base.c 59.6 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0+
2 3 4 5 6 7 8 9 10 11 12
/*
 * Procedures for creating, accessing and interpreting the device tree.
 *
 * Paul Mackerras	August 1996.
 * Copyright (C) 1996-2005 Paul Mackerras.
 *
 *  Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
 *    {engebret|bergner}@us.ibm.com
 *
 *  Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
 *
13 14
 *  Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
 *  Grant Likely.
15
 */
16 17 18

#define pr_fmt(fmt)	"OF: " fmt

19
#include <linux/bitmap.h>
20
#include <linux/console.h>
21
#include <linux/ctype.h>
22
#include <linux/cpu.h>
23 24
#include <linux/module.h>
#include <linux/of.h>
25
#include <linux/of_device.h>
26
#include <linux/of_graph.h>
S
Stephen Rothwell 已提交
27
#include <linux/spinlock.h>
28
#include <linux/slab.h>
29
#include <linux/string.h>
J
Jeremy Kerr 已提交
30
#include <linux/proc_fs.h>
S
Stephen Rothwell 已提交
31

32
#include "of_private.h"
33

34
LIST_HEAD(aliases_lookup);
35

G
Grant Likely 已提交
36 37
struct device_node *of_root;
EXPORT_SYMBOL(of_root);
38
struct device_node *of_chosen;
39
struct device_node *of_aliases;
40
struct device_node *of_stdout;
41
static const char *of_stdout_options;
42

43
struct kset *of_kset;
44 45

/*
46 47 48 49
 * Used to protect the of_aliases, to hold off addition of nodes to sysfs.
 * This mutex must be held whenever modifications are being made to the
 * device tree. The of_{attach,detach}_node() and
 * of_{add,remove,update}_property() helpers make sure this happens.
50
 */
51
DEFINE_MUTEX(of_mutex);
52

G
Grant Likely 已提交
53
/* use when traversing tree through the child, sibling,
S
Stephen Rothwell 已提交
54 55
 * or parent members of struct device_node.
 */
56
DEFINE_RAW_SPINLOCK(devtree_lock);
57

58 59 60 61 62 63 64 65 66 67 68 69 70
bool of_node_name_eq(const struct device_node *np, const char *name)
{
	const char *node_name;
	size_t len;

	if (!np)
		return false;

	node_name = kbasename(np->full_name);
	len = strchrnul(node_name, '@') - node_name;

	return (strlen(name) == len) && (strncmp(node_name, name, len) == 0);
}
71
EXPORT_SYMBOL(of_node_name_eq);
72 73 74 75 76 77 78 79

bool of_node_name_prefix(const struct device_node *np, const char *prefix)
{
	if (!np)
		return false;

	return strncmp(kbasename(np->full_name), prefix, strlen(prefix)) == 0;
}
80
EXPORT_SYMBOL(of_node_name_prefix);
81

82 83 84 85 86 87 88
static bool __of_node_is_type(const struct device_node *np, const char *type)
{
	const char *match = __of_get_property(np, "device_type", NULL);

	return np && match && type && !strcmp(match, type);
}

89
int of_bus_n_addr_cells(struct device_node *np)
90
{
91
	u32 cells;
92

93
	for (; np; np = np->parent)
94 95
		if (!of_property_read_u32(np, "#address-cells", &cells))
			return cells;
96

97 98 99
	/* No #address-cells property for the root node */
	return OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
}
100 101 102 103 104 105 106 107

int of_n_addr_cells(struct device_node *np)
{
	if (np->parent)
		np = np->parent;

	return of_bus_n_addr_cells(np);
}
108 109
EXPORT_SYMBOL(of_n_addr_cells);

110
int of_bus_n_size_cells(struct device_node *np)
111
{
112
	u32 cells;
113

114
	for (; np; np = np->parent)
115 116
		if (!of_property_read_u32(np, "#size-cells", &cells))
			return cells;
117

118 119 120
	/* No #size-cells property for the root node */
	return OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
}
121 122 123 124 125 126 127 128

int of_n_size_cells(struct device_node *np)
{
	if (np->parent)
		np = np->parent;

	return of_bus_n_size_cells(np);
}
129 130
EXPORT_SYMBOL(of_n_size_cells);

131 132 133
#ifdef CONFIG_NUMA
int __weak of_node_to_nid(struct device_node *np)
{
134
	return NUMA_NO_NODE;
135 136 137
}
#endif

138 139
#define OF_PHANDLE_CACHE_BITS	7
#define OF_PHANDLE_CACHE_SZ	BIT(OF_PHANDLE_CACHE_BITS)
140

141
static struct device_node *phandle_cache[OF_PHANDLE_CACHE_SZ];
142

143
static u32 of_phandle_cache_hash(phandle handle)
144
{
145
	return hash_32(handle, OF_PHANDLE_CACHE_BITS);
146 147
}

148 149 150
/*
 * Caller must hold devtree_lock.
 */
151
void __of_phandle_cache_inv_entry(phandle handle)
152
{
153
	u32 handle_hash;
154 155 156 157 158
	struct device_node *np;

	if (!handle)
		return;

159
	handle_hash = of_phandle_cache_hash(handle);
160

161 162 163
	np = phandle_cache[handle_hash];
	if (np && handle == np->phandle)
		phandle_cache[handle_hash] = NULL;
164 165
}

166
void __init of_core_init(void)
167 168 169
{
	struct device_node *np;

170

171
	/* Create the kset, and register existing nodes */
172
	mutex_lock(&of_mutex);
173 174
	of_kset = kset_create_and_add("devicetree", NULL, firmware_kobj);
	if (!of_kset) {
175
		mutex_unlock(&of_mutex);
176
		pr_err("failed to register existing nodes\n");
177
		return;
178
	}
179
	for_each_of_allnodes(np) {
180
		__of_attach_node_sysfs(np);
181 182 183
		if (np->phandle && !phandle_cache[of_phandle_cache_hash(np->phandle)])
			phandle_cache[of_phandle_cache_hash(np->phandle)] = np;
	}
184
	mutex_unlock(&of_mutex);
185

G
Grant Likely 已提交
186
	/* Symlink in /proc as required by userspace ABI */
G
Grant Likely 已提交
187
	if (of_root)
188 189 190
		proc_symlink("device-tree", NULL, "/sys/firmware/devicetree/base");
}

191 192
static struct property *__of_find_property(const struct device_node *np,
					   const char *name, int *lenp)
S
Stephen Rothwell 已提交
193 194 195
{
	struct property *pp;

196 197 198
	if (!np)
		return NULL;

199
	for (pp = np->properties; pp; pp = pp->next) {
S
Stephen Rothwell 已提交
200
		if (of_prop_cmp(pp->name, name) == 0) {
201
			if (lenp)
S
Stephen Rothwell 已提交
202 203 204 205
				*lenp = pp->length;
			break;
		}
	}
206 207 208 209 210 211 212 213 214

	return pp;
}

struct property *of_find_property(const struct device_node *np,
				  const char *name,
				  int *lenp)
{
	struct property *pp;
215
	unsigned long flags;
216

217
	raw_spin_lock_irqsave(&devtree_lock, flags);
218
	pp = __of_find_property(np, name, lenp);
219
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
S
Stephen Rothwell 已提交
220 221 222 223 224

	return pp;
}
EXPORT_SYMBOL(of_find_property);

G
Grant Likely 已提交
225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
struct device_node *__of_find_all_nodes(struct device_node *prev)
{
	struct device_node *np;
	if (!prev) {
		np = of_root;
	} else if (prev->child) {
		np = prev->child;
	} else {
		/* Walk back up looking for a sibling, or the end of the structure */
		np = prev;
		while (np->parent && !np->sibling)
			np = np->parent;
		np = np->sibling; /* Might be null at the end of the tree */
	}
	return np;
}

242 243 244 245 246
/**
 * of_find_all_nodes - Get next node in global list
 * @prev:	Previous node or NULL to start iteration
 *		of_node_put() will be called on it
 *
247
 * Return: A node pointer with refcount incremented, use
248 249 250 251 252
 * of_node_put() on it when done.
 */
struct device_node *of_find_all_nodes(struct device_node *prev)
{
	struct device_node *np;
253
	unsigned long flags;
254

255
	raw_spin_lock_irqsave(&devtree_lock, flags);
G
Grant Likely 已提交
256 257
	np = __of_find_all_nodes(prev);
	of_node_get(np);
258
	of_node_put(prev);
259
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
260 261 262 263
	return np;
}
EXPORT_SYMBOL(of_find_all_nodes);

264 265 266 267
/*
 * Find a property with a given name for a given node
 * and return the value.
 */
268 269
const void *__of_get_property(const struct device_node *np,
			      const char *name, int *lenp)
270 271 272 273 274 275
{
	struct property *pp = __of_find_property(np, name, lenp);

	return pp ? pp->value : NULL;
}

276 277 278 279 280
/*
 * Find a property with a given name for a given node
 * and return the value.
 */
const void *of_get_property(const struct device_node *np, const char *name,
281
			    int *lenp)
282 283 284 285 286 287
{
	struct property *pp = of_find_property(np, name, lenp);

	return pp ? pp->value : NULL;
}
EXPORT_SYMBOL(of_get_property);
288

289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
/*
 * arch_match_cpu_phys_id - Match the given logical CPU and physical id
 *
 * @cpu: logical cpu index of a core/thread
 * @phys_id: physical identifier of a core/thread
 *
 * CPU logical to physical index mapping is architecture specific.
 * However this __weak function provides a default match of physical
 * id to logical cpu index. phys_id provided here is usually values read
 * from the device tree which must match the hardware internal registers.
 *
 * Returns true if the physical identifier and the logical cpu index
 * correspond to the same core/thread, false otherwise.
 */
bool __weak arch_match_cpu_phys_id(int cpu, u64 phys_id)
{
	return (u32)phys_id == cpu;
}

308
/*
309 310 311 312 313 314 315 316 317 318 319 320 321
 * Checks if the given "prop_name" property holds the physical id of the
 * core/thread corresponding to the logical cpu 'cpu'. If 'thread' is not
 * NULL, local thread number within the core is returned in it.
 */
static bool __of_find_n_match_cpu_property(struct device_node *cpun,
			const char *prop_name, int cpu, unsigned int *thread)
{
	const __be32 *cell;
	int ac, prop_len, tid;
	u64 hwid;

	ac = of_n_addr_cells(cpun);
	cell = of_get_property(cpun, prop_name, &prop_len);
322 323
	if (!cell && !ac && arch_match_cpu_phys_id(cpu, 0))
		return true;
324
	if (!cell || !ac)
325
		return false;
326
	prop_len /= sizeof(*cell) * ac;
327 328 329 330 331 332 333 334 335 336 337 338
	for (tid = 0; tid < prop_len; tid++) {
		hwid = of_read_number(cell, ac);
		if (arch_match_cpu_phys_id(cpu, hwid)) {
			if (thread)
				*thread = tid;
			return true;
		}
		cell += ac;
	}
	return false;
}

339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
/*
 * arch_find_n_match_cpu_physical_id - See if the given device node is
 * for the cpu corresponding to logical cpu 'cpu'.  Return true if so,
 * else false.  If 'thread' is non-NULL, the local thread number within the
 * core is returned in it.
 */
bool __weak arch_find_n_match_cpu_physical_id(struct device_node *cpun,
					      int cpu, unsigned int *thread)
{
	/* Check for non-standard "ibm,ppc-interrupt-server#s" property
	 * for thread ids on PowerPC. If it doesn't exist fallback to
	 * standard "reg" property.
	 */
	if (IS_ENABLED(CONFIG_PPC) &&
	    __of_find_n_match_cpu_property(cpun,
					   "ibm,ppc-interrupt-server#s",
					   cpu, thread))
		return true;

358
	return __of_find_n_match_cpu_property(cpun, "reg", cpu, thread);
359 360
}

361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
/**
 * of_get_cpu_node - Get device node associated with the given logical CPU
 *
 * @cpu: CPU number(logical index) for which device node is required
 * @thread: if not NULL, local thread number within the physical core is
 *          returned
 *
 * The main purpose of this function is to retrieve the device node for the
 * given logical CPU index. It should be used to initialize the of_node in
 * cpu device. Once of_node in cpu device is populated, all the further
 * references can use that instead.
 *
 * CPU logical to physical index mapping is architecture specific and is built
 * before booting secondary cores. This function uses arch_match_cpu_phys_id
 * which can be overridden by architecture specific implementation.
 *
377
 * Return: A node pointer for the logical cpu with refcount incremented, use
378
 * of_node_put() on it when done. Returns NULL if not found.
379 380 381
 */
struct device_node *of_get_cpu_node(int cpu, unsigned int *thread)
{
382
	struct device_node *cpun;
383

384
	for_each_of_cpu_node(cpun) {
385
		if (arch_find_n_match_cpu_physical_id(cpun, cpu, thread))
386 387 388 389 390 391
			return cpun;
	}
	return NULL;
}
EXPORT_SYMBOL(of_get_cpu_node);

392 393 394 395 396
/**
 * of_cpu_node_to_id: Get the logical CPU number for a given device_node
 *
 * @cpu_node: Pointer to the device_node for CPU.
 *
397 398
 * Return: The logical CPU number of the given CPU device_node or -ENODEV if the
 * CPU is not found.
399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417
 */
int of_cpu_node_to_id(struct device_node *cpu_node)
{
	int cpu;
	bool found = false;
	struct device_node *np;

	for_each_possible_cpu(cpu) {
		np = of_cpu_device_node_get(cpu);
		found = (cpu_node == np);
		of_node_put(np);
		if (found)
			return cpu;
	}

	return -ENODEV;
}
EXPORT_SYMBOL(of_cpu_node_to_id);

418 419 420 421 422 423 424 425 426 427 428 429
/**
 * of_get_cpu_state_node - Get CPU's idle state node at the given index
 *
 * @cpu_node: The device node for the CPU
 * @index: The index in the list of the idle states
 *
 * Two generic methods can be used to describe a CPU's idle states, either via
 * a flattened description through the "cpu-idle-states" binding or via the
 * hierarchical layout, using the "power-domains" and the "domain-idle-states"
 * bindings. This function check for both and returns the idle state node for
 * the requested index.
 *
430
 * Return: An idle state node if found at @index. The refcount is incremented
431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
 * for it, so call of_node_put() on it when done. Returns NULL if not found.
 */
struct device_node *of_get_cpu_state_node(struct device_node *cpu_node,
					  int index)
{
	struct of_phandle_args args;
	int err;

	err = of_parse_phandle_with_args(cpu_node, "power-domains",
					"#power-domain-cells", 0, &args);
	if (!err) {
		struct device_node *state_node =
			of_parse_phandle(args.np, "domain-idle-states", index);

		of_node_put(args.np);
		if (state_node)
			return state_node;
	}

	return of_parse_phandle(cpu_node, "cpu-idle-states", index);
}
EXPORT_SYMBOL(of_get_cpu_state_node);

454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482
/**
 * __of_device_is_compatible() - Check if the node matches given constraints
 * @device: pointer to node
 * @compat: required compatible string, NULL or "" for any match
 * @type: required device_type value, NULL or "" for any match
 * @name: required node name, NULL or "" for any match
 *
 * Checks if the given @compat, @type and @name strings match the
 * properties of the given @device. A constraints can be skipped by
 * passing NULL or an empty string as the constraint.
 *
 * Returns 0 for no match, and a positive integer on match. The return
 * value is a relative score with larger values indicating better
 * matches. The score is weighted for the most specific compatible value
 * to get the highest score. Matching type is next, followed by matching
 * name. Practically speaking, this results in the following priority
 * order for matches:
 *
 * 1. specific compatible && type && name
 * 2. specific compatible && type
 * 3. specific compatible && name
 * 4. specific compatible
 * 5. general compatible && type && name
 * 6. general compatible && type
 * 7. general compatible && name
 * 8. general compatible
 * 9. type && name
 * 10. type
 * 11. name
483
 */
484
static int __of_device_is_compatible(const struct device_node *device,
485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
				     const char *compat, const char *type, const char *name)
{
	struct property *prop;
	const char *cp;
	int index = 0, score = 0;

	/* Compatible match has highest priority */
	if (compat && compat[0]) {
		prop = __of_find_property(device, "compatible", NULL);
		for (cp = of_prop_next_string(prop, NULL); cp;
		     cp = of_prop_next_string(prop, cp), index++) {
			if (of_compat_cmp(cp, compat, strlen(compat)) == 0) {
				score = INT_MAX/2 - (index << 2);
				break;
			}
		}
		if (!score)
			return 0;
	}
504

505 506
	/* Matching type is better than matching name */
	if (type && type[0]) {
507
		if (!__of_node_is_type(device, type))
508 509
			return 0;
		score += 2;
510 511
	}

512 513
	/* Matching name is a bit better than not */
	if (name && name[0]) {
514
		if (!of_node_name_eq(device, name))
515 516 517 518 519
			return 0;
		score++;
	}

	return score;
520
}
521 522 523 524 525 526 527

/** Checks if the given "compat" string matches one of the strings in
 * the device's "compatible" property
 */
int of_device_is_compatible(const struct device_node *device,
		const char *compat)
{
528
	unsigned long flags;
529 530
	int res;

531
	raw_spin_lock_irqsave(&devtree_lock, flags);
532
	res = __of_device_is_compatible(device, compat, NULL, NULL);
533
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
534 535
	return res;
}
536
EXPORT_SYMBOL(of_device_is_compatible);
S
Stephen Rothwell 已提交
537

538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559
/** Checks if the device is compatible with any of the entries in
 *  a NULL terminated array of strings. Returns the best match
 *  score or 0.
 */
int of_device_compatible_match(struct device_node *device,
			       const char *const *compat)
{
	unsigned int tmp, score = 0;

	if (!compat)
		return 0;

	while (*compat) {
		tmp = of_device_is_compatible(device, *compat);
		if (tmp > score)
			score = tmp;
		compat++;
	}

	return score;
}

G
Grant Likely 已提交
560
/**
561
 * of_machine_is_compatible - Test root of device tree for a given compatible value
G
Grant Likely 已提交
562 563
 * @compat: compatible string to look for in root node's compatible property.
 *
564
 * Return: A positive integer if the root node has the given value in its
G
Grant Likely 已提交
565 566
 * compatible property.
 */
567
int of_machine_is_compatible(const char *compat)
G
Grant Likely 已提交
568 569 570 571 572 573 574 575 576 577 578
{
	struct device_node *root;
	int rc = 0;

	root = of_find_node_by_path("/");
	if (root) {
		rc = of_device_is_compatible(root, compat);
		of_node_put(root);
	}
	return rc;
}
579
EXPORT_SYMBOL(of_machine_is_compatible);
G
Grant Likely 已提交
580

581
/**
582
 *  __of_device_is_available - check if a device is available for use
583
 *
584
 *  @device: Node to check for availability, with locks already held
585
 *
586
 *  Return: True if the status property is absent or set to "okay" or "ok",
587
 *  false otherwise
588
 */
589
static bool __of_device_is_available(const struct device_node *device)
590 591 592 593
{
	const char *status;
	int statlen;

594
	if (!device)
595
		return false;
596

597
	status = __of_get_property(device, "status", &statlen);
598
	if (status == NULL)
599
		return true;
600 601 602

	if (statlen > 0) {
		if (!strcmp(status, "okay") || !strcmp(status, "ok"))
603
			return true;
604 605
	}

606
	return false;
607
}
608 609 610 611 612 613

/**
 *  of_device_is_available - check if a device is available for use
 *
 *  @device: Node to check for availability
 *
614
 *  Return: True if the status property is absent or set to "okay" or "ok",
615
 *  false otherwise
616
 */
617
bool of_device_is_available(const struct device_node *device)
618 619
{
	unsigned long flags;
620
	bool res;
621 622 623 624 625 626 627

	raw_spin_lock_irqsave(&devtree_lock, flags);
	res = __of_device_is_available(device);
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
	return res;

}
628 629
EXPORT_SYMBOL(of_device_is_available);

630 631 632 633 634
/**
 *  of_device_is_big_endian - check if a device has BE registers
 *
 *  @device: Node to check for endianness
 *
635
 *  Return: True if the device has a "big-endian" property, or if the kernel
636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652
 *  was compiled for BE *and* the device has a "native-endian" property.
 *  Returns false otherwise.
 *
 *  Callers would nominally use ioread32be/iowrite32be if
 *  of_device_is_big_endian() == true, or readl/writel otherwise.
 */
bool of_device_is_big_endian(const struct device_node *device)
{
	if (of_property_read_bool(device, "big-endian"))
		return true;
	if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) &&
	    of_property_read_bool(device, "native-endian"))
		return true;
	return false;
}
EXPORT_SYMBOL(of_device_is_big_endian);

S
Stephen Rothwell 已提交
653
/**
654 655
 * of_get_parent - Get a node's parent if any
 * @node:	Node to get parent
S
Stephen Rothwell 已提交
656
 *
657 658
 * Return: A node pointer with refcount incremented, use
 * of_node_put() on it when done.
S
Stephen Rothwell 已提交
659 660 661 662
 */
struct device_node *of_get_parent(const struct device_node *node)
{
	struct device_node *np;
663
	unsigned long flags;
S
Stephen Rothwell 已提交
664 665 666 667

	if (!node)
		return NULL;

668
	raw_spin_lock_irqsave(&devtree_lock, flags);
S
Stephen Rothwell 已提交
669
	np = of_node_get(node->parent);
670
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
S
Stephen Rothwell 已提交
671 672 673
	return np;
}
EXPORT_SYMBOL(of_get_parent);
S
Stephen Rothwell 已提交
674

675
/**
676 677
 * of_get_next_parent - Iterate to a node's parent
 * @node:	Node to get parent of
678
 *
679 680 681
 * This is like of_get_parent() except that it drops the
 * refcount on the passed node, making it suitable for iterating
 * through a node's parents.
682
 *
683 684
 * Return: A node pointer with refcount incremented, use
 * of_node_put() on it when done.
685 686 687 688
 */
struct device_node *of_get_next_parent(struct device_node *node)
{
	struct device_node *parent;
689
	unsigned long flags;
690 691 692 693

	if (!node)
		return NULL;

694
	raw_spin_lock_irqsave(&devtree_lock, flags);
695 696
	parent = of_node_get(node->parent);
	of_node_put(node);
697
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
698 699
	return parent;
}
700
EXPORT_SYMBOL(of_get_next_parent);
701

702 703 704 705 706
static struct device_node *__of_get_next_child(const struct device_node *node,
						struct device_node *prev)
{
	struct device_node *next;

707 708 709
	if (!node)
		return NULL;

710 711 712 713 714 715 716 717 718 719 720
	next = prev ? prev->sibling : node->child;
	for (; next; next = next->sibling)
		if (of_node_get(next))
			break;
	of_node_put(prev);
	return next;
}
#define __for_each_child_of_node(parent, child) \
	for (child = __of_get_next_child(parent, NULL); child != NULL; \
	     child = __of_get_next_child(parent, child))

S
Stephen Rothwell 已提交
721
/**
722 723 724
 * of_get_next_child - Iterate a node childs
 * @node:	parent node
 * @prev:	previous child of the parent node, or NULL to get first
S
Stephen Rothwell 已提交
725
 *
726 727 728
 * Return: A node pointer with refcount incremented, use of_node_put() on
 * it when done. Returns NULL when prev is the last child. Decrements the
 * refcount of prev.
S
Stephen Rothwell 已提交
729 730 731 732 733
 */
struct device_node *of_get_next_child(const struct device_node *node,
	struct device_node *prev)
{
	struct device_node *next;
734
	unsigned long flags;
S
Stephen Rothwell 已提交
735

736
	raw_spin_lock_irqsave(&devtree_lock, flags);
737
	next = __of_get_next_child(node, prev);
738
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
S
Stephen Rothwell 已提交
739 740 741
	return next;
}
EXPORT_SYMBOL(of_get_next_child);
742

743
/**
744 745 746
 * of_get_next_available_child - Find the next available child node
 * @node:	parent node
 * @prev:	previous child of the parent node, or NULL to get first
747
 *
748 749
 * This function is like of_get_next_child(), except that it
 * automatically skips any disabled nodes (i.e. status = "disabled").
750 751 752 753 754
 */
struct device_node *of_get_next_available_child(const struct device_node *node,
	struct device_node *prev)
{
	struct device_node *next;
755
	unsigned long flags;
756

757 758 759
	if (!node)
		return NULL;

760
	raw_spin_lock_irqsave(&devtree_lock, flags);
761 762
	next = prev ? prev->sibling : node->child;
	for (; next; next = next->sibling) {
763
		if (!__of_device_is_available(next))
764 765 766 767 768
			continue;
		if (of_node_get(next))
			break;
	}
	of_node_put(prev);
769
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
770 771 772 773
	return next;
}
EXPORT_SYMBOL(of_get_next_available_child);

774
/**
775 776
 * of_get_next_cpu_node - Iterate on cpu nodes
 * @prev:	previous child of the /cpus node, or NULL to get first
777
 *
778 779 780
 * Return: A cpu node pointer with refcount incremented, use of_node_put()
 * on it when done. Returns NULL when prev is the last child. Decrements
 * the refcount of prev.
781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799
 */
struct device_node *of_get_next_cpu_node(struct device_node *prev)
{
	struct device_node *next = NULL;
	unsigned long flags;
	struct device_node *node;

	if (!prev)
		node = of_find_node_by_path("/cpus");

	raw_spin_lock_irqsave(&devtree_lock, flags);
	if (prev)
		next = prev->sibling;
	else if (node) {
		next = node->child;
		of_node_put(node);
	}
	for (; next; next = next->sibling) {
		if (!(of_node_name_eq(next, "cpu") ||
800
		      __of_node_is_type(next, "cpu")))
801 802 803 804 805 806 807 808 809 810
			continue;
		if (of_node_get(next))
			break;
	}
	of_node_put(prev);
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
	return next;
}
EXPORT_SYMBOL(of_get_next_cpu_node);

811 812 813 814 815 816 817 818
/**
 * of_get_compatible_child - Find compatible child node
 * @parent:	parent node
 * @compatible:	compatible string
 *
 * Lookup child node whose compatible property contains the given compatible
 * string.
 *
819
 * Return: a node pointer with refcount incremented, use of_node_put() on it
820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835
 * when done; or NULL if not found.
 */
struct device_node *of_get_compatible_child(const struct device_node *parent,
				const char *compatible)
{
	struct device_node *child;

	for_each_child_of_node(parent, child) {
		if (of_device_is_compatible(child, compatible))
			break;
	}

	return child;
}
EXPORT_SYMBOL(of_get_compatible_child);

836
/**
837 838 839
 * of_get_child_by_name - Find the child node by name for a given parent
 * @node:	parent node
 * @name:	child name to look for.
840
 *
841
 * This function looks for child node for given matching name
842
 *
843 844 845
 * Return: A node pointer if found, with refcount incremented, use
 * of_node_put() on it when done.
 * Returns NULL if node is not found.
846 847 848 849 850 851 852
 */
struct device_node *of_get_child_by_name(const struct device_node *node,
				const char *name)
{
	struct device_node *child;

	for_each_child_of_node(node, child)
853
		if (of_node_name_eq(child, name))
854 855 856 857 858
			break;
	return child;
}
EXPORT_SYMBOL(of_get_child_by_name);

859
struct device_node *__of_find_node_by_path(struct device_node *parent,
860 861 862
						const char *path)
{
	struct device_node *child;
863
	int len;
864

865
	len = strcspn(path, "/:");
866 867 868 869
	if (!len)
		return NULL;

	__for_each_child_of_node(parent, child) {
870
		const char *name = kbasename(child->full_name);
871 872 873 874 875 876
		if (strncmp(path, name, len) == 0 && (strlen(name) == len))
			return child;
	}
	return NULL;
}

877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894
struct device_node *__of_find_node_by_full_path(struct device_node *node,
						const char *path)
{
	const char *separator = strchr(path, ':');

	while (node && *path == '/') {
		struct device_node *tmp = node;

		path++; /* Increment past '/' delimiter */
		node = __of_find_node_by_path(node, path);
		of_node_put(tmp);
		path = strchrnul(path, '/');
		if (separator && separator < path)
			break;
	}
	return node;
}

895
/**
896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911
 * of_find_node_opts_by_path - Find a node matching a full OF path
 * @path: Either the full path to match, or if the path does not
 *       start with '/', the name of a property of the /aliases
 *       node (an alias).  In the case of an alias, the node
 *       matching the alias' value will be returned.
 * @opts: Address of a pointer into which to store the start of
 *       an options string appended to the end of the path with
 *       a ':' separator.
 *
 * Valid paths:
 *  * /foo/bar	Full path
 *  * foo	Valid alias
 *  * foo/bar	Valid alias + relative path
 *
 * Return: A node pointer with refcount incremented, use
 * of_node_put() on it when done.
912
 */
913
struct device_node *of_find_node_opts_by_path(const char *path, const char **opts)
914
{
915 916
	struct device_node *np = NULL;
	struct property *pp;
917
	unsigned long flags;
918 919 920 921
	const char *separator = strchr(path, ':');

	if (opts)
		*opts = separator ? separator + 1 : NULL;
922

923
	if (strcmp(path, "/") == 0)
G
Grant Likely 已提交
924
		return of_node_get(of_root);
925 926 927

	/* The path could begin with an alias */
	if (*path != '/') {
928 929 930 931 932 933
		int len;
		const char *p = separator;

		if (!p)
			p = strchrnul(path, '/');
		len = p - path;
934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950

		/* of_aliases must not be NULL */
		if (!of_aliases)
			return NULL;

		for_each_property_of_node(of_aliases, pp) {
			if (strlen(pp->name) == len && !strncmp(pp->name, path, len)) {
				np = of_find_node_by_path(pp->value);
				break;
			}
		}
		if (!np)
			return NULL;
		path = p;
	}

	/* Step down the tree matching path components */
951
	raw_spin_lock_irqsave(&devtree_lock, flags);
952
	if (!np)
G
Grant Likely 已提交
953
		np = of_node_get(of_root);
954
	np = __of_find_node_by_full_path(np, path);
955
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
956 957
	return np;
}
958
EXPORT_SYMBOL(of_find_node_opts_by_path);
959 960

/**
961 962
 * of_find_node_by_name - Find a node by its "name" property
 * @from:	The node to start searching from or NULL; the node
963
 *		you pass will not be searched, only the next one
964 965
 *		will. Typically, you pass what the previous call
 *		returned. of_node_put() will be called on @from.
966
 * @name:	The name string to match against
967
 *
968 969
 * Return: A node pointer with refcount incremented, use
 * of_node_put() on it when done.
970 971 972 973 974
 */
struct device_node *of_find_node_by_name(struct device_node *from,
	const char *name)
{
	struct device_node *np;
975
	unsigned long flags;
976

977
	raw_spin_lock_irqsave(&devtree_lock, flags);
G
Grant Likely 已提交
978
	for_each_of_allnodes_from(from, np)
979
		if (of_node_name_eq(np, name) && of_node_get(np))
980 981
			break;
	of_node_put(from);
982
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
983 984 985 986 987
	return np;
}
EXPORT_SYMBOL(of_find_node_by_name);

/**
988 989
 * of_find_node_by_type - Find a node by its "device_type" property
 * @from:	The node to start searching from, or NULL to start searching
990 991 992 993
 *		the entire device tree. The node you pass will not be
 *		searched, only the next one will; typically, you pass
 *		what the previous call returned. of_node_put() will be
 *		called on from for you.
994
 * @type:	The type string to match against
995
 *
996 997
 * Return: A node pointer with refcount incremented, use
 * of_node_put() on it when done.
998 999 1000 1001 1002
 */
struct device_node *of_find_node_by_type(struct device_node *from,
	const char *type)
{
	struct device_node *np;
1003
	unsigned long flags;
1004

1005
	raw_spin_lock_irqsave(&devtree_lock, flags);
G
Grant Likely 已提交
1006
	for_each_of_allnodes_from(from, np)
1007
		if (__of_node_is_type(np, type) && of_node_get(np))
1008 1009
			break;
	of_node_put(from);
1010
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1011 1012 1013 1014 1015
	return np;
}
EXPORT_SYMBOL(of_find_node_by_type);

/**
1016
 * of_find_compatible_node - Find a node based on type and one of the
1017
 *                                tokens in its "compatible" property
1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
 * @from:	The node to start searching from or NULL, the node
 *		you pass will not be searched, only the next one
 *		will; typically, you pass what the previous call
 *		returned. of_node_put() will be called on it
 * @type:	The type string to match "device_type" or NULL to ignore
 * @compatible:	The string to match to one of the tokens in the device
 *		"compatible" list.
 *
 * Return: A node pointer with refcount incremented, use
 * of_node_put() on it when done.
1028 1029 1030 1031 1032
 */
struct device_node *of_find_compatible_node(struct device_node *from,
	const char *type, const char *compatible)
{
	struct device_node *np;
1033
	unsigned long flags;
1034

1035
	raw_spin_lock_irqsave(&devtree_lock, flags);
G
Grant Likely 已提交
1036
	for_each_of_allnodes_from(from, np)
1037
		if (__of_device_is_compatible(np, compatible, type, NULL) &&
1038
		    of_node_get(np))
1039 1040
			break;
	of_node_put(from);
1041
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1042 1043 1044
	return np;
}
EXPORT_SYMBOL(of_find_compatible_node);
1045

1046
/**
1047 1048 1049 1050 1051 1052 1053 1054 1055 1056
 * of_find_node_with_property - Find a node which has a property with
 *                              the given name.
 * @from:	The node to start searching from or NULL, the node
 *		you pass will not be searched, only the next one
 *		will; typically, you pass what the previous call
 *		returned. of_node_put() will be called on it
 * @prop_name:	The name of the property to look for.
 *
 * Return: A node pointer with refcount incremented, use
 * of_node_put() on it when done.
1057 1058 1059 1060 1061 1062
 */
struct device_node *of_find_node_with_property(struct device_node *from,
	const char *prop_name)
{
	struct device_node *np;
	struct property *pp;
1063
	unsigned long flags;
1064

1065
	raw_spin_lock_irqsave(&devtree_lock, flags);
G
Grant Likely 已提交
1066
	for_each_of_allnodes_from(from, np) {
1067
		for (pp = np->properties; pp; pp = pp->next) {
1068 1069 1070 1071 1072 1073 1074 1075
			if (of_prop_cmp(pp->name, prop_name) == 0) {
				of_node_get(np);
				goto out;
			}
		}
	}
out:
	of_node_put(from);
1076
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1077 1078 1079 1080
	return np;
}
EXPORT_SYMBOL(of_find_node_with_property);

1081 1082 1083
static
const struct of_device_id *__of_match_node(const struct of_device_id *matches,
					   const struct device_node *node)
1084
{
1085 1086 1087
	const struct of_device_id *best_match = NULL;
	int score, best_score = 0;

1088 1089 1090
	if (!matches)
		return NULL;

1091 1092 1093 1094 1095 1096 1097
	for (; matches->name[0] || matches->type[0] || matches->compatible[0]; matches++) {
		score = __of_device_is_compatible(node, matches->compatible,
						  matches->type, matches->name);
		if (score > best_score) {
			best_match = matches;
			best_score = score;
		}
1098
	}
1099 1100

	return best_match;
1101
}
1102 1103

/**
G
Geert Uytterhoeven 已提交
1104
 * of_match_node - Tell if a device_node has a matching of_match structure
1105 1106
 * @matches:	array of of device match structures to search in
 * @node:	the of device structure to match against
1107
 *
1108
 * Low level utility function used by device matching.
1109 1110 1111 1112 1113
 */
const struct of_device_id *of_match_node(const struct of_device_id *matches,
					 const struct device_node *node)
{
	const struct of_device_id *match;
1114
	unsigned long flags;
1115

1116
	raw_spin_lock_irqsave(&devtree_lock, flags);
1117
	match = __of_match_node(matches, node);
1118
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1119 1120
	return match;
}
1121 1122 1123
EXPORT_SYMBOL(of_match_node);

/**
1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
 * of_find_matching_node_and_match - Find a node based on an of_device_id
 *				     match table.
 * @from:	The node to start searching from or NULL, the node
 *		you pass will not be searched, only the next one
 *		will; typically, you pass what the previous call
 *		returned. of_node_put() will be called on it
 * @matches:	array of of device match structures to search in
 * @match:	Updated to point at the matches entry which matched
 *
 * Return: A node pointer with refcount incremented, use
 * of_node_put() on it when done.
1135
 */
1136 1137 1138
struct device_node *of_find_matching_node_and_match(struct device_node *from,
					const struct of_device_id *matches,
					const struct of_device_id **match)
1139 1140
{
	struct device_node *np;
1141
	const struct of_device_id *m;
1142
	unsigned long flags;
1143

1144 1145 1146
	if (match)
		*match = NULL;

1147
	raw_spin_lock_irqsave(&devtree_lock, flags);
G
Grant Likely 已提交
1148
	for_each_of_allnodes_from(from, np) {
1149
		m = __of_match_node(matches, np);
1150
		if (m && of_node_get(np)) {
1151
			if (match)
1152
				*match = m;
1153
			break;
1154
		}
1155 1156
	}
	of_node_put(from);
1157
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1158 1159
	return np;
}
1160
EXPORT_SYMBOL(of_find_matching_node_and_match);
1161 1162 1163 1164 1165 1166 1167

/**
 * of_modalias_node - Lookup appropriate modalias for a device node
 * @node:	pointer to a device tree node
 * @modalias:	Pointer to buffer that modalias value will be copied into
 * @len:	Length of modalias value
 *
1168 1169 1170 1171
 * Based on the value of the compatible property, this routine will attempt
 * to choose an appropriate modalias value for a particular device tree node.
 * It does this by stripping the manufacturer prefix (as delimited by a ',')
 * from the first entry in the compatible list property.
1172
 *
1173
 * Return: This routine returns 0 on success, <0 on failure.
1174 1175 1176
 */
int of_modalias_node(struct device_node *node, char *modalias, int len)
{
1177 1178
	const char *compatible, *p;
	int cplen;
1179 1180

	compatible = of_get_property(node, "compatible", &cplen);
1181
	if (!compatible || strlen(compatible) > cplen)
1182 1183
		return -ENODEV;
	p = strchr(compatible, ',');
1184
	strlcpy(modalias, p ? p + 1 : compatible, len);
1185 1186 1187 1188
	return 0;
}
EXPORT_SYMBOL_GPL(of_modalias_node);

J
Jeremy Kerr 已提交
1189 1190 1191 1192
/**
 * of_find_node_by_phandle - Find a node given a phandle
 * @handle:	phandle of the node to find
 *
1193
 * Return: A node pointer with refcount incremented, use
J
Jeremy Kerr 已提交
1194 1195 1196 1197
 * of_node_put() on it when done.
 */
struct device_node *of_find_node_by_phandle(phandle handle)
{
1198
	struct device_node *np = NULL;
1199
	unsigned long flags;
1200
	u32 handle_hash;
J
Jeremy Kerr 已提交
1201

1202 1203 1204
	if (!handle)
		return NULL;

1205 1206
	handle_hash = of_phandle_cache_hash(handle);

1207
	raw_spin_lock_irqsave(&devtree_lock, flags);
1208

1209 1210 1211
	if (phandle_cache[handle_hash] &&
	    handle == phandle_cache[handle_hash]->phandle)
		np = phandle_cache[handle_hash];
1212 1213 1214

	if (!np) {
		for_each_of_allnodes(np)
1215 1216
			if (np->phandle == handle &&
			    !of_node_check_flag(np, OF_DETACHED)) {
1217
				phandle_cache[handle_hash] = np;
1218 1219 1220 1221
				break;
			}
	}

J
Jeremy Kerr 已提交
1222
	of_node_get(np);
1223
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
J
Jeremy Kerr 已提交
1224 1225 1226 1227
	return np;
}
EXPORT_SYMBOL(of_find_node_by_phandle);

1228 1229 1230
void of_print_phandle_args(const char *msg, const struct of_phandle_args *args)
{
	int i;
1231
	printk("%s %pOF", msg, args->np);
1232 1233 1234 1235 1236 1237
	for (i = 0; i < args->args_count; i++) {
		const char delim = i ? ',' : ':';

		pr_cont("%c%08x", delim, args->args[i]);
	}
	pr_cont("\n");
1238 1239
}

1240 1241 1242 1243 1244
int of_phandle_iterator_init(struct of_phandle_iterator *it,
		const struct device_node *np,
		const char *list_name,
		const char *cells_name,
		int cell_count)
1245
{
1246 1247 1248 1249
	const __be32 *list;
	int size;

	memset(it, 0, sizeof(*it));
1250

1251 1252 1253 1254 1255 1256 1257
	/*
	 * one of cell_count or cells_name must be provided to determine the
	 * argument length.
	 */
	if (cell_count < 0 && !cells_name)
		return -EINVAL;

1258
	list = of_get_property(np, list_name, &size);
1259
	if (!list)
1260
		return -ENOENT;
1261

1262 1263 1264 1265 1266 1267 1268 1269 1270
	it->cells_name = cells_name;
	it->cell_count = cell_count;
	it->parent = np;
	it->list_end = list + size / sizeof(*list);
	it->phandle_end = list;
	it->cur = list;

	return 0;
}
1271
EXPORT_SYMBOL_GPL(of_phandle_iterator_init);
1272

1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290
int of_phandle_iterator_next(struct of_phandle_iterator *it)
{
	uint32_t count = 0;

	if (it->node) {
		of_node_put(it->node);
		it->node = NULL;
	}

	if (!it->cur || it->phandle_end >= it->list_end)
		return -ENOENT;

	it->cur = it->phandle_end;

	/* If phandle is 0, then it is an empty entry with no arguments. */
	it->phandle = be32_to_cpup(it->cur++);

	if (it->phandle) {
1291

1292
		/*
1293 1294
		 * Find the provider node and parse the #*-cells property to
		 * determine the argument length.
1295
		 */
1296
		it->node = of_find_node_by_phandle(it->phandle);
1297

1298 1299
		if (it->cells_name) {
			if (!it->node) {
1300 1301
				pr_err("%pOF: could not find phandle %d\n",
				       it->parent, it->phandle);
1302
				goto err;
1303
			}
1304

1305 1306
			if (of_property_read_u32(it->node, it->cells_name,
						 &count)) {
1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320
				/*
				 * If both cell_count and cells_name is given,
				 * fall back to cell_count in absence
				 * of the cells_name property
				 */
				if (it->cell_count >= 0) {
					count = it->cell_count;
				} else {
					pr_err("%pOF: could not get %s for %pOF\n",
					       it->parent,
					       it->cells_name,
					       it->node);
					goto err;
				}
1321
			}
1322 1323
		} else {
			count = it->cell_count;
1324 1325
		}

1326
		/*
1327 1328 1329 1330
		 * Make sure that the arguments actually fit in the remaining
		 * property data length
		 */
		if (it->cur + count > it->list_end) {
1331 1332 1333
			pr_err("%pOF: %s = %d found %d\n",
			       it->parent, it->cells_name,
			       count, it->cell_count);
1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350
			goto err;
		}
	}

	it->phandle_end = it->cur + count;
	it->cur_count = count;

	return 0;

err:
	if (it->node) {
		of_node_put(it->node);
		it->node = NULL;
	}

	return -EINVAL;
}
1351
EXPORT_SYMBOL_GPL(of_phandle_iterator_next);
1352

1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369
int of_phandle_iterator_args(struct of_phandle_iterator *it,
			     uint32_t *args,
			     int size)
{
	int i, count;

	count = it->cur_count;

	if (WARN_ON(size < count))
		count = size;

	for (i = 0; i < count; i++)
		args[i] = be32_to_cpup(it->cur++);

	return count;
}

1370 1371
static int __of_parse_phandle_with_args(const struct device_node *np,
					const char *list_name,
1372 1373
					const char *cells_name,
					int cell_count, int index,
1374
					struct of_phandle_args *out_args)
1375
{
1376 1377
	struct of_phandle_iterator it;
	int rc, cur_index = 0;
1378

1379
	/* Loop over the phandles until all the requested entry is found */
1380
	of_for_each_phandle(&it, rc, np, list_name, cells_name, cell_count) {
1381
		/*
1382
		 * All of the error cases bail out of the loop, so at
1383 1384 1385 1386
		 * this point, the parsing is successful. If the requested
		 * index matches, then fill the out_args structure and return,
		 * or return -ENOENT for an empty entry.
		 */
1387
		rc = -ENOENT;
1388
		if (cur_index == index) {
1389
			if (!it.phandle)
1390
				goto err;
1391 1392

			if (out_args) {
1393 1394 1395 1396 1397
				int c;

				c = of_phandle_iterator_args(&it,
							     out_args->args,
							     MAX_PHANDLE_ARGS);
1398
				out_args->np = it.node;
1399
				out_args->args_count = c;
1400
			} else {
1401
				of_node_put(it.node);
1402
			}
1403 1404

			/* Found it! return success */
1405
			return 0;
1406 1407 1408 1409 1410
		}

		cur_index++;
	}

1411 1412 1413 1414 1415
	/*
	 * Unlock node before returning result; will be one of:
	 * -ENOENT : index is for empty phandle
	 * -EINVAL : parsing error on data
	 */
1416

1417
 err:
1418
	of_node_put(it.node);
1419
	return rc;
1420
}
1421

S
Stephen Warren 已提交
1422 1423 1424 1425 1426 1427 1428
/**
 * of_parse_phandle - Resolve a phandle property to a device_node pointer
 * @np: Pointer to device node holding phandle property
 * @phandle_name: Name of property holding a phandle value
 * @index: For properties holding a table of phandles, this is the index into
 *         the table
 *
1429
 * Return: The device_node pointer with refcount incremented.  Use
S
Stephen Warren 已提交
1430 1431 1432 1433 1434
 * of_node_put() on it when done.
 */
struct device_node *of_parse_phandle(const struct device_node *np,
				     const char *phandle_name, int index)
{
1435 1436 1437 1438
	struct of_phandle_args args;

	if (index < 0)
		return NULL;
S
Stephen Warren 已提交
1439

1440 1441
	if (__of_parse_phandle_with_args(np, phandle_name, NULL, 0,
					 index, &args))
S
Stephen Warren 已提交
1442 1443
		return NULL;

1444
	return args.np;
S
Stephen Warren 已提交
1445 1446 1447
}
EXPORT_SYMBOL(of_parse_phandle);

1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459
/**
 * of_parse_phandle_with_args() - Find a node pointed by phandle in a list
 * @np:		pointer to a device tree node containing a list
 * @list_name:	property name that contains a list
 * @cells_name:	property name that specifies phandles' arguments count
 * @index:	index of a phandle to parse out
 * @out_args:	optional pointer to output arguments structure (will be filled)
 *
 * This function is useful to parse lists of phandles and their arguments.
 * Returns 0 on success and fills out_args, on error returns appropriate
 * errno value.
 *
1460
 * Caller is responsible to call of_node_put() on the returned out_args->np
1461 1462
 * pointer.
 *
1463
 * Example::
1464
 *
1465
 *  phandle1: node1 {
G
Geert Uytterhoeven 已提交
1466
 *	#list-cells = <2>;
1467
 *  };
1468
 *
1469
 *  phandle2: node2 {
G
Geert Uytterhoeven 已提交
1470
 *	#list-cells = <1>;
1471
 *  };
1472
 *
1473
 *  node3 {
G
Geert Uytterhoeven 已提交
1474
 *	list = <&phandle1 1 2 &phandle2 3>;
1475
 *  };
1476
 *
1477
 * To get a device_node of the ``node2`` node you may call this:
1478 1479
 * of_parse_phandle_with_args(node3, "list", "#list-cells", 1, &args);
 */
1480 1481 1482 1483
int of_parse_phandle_with_args(const struct device_node *np, const char *list_name,
				const char *cells_name, int index,
				struct of_phandle_args *out_args)
{
1484 1485
	int cell_count = -1;

1486 1487
	if (index < 0)
		return -EINVAL;
1488 1489 1490 1491 1492 1493 1494

	/* If cells_name is NULL we assume a cell count of 0 */
	if (!cells_name)
		cell_count = 0;

	return __of_parse_phandle_with_args(np, list_name, cells_name,
					    cell_count, index, out_args);
1495
}
1496
EXPORT_SYMBOL(of_parse_phandle_with_args);
1497

1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514
/**
 * of_parse_phandle_with_args_map() - Find a node pointed by phandle in a list and remap it
 * @np:		pointer to a device tree node containing a list
 * @list_name:	property name that contains a list
 * @stem_name:	stem of property names that specify phandles' arguments count
 * @index:	index of a phandle to parse out
 * @out_args:	optional pointer to output arguments structure (will be filled)
 *
 * This function is useful to parse lists of phandles and their arguments.
 * Returns 0 on success and fills out_args, on error returns appropriate errno
 * value. The difference between this function and of_parse_phandle_with_args()
 * is that this API remaps a phandle if the node the phandle points to has
 * a <@stem_name>-map property.
 *
 * Caller is responsible to call of_node_put() on the returned out_args->np
 * pointer.
 *
1515
 * Example::
1516
 *
1517 1518 1519
 *  phandle1: node1 {
 *  	#list-cells = <2>;
 *  };
1520
 *
1521 1522 1523
 *  phandle2: node2 {
 *  	#list-cells = <1>;
 *  };
1524
 *
1525 1526 1527 1528 1529 1530 1531
 *  phandle3: node3 {
 *  	#list-cells = <1>;
 *  	list-map = <0 &phandle2 3>,
 *  		   <1 &phandle2 2>,
 *  		   <2 &phandle1 5 1>;
 *  	list-map-mask = <0x3>;
 *  };
1532
 *
1533 1534 1535
 *  node4 {
 *  	list = <&phandle1 1 2 &phandle3 0>;
 *  };
1536
 *
1537
 * To get a device_node of the ``node2`` node you may call this:
1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575
 * of_parse_phandle_with_args(node4, "list", "list", 1, &args);
 */
int of_parse_phandle_with_args_map(const struct device_node *np,
				   const char *list_name,
				   const char *stem_name,
				   int index, struct of_phandle_args *out_args)
{
	char *cells_name, *map_name = NULL, *mask_name = NULL;
	char *pass_name = NULL;
	struct device_node *cur, *new = NULL;
	const __be32 *map, *mask, *pass;
	static const __be32 dummy_mask[] = { [0 ... MAX_PHANDLE_ARGS] = ~0 };
	static const __be32 dummy_pass[] = { [0 ... MAX_PHANDLE_ARGS] = 0 };
	__be32 initial_match_array[MAX_PHANDLE_ARGS];
	const __be32 *match_array = initial_match_array;
	int i, ret, map_len, match;
	u32 list_size, new_size;

	if (index < 0)
		return -EINVAL;

	cells_name = kasprintf(GFP_KERNEL, "#%s-cells", stem_name);
	if (!cells_name)
		return -ENOMEM;

	ret = -ENOMEM;
	map_name = kasprintf(GFP_KERNEL, "%s-map", stem_name);
	if (!map_name)
		goto free;

	mask_name = kasprintf(GFP_KERNEL, "%s-map-mask", stem_name);
	if (!mask_name)
		goto free;

	pass_name = kasprintf(GFP_KERNEL, "%s-map-pass-thru", stem_name);
	if (!pass_name)
		goto free;

1576
	ret = __of_parse_phandle_with_args(np, list_name, cells_name, -1, index,
1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681
					   out_args);
	if (ret)
		goto free;

	/* Get the #<list>-cells property */
	cur = out_args->np;
	ret = of_property_read_u32(cur, cells_name, &list_size);
	if (ret < 0)
		goto put;

	/* Precalculate the match array - this simplifies match loop */
	for (i = 0; i < list_size; i++)
		initial_match_array[i] = cpu_to_be32(out_args->args[i]);

	ret = -EINVAL;
	while (cur) {
		/* Get the <list>-map property */
		map = of_get_property(cur, map_name, &map_len);
		if (!map) {
			ret = 0;
			goto free;
		}
		map_len /= sizeof(u32);

		/* Get the <list>-map-mask property (optional) */
		mask = of_get_property(cur, mask_name, NULL);
		if (!mask)
			mask = dummy_mask;
		/* Iterate through <list>-map property */
		match = 0;
		while (map_len > (list_size + 1) && !match) {
			/* Compare specifiers */
			match = 1;
			for (i = 0; i < list_size; i++, map_len--)
				match &= !((match_array[i] ^ *map++) & mask[i]);

			of_node_put(new);
			new = of_find_node_by_phandle(be32_to_cpup(map));
			map++;
			map_len--;

			/* Check if not found */
			if (!new)
				goto put;

			if (!of_device_is_available(new))
				match = 0;

			ret = of_property_read_u32(new, cells_name, &new_size);
			if (ret)
				goto put;

			/* Check for malformed properties */
			if (WARN_ON(new_size > MAX_PHANDLE_ARGS))
				goto put;
			if (map_len < new_size)
				goto put;

			/* Move forward by new node's #<list>-cells amount */
			map += new_size;
			map_len -= new_size;
		}
		if (!match)
			goto put;

		/* Get the <list>-map-pass-thru property (optional) */
		pass = of_get_property(cur, pass_name, NULL);
		if (!pass)
			pass = dummy_pass;

		/*
		 * Successfully parsed a <list>-map translation; copy new
		 * specifier into the out_args structure, keeping the
		 * bits specified in <list>-map-pass-thru.
		 */
		match_array = map - new_size;
		for (i = 0; i < new_size; i++) {
			__be32 val = *(map - new_size + i);

			if (i < list_size) {
				val &= ~pass[i];
				val |= cpu_to_be32(out_args->args[i]) & pass[i];
			}

			out_args->args[i] = be32_to_cpu(val);
		}
		out_args->args_count = list_size = new_size;
		/* Iterate again with new provider */
		out_args->np = new;
		of_node_put(cur);
		cur = new;
	}
put:
	of_node_put(cur);
	of_node_put(new);
free:
	kfree(mask_name);
	kfree(map_name);
	kfree(cells_name);
	kfree(pass_name);

	return ret;
}
EXPORT_SYMBOL(of_parse_phandle_with_args_map);

1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693
/**
 * of_parse_phandle_with_fixed_args() - Find a node pointed by phandle in a list
 * @np:		pointer to a device tree node containing a list
 * @list_name:	property name that contains a list
 * @cell_count: number of argument cells following the phandle
 * @index:	index of a phandle to parse out
 * @out_args:	optional pointer to output arguments structure (will be filled)
 *
 * This function is useful to parse lists of phandles and their arguments.
 * Returns 0 on success and fills out_args, on error returns appropriate
 * errno value.
 *
1694
 * Caller is responsible to call of_node_put() on the returned out_args->np
1695 1696
 * pointer.
 *
1697
 * Example::
1698
 *
1699 1700
 *  phandle1: node1 {
 *  };
1701
 *
1702 1703
 *  phandle2: node2 {
 *  };
1704
 *
1705 1706 1707
 *  node3 {
 *  	list = <&phandle1 0 2 &phandle2 2 3>;
 *  };
1708
 *
1709
 * To get a device_node of the ``node2`` node you may call this:
1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722
 * of_parse_phandle_with_fixed_args(node3, "list", 2, 1, &args);
 */
int of_parse_phandle_with_fixed_args(const struct device_node *np,
				const char *list_name, int cell_count,
				int index, struct of_phandle_args *out_args)
{
	if (index < 0)
		return -EINVAL;
	return __of_parse_phandle_with_args(np, list_name, NULL, cell_count,
					   index, out_args);
}
EXPORT_SYMBOL(of_parse_phandle_with_fixed_args);

1723 1724 1725 1726 1727 1728
/**
 * of_count_phandle_with_args() - Find the number of phandles references in a property
 * @np:		pointer to a device tree node containing a list
 * @list_name:	property name that contains a list
 * @cells_name:	property name that specifies phandles' arguments count
 *
1729
 * Return: The number of phandle + argument tuples within a property. It
1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740
 * is a typical pattern to encode a list of phandle and variable
 * arguments into a single property. The number of arguments is encoded
 * by a property in the phandle-target node. For example, a gpios
 * property would contain a list of GPIO specifies consisting of a
 * phandle and 1 or more arguments. The number of arguments are
 * determined by the #gpio-cells property in the node pointed to by the
 * phandle.
 */
int of_count_phandle_with_args(const struct device_node *np, const char *list_name,
				const char *cells_name)
{
1741 1742 1743
	struct of_phandle_iterator it;
	int rc, cur_index = 0;

1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760
	/*
	 * If cells_name is NULL we assume a cell count of 0. This makes
	 * counting the phandles trivial as each 32bit word in the list is a
	 * phandle and no arguments are to consider. So we don't iterate through
	 * the list but just use the length to determine the phandle count.
	 */
	if (!cells_name) {
		const __be32 *list;
		int size;

		list = of_get_property(np, list_name, &size);
		if (!list)
			return -ENOENT;

		return size / sizeof(*list);
	}

1761
	rc = of_phandle_iterator_init(&it, np, list_name, cells_name, -1);
1762 1763 1764 1765 1766 1767 1768 1769 1770 1771
	if (rc)
		return rc;

	while ((rc = of_phandle_iterator_next(&it)) == 0)
		cur_index += 1;

	if (rc != -ENOENT)
		return rc;

	return cur_index;
1772 1773 1774
}
EXPORT_SYMBOL(of_count_phandle_with_args);

1775 1776
/**
 * __of_add_property - Add a property to a node without lock operations
1777 1778
 * @np:		Caller's Device Node
 * @prob:	Property to add
1779
 */
1780
int __of_add_property(struct device_node *np, struct property *prop)
1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797
{
	struct property **next;

	prop->next = NULL;
	next = &np->properties;
	while (*next) {
		if (strcmp(prop->name, (*next)->name) == 0)
			/* duplicate ! don't insert it */
			return -EEXIST;

		next = &(*next)->next;
	}
	*next = prop;

	return 0;
}

1798
/**
1799
 * of_add_property - Add a property to a node
1800 1801
 * @np:		Caller's Device Node
 * @prob:	Property to add
1802
 */
1803
int of_add_property(struct device_node *np, struct property *prop)
1804 1805
{
	unsigned long flags;
1806 1807
	int rc;

1808
	mutex_lock(&of_mutex);
1809

1810
	raw_spin_lock_irqsave(&devtree_lock, flags);
1811
	rc = __of_add_property(np, prop);
1812
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1813

1814
	if (!rc)
1815
		__of_add_property_sysfs(np, prop);
1816

1817 1818
	mutex_unlock(&of_mutex);

1819 1820 1821
	if (!rc)
		of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop, NULL);

1822
	return rc;
1823 1824
}

1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843
int __of_remove_property(struct device_node *np, struct property *prop)
{
	struct property **next;

	for (next = &np->properties; *next; next = &(*next)->next) {
		if (*next == prop)
			break;
	}
	if (*next == NULL)
		return -ENODEV;

	/* found the node */
	*next = prop->next;
	prop->next = np->deadprops;
	np->deadprops = prop;

	return 0;
}

1844
/**
1845
 * of_remove_property - Remove a property from a node.
1846 1847
 * @np:		Caller's Device Node
 * @prob:	Property to remove
1848 1849 1850 1851 1852 1853
 *
 * Note that we don't actually remove it, since we have given out
 * who-knows-how-many pointers to the data using get-property.
 * Instead we just move the property to the "dead properties"
 * list, so it won't be found any more.
 */
1854
int of_remove_property(struct device_node *np, struct property *prop)
1855 1856
{
	unsigned long flags;
1857 1858
	int rc;

1859 1860 1861
	if (!prop)
		return -ENODEV;

1862
	mutex_lock(&of_mutex);
1863

1864
	raw_spin_lock_irqsave(&devtree_lock, flags);
1865
	rc = __of_remove_property(np, prop);
1866
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1867

1868 1869
	if (!rc)
		__of_remove_property_sysfs(np, prop);
1870

1871
	mutex_unlock(&of_mutex);
1872

1873 1874
	if (!rc)
		of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop, NULL);
1875

1876
	return rc;
1877
}
1878
EXPORT_SYMBOL_GPL(of_remove_property);
1879

1880 1881
int __of_update_property(struct device_node *np, struct property *newprop,
		struct property **oldpropp)
1882
{
1883
	struct property **next, *oldprop;
1884

1885 1886 1887 1888 1889
	for (next = &np->properties; *next; next = &(*next)->next) {
		if (of_prop_cmp((*next)->name, newprop->name) == 0)
			break;
	}
	*oldpropp = oldprop = *next;
1890

1891
	if (oldprop) {
1892
		/* replace the node */
1893 1894 1895 1896 1897 1898 1899 1900
		newprop->next = oldprop->next;
		*next = newprop;
		oldprop->next = np->deadprops;
		np->deadprops = oldprop;
	} else {
		/* new node */
		newprop->next = NULL;
		*next = newprop;
1901
	}
1902

1903 1904 1905
	return 0;
}

1906
/*
1907
 * of_update_property - Update a property in a node, if the property does
1908
 * not exist, add it.
1909
 *
1910 1911 1912 1913
 * Note that we don't actually remove it, since we have given out
 * who-knows-how-many pointers to the data using get-property.
 * Instead we just move the property to the "dead properties" list,
 * and add the new property to the property list
1914
 */
1915
int of_update_property(struct device_node *np, struct property *newprop)
1916
{
1917
	struct property *oldprop;
1918
	unsigned long flags;
1919 1920
	int rc;

1921 1922
	if (!newprop->name)
		return -EINVAL;
1923

1924
	mutex_lock(&of_mutex);
1925

1926
	raw_spin_lock_irqsave(&devtree_lock, flags);
1927
	rc = __of_update_property(np, newprop, &oldprop);
1928
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1929

1930 1931
	if (!rc)
		__of_update_property_sysfs(np, newprop, oldprop);
1932

1933
	mutex_unlock(&of_mutex);
1934

1935 1936
	if (!rc)
		of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop, oldprop);
1937

1938
	return rc;
1939 1940
}

1941 1942 1943 1944 1945 1946 1947 1948
static void of_alias_add(struct alias_prop *ap, struct device_node *np,
			 int id, const char *stem, int stem_len)
{
	ap->np = np;
	ap->id = id;
	strncpy(ap->stem, stem, stem_len);
	ap->stem[stem_len] = 0;
	list_add_tail(&ap->link, &aliases_lookup);
1949 1950
	pr_debug("adding DT alias:%s: stem=%s id=%i node=%pOF\n",
		 ap->alias, ap->stem, ap->id, np);
1951 1952 1953
}

/**
1954
 * of_alias_scan - Scan all properties of the 'aliases' node
1955 1956
 * @dt_alloc:	An allocator that provides a virtual address to memory
 *		for storing the resulting tree
1957
 *
1958 1959 1960
 * The function scans all the properties of the 'aliases' node and populates
 * the global lookup table with the properties.  It returns the
 * number of alias properties found, or an error code in case of failure.
1961 1962 1963 1964 1965
 */
void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align))
{
	struct property *pp;

1966
	of_aliases = of_find_node_by_path("/aliases");
1967 1968 1969
	of_chosen = of_find_node_by_path("/chosen");
	if (of_chosen == NULL)
		of_chosen = of_find_node_by_path("/chosen@0");
1970 1971

	if (of_chosen) {
1972
		/* linux,stdout-path and /aliases/stdout are for legacy compatibility */
1973 1974 1975 1976 1977
		const char *name = NULL;

		if (of_property_read_string(of_chosen, "stdout-path", &name))
			of_property_read_string(of_chosen, "linux,stdout-path",
						&name);
1978
		if (IS_ENABLED(CONFIG_PPC) && !name)
1979
			of_property_read_string(of_aliases, "stdout", &name);
1980
		if (name)
1981
			of_stdout = of_find_node_opts_by_path(name, &of_stdout_options);
1982 1983
	}

1984 1985 1986
	if (!of_aliases)
		return;

1987
	for_each_property_of_node(of_aliases, pp) {
1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
		const char *start = pp->name;
		const char *end = start + strlen(start);
		struct device_node *np;
		struct alias_prop *ap;
		int id, len;

		/* Skip those we do not want to proceed */
		if (!strcmp(pp->name, "name") ||
		    !strcmp(pp->name, "phandle") ||
		    !strcmp(pp->name, "linux,phandle"))
			continue;

		np = of_find_node_by_path(pp->value);
		if (!np)
			continue;

		/* walk the alias backwards to extract the id and work out
		 * the 'stem' string */
		while (isdigit(*(end-1)) && end > start)
			end--;
		len = end - start;

		if (kstrtoint(end, 10, &id) < 0)
			continue;

		/* Allocate an alias_prop with enough space for the stem */
2014
		ap = dt_alloc(sizeof(*ap) + len + 1, __alignof__(*ap));
2015 2016
		if (!ap)
			continue;
2017
		memset(ap, 0, sizeof(*ap) + len + 1);
2018 2019 2020 2021 2022 2023 2024 2025 2026 2027
		ap->alias = start;
		of_alias_add(ap, np, id, start, len);
	}
}

/**
 * of_alias_get_id - Get alias id for the given device_node
 * @np:		Pointer to the given device_node
 * @stem:	Alias stem of the given device_node
 *
2028
 * The function travels the lookup table to get the alias id for the given
2029 2030 2031
 * device_node and alias stem.
 *
 * Return: The alias id if found.
2032 2033 2034 2035 2036 2037
 */
int of_alias_get_id(struct device_node *np, const char *stem)
{
	struct alias_prop *app;
	int id = -ENODEV;

2038
	mutex_lock(&of_mutex);
2039 2040 2041 2042 2043 2044 2045 2046 2047
	list_for_each_entry(app, &aliases_lookup, link) {
		if (strcmp(app->stem, stem) != 0)
			continue;

		if (np == app->np) {
			id = app->id;
			break;
		}
	}
2048
	mutex_unlock(&of_mutex);
2049 2050 2051 2052

	return id;
}
EXPORT_SYMBOL_GPL(of_alias_get_id);
2053

2054 2055 2056 2057 2058
/**
 * of_alias_get_alias_list - Get alias list for the given device driver
 * @matches:	Array of OF device match structures to search in
 * @stem:	Alias stem of the given device_node
 * @bitmap:	Bitmap field pointer
2059
 * @nbits:	Maximum number of alias IDs which can be recorded in bitmap
2060 2061 2062 2063
 *
 * The function travels the lookup table to record alias ids for the given
 * device match structures and alias stem.
 *
2064 2065
 * Return:	0 or -ENOSYS when !CONFIG_OF or
 *		-EOVERFLOW if alias ID is greater then allocated nbits
2066 2067 2068 2069 2070 2071
 */
int of_alias_get_alias_list(const struct of_device_id *matches,
			     const char *stem, unsigned long *bitmap,
			     unsigned int nbits)
{
	struct alias_prop *app;
2072
	int ret = 0;
2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083

	/* Zero bitmap field to make sure that all the time it is clean */
	bitmap_zero(bitmap, nbits);

	mutex_lock(&of_mutex);
	pr_debug("%s: Looking for stem: %s\n", __func__, stem);
	list_for_each_entry(app, &aliases_lookup, link) {
		pr_debug("%s: stem: %s, id: %d\n",
			 __func__, app->stem, app->id);

		if (strcmp(app->stem, stem) != 0) {
2084
			pr_debug("%s: stem comparison didn't pass %s\n",
2085 2086 2087 2088 2089 2090
				 __func__, app->stem);
			continue;
		}

		if (of_match_node(matches, app->np)) {
			pr_debug("%s: Allocated ID %d\n", __func__, app->id);
2091 2092 2093 2094 2095 2096 2097 2098

			if (app->id >= nbits) {
				pr_warn("%s: ID %d >= than bitmap field %d\n",
					__func__, app->id, nbits);
				ret = -EOVERFLOW;
			} else {
				set_bit(app->id, bitmap);
			}
2099 2100 2101 2102
		}
	}
	mutex_unlock(&of_mutex);

2103
	return ret;
2104 2105 2106
}
EXPORT_SYMBOL_GPL(of_alias_get_alias_list);

2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132
/**
 * of_alias_get_highest_id - Get highest alias id for the given stem
 * @stem:	Alias stem to be examined
 *
 * The function travels the lookup table to get the highest alias id for the
 * given alias stem.  It returns the alias id if found.
 */
int of_alias_get_highest_id(const char *stem)
{
	struct alias_prop *app;
	int id = -ENODEV;

	mutex_lock(&of_mutex);
	list_for_each_entry(app, &aliases_lookup, link) {
		if (strcmp(app->stem, stem) != 0)
			continue;

		if (app->id > id)
			id = app->id;
	}
	mutex_unlock(&of_mutex);

	return id;
}
EXPORT_SYMBOL_GPL(of_alias_get_highest_id);

2133
/**
2134
 * of_console_check() - Test and setup console for DT setup
2135 2136 2137
 * @dn: Pointer to device node
 * @name: Name to use for preferred console without index. ex. "ttyS"
 * @index: Index to use for preferred console.
2138 2139
 *
 * Check if the given device node matches the stdout-path property in the
2140 2141 2142
 * /chosen node. If it does then register it as the preferred console.
 *
 * Return: TRUE if console successfully setup. Otherwise return FALSE.
2143
 */
2144
bool of_console_check(struct device_node *dn, char *name, int index)
2145
{
2146
	if (!dn || dn != of_stdout || console_set_on_cmdline)
2147
		return false;
2148 2149 2150 2151 2152 2153

	/*
	 * XXX: cast `options' to char pointer to suppress complication
	 * warnings: printk, UART and console drivers expect char pointer.
	 */
	return !add_preferred_console(name, index, (char *)of_stdout_options);
2154
}
2155
EXPORT_SYMBOL_GPL(of_console_check);
2156 2157

/**
2158 2159
 * of_find_next_cache_node - Find a node's subsidiary cache
 * @np:	node of type "cpu" or "cache"
2160
 *
2161 2162 2163
 * Return: A node pointer with refcount incremented, use
 * of_node_put() on it when done.  Caller should hold a reference
 * to np.
2164 2165 2166
 */
struct device_node *of_find_next_cache_node(const struct device_node *np)
{
2167
	struct device_node *child, *cache_node;
2168

2169 2170 2171
	cache_node = of_parse_phandle(np, "l2-cache", 0);
	if (!cache_node)
		cache_node = of_parse_phandle(np, "next-level-cache", 0);
2172

2173 2174
	if (cache_node)
		return cache_node;
2175 2176 2177 2178

	/* OF on pmac has nodes instead of properties named "l2-cache"
	 * beneath CPU nodes.
	 */
2179
	if (IS_ENABLED(CONFIG_PPC_PMAC) && of_node_is_type(np, "cpu"))
2180
		for_each_child_of_node(np, child)
2181
			if (of_node_is_type(child, "cache"))
2182 2183 2184 2185
				return child;

	return NULL;
}
2186

2187 2188 2189 2190 2191 2192
/**
 * of_find_last_cache_level - Find the level at which the last cache is
 * 		present for the given logical cpu
 *
 * @cpu: cpu number(logical index) for which the last cache level is needed
 *
2193
 * Return: The the level at which the last cache is present. It is exactly
2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210
 * same as  the total number of cache levels for the given logical cpu.
 */
int of_find_last_cache_level(unsigned int cpu)
{
	u32 cache_level = 0;
	struct device_node *prev = NULL, *np = of_cpu_device_node_get(cpu);

	while (np) {
		prev = np;
		of_node_put(np);
		np = of_find_next_cache_node(np);
	}

	of_property_read_u32(prev, "cache-level", &cache_level);

	return cache_level;
}
2211 2212

/**
2213
 * of_map_id - Translate an ID through a downstream mapping.
2214
 * @np: root complex device node.
2215
 * @id: device ID to map.
2216 2217 2218 2219 2220
 * @map_name: property name of the map to use.
 * @map_mask_name: optional property name of the mask to use.
 * @target: optional pointer to a target device node.
 * @id_out: optional pointer to receive the translated ID.
 *
2221
 * Given a device ID, look up the appropriate implementation-defined
2222 2223 2224 2225 2226 2227 2228 2229 2230
 * platform ID and/or the target device which receives transactions on that
 * ID, as per the "iommu-map" and "msi-map" bindings. Either of @target or
 * @id_out may be NULL if only the other is required. If @target points to
 * a non-NULL device node pointer, only entries targeting that node will be
 * matched; if it points to a NULL value, it will receive the device node of
 * the first matching target phandle, with a reference held.
 *
 * Return: 0 on success or a standard error code on failure.
 */
2231
int of_map_id(struct device_node *np, u32 id,
2232 2233 2234
	       const char *map_name, const char *map_mask_name,
	       struct device_node **target, u32 *id_out)
{
2235
	u32 map_mask, masked_id;
2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246
	int map_len;
	const __be32 *map = NULL;

	if (!np || !map_name || (!target && !id_out))
		return -EINVAL;

	map = of_get_property(np, map_name, &map_len);
	if (!map) {
		if (target)
			return -ENODEV;
		/* Otherwise, no map implies no translation */
2247
		*id_out = id;
2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266
		return 0;
	}

	if (!map_len || map_len % (4 * sizeof(*map))) {
		pr_err("%pOF: Error: Bad %s length: %d\n", np,
			map_name, map_len);
		return -EINVAL;
	}

	/* The default is to select all bits. */
	map_mask = 0xffffffff;

	/*
	 * Can be overridden by "{iommu,msi}-map-mask" property.
	 * If of_property_read_u32() fails, the default is used.
	 */
	if (map_mask_name)
		of_property_read_u32(np, map_mask_name, &map_mask);

2267
	masked_id = map_mask & id;
2268 2269
	for ( ; map_len > 0; map_len -= 4 * sizeof(*map), map += 4) {
		struct device_node *phandle_node;
2270
		u32 id_base = be32_to_cpup(map + 0);
2271 2272
		u32 phandle = be32_to_cpup(map + 1);
		u32 out_base = be32_to_cpup(map + 2);
2273
		u32 id_len = be32_to_cpup(map + 3);
2274

2275 2276
		if (id_base & ~map_mask) {
			pr_err("%pOF: Invalid %s translation - %s-mask (0x%x) ignores id-base (0x%x)\n",
2277
				np, map_name, map_name,
2278
				map_mask, id_base);
2279 2280 2281
			return -EFAULT;
		}

2282
		if (masked_id < id_base || masked_id >= id_base + id_len)
2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299
			continue;

		phandle_node = of_find_node_by_phandle(phandle);
		if (!phandle_node)
			return -ENODEV;

		if (target) {
			if (*target)
				of_node_put(phandle_node);
			else
				*target = phandle_node;

			if (*target != phandle_node)
				continue;
		}

		if (id_out)
2300
			*id_out = masked_id - id_base + out_base;
2301

2302 2303 2304
		pr_debug("%pOF: %s, using mask %08x, id-base: %08x, out-base: %08x, length: %08x, id: %08x -> %08x\n",
			np, map_name, map_mask, id_base, out_base,
			id_len, id, masked_id - id_base + out_base);
2305 2306 2307
		return 0;
	}

2308 2309
	pr_info("%pOF: no %s translation for id 0x%x on %pOF\n", np, map_name,
		id, target && *target ? *target : NULL);
2310 2311 2312

	/* Bypasses translation */
	if (id_out)
2313
		*id_out = id;
2314
	return 0;
2315
}
2316
EXPORT_SYMBOL_GPL(of_map_id);