Iterate a node childs
 * @node:	parent node
 * @prev:	previous child of the parent node, or NULL to get first
S
Stephen Rothwell 已提交
723
 *
724 725 726
 * Return: A node pointer with refcount incremented, use of_node_put() on
 * it when done. Returns NULL when prev is the last child. Decrements the
 * refcount of prev.
S
Stephen Rothwell 已提交
727 728 729 730 731
 */
struct device_node *of_get_next_child(const struct device_node *node,
	struct device_node *prev)
{
	struct device_node *next;
732
	unsigned long flags;
S
Stephen Rothwell 已提交
733

734
	raw_spin_lock_irqsave(&devtree_lock, flags);
735
	next = __of_get_next_child(node, prev);
736
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
S
Stephen Rothwell 已提交
737 738 739
	return next;
}
EXPORT_SYMBOL(of_get_next_child);
740

741
/**
742 743 744
 * of_get_next_available_child - Find the next available child node
 * @node:	parent node
 * @prev:	previous child of the parent node, or NULL to get first
745
 *
746 747
 * This function is like of_get_next_child(), except that it
 * automatically skips any disabled nodes (i.e. status = "disabled").
748 749 750 751 752
 */
struct device_node *of_get_next_available_child(const struct device_node *node,
	struct device_node *prev)
{
	struct device_node *next;
753
	unsigned long flags;
754

755 756 757
	if (!node)
		return NULL;

758
	raw_spin_lock_irqsave(&devtree_lock, flags);
759 760
	next = prev ? prev->sibling : node->child;
	for (; next; next = next->sibling) {
761
		if (!__of_device_is_available(next))
762 763 764 765 766
			continue;
		if (of_node_get(next))
			break;
	}
	of_node_put(prev);
767
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
768 769 770 771
	return next;
}
EXPORT_SYMBOL(of_get_next_available_child);

772
/**
773 774
 * of_get_next_cpu_node - Iterate on cpu nodes
 * @prev:	previous child of the /cpus node, or NULL to get first
775
 *
776 777 778
 * Return: A cpu node pointer with refcount incremented, use of_node_put()
 * on it when done. Returns NULL when prev is the last child. Decrements
 * the refcount of prev.
779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797
 */
struct device_node *of_get_next_cpu_node(struct device_node *prev)
{
	struct device_node *next = NULL;
	unsigned long flags;
	struct device_node *node;

	if (!prev)
		node = of_find_node_by_path("/cpus");

	raw_spin_lock_irqsave(&devtree_lock, flags);
	if (prev)
		next = prev->sibling;
	else if (node) {
		next = node->child;
		of_node_put(node);
	}
	for (; next; next = next->sibling) {
		if (!(of_node_name_eq(next, "cpu") ||
798
		      __of_node_is_type(next, "cpu")))
799 800 801 802 803 804 805 806 807 808
			continue;
		if (of_node_get(next))
			break;
	}
	of_node_put(prev);
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
	return next;
}
EXPORT_SYMBOL(of_get_next_cpu_node);

809 810 811 812 813 814 815 816
/**
 * of_get_compatible_child - Find compatible child node
 * @parent:	parent node
 * @compatible:	compatible string
 *
 * Lookup child node whose compatible property contains the given compatible
 * string.
 *
817
 * Return: a node pointer with refcount incremented, use of_node_put() on it
818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833
 * when done; or NULL if not found.
 */
struct device_node *of_get_compatible_child(const struct device_node *parent,
				const char *compatible)
{
	struct device_node *child;

	for_each_child_of_node(parent, child) {
		if (of_device_is_compatible(child, compatible))
			break;
	}

	return child;
}
EXPORT_SYMBOL(of_get_compatible_child);

834
/**
835 836 837
 * of_get_child_by_name - Find the child node by name for a given parent
 * @node:	parent node
 * @name:	child name to look for.
838
 *
839
 * This function looks for child node for given matching name
840
 *
841 842 843
 * Return: A node pointer if found, with refcount incremented, use
 * of_node_put() on it when done.
 * Returns NULL if node is not found.
844 845 846 847 848 849 850
 */
struct device_node *of_get_child_by_name(const struct device_node *node,
				const char *name)
{
	struct device_node *child;

	for_each_child_of_node(node, child)
851
		if (of_node_name_eq(child, name))
852 853 854 855 856
			break;
	return child;
}
EXPORT_SYMBOL(of_get_child_by_name);

857
struct device_node *__of_find_node_by_path(struct device_node *parent,
858 859 860
						const char *path)
{
	struct device_node *child;
861
	int len;
862

863
	len = strcspn(path, "/:");
864 865 866 867
	if (!len)
		return NULL;

	__for_each_child_of_node(parent, child) {
868
		const char *name = kbasename(child->full_name);
869 870 871 872 873 874
		if (strncmp(path, name, len) == 0 && (strlen(name) == len))
			return child;
	}
	return NULL;
}

875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892
struct device_node *__of_find_node_by_full_path(struct device_node *node,
						const char *path)
{
	const char *separator = strchr(path, ':');

	while (node && *path == '/') {
		struct device_node *tmp = node;

		path++; /* Increment past '/' delimiter */
		node = __of_find_node_by_path(node, path);
		of_node_put(tmp);
		path = strchrnul(path, '/');
		if (separator && separator < path)
			break;
	}
	return node;
}

893
/**
894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909
 * of_find_node_opts_by_path - Find a node matching a full OF path
 * @path: Either the full path to match, or if the path does not
 *       start with '/', the name of a property of the /aliases
 *       node (an alias).  In the case of an alias, the node
 *       matching the alias' value will be returned.
 * @opts: Address of a pointer into which to store the start of
 *       an options string appended to the end of the path with
 *       a ':' separator.
 *
 * Valid paths:
 *  * /foo/bar	Full path
 *  * foo	Valid alias
 *  * foo/bar	Valid alias + relative path
 *
 * Return: A node pointer with refcount incremented, use
 * of_node_put() on it when done.
910
 */
911
struct device_node *of_find_node_opts_by_path(const char *path, const char **opts)
912
{
913 914
	struct device_node *np = NULL;
	struct property *pp;
915
	unsigned long flags;
916 917 918 919
	const char *separator = strchr(path, ':');

	if (opts)
		*opts = separator ? separator + 1 : NULL;
920

921
	if (strcmp(path, "/") == 0)
G
Grant Likely 已提交
922
		return of_node_get(of_root);
923 924 925

	/* The path could begin with an alias */
	if (*path != '/') {
926 927 928 929 930 931
		int len;
		const char *p = separator;

		if (!p)
			p = strchrnul(path, '/');
		len = p - path;
932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948

		/* of_aliases must not be NULL */
		if (!of_aliases)
			return NULL;

		for_each_property_of_node(of_aliases, pp) {
			if (strlen(pp->name) == len && !strncmp(pp->name, path, len)) {
				np = of_find_node_by_path(pp->value);
				break;
			}
		}
		if (!np)
			return NULL;
		path = p;
	}

	/* Step down the tree matching path components */
949
	raw_spin_lock_irqsave(&devtree_lock, flags);
950
	if (!np)
G
Grant Likely 已提交
951
		np = of_node_get(of_root);
952
	np = __of_find_node_by_full_path(np, path);
953
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
954 955
	return np;
}
956
EXPORT_SYMBOL(of_find_node_opts_by_path);
957 958

/**
959 960
 * of_find_node_by_name - Find a node by its "name" property
 * @from:	The node to start searching from or NULL; the node
961
 *		you pass will not be searched, only the next one
962 963
 *		will. Typically, you pass what the previous call
 *		returned. of_node_put() will be called on @from.
964
 * @name:	The name string to match against
965
 *
966 967
 * Return: A node pointer with refcount incremented, use
 * of_node_put() on it when done.
968 969 970 971 972
 */
struct device_node *of_find_node_by_name(struct device_node *from,
	const char *name)
{
	struct device_node *np;
973
	unsigned long flags;
974

975
	raw_spin_lock_irqsave(&devtree_lock, flags);
G
Grant Likely 已提交
976
	for_each_of_allnodes_from(from, np)
977
		if (of_node_name_eq(np, name) && of_node_get(np))
978 979
			break;
	of_node_put(from);
980
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
981 982 983 984 985
	return np;
}
EXPORT_SYMBOL(of_find_node_by_name);

/**
986 987
 * of_find_node_by_type - Find a node by its "device_type" property
 * @from:	The node to start searching from, or NULL to start searching
988 989 990 991
 *		the entire device tree. The node you pass will not be
 *		searched, only the next one will; typically, you pass
 *		what the previous call returned. of_node_put() will be
 *		called on from for you.
992
 * @type:	The type string to match against
993
 *
994 995
 * Return: A node pointer with refcount incremented, use
 * of_node_put() on it when done.
996 997 998 999 1000
 */
struct device_node *of_find_node_by_type(struct device_node *from,
	const char *type)
{
	struct device_node *np;
1001
	unsigned long flags;
1002

1003
	raw_spin_lock_irqsave(&devtree_lock, flags);
G
Grant Likely 已提交
1004
	for_each_of_allnodes_from(from, np)
1005
		if (__of_node_is_type(np, type) && of_node_get(np))
1006 1007
			break;
	of_node_put(from);
1008
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1009 1010 1011 1012 1013
	return np;
}
EXPORT_SYMBOL(of_find_node_by_type);

/**
1014
 * of_find_compatible_node - Find a node based on type and one of the
1015
 *                                tokens in its "compatible" property
1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
 * @from:	The node to start searching from or NULL, the node
 *		you pass will not be searched, only the next one
 *		will; typically, you pass what the previous call
 *		returned. of_node_put() will be called on it
 * @type:	The type string to match "device_type" or NULL to ignore
 * @compatible:	The string to match to one of the tokens in the device
 *		"compatible" list.
 *
 * Return: A node pointer with refcount incremented, use
 * of_node_put() on it when done.
1026 1027 1028 1029 1030
 */
struct device_node *of_find_compatible_node(struct device_node *from,
	const char *type, const char *compatible)
{
	struct device_node *np;
1031
	unsigned long flags;
1032

1033
	raw_spin_lock_irqsave(&devtree_lock, flags);
G
Grant Likely 已提交
1034
	for_each_of_allnodes_from(from, np)
1035
		if (__of_device_is_compatible(np, compatible, type, NULL) &&
1036
		    of_node_get(np))
1037 1038
			break;
	of_node_put(from);
1039
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1040 1041 1042
	return np;
}
EXPORT_SYMBOL(of_find_compatible_node);
1043

1044
/**
1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
 * of_find_node_with_property - Find a node which has a property with
 *                              the given name.
 * @from:	The node to start searching from or NULL, the node
 *		you pass will not be searched, only the next one
 *		will; typically, you pass what the previous call
 *		returned. of_node_put() will be called on it
 * @prop_name:	The name of the property to look for.
 *
 * Return: A node pointer with refcount incremented, use
 * of_node_put() on it when done.
1055 1056 1057 1058 1059 1060
 */
struct device_node *of_find_node_with_property(struct device_node *from,
	const char *prop_name)
{
	struct device_node *np;
	struct property *pp;
1061
	unsigned long flags;
1062

1063
	raw_spin_lock_irqsave(&devtree_lock, flags);
G
Grant Likely 已提交
1064
	for_each_of_allnodes_from(from, np) {
1065
		for (pp = np->properties; pp; pp = pp->next) {
1066 1067 1068 1069 1070 1071 1072 1073
			if (of_prop_cmp(pp->name, prop_name) == 0) {
				of_node_get(np);
				goto out;
			}
		}
	}
out:
	of_node_put(from);
1074
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1075 1076 1077 1078
	return np;
}
EXPORT_SYMBOL(of_find_node_with_property);

1079 1080 1081
static
const struct of_device_id *__of_match_node(const struct of_device_id *matches,
					   const struct device_node *node)
1082
{
1083 1084 1085
	const struct of_device_id *best_match = NULL;
	int score, best_score = 0;

1086 1087 1088
	if (!matches)
		return NULL;

1089 1090 1091 1092 1093 1094 1095
	for (; matches->name[0] || matches->type[0] || matches->compatible[0]; matches++) {
		score = __of_device_is_compatible(node, matches->compatible,
						  matches->type, matches->name);
		if (score > best_score) {
			best_match = matches;
			best_score = score;
		}
1096
	}
1097 1098

	return best_match;
1099
}
1100 1101

/**
G
Geert Uytterhoeven 已提交
1102
 * of_match_node - Tell if a device_node has a matching of_match structure
1103 1104
 * @matches:	array of of device match structures to search in
 * @node:	the of device structure to match against
1105
 *
1106
 * Low level utility function used by device matching.
1107 1108 1109 1110 1111
 */
const struct of_device_id *of_match_node(const struct of_device_id *matches,
					 const struct device_node *node)
{
	const struct of_device_id *match;
1112
	unsigned long flags;
1113

1114
	raw_spin_lock_irqsave(&devtree_lock, flags);
1115
	match = __of_match_node(matches, node);
1116
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1117 1118
	return match;
}
1119 1120 1121
EXPORT_SYMBOL(of_match_node);

/**
1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132
 * of_find_matching_node_and_match - Find a node based on an of_device_id
 *				     match table.
 * @from:	The node to start searching from or NULL, the node
 *		you pass will not be searched, only the next one
 *		will; typically, you pass what the previous call
 *		returned. of_node_put() will be called on it
 * @matches:	array of of device match structures to search in
 * @match:	Updated to point at the matches entry which matched
 *
 * Return: A node pointer with refcount incremented, use
 * of_node_put() on it when done.
1133
 */
1134 1135 1136
struct device_node *of_find_matching_node_and_match(struct device_node *from,
					const struct of_device_id *matches,
					const struct of_device_id **match)
1137 1138
{
	struct device_node *np;
1139
	const struct of_device_id *m;
1140
	unsigned long flags;
1141

1142 1143 1144
	if (match)
		*match = NULL;

1145
	raw_spin_lock_irqsave(&devtree_lock, flags);
G
Grant Likely 已提交
1146
	for_each_of_allnodes_from(from, np) {
1147
		m = __of_match_node(matches, np);
1148
		if (m && of_node_get(np)) {
1149
			if (match)
1150
				*match = m;
1151
			break;
1152
		}
1153 1154
	}
	of_node_put(from);
1155
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1156 1157
	return np;
}
1158
EXPORT_SYMBOL(of_find_matching_node_and_match);
1159 1160 1161 1162 1163 1164 1165

/**
 * of_modalias_node - Lookup appropriate modalias for a device node
 * @node:	pointer to a device tree node
 * @modalias:	Pointer to buffer that modalias value will be copied into
 * @len:	Length of modalias value
 *
1166 1167 1168 1169
 * Based on the value of the compatible property, this routine will attempt
 * to choose an appropriate modalias value for a particular device tree node.
 * It does this by stripping the manufacturer prefix (as delimited by a ',')
 * from the first entry in the compatible list property.
1170
 *
1171
 * Return: This routine returns 0 on success, <0 on failure.
1172 1173 1174
 */
int of_modalias_node(struct device_node *node, char *modalias, int len)
{
1175 1176
	const char *compatible, *p;
	int cplen;
1177 1178

	compatible = of_get_property(node, "compatible", &cplen);
1179
	if (!compatible || strlen(compatible) > cplen)
1180 1181
		return -ENODEV;
	p = strchr(compatible, ',');
1182
	strlcpy(modalias, p ? p + 1 : compatible, len);
1183 1184 1185 1186
	return 0;
}
EXPORT_SYMBOL_GPL(of_modalias_node);

J
Jeremy Kerr 已提交
1187 1188 1189 1190
/**
 * of_find_node_by_phandle - Find a node given a phandle
 * @handle:	phandle of the node to find
 *
1191
 * Return: A node pointer with refcount incremented, use
J
Jeremy Kerr 已提交
1192 1193 1194 1195
 * of_node_put() on it when done.
 */
struct device_node *of_find_node_by_phandle(phandle handle)
{
1196
	struct device_node *np = NULL;
1197
	unsigned long flags;
1198
	u32 handle_hash;
J
Jeremy Kerr 已提交
1199

1200 1201 1202
	if (!handle)
		return NULL;

1203 1204
	handle_hash = of_phandle_cache_hash(handle);

1205
	raw_spin_lock_irqsave(&devtree_lock, flags);
1206

1207 1208 1209
	if (phandle_cache[handle_hash] &&
	    handle == phandle_cache[handle_hash]->phandle)
		np = phandle_cache[handle_hash];
1210 1211 1212

	if (!np) {
		for_each_of_allnodes(np)
1213 1214
			if (np->phandle == handle &&
			    !of_node_check_flag(np, OF_DETACHED)) {
1215
				phandle_cache[handle_hash] = np;
1216 1217 1218 1219
				break;
			}
	}

J
Jeremy Kerr 已提交
1220
	of_node_get(np);
1221
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
J
Jeremy Kerr 已提交
1222 1223 1224 1225
	return np;
}
EXPORT_SYMBOL(of_find_node_by_phandle);

1226 1227 1228
void of_print_phandle_args(const char *msg, const struct of_phandle_args *args)
{
	int i;
1229
	printk("%s %pOF", msg, args->np);
1230 1231 1232 1233 1234 1235
	for (i = 0; i < args->args_count; i++) {
		const char delim = i ? ',' : ':';

		pr_cont("%c%08x", delim, args->args[i]);
	}
	pr_cont("\n");
1236 1237
}

1238 1239 1240 1241 1242
int of_phandle_iterator_init(struct of_phandle_iterator *it,
		const struct device_node *np,
		const char *list_name,
		const char *cells_name,
		int cell_count)
1243
{
1244 1245 1246 1247
	const __be32 *list;
	int size;

	memset(it, 0, sizeof(*it));
1248

1249 1250 1251 1252 1253 1254 1255
	/*
	 * one of cell_count or cells_name must be provided to determine the
	 * argument length.
	 */
	if (cell_count < 0 && !cells_name)
		return -EINVAL;

1256
	list = of_get_property(np, list_name, &size);
1257
	if (!list)
1258
		return -ENOENT;
1259

1260 1261 1262 1263 1264 1265 1266 1267 1268
	it->cells_name = cells_name;
	it->cell_count = cell_count;
	it->parent = np;
	it->list_end = list + size / sizeof(*list);
	it->phandle_end = list;
	it->cur = list;

	return 0;
}
1269
EXPORT_SYMBOL_GPL(of_phandle_iterator_init);
1270

1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288
int of_phandle_iterator_next(struct of_phandle_iterator *it)
{
	uint32_t count = 0;

	if (it->node) {
		of_node_put(it->node);
		it->node = NULL;
	}

	if (!it->cur || it->phandle_end >= it->list_end)
		return -ENOENT;

	it->cur = it->phandle_end;

	/* If phandle is 0, then it is an empty entry with no arguments. */
	it->phandle = be32_to_cpup(it->cur++);

	if (it->phandle) {
1289

1290
		/*
1291 1292
		 * Find the provider node and parse the #*-cells property to
		 * determine the argument length.
1293
		 */
1294
		it->node = of_find_node_by_phandle(it->phandle);
1295

1296 1297
		if (it->cells_name) {
			if (!it->node) {
1298 1299
				pr_err("%pOF: could not find phandle %d\n",
				       it->parent, it->phandle);
1300
				goto err;
1301
			}
1302

1303 1304
			if (of_property_read_u32(it->node, it->cells_name,
						 &count)) {
1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318
				/*
				 * If both cell_count and cells_name is given,
				 * fall back to cell_count in absence
				 * of the cells_name property
				 */
				if (it->cell_count >= 0) {
					count = it->cell_count;
				} else {
					pr_err("%pOF: could not get %s for %pOF\n",
					       it->parent,
					       it->cells_name,
					       it->node);
					goto err;
				}
1319
			}
1320 1321
		} else {
			count = it->cell_count;
1322 1323
		}

1324
		/*
1325 1326 1327 1328
		 * Make sure that the arguments actually fit in the remaining
		 * property data length
		 */
		if (it->cur + count > it->list_end) {
1329 1330 1331
			pr_err("%pOF: %s = %d found %d\n",
			       it->parent, it->cells_name,
			       count, it->cell_count);
1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348
			goto err;
		}
	}

	it->phandle_end = it->cur + count;
	it->cur_count = count;

	return 0;

err:
	if (it->node) {
		of_node_put(it->node);
		it->node = NULL;
	}

	return -EINVAL;
}
1349
EXPORT_SYMBOL_GPL(of_phandle_iterator_next);
1350

1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367
int of_phandle_iterator_args(struct of_phandle_iterator *it,
			     uint32_t *args,
			     int size)
{
	int i, count;

	count = it->cur_count;

	if (WARN_ON(size < count))
		count = size;

	for (i = 0; i < count; i++)
		args[i] = be32_to_cpup(it->cur++);

	return count;
}

1368 1369
static int __of_parse_phandle_with_args(const struct device_node *np,
					const char *list_name,
1370 1371
					const char *cells_name,
					int cell_count, int index,
1372
					struct of_phandle_args *out_args)
1373
{
1374 1375
	struct of_phandle_iterator it;
	int rc, cur_index = 0;
1376

1377
	/* Loop over the phandles until all the requested entry is found */
1378
	of_for_each_phandle(&it, rc, np, list_name, cells_name, cell_count) {
1379
		/*
1380
		 * All of the error cases bail out of the loop, so at
1381 1382 1383 1384
		 * this point, the parsing is successful. If the requested
		 * index matches, then fill the out_args structure and return,
		 * or return -ENOENT for an empty entry.
		 */
1385
		rc = -ENOENT;
1386
		if (cur_index == index) {
1387
			if (!it.phandle)
1388
				goto err;
1389 1390

			if (out_args) {
1391 1392 1393 1394 1395
				int c;

				c = of_phandle_iterator_args(&it,
							     out_args->args,
							     MAX_PHANDLE_ARGS);
1396
				out_args->np = it.node;
1397
				out_args->args_count = c;
1398
			} else {
1399
				of_node_put(it.node);
1400
			}
1401 1402

			/* Found it! return success */
1403
			return 0;
1404 1405 1406 1407 1408
		}

		cur_index++;
	}

1409 1410 1411 1412 1413
	/*
	 * Unlock node before returning result; will be one of:
	 * -ENOENT : index is for empty phandle
	 * -EINVAL : parsing error on data
	 */
1414

1415
 err:
1416
	of_node_put(it.node);
1417
	return rc;
1418
}
1419

S
Stephen Warren 已提交
1420 1421 1422 1423 1424 1425 1426
/**
 * of_parse_phandle - Resolve a phandle property to a device_node pointer
 * @np: Pointer to device node holding phandle property
 * @phandle_name: Name of property holding a phandle value
 * @index: For properties holding a table of phandles, this is the index into
 *         the table
 *
1427
 * Return: The device_node pointer with refcount incremented.  Use
S
Stephen Warren 已提交
1428 1429 1430 1431 1432
 * of_node_put() on it when done.
 */
struct device_node *of_parse_phandle(const struct device_node *np,
				     const char *phandle_name, int index)
{
1433 1434 1435 1436
	struct of_phandle_args args;

	if (index < 0)
		return NULL;
S
Stephen Warren 已提交
1437

1438 1439
	if (__of_parse_phandle_with_args(np, phandle_name, NULL, 0,
					 index, &args))
S
Stephen Warren 已提交
1440 1441
		return NULL;

1442
	return args.np;
S
Stephen Warren 已提交
1443 1444 1445
}
EXPORT_SYMBOL(of_parse_phandle);

1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457
/**
 * of_parse_phandle_with_args() - Find a node pointed by phandle in a list
 * @np:		pointer to a device tree node containing a list
 * @list_name:	property name that contains a list
 * @cells_name:	property name that specifies phandles' arguments count
 * @index:	index of a phandle to parse out
 * @out_args:	optional pointer to output arguments structure (will be filled)
 *
 * This function is useful to parse lists of phandles and their arguments.
 * Returns 0 on success and fills out_args, on error returns appropriate
 * errno value.
 *
1458
 * Caller is responsible to call of_node_put() on the returned out_args->np
1459 1460
 * pointer.
 *
1461
 * Example::
1462
 *
1463
 *  phandle1: node1 {
G
Geert Uytterhoeven 已提交
1464
 *	#list-cells = <2>;
1465
 *  };
1466
 *
1467
 *  phandle2: node2 {
G
Geert Uytterhoeven 已提交
1468
 *	#list-cells = <1>;
1469
 *  };
1470
 *
1471
 *  node3 {
G
Geert Uytterhoeven 已提交
1472
 *	list = <&phandle1 1 2 &phandle2 3>;
1473
 *  };
1474
 *
1475
 * To get a device_node of the ``node2`` node you may call this:
1476 1477
 * of_parse_phandle_with_args(node3, "list", "#list-cells", 1, &args);
 */
1478 1479 1480 1481
int of_parse_phandle_with_args(const struct device_node *np, const char *list_name,
				const char *cells_name, int index,
				struct of_phandle_args *out_args)
{
1482 1483
	int cell_count = -1;

1484 1485
	if (index < 0)
		return -EINVAL;
1486 1487 1488 1489 1490 1491 1492

	/* If cells_name is NULL we assume a cell count of 0 */
	if (!cells_name)
		cell_count = 0;

	return __of_parse_phandle_with_args(np, list_name, cells_name,
					    cell_count, index, out_args);
1493
}
1494
EXPORT_SYMBOL(of_parse_phandle_with_args);
1495

1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512
/**
 * of_parse_phandle_with_args_map() - Find a node pointed by phandle in a list and remap it
 * @np:		pointer to a device tree node containing a list
 * @list_name:	property name that contains a list
 * @stem_name:	stem of property names that specify phandles' arguments count
 * @index:	index of a phandle to parse out
 * @out_args:	optional pointer to output arguments structure (will be filled)
 *
 * This function is useful to parse lists of phandles and their arguments.
 * Returns 0 on success and fills out_args, on error returns appropriate errno
 * value. The difference between this function and of_parse_phandle_with_args()
 * is that this API remaps a phandle if the node the phandle points to has
 * a <@stem_name>-map property.
 *
 * Caller is responsible to call of_node_put() on the returned out_args->np
 * pointer.
 *
1513
 * Example::
1514
 *
1515 1516 1517
 *  phandle1: node1 {
 *  	#list-cells = <2>;
 *  };
1518
 *
1519 1520 1521
 *  phandle2: node2 {
 *  	#list-cells = <1>;
 *  };
1522
 *
1523 1524 1525 1526 1527 1528 1529
 *  phandle3: node3 {
 *  	#list-cells = <1>;
 *  	list-map = <0 &phandle2 3>,
 *  		   <1 &phandle2 2>,
 *  		   <2 &phandle1 5 1>;
 *  	list-map-mask = <0x3>;
 *  };
1530
 *
1531 1532 1533
 *  node4 {
 *  	list = <&phandle1 1 2 &phandle3 0>;
 *  };
1534
 *
1535
 * To get a device_node of the ``node2`` node you may call this:
1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573
 * of_parse_phandle_with_args(node4, "list", "list", 1, &args);
 */
int of_parse_phandle_with_args_map(const struct device_node *np,
				   const char *list_name,
				   const char *stem_name,
				   int index, struct of_phandle_args *out_args)
{
	char *cells_name, *map_name = NULL, *mask_name = NULL;
	char *pass_name = NULL;
	struct device_node *cur, *new = NULL;
	const __be32 *map, *mask, *pass;
	static const __be32 dummy_mask[] = { [0 ... MAX_PHANDLE_ARGS] = ~0 };
	static const __be32 dummy_pass[] = { [0 ... MAX_PHANDLE_ARGS] = 0 };
	__be32 initial_match_array[MAX_PHANDLE_ARGS];
	const __be32 *match_array = initial_match_array;
	int i, ret, map_len, match;
	u32 list_size, new_size;

	if (index < 0)
		return -EINVAL;

	cells_name = kasprintf(GFP_KERNEL, "#%s-cells", stem_name);
	if (!cells_name)
		return -ENOMEM;

	ret = -ENOMEM;
	map_name = kasprintf(GFP_KERNEL, "%s-map", stem_name);
	if (!map_name)
		goto free;

	mask_name = kasprintf(GFP_KERNEL, "%s-map-mask", stem_name);
	if (!mask_name)
		goto free;

	pass_name = kasprintf(GFP_KERNEL, "%s-map-pass-thru", stem_name);
	if (!pass_name)
		goto free;

1574
	ret = __of_parse_phandle_with_args(np, list_name, cells_name, -1, index,
1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679
					   out_args);
	if (ret)
		goto free;

	/* Get the #<list>-cells property */
	cur = out_args->np;
	ret = of_property_read_u32(cur, cells_name, &list_size);
	if (ret < 0)
		goto put;

	/* Precalculate the match array - this simplifies match loop */
	for (i = 0; i < list_size; i++)
		initial_match_array[i] = cpu_to_be32(out_args->args[i]);

	ret = -EINVAL;
	while (cur) {
		/* Get the <list>-map property */
		map = of_get_property(cur, map_name, &map_len);
		if (!map) {
			ret = 0;
			goto free;
		}
		map_len /= sizeof(u32);

		/* Get the <list>-map-mask property (optional) */
		mask = of_get_property(cur, mask_name, NULL);
		if (!mask)
			mask = dummy_mask;
		/* Iterate through <list>-map property */
		match = 0;
		while (map_len > (list_size + 1) && !match) {
			/* Compare specifiers */
			match = 1;
			for (i = 0; i < list_size; i++, map_len--)
				match &= !((match_array[i] ^ *map++) & mask[i]);

			of_node_put(new);
			new = of_find_node_by_phandle(be32_to_cpup(map));
			map++;
			map_len--;

			/* Check if not found */
			if (!new)
				goto put;

			if (!of_device_is_available(new))
				match = 0;

			ret = of_property_read_u32(new, cells_name, &new_size);
			if (ret)
				goto put;

			/* Check for malformed properties */
			if (WARN_ON(new_size > MAX_PHANDLE_ARGS))
				goto put;
			if (map_len < new_size)
				goto put;

			/* Move forward by new node's #<list>-cells amount */
			map += new_size;
			map_len -= new_size;
		}
		if (!match)
			goto put;

		/* Get the <list>-map-pass-thru property (optional) */
		pass = of_get_property(cur, pass_name, NULL);
		if (!pass)
			pass = dummy_pass;

		/*
		 * Successfully parsed a <list>-map translation; copy new
		 * specifier into the out_args structure, keeping the
		 * bits specified in <list>-map-pass-thru.
		 */
		match_array = map - new_size;
		for (i = 0; i < new_size; i++) {
			__be32 val = *(map - new_size + i);

			if (i < list_size) {
				val &= ~pass[i];
				val |= cpu_to_be32(out_args->args[i]) & pass[i];
			}

			out_args->args[i] = be32_to_cpu(val);
		}
		out_args->args_count = list_size = new_size;
		/* Iterate again with new provider */
		out_args->np = new;
		of_node_put(cur);
		cur = new;
	}
put:
	of_node_put(cur);
	of_node_put(new);
free:
	kfree(mask_name);
	kfree(map_name);
	kfree(cells_name);
	kfree(pass_name);

	return ret;
}
EXPORT_SYMBOL(of_parse_phandle_with_args_map);

1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691
/**
 * of_parse_phandle_with_fixed_args() - Find a node pointed by phandle in a list
 * @np:		pointer to a device tree node containing a list
 * @list_name:	property name that contains a list
 * @cell_count: number of argument cells following the phandle
 * @index:	index of a phandle to parse out
 * @out_args:	optional pointer to output arguments structure (will be filled)
 *
 * This function is useful to parse lists of phandles and their arguments.
 * Returns 0 on success and fills out_args, on error returns appropriate
 * errno value.
 *
1692
 * Caller is responsible to call of_node_put() on the returned out_args->np
1693 1694
 * pointer.
 *
1695
 * Example::
1696
 *
1697 1698
 *  phandle1: node1 {
 *  };
1699
 *
1700 1701
 *  phandle2: node2 {
 *  };
1702
 *
1703 1704 1705
 *  node3 {
 *  	list = <&phandle1 0 2 &phandle2 2 3>;
 *  };
1706
 *
1707
 * To get a device_node of the ``node2`` node you may call this:
1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720
 * of_parse_phandle_with_fixed_args(node3, "list", 2, 1, &args);
 */
int of_parse_phandle_with_fixed_args(const struct device_node *np,
				const char *list_name, int cell_count,
				int index, struct of_phandle_args *out_args)
{
	if (index < 0)
		return -EINVAL;
	return __of_parse_phandle_with_args(np, list_name, NULL, cell_count,
					   index, out_args);
}
EXPORT_SYMBOL(of_parse_phandle_with_fixed_args);

1721 1722 1723 1724 1725 1726
/**
 * of_count_phandle_with_args() - Find the number of phandles references in a property
 * @np:		pointer to a device tree node containing a list
 * @list_name:	property name that contains a list
 * @cells_name:	property name that specifies phandles' arguments count
 *
1727
 * Return: The number of phandle + argument tuples within a property. It
1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738
 * is a typical pattern to encode a list of phandle and variable
 * arguments into a single property. The number of arguments is encoded
 * by a property in the phandle-target node. For example, a gpios
 * property would contain a list of GPIO specifies consisting of a
 * phandle and 1 or more arguments. The number of arguments are
 * determined by the #gpio-cells property in the node pointed to by the
 * phandle.
 */
int of_count_phandle_with_args(const struct device_node *np, const char *list_name,
				const char *cells_name)
{
1739 1740 1741
	struct of_phandle_iterator it;
	int rc, cur_index = 0;

1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758
	/*
	 * If cells_name is NULL we assume a cell count of 0. This makes
	 * counting the phandles trivial as each 32bit word in the list is a
	 * phandle and no arguments are to consider. So we don't iterate through
	 * the list but just use the length to determine the phandle count.
	 */
	if (!cells_name) {
		const __be32 *list;
		int size;

		list = of_get_property(np, list_name, &size);
		if (!list)
			return -ENOENT;

		return size / sizeof(*list);
	}

1759
	rc = of_phandle_iterator_init(&it, np, list_name, cells_name, -1);
1760 1761 1762 1763 1764 1765 1766 1767 1768 1769
	if (rc)
		return rc;

	while ((rc = of_phandle_iterator_next(&it)) == 0)
		cur_index += 1;

	if (rc != -ENOENT)
		return rc;

	return cur_index;
1770 1771 1772
}
EXPORT_SYMBOL(of_count_phandle_with_args);

1773 1774
/**
 * __of_add_property - Add a property to a node without lock operations
1775
 * @np:		Caller's Device Node
1776
 * @prop:	Property to add
1777
 */
1778
int __of_add_property(struct device_node *np, struct property *prop)
1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795
{
	struct property **next;

	prop->next = NULL;
	next = &np->properties;
	while (*next) {
		if (strcmp(prop->name, (*next)->name) == 0)
			/* duplicate ! don't insert it */
			return -EEXIST;

		next = &(*next)->next;
	}
	*next = prop;

	return 0;
}

1796
/**
1797
 * of_add_property - Add a property to a node
1798
 * @np:		Caller's Device Node
1799
 * @prop:	Property to add
1800
 */
1801
int of_add_property(struct device_node *np, struct property *prop)
1802 1803
{
	unsigned long flags;
1804 1805
	int rc;

1806
	mutex_lock(&of_mutex);
1807

1808
	raw_spin_lock_irqsave(&devtree_lock, flags);
1809
	rc = __of_add_property(np, prop);
1810
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1811

1812
	if (!rc)
1813
		__of_add_property_sysfs(np, prop);
1814

1815 1816
	mutex_unlock(&of_mutex);

1817 1818 1819
	if (!rc)
		of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop, NULL);

1820
	return rc;
1821
}
1822
EXPORT_SYMBOL_GPL(of_add_property);
1823

1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842
int __of_remove_property(struct device_node *np, struct property *prop)
{
	struct property **next;

	for (next = &np->properties; *next; next = &(*next)->next) {
		if (*next == prop)
			break;
	}
	if (*next == NULL)
		return -ENODEV;

	/* found the node */
	*next = prop->next;
	prop->next = np->deadprops;
	np->deadprops = prop;

	return 0;
}

1843
/**
1844
 * of_remove_property - Remove a property from a node.
1845
 * @np:		Caller's Device Node
1846
 * @prop:	Property to remove
1847 1848 1849 1850 1851 1852
 *
 * Note that we don't actually remove it, since we have given out
 * who-knows-how-many pointers to the data using get-property.
 * Instead we just move the property to the "dead properties"
 * list, so it won't be found any more.
 */
1853
int of_remove_property(struct device_node *np, struct property *prop)
1854 1855
{
	unsigned long flags;
1856 1857
	int rc;

1858 1859 1860
	if (!prop)
		return -ENODEV;

1861
	mutex_lock(&of_mutex);
1862

1863
	raw_spin_lock_irqsave(&devtree_lock, flags);
1864
	rc = __of_remove_property(np, prop);
1865
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1866

1867 1868
	if (!rc)
		__of_remove_property_sysfs(np, prop);
1869

1870
	mutex_unlock(&of_mutex);
1871

1872 1873
	if (!rc)
		of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop, NULL);
1874

1875
	return rc;
1876
}
1877
EXPORT_SYMBOL_GPL(of_remove_property);
1878

1879 1880
int __of_update_property(struct device_node *np, struct property *newprop,
		struct property **oldpropp)
1881
{
1882
	struct property **next, *oldprop;
1883

1884 1885 1886 1887 1888
	for (next = &np->properties; *next; next = &(*next)->next) {
		if (of_prop_cmp((*next)->name, newprop->name) == 0)
			break;
	}
	*oldpropp = oldprop = *next;
1889

1890
	if (oldprop) {
1891
		/* replace the node */
1892 1893 1894 1895 1896 1897 1898 1899
		newprop->next = oldprop->next;
		*next = newprop;
		oldprop->next = np->deadprops;
		np->deadprops = oldprop;
	} else {
		/* new node */
		newprop->next = NULL;
		*next = newprop;
1900
	}
1901

1902 1903 1904
	return 0;
}

1905
/*
1906
 * of_update_property - Update a property in a node, if the property does
1907
 * not exist, add it.
1908
 *
1909 1910 1911 1912
 * Note that we don't actually remove it, since we have given out
 * who-knows-how-many pointers to the data using get-property.
 * Instead we just move the property to the "dead properties" list,
 * and add the new property to the property list
1913
 */
1914
int of_update_property(struct device_node *np, struct property *newprop)
1915
{
1916
	struct property *oldprop;
1917
	unsigned long flags;
1918 1919
	int rc;

1920 1921
	if (!newprop->name)
		return -EINVAL;
1922

1923
	mutex_lock(&of_mutex);
1924

1925
	raw_spin_lock_irqsave(&devtree_lock, flags);
1926
	rc = __of_update_property(np, newprop, &oldprop);
1927
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1928

1929 1930
	if (!rc)
		__of_update_property_sysfs(np, newprop, oldprop);
1931

1932
	mutex_unlock(&of_mutex);
1933

1934 1935
	if (!rc)
		of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop, oldprop);
1936

1937
	return rc;
1938 1939
}

1940 1941 1942 1943 1944 1945 1946 1947
static void of_alias_add(struct alias_prop *ap, struct device_node *np,
			 int id, const char *stem, int stem_len)
{
	ap->np = np;
	ap->id = id;
	strncpy(ap->stem, stem, stem_len);
	ap->stem[stem_len] = 0;
	list_add_tail(&ap->link, &aliases_lookup);
1948 1949
	pr_debug("adding DT alias:%s: stem=%s id=%i node=%pOF\n",
		 ap->alias, ap->stem, ap->id, np);
1950 1951 1952
}

/**
1953
 * of_alias_scan - Scan all properties of the 'aliases' node
1954 1955
 * @dt_alloc:	An allocator that provides a virtual address to memory
 *		for storing the resulting tree
1956
 *
1957 1958 1959
 * The function scans all the properties of the 'aliases' node and populates
 * the global lookup table with the properties.  It returns the
 * number of alias properties found, or an error code in case of failure.
1960 1961 1962 1963 1964
 */
void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align))
{
	struct property *pp;

1965
	of_aliases = of_find_node_by_path("/aliases");
1966 1967 1968
	of_chosen = of_find_node_by_path("/chosen");
	if (of_chosen == NULL)
		of_chosen = of_find_node_by_path("/chosen@0");
1969 1970

	if (of_chosen) {
1971
		/* linux,stdout-path and /aliases/stdout are for legacy compatibility */
1972 1973 1974 1975 1976
		const char *name = NULL;

		if (of_property_read_string(of_chosen, "stdout-path", &name))
			of_property_read_string(of_chosen, "linux,stdout-path",
						&name);
1977
		if (IS_ENABLED(CONFIG_PPC) && !name)
1978
			of_property_read_string(of_aliases, "stdout", &name);
1979
		if (name)
1980
			of_stdout = of_find_node_opts_by_path(name, &of_stdout_options);
1981 1982
	}

1983 1984 1985
	if (!of_aliases)
		return;

1986
	for_each_property_of_node(of_aliases, pp) {
1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
		const char *start = pp->name;
		const char *end = start + strlen(start);
		struct device_node *np;
		struct alias_prop *ap;
		int id, len;

		/* Skip those we do not want to proceed */
		if (!strcmp(pp->name, "name") ||
		    !strcmp(pp->name, "phandle") ||
		    !strcmp(pp->name, "linux,phandle"))
			continue;

		np = of_find_node_by_path(pp->value);
		if (!np)
			continue;

		/* walk the alias backwards to extract the id and work out
		 * the 'stem' string */
		while (isdigit(*(end-1)) && end > start)
			end--;
		len = end - start;

		if (kstrtoint(end, 10, &id) < 0)
			continue;

		/* Allocate an alias_prop with enough space for the stem */
2013
		ap = dt_alloc(sizeof(*ap) + len + 1, __alignof__(*ap));
2014 2015
		if (!ap)
			continue;
2016
		memset(ap, 0, sizeof(*ap) + len + 1);
2017 2018 2019 2020 2021 2022 2023 2024 2025 2026
		ap->alias = start;
		of_alias_add(ap, np, id, start, len);
	}
}

/**
 * of_alias_get_id - Get alias id for the given device_node
 * @np:		Pointer to the given device_node
 * @stem:	Alias stem of the given device_node
 *
2027
 * The function travels the lookup table to get the alias id for the given
2028 2029 2030
 * device_node and alias stem.
 *
 * Return: The alias id if found.
2031 2032 2033 2034 2035 2036
 */
int of_alias_get_id(struct device_node *np, const char *stem)
{
	struct alias_prop *app;
	int id = -ENODEV;

2037
	mutex_lock(&of_mutex);
2038 2039 2040 2041 2042 2043 2044 2045 2046
	list_for_each_entry(app, &aliases_lookup, link) {
		if (strcmp(app->stem, stem) != 0)
			continue;

		if (np == app->np) {
			id = app->id;
			break;
		}
	}
2047
	mutex_unlock(&of_mutex);
2048 2049 2050 2051

	return id;
}
EXPORT_SYMBOL_GPL(of_alias_get_id);
2052

2053 2054 2055 2056 2057
/**
 * of_alias_get_alias_list - Get alias list for the given device driver
 * @matches:	Array of OF device match structures to search in
 * @stem:	Alias stem of the given device_node
 * @bitmap:	Bitmap field pointer
2058
 * @nbits:	Maximum number of alias IDs which can be recorded in bitmap
2059 2060 2061 2062
 *
 * The function travels the lookup table to record alias ids for the given
 * device match structures and alias stem.
 *
2063 2064
 * Return:	0 or -ENOSYS when !CONFIG_OF or
 *		-EOVERFLOW if alias ID is greater then allocated nbits
2065 2066 2067 2068 2069 2070
 */
int of_alias_get_alias_list(const struct of_device_id *matches,
			     const char *stem, unsigned long *bitmap,
			     unsigned int nbits)
{
	struct alias_prop *app;
2071
	int ret = 0;
2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082

	/* Zero bitmap field to make sure that all the time it is clean */
	bitmap_zero(bitmap, nbits);

	mutex_lock(&of_mutex);
	pr_debug("%s: Looking for stem: %s\n", __func__, stem);
	list_for_each_entry(app, &aliases_lookup, link) {
		pr_debug("%s: stem: %s, id: %d\n",
			 __func__, app->stem, app->id);

		if (strcmp(app->stem, stem) != 0) {
2083
			pr_debug("%s: stem comparison didn't pass %s\n",
2084 2085 2086 2087 2088 2089
				 __func__, app->stem);
			continue;
		}

		if (of_match_node(matches, app->np)) {
			pr_debug("%s: Allocated ID %d\n", __func__, app->id);
2090 2091 2092 2093 2094 2095 2096 2097

			if (app->id >= nbits) {
				pr_warn("%s: ID %d >= than bitmap field %d\n",
					__func__, app->id, nbits);
				ret = -EOVERFLOW;
			} else {
				set_bit(app->id, bitmap);
			}
2098 2099 2100 2101
		}
	}
	mutex_unlock(&of_mutex);

2102
	return ret;
2103 2104 2105
}
EXPORT_SYMBOL_GPL(of_alias_get_alias_list);

2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131
/**
 * of_alias_get_highest_id - Get highest alias id for the given stem
 * @stem:	Alias stem to be examined
 *
 * The function travels the lookup table to get the highest alias id for the
 * given alias stem.  It returns the alias id if found.
 */
int of_alias_get_highest_id(const char *stem)
{
	struct alias_prop *app;
	int id = -ENODEV;

	mutex_lock(&of_mutex);
	list_for_each_entry(app, &aliases_lookup, link) {
		if (strcmp(app->stem, stem) != 0)
			continue;

		if (app->id > id)
			id = app->id;
	}
	mutex_unlock(&of_mutex);

	return id;
}
EXPORT_SYMBOL_GPL(of_alias_get_highest_id);

2132
/**
2133
 * of_console_check() - Test and setup console for DT setup
2134 2135 2136
 * @dn: Pointer to device node
 * @name: Name to use for preferred console without index. ex. "ttyS"
 * @index: Index to use for preferred console.
2137 2138
 *
 * Check if the given device node matches the stdout-path property in the
2139 2140 2141
 * /chosen node. If it does then register it as the preferred console.
 *
 * Return: TRUE if console successfully setup. Otherwise return FALSE.
2142
 */
2143
bool of_console_check(struct device_node *dn, char *name, int index)
2144
{
2145
	if (!dn || dn != of_stdout || console_set_on_cmdline)
2146
		return false;
2147 2148 2149 2150 2151 2152

	/*
	 * XXX: cast `options' to char pointer to suppress complication
	 * warnings: printk, UART and console drivers expect char pointer.
	 */
	return !add_preferred_console(name, index, (char *)of_stdout_options);
2153
}
2154
EXPORT_SYMBOL_GPL(of_console_check);
2155 2156

/**
2157 2158
 * of_find_next_cache_node - Find a node's subsidiary cache
 * @np:	node of type "cpu" or "cache"
2159
 *
2160 2161 2162
 * Return: A node pointer with refcount incremented, use
 * of_node_put() on it when done.  Caller should hold a reference
 * to np.
2163 2164 2165
 */
struct device_node *of_find_next_cache_node(const struct device_node *np)
{
2166
	struct device_node *child, *cache_node;
2167

2168 2169 2170
	cache_node = of_parse_phandle(np, "l2-cache", 0);
	if (!cache_node)
		cache_node = of_parse_phandle(np, "next-level-cache", 0);
2171

2172 2173
	if (cache_node)
		return cache_node;
2174 2175 2176 2177

	/* OF on pmac has nodes instead of properties named "l2-cache"
	 * beneath CPU nodes.
	 */
2178
	if (IS_ENABLED(CONFIG_PPC_PMAC) && of_node_is_type(np, "cpu"))
2179
		for_each_child_of_node(np, child)
2180
			if (of_node_is_type(child, "cache"))
2181 2182 2183 2184
				return child;

	return NULL;
}
2185

2186 2187 2188 2189 2190 2191
/**
 * of_find_last_cache_level - Find the level at which the last cache is
 * 		present for the given logical cpu
 *
 * @cpu: cpu number(logical index) for which the last cache level is needed
 *
2192
 * Return: The the level at which the last cache is present. It is exactly
2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209
 * same as  the total number of cache levels for the given logical cpu.
 */
int of_find_last_cache_level(unsigned int cpu)
{
	u32 cache_level = 0;
	struct device_node *prev = NULL, *np = of_cpu_device_node_get(cpu);

	while (np) {
		prev = np;
		of_node_put(np);
		np = of_find_next_cache_node(np);
	}

	of_property_read_u32(prev, "cache-level", &cache_level);

	return cache_level;
}
2210 2211

/**
2212
 * of_map_id - Translate an ID through a downstream mapping.
2213
 * @np: root complex device node.
2214
 * @id: device ID to map.
2215 2216 2217 2218 2219
 * @map_name: property name of the map to use.
 * @map_mask_name: optional property name of the mask to use.
 * @target: optional pointer to a target device node.
 * @id_out: optional pointer to receive the translated ID.
 *
2220
 * Given a device ID, look up the appropriate implementation-defined
2221 2222 2223 2224 2225 2226 2227 2228 2229
 * platform ID and/or the target device which receives transactions on that
 * ID, as per the "iommu-map" and "msi-map" bindings. Either of @target or
 * @id_out may be NULL if only the other is required. If @target points to
 * a non-NULL device node pointer, only entries targeting that node will be
 * matched; if it points to a NULL value, it will receive the device node of
 * the first matching target phandle, with a reference held.
 *
 * Return: 0 on success or a standard error code on failure.
 */
2230
int of_map_id(struct device_node *np, u32 id,
2231 2232 2233
	       const char *map_name, const char *map_mask_name,
	       struct device_node **target, u32 *id_out)
{
2234
	u32 map_mask, masked_id;
2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245
	int map_len;
	const __be32 *map = NULL;

	if (!np || !map_name || (!target && !id_out))
		return -EINVAL;

	map = of_get_property(np, map_name, &map_len);
	if (!map) {
		if (target)
			return -ENODEV;
		/* Otherwise, no map implies no translation */
2246
		*id_out = id;
2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265
		return 0;
	}

	if (!map_len || map_len % (4 * sizeof(*map))) {
		pr_err("%pOF: Error: Bad %s length: %d\n", np,
			map_name, map_len);
		return -EINVAL;
	}

	/* The default is to select all bits. */
	map_mask = 0xffffffff;

	/*
	 * Can be overridden by "{iommu,msi}-map-mask" property.
	 * If of_property_read_u32() fails, the default is used.
	 */
	if (map_mask_name)
		of_property_read_u32(np, map_mask_name, &map_mask);

2266
	masked_id = map_mask & id;
2267 2268
	for ( ; map_len > 0; map_len -= 4 * sizeof(*map), map += 4) {
		struct device_node *phandle_node;
2269
		u32 id_base = be32_to_cpup(map + 0);
2270 2271
		u32 phandle = be32_to_cpup(map + 1);
		u32 out_base = be32_to_cpup(map + 2);
2272
		u32 id_len = be32_to_cpup(map + 3);
2273

2274 2275
		if (id_base & ~map_mask) {
			pr_err("%pOF: Invalid %s translation - %s-mask (0x%x) ignores id-base (0x%x)\n",
2276
				np, map_name, map_name,
2277
				map_mask, id_base);
2278 2279 2280
			return -EFAULT;
		}

2281
		if (masked_id < id_base || masked_id >= id_base + id_len)
2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298
			continue;

		phandle_node = of_find_node_by_phandle(phandle);
		if (!phandle_node)
			return -ENODEV;

		if (target) {
			if (*target)
				of_node_put(phandle_node);
			else
				*target = phandle_node;

			if (*target != phandle_node)
				continue;
		}

		if (id_out)
2299
			*id_out = masked_id - id_base + out_base;
2300

2301 2302 2303
		pr_debug("%pOF: %s, using mask %08x, id-base: %08x, out-base: %08x, length: %08x, id: %08x -> %08x\n",
			np, map_name, map_mask, id_base, out_base,
			id_len, id, masked_id - id_base + out_base);
2304 2305 2306
		return 0;
	}

2307 2308
	pr_info("%pOF: no %s translation for id 0x%x on %pOF\n", np, map_name,
		id, target && *target ? *target : NULL);
2309 2310 2311

	/* Bypasses translation */
	if (id_out)
2312
		*id_out = id;
2313
	return 0;
2314
}
2315
EXPORT_SYMBOL_GPL(of_map_id);