base.c 59.9 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0+
2 3 4 5 6 7 8 9 10 11 12
/*
 * Procedures for creating, accessing and interpreting the device tree.
 *
 * Paul Mackerras	August 1996.
 * Copyright (C) 1996-2005 Paul Mackerras.
 *
 *  Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
 *    {engebret|bergner}@us.ibm.com
 *
 *  Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
 *
13 14
 *  Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
 *  Grant Likely.
15
 */
16 17 18

#define pr_fmt(fmt)	"OF: " fmt

19
#include <linux/bitmap.h>
20
#include <linux/console.h>
21
#include <linux/ctype.h>
22
#include <linux/cpu.h>
23 24
#include <linux/module.h>
#include <linux/of.h>
25
#include <linux/of_device.h>
26
#include <linux/of_graph.h>
S
Stephen Rothwell 已提交
27
#include <linux/spinlock.h>
28
#include <linux/slab.h>
29
#include <linux/string.h>
J
Jeremy Kerr 已提交
30
#include <linux/proc_fs.h>
S
Stephen Rothwell 已提交
31

32
#include "of_private.h"
33

34
LIST_HEAD(aliases_lookup);
35

G
Grant Likely 已提交
36 37
struct device_node *of_root;
EXPORT_SYMBOL(of_root);
38
struct device_node *of_chosen;
39
struct device_node *of_aliases;
40
struct device_node *of_stdout;
41
static const char *of_stdout_options;
42

43
struct kset *of_kset;
44 45

/*
46 47 48 49
 * Used to protect the of_aliases, to hold off addition of nodes to sysfs.
 * This mutex must be held whenever modifications are being made to the
 * device tree. The of_{attach,detach}_node() and
 * of_{add,remove,update}_property() helpers make sure this happens.
50
 */
51
DEFINE_MUTEX(of_mutex);
52

G
Grant Likely 已提交
53
/* use when traversing tree through the child, sibling,
S
Stephen Rothwell 已提交
54 55
 * or parent members of struct device_node.
 */
56
DEFINE_RAW_SPINLOCK(devtree_lock);
57

58 59 60 61 62 63 64 65 66 67 68 69 70
bool of_node_name_eq(const struct device_node *np, const char *name)
{
	const char *node_name;
	size_t len;

	if (!np)
		return false;

	node_name = kbasename(np->full_name);
	len = strchrnul(node_name, '@') - node_name;

	return (strlen(name) == len) && (strncmp(node_name, name, len) == 0);
}
71
EXPORT_SYMBOL(of_node_name_eq);
72 73 74 75 76 77 78 79

bool of_node_name_prefix(const struct device_node *np, const char *prefix)
{
	if (!np)
		return false;

	return strncmp(kbasename(np->full_name), prefix, strlen(prefix)) == 0;
}
80
EXPORT_SYMBOL(of_node_name_prefix);
81

82 83 84 85 86 87 88
static bool __of_node_is_type(const struct device_node *np, const char *type)
{
	const char *match = __of_get_property(np, "device_type", NULL);

	return np && match && type && !strcmp(match, type);
}

89
int of_bus_n_addr_cells(struct device_node *np)
90
{
91
	u32 cells;
92

93
	for (; np; np = np->parent)
94 95
		if (!of_property_read_u32(np, "#address-cells", &cells))
			return cells;
96

97 98 99
	/* No #address-cells property for the root node */
	return OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
}
100 101 102 103 104 105 106 107

int of_n_addr_cells(struct device_node *np)
{
	if (np->parent)
		np = np->parent;

	return of_bus_n_addr_cells(np);
}
108 109
EXPORT_SYMBOL(of_n_addr_cells);

110
int of_bus_n_size_cells(struct device_node *np)
111
{
112
	u32 cells;
113

114
	for (; np; np = np->parent)
115 116
		if (!of_property_read_u32(np, "#size-cells", &cells))
			return cells;
117

118 119 120
	/* No #size-cells property for the root node */
	return OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
}
121 122 123 124 125 126 127 128

int of_n_size_cells(struct device_node *np)
{
	if (np->parent)
		np = np->parent;

	return of_bus_n_size_cells(np);
}
129 130
EXPORT_SYMBOL(of_n_size_cells);

131 132 133
#ifdef CONFIG_NUMA
int __weak of_node_to_nid(struct device_node *np)
{
134
	return NUMA_NO_NODE;
135 136 137
}
#endif

138 139 140 141 142 143 144 145
/*
 * Assumptions behind phandle_cache implementation:
 *   - phandle property values are in a contiguous range of 1..n
 *
 * If the assumptions do not hold, then
 *   - the phandle lookup overhead reduction provided by the cache
 *     will likely be less
 */
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183

static struct device_node **phandle_cache;
static u32 phandle_cache_mask;

/*
 * Caller must hold devtree_lock.
 */
static void __of_free_phandle_cache(void)
{
	u32 cache_entries = phandle_cache_mask + 1;
	u32 k;

	if (!phandle_cache)
		return;

	for (k = 0; k < cache_entries; k++)
		of_node_put(phandle_cache[k]);

	kfree(phandle_cache);
	phandle_cache = NULL;
}

int of_free_phandle_cache(void)
{
	unsigned long flags;

	raw_spin_lock_irqsave(&devtree_lock, flags);

	__of_free_phandle_cache();

	raw_spin_unlock_irqrestore(&devtree_lock, flags);

	return 0;
}
#if !defined(CONFIG_MODULES)
late_initcall_sync(of_free_phandle_cache);
#endif

184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
/*
 * Caller must hold devtree_lock.
 */
void __of_free_phandle_cache_entry(phandle handle)
{
	phandle masked_handle;
	struct device_node *np;

	if (!handle)
		return;

	masked_handle = handle & phandle_cache_mask;

	if (phandle_cache) {
		np = phandle_cache[masked_handle];
		if (np && handle == np->phandle) {
			of_node_put(np);
			phandle_cache[masked_handle] = NULL;
		}
	}
}

206
void of_populate_phandle_cache(void)
207 208 209 210 211 212 213 214
{
	unsigned long flags;
	u32 cache_entries;
	struct device_node *np;
	u32 phandles = 0;

	raw_spin_lock_irqsave(&devtree_lock, flags);

215
	__of_free_phandle_cache();
216 217 218 219 220

	for_each_of_allnodes(np)
		if (np->phandle && np->phandle != OF_PHANDLE_ILLEGAL)
			phandles++;

221 222 223
	if (!phandles)
		goto out;

224 225 226 227 228 229 230 231 232
	cache_entries = roundup_pow_of_two(phandles);
	phandle_cache_mask = cache_entries - 1;

	phandle_cache = kcalloc(cache_entries, sizeof(*phandle_cache),
				GFP_ATOMIC);
	if (!phandle_cache)
		goto out;

	for_each_of_allnodes(np)
233 234
		if (np->phandle && np->phandle != OF_PHANDLE_ILLEGAL) {
			of_node_get(np);
235
			phandle_cache[np->phandle & phandle_cache_mask] = np;
236
		}
237 238 239 240 241

out:
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
}

242
void __init of_core_init(void)
243 244 245
{
	struct device_node *np;

246 247
	of_populate_phandle_cache();

248
	/* Create the kset, and register existing nodes */
249
	mutex_lock(&of_mutex);
250 251
	of_kset = kset_create_and_add("devicetree", NULL, firmware_kobj);
	if (!of_kset) {
252
		mutex_unlock(&of_mutex);
253
		pr_err("failed to register existing nodes\n");
254
		return;
255 256
	}
	for_each_of_allnodes(np)
257
		__of_attach_node_sysfs(np);
258
	mutex_unlock(&of_mutex);
259

G
Grant Likely 已提交
260
	/* Symlink in /proc as required by userspace ABI */
G
Grant Likely 已提交
261
	if (of_root)
262 263 264
		proc_symlink("device-tree", NULL, "/sys/firmware/devicetree/base");
}

265 266
static struct property *__of_find_property(const struct device_node *np,
					   const char *name, int *lenp)
S
Stephen Rothwell 已提交
267 268 269
{
	struct property *pp;

270 271 272
	if (!np)
		return NULL;

273
	for (pp = np->properties; pp; pp = pp->next) {
S
Stephen Rothwell 已提交
274
		if (of_prop_cmp(pp->name, name) == 0) {
275
			if (lenp)
S
Stephen Rothwell 已提交
276 277 278 279
				*lenp = pp->length;
			break;
		}
	}
280 281 282 283 284 285 286 287 288

	return pp;
}

struct property *of_find_property(const struct device_node *np,
				  const char *name,
				  int *lenp)
{
	struct property *pp;
289
	unsigned long flags;
290

291
	raw_spin_lock_irqsave(&devtree_lock, flags);
292
	pp = __of_find_property(np, name, lenp);
293
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
S
Stephen Rothwell 已提交
294 295 296 297 298

	return pp;
}
EXPORT_SYMBOL(of_find_property);

G
Grant Likely 已提交
299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
struct device_node *__of_find_all_nodes(struct device_node *prev)
{
	struct device_node *np;
	if (!prev) {
		np = of_root;
	} else if (prev->child) {
		np = prev->child;
	} else {
		/* Walk back up looking for a sibling, or the end of the structure */
		np = prev;
		while (np->parent && !np->sibling)
			np = np->parent;
		np = np->sibling; /* Might be null at the end of the tree */
	}
	return np;
}

316 317 318 319 320 321 322 323 324 325 326
/**
 * of_find_all_nodes - Get next node in global list
 * @prev:	Previous node or NULL to start iteration
 *		of_node_put() will be called on it
 *
 * Returns a node pointer with refcount incremented, use
 * of_node_put() on it when done.
 */
struct device_node *of_find_all_nodes(struct device_node *prev)
{
	struct device_node *np;
327
	unsigned long flags;
328

329
	raw_spin_lock_irqsave(&devtree_lock, flags);
G
Grant Likely 已提交
330 331
	np = __of_find_all_nodes(prev);
	of_node_get(np);
332
	of_node_put(prev);
333
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
334 335 336 337
	return np;
}
EXPORT_SYMBOL(of_find_all_nodes);

338 339 340 341
/*
 * Find a property with a given name for a given node
 * and return the value.
 */
342 343
const void *__of_get_property(const struct device_node *np,
			      const char *name, int *lenp)
344 345 346 347 348 349
{
	struct property *pp = __of_find_property(np, name, lenp);

	return pp ? pp->value : NULL;
}

350 351 352 353 354
/*
 * Find a property with a given name for a given node
 * and return the value.
 */
const void *of_get_property(const struct device_node *np, const char *name,
355
			    int *lenp)
356 357 358 359 360 361
{
	struct property *pp = of_find_property(np, name, lenp);

	return pp ? pp->value : NULL;
}
EXPORT_SYMBOL(of_get_property);
362

363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
/*
 * arch_match_cpu_phys_id - Match the given logical CPU and physical id
 *
 * @cpu: logical cpu index of a core/thread
 * @phys_id: physical identifier of a core/thread
 *
 * CPU logical to physical index mapping is architecture specific.
 * However this __weak function provides a default match of physical
 * id to logical cpu index. phys_id provided here is usually values read
 * from the device tree which must match the hardware internal registers.
 *
 * Returns true if the physical identifier and the logical cpu index
 * correspond to the same core/thread, false otherwise.
 */
bool __weak arch_match_cpu_phys_id(int cpu, u64 phys_id)
{
	return (u32)phys_id == cpu;
}

/**
 * Checks if the given "prop_name" property holds the physical id of the
 * core/thread corresponding to the logical cpu 'cpu'. If 'thread' is not
 * NULL, local thread number within the core is returned in it.
 */
static bool __of_find_n_match_cpu_property(struct device_node *cpun,
			const char *prop_name, int cpu, unsigned int *thread)
{
	const __be32 *cell;
	int ac, prop_len, tid;
	u64 hwid;

	ac = of_n_addr_cells(cpun);
	cell = of_get_property(cpun, prop_name, &prop_len);
396 397
	if (!cell && !ac && arch_match_cpu_phys_id(cpu, 0))
		return true;
398
	if (!cell || !ac)
399
		return false;
400
	prop_len /= sizeof(*cell) * ac;
401 402 403 404 405 406 407 408 409 410 411 412
	for (tid = 0; tid < prop_len; tid++) {
		hwid = of_read_number(cell, ac);
		if (arch_match_cpu_phys_id(cpu, hwid)) {
			if (thread)
				*thread = tid;
			return true;
		}
		cell += ac;
	}
	return false;
}

413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
/*
 * arch_find_n_match_cpu_physical_id - See if the given device node is
 * for the cpu corresponding to logical cpu 'cpu'.  Return true if so,
 * else false.  If 'thread' is non-NULL, the local thread number within the
 * core is returned in it.
 */
bool __weak arch_find_n_match_cpu_physical_id(struct device_node *cpun,
					      int cpu, unsigned int *thread)
{
	/* Check for non-standard "ibm,ppc-interrupt-server#s" property
	 * for thread ids on PowerPC. If it doesn't exist fallback to
	 * standard "reg" property.
	 */
	if (IS_ENABLED(CONFIG_PPC) &&
	    __of_find_n_match_cpu_property(cpun,
					   "ibm,ppc-interrupt-server#s",
					   cpu, thread))
		return true;

432
	return __of_find_n_match_cpu_property(cpun, "reg", cpu, thread);
433 434
}

435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
/**
 * of_get_cpu_node - Get device node associated with the given logical CPU
 *
 * @cpu: CPU number(logical index) for which device node is required
 * @thread: if not NULL, local thread number within the physical core is
 *          returned
 *
 * The main purpose of this function is to retrieve the device node for the
 * given logical CPU index. It should be used to initialize the of_node in
 * cpu device. Once of_node in cpu device is populated, all the further
 * references can use that instead.
 *
 * CPU logical to physical index mapping is architecture specific and is built
 * before booting secondary cores. This function uses arch_match_cpu_phys_id
 * which can be overridden by architecture specific implementation.
 *
451 452
 * Returns a node pointer for the logical cpu with refcount incremented, use
 * of_node_put() on it when done. Returns NULL if not found.
453 454 455
 */
struct device_node *of_get_cpu_node(int cpu, unsigned int *thread)
{
456
	struct device_node *cpun;
457

458
	for_each_of_cpu_node(cpun) {
459
		if (arch_find_n_match_cpu_physical_id(cpun, cpu, thread))
460 461 462 463 464 465
			return cpun;
	}
	return NULL;
}
EXPORT_SYMBOL(of_get_cpu_node);

466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
/**
 * of_cpu_node_to_id: Get the logical CPU number for a given device_node
 *
 * @cpu_node: Pointer to the device_node for CPU.
 *
 * Returns the logical CPU number of the given CPU device_node.
 * Returns -ENODEV if the CPU is not found.
 */
int of_cpu_node_to_id(struct device_node *cpu_node)
{
	int cpu;
	bool found = false;
	struct device_node *np;

	for_each_possible_cpu(cpu) {
		np = of_cpu_device_node_get(cpu);
		found = (cpu_node == np);
		of_node_put(np);
		if (found)
			return cpu;
	}

	return -ENODEV;
}
EXPORT_SYMBOL(of_cpu_node_to_id);

492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520
/**
 * __of_device_is_compatible() - Check if the node matches given constraints
 * @device: pointer to node
 * @compat: required compatible string, NULL or "" for any match
 * @type: required device_type value, NULL or "" for any match
 * @name: required node name, NULL or "" for any match
 *
 * Checks if the given @compat, @type and @name strings match the
 * properties of the given @device. A constraints can be skipped by
 * passing NULL or an empty string as the constraint.
 *
 * Returns 0 for no match, and a positive integer on match. The return
 * value is a relative score with larger values indicating better
 * matches. The score is weighted for the most specific compatible value
 * to get the highest score. Matching type is next, followed by matching
 * name. Practically speaking, this results in the following priority
 * order for matches:
 *
 * 1. specific compatible && type && name
 * 2. specific compatible && type
 * 3. specific compatible && name
 * 4. specific compatible
 * 5. general compatible && type && name
 * 6. general compatible && type
 * 7. general compatible && name
 * 8. general compatible
 * 9. type && name
 * 10. type
 * 11. name
521
 */
522
static int __of_device_is_compatible(const struct device_node *device,
523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
				     const char *compat, const char *type, const char *name)
{
	struct property *prop;
	const char *cp;
	int index = 0, score = 0;

	/* Compatible match has highest priority */
	if (compat && compat[0]) {
		prop = __of_find_property(device, "compatible", NULL);
		for (cp = of_prop_next_string(prop, NULL); cp;
		     cp = of_prop_next_string(prop, cp), index++) {
			if (of_compat_cmp(cp, compat, strlen(compat)) == 0) {
				score = INT_MAX/2 - (index << 2);
				break;
			}
		}
		if (!score)
			return 0;
	}
542

543 544
	/* Matching type is better than matching name */
	if (type && type[0]) {
545
		if (!__of_node_is_type(device, type))
546 547
			return 0;
		score += 2;
548 549
	}

550 551
	/* Matching name is a bit better than not */
	if (name && name[0]) {
552
		if (!of_node_name_eq(device, name))
553 554 555 556 557
			return 0;
		score++;
	}

	return score;
558
}
559 560 561 562 563 564 565

/** Checks if the given "compat" string matches one of the strings in
 * the device's "compatible" property
 */
int of_device_is_compatible(const struct device_node *device,
		const char *compat)
{
566
	unsigned long flags;
567 568
	int res;

569
	raw_spin_lock_irqsave(&devtree_lock, flags);
570
	res = __of_device_is_compatible(device, compat, NULL, NULL);
571
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
572 573
	return res;
}
574
EXPORT_SYMBOL(of_device_is_compatible);
S
Stephen Rothwell 已提交
575

576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597
/** Checks if the device is compatible with any of the entries in
 *  a NULL terminated array of strings. Returns the best match
 *  score or 0.
 */
int of_device_compatible_match(struct device_node *device,
			       const char *const *compat)
{
	unsigned int tmp, score = 0;

	if (!compat)
		return 0;

	while (*compat) {
		tmp = of_device_is_compatible(device, *compat);
		if (tmp > score)
			score = tmp;
		compat++;
	}

	return score;
}

G
Grant Likely 已提交
598
/**
599
 * of_machine_is_compatible - Test root of device tree for a given compatible value
G
Grant Likely 已提交
600 601
 * @compat: compatible string to look for in root node's compatible property.
 *
602
 * Returns a positive integer if the root node has the given value in its
G
Grant Likely 已提交
603 604
 * compatible property.
 */
605
int of_machine_is_compatible(const char *compat)
G
Grant Likely 已提交
606 607 608 609 610 611 612 613 614 615 616
{
	struct device_node *root;
	int rc = 0;

	root = of_find_node_by_path("/");
	if (root) {
		rc = of_device_is_compatible(root, compat);
		of_node_put(root);
	}
	return rc;
}
617
EXPORT_SYMBOL(of_machine_is_compatible);
G
Grant Likely 已提交
618

619
/**
620
 *  __of_device_is_available - check if a device is available for use
621
 *
622
 *  @device: Node to check for availability, with locks already held
623
 *
624 625
 *  Returns true if the status property is absent or set to "okay" or "ok",
 *  false otherwise
626
 */
627
static bool __of_device_is_available(const struct device_node *device)
628 629 630 631
{
	const char *status;
	int statlen;

632
	if (!device)
633
		return false;
634

635
	status = __of_get_property(device, "status", &statlen);
636
	if (status == NULL)
637
		return true;
638 639 640

	if (statlen > 0) {
		if (!strcmp(status, "okay") || !strcmp(status, "ok"))
641
			return true;
642 643
	}

644
	return false;
645
}
646 647 648 649 650 651

/**
 *  of_device_is_available - check if a device is available for use
 *
 *  @device: Node to check for availability
 *
652 653
 *  Returns true if the status property is absent or set to "okay" or "ok",
 *  false otherwise
654
 */
655
bool of_device_is_available(const struct device_node *device)
656 657
{
	unsigned long flags;
658
	bool res;
659 660 661 662 663 664 665

	raw_spin_lock_irqsave(&devtree_lock, flags);
	res = __of_device_is_available(device);
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
	return res;

}
666 667
EXPORT_SYMBOL(of_device_is_available);

668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690
/**
 *  of_device_is_big_endian - check if a device has BE registers
 *
 *  @device: Node to check for endianness
 *
 *  Returns true if the device has a "big-endian" property, or if the kernel
 *  was compiled for BE *and* the device has a "native-endian" property.
 *  Returns false otherwise.
 *
 *  Callers would nominally use ioread32be/iowrite32be if
 *  of_device_is_big_endian() == true, or readl/writel otherwise.
 */
bool of_device_is_big_endian(const struct device_node *device)
{
	if (of_property_read_bool(device, "big-endian"))
		return true;
	if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) &&
	    of_property_read_bool(device, "native-endian"))
		return true;
	return false;
}
EXPORT_SYMBOL(of_device_is_big_endian);

S
Stephen Rothwell 已提交
691 692 693 694 695 696 697 698 699 700
/**
 *	of_get_parent - Get a node's parent if any
 *	@node:	Node to get parent
 *
 *	Returns a node pointer with refcount incremented, use
 *	of_node_put() on it when done.
 */
struct device_node *of_get_parent(const struct device_node *node)
{
	struct device_node *np;
701
	unsigned long flags;
S
Stephen Rothwell 已提交
702 703 704 705

	if (!node)
		return NULL;

706
	raw_spin_lock_irqsave(&devtree_lock, flags);
S
Stephen Rothwell 已提交
707
	np = of_node_get(node->parent);
708
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
S
Stephen Rothwell 已提交
709 710 711
	return np;
}
EXPORT_SYMBOL(of_get_parent);
S
Stephen Rothwell 已提交
712

713 714 715 716
/**
 *	of_get_next_parent - Iterate to a node's parent
 *	@node:	Node to get parent of
 *
G
Geert Uytterhoeven 已提交
717 718 719
 *	This is like of_get_parent() except that it drops the
 *	refcount on the passed node, making it suitable for iterating
 *	through a node's parents.
720 721 722 723 724 725 726
 *
 *	Returns a node pointer with refcount incremented, use
 *	of_node_put() on it when done.
 */
struct device_node *of_get_next_parent(struct device_node *node)
{
	struct device_node *parent;
727
	unsigned long flags;
728 729 730 731

	if (!node)
		return NULL;

732
	raw_spin_lock_irqsave(&devtree_lock, flags);
733 734
	parent = of_node_get(node->parent);
	of_node_put(node);
735
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
736 737
	return parent;
}
738
EXPORT_SYMBOL(of_get_next_parent);
739

740 741 742 743 744
static struct device_node *__of_get_next_child(const struct device_node *node,
						struct device_node *prev)
{
	struct device_node *next;

745 746 747
	if (!node)
		return NULL;

748 749 750 751 752 753 754 755 756 757 758
	next = prev ? prev->sibling : node->child;
	for (; next; next = next->sibling)
		if (of_node_get(next))
			break;
	of_node_put(prev);
	return next;
}
#define __for_each_child_of_node(parent, child) \
	for (child = __of_get_next_child(parent, NULL); child != NULL; \
	     child = __of_get_next_child(parent, child))

S
Stephen Rothwell 已提交
759 760 761 762 763
/**
 *	of_get_next_child - Iterate a node childs
 *	@node:	parent node
 *	@prev:	previous child of the parent node, or NULL to get first
 *
764 765 766
 *	Returns a node pointer with refcount incremented, use of_node_put() on
 *	it when done. Returns NULL when prev is the last child. Decrements the
 *	refcount of prev.
S
Stephen Rothwell 已提交
767 768 769 770 771
 */
struct device_node *of_get_next_child(const struct device_node *node,
	struct device_node *prev)
{
	struct device_node *next;
772
	unsigned long flags;
S
Stephen Rothwell 已提交
773

774
	raw_spin_lock_irqsave(&devtree_lock, flags);
775
	next = __of_get_next_child(node, prev);
776
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
S
Stephen Rothwell 已提交
777 778 779
	return next;
}
EXPORT_SYMBOL(of_get_next_child);
780

781 782 783 784 785 786 787 788 789 790 791 792
/**
 *	of_get_next_available_child - Find the next available child node
 *	@node:	parent node
 *	@prev:	previous child of the parent node, or NULL to get first
 *
 *      This function is like of_get_next_child(), except that it
 *      automatically skips any disabled nodes (i.e. status = "disabled").
 */
struct device_node *of_get_next_available_child(const struct device_node *node,
	struct device_node *prev)
{
	struct device_node *next;
793
	unsigned long flags;
794

795 796 797
	if (!node)
		return NULL;

798
	raw_spin_lock_irqsave(&devtree_lock, flags);
799 800
	next = prev ? prev->sibling : node->child;
	for (; next; next = next->sibling) {
801
		if (!__of_device_is_available(next))
802 803 804 805 806
			continue;
		if (of_node_get(next))
			break;
	}
	of_node_put(prev);
807
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
808 809 810 811
	return next;
}
EXPORT_SYMBOL(of_get_next_available_child);

812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837
/**
 *	of_get_next_cpu_node - Iterate on cpu nodes
 *	@prev:	previous child of the /cpus node, or NULL to get first
 *
 *	Returns a cpu node pointer with refcount incremented, use of_node_put()
 *	on it when done. Returns NULL when prev is the last child. Decrements
 *	the refcount of prev.
 */
struct device_node *of_get_next_cpu_node(struct device_node *prev)
{
	struct device_node *next = NULL;
	unsigned long flags;
	struct device_node *node;

	if (!prev)
		node = of_find_node_by_path("/cpus");

	raw_spin_lock_irqsave(&devtree_lock, flags);
	if (prev)
		next = prev->sibling;
	else if (node) {
		next = node->child;
		of_node_put(node);
	}
	for (; next; next = next->sibling) {
		if (!(of_node_name_eq(next, "cpu") ||
838
		      __of_node_is_type(next, "cpu")))
839 840 841 842 843 844 845 846 847 848
			continue;
		if (of_node_get(next))
			break;
	}
	of_node_put(prev);
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
	return next;
}
EXPORT_SYMBOL(of_get_next_cpu_node);

849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873
/**
 * of_get_compatible_child - Find compatible child node
 * @parent:	parent node
 * @compatible:	compatible string
 *
 * Lookup child node whose compatible property contains the given compatible
 * string.
 *
 * Returns a node pointer with refcount incremented, use of_node_put() on it
 * when done; or NULL if not found.
 */
struct device_node *of_get_compatible_child(const struct device_node *parent,
				const char *compatible)
{
	struct device_node *child;

	for_each_child_of_node(parent, child) {
		if (of_device_is_compatible(child, compatible))
			break;
	}

	return child;
}
EXPORT_SYMBOL(of_get_compatible_child);

874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890
/**
 *	of_get_child_by_name - Find the child node by name for a given parent
 *	@node:	parent node
 *	@name:	child name to look for.
 *
 *      This function looks for child node for given matching name
 *
 *	Returns a node pointer if found, with refcount incremented, use
 *	of_node_put() on it when done.
 *	Returns NULL if node is not found.
 */
struct device_node *of_get_child_by_name(const struct device_node *node,
				const char *name)
{
	struct device_node *child;

	for_each_child_of_node(node, child)
891
		if (of_node_name_eq(child, name))
892 893 894 895 896
			break;
	return child;
}
EXPORT_SYMBOL(of_get_child_by_name);

897
struct device_node *__of_find_node_by_path(struct device_node *parent,
898 899 900
						const char *path)
{
	struct device_node *child;
901
	int len;
902

903
	len = strcspn(path, "/:");
904 905 906 907
	if (!len)
		return NULL;

	__for_each_child_of_node(parent, child) {
908
		const char *name = kbasename(child->full_name);
909 910 911 912 913 914
		if (strncmp(path, name, len) == 0 && (strlen(name) == len))
			return child;
	}
	return NULL;
}

915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932
struct device_node *__of_find_node_by_full_path(struct device_node *node,
						const char *path)
{
	const char *separator = strchr(path, ':');

	while (node && *path == '/') {
		struct device_node *tmp = node;

		path++; /* Increment past '/' delimiter */
		node = __of_find_node_by_path(node, path);
		of_node_put(tmp);
		path = strchrnul(path, '/');
		if (separator && separator < path)
			break;
	}
	return node;
}

933
/**
934
 *	of_find_node_opts_by_path - Find a node matching a full OF path
935 936 937 938
 *	@path: Either the full path to match, or if the path does not
 *	       start with '/', the name of a property of the /aliases
 *	       node (an alias).  In the case of an alias, the node
 *	       matching the alias' value will be returned.
939 940 941
 *	@opts: Address of a pointer into which to store the start of
 *	       an options string appended to the end of the path with
 *	       a ':' separator.
942 943 944 945 946
 *
 *	Valid paths:
 *		/foo/bar	Full path
 *		foo		Valid alias
 *		foo/bar		Valid alias + relative path
947 948 949 950
 *
 *	Returns a node pointer with refcount incremented, use
 *	of_node_put() on it when done.
 */
951
struct device_node *of_find_node_opts_by_path(const char *path, const char **opts)
952
{
953 954
	struct device_node *np = NULL;
	struct property *pp;
955
	unsigned long flags;
956 957 958 959
	const char *separator = strchr(path, ':');

	if (opts)
		*opts = separator ? separator + 1 : NULL;
960

961
	if (strcmp(path, "/") == 0)
G
Grant Likely 已提交
962
		return of_node_get(of_root);
963 964 965

	/* The path could begin with an alias */
	if (*path != '/') {
966 967 968 969 970 971
		int len;
		const char *p = separator;

		if (!p)
			p = strchrnul(path, '/');
		len = p - path;
972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988

		/* of_aliases must not be NULL */
		if (!of_aliases)
			return NULL;

		for_each_property_of_node(of_aliases, pp) {
			if (strlen(pp->name) == len && !strncmp(pp->name, path, len)) {
				np = of_find_node_by_path(pp->value);
				break;
			}
		}
		if (!np)
			return NULL;
		path = p;
	}

	/* Step down the tree matching path components */
989
	raw_spin_lock_irqsave(&devtree_lock, flags);
990
	if (!np)
G
Grant Likely 已提交
991
		np = of_node_get(of_root);
992
	np = __of_find_node_by_full_path(np, path);
993
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
994 995
	return np;
}
996
EXPORT_SYMBOL(of_find_node_opts_by_path);
997 998 999

/**
 *	of_find_node_by_name - Find a node by its "name" property
1000
 *	@from:	The node to start searching from or NULL; the node
1001
 *		you pass will not be searched, only the next one
1002 1003
 *		will. Typically, you pass what the previous call
 *		returned. of_node_put() will be called on @from.
1004 1005 1006 1007 1008 1009 1010 1011 1012
 *	@name:	The name string to match against
 *
 *	Returns a node pointer with refcount incremented, use
 *	of_node_put() on it when done.
 */
struct device_node *of_find_node_by_name(struct device_node *from,
	const char *name)
{
	struct device_node *np;
1013
	unsigned long flags;
1014

1015
	raw_spin_lock_irqsave(&devtree_lock, flags);
G
Grant Likely 已提交
1016
	for_each_of_allnodes_from(from, np)
1017
		if (of_node_name_eq(np, name) && of_node_get(np))
1018 1019
			break;
	of_node_put(from);
1020
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040
	return np;
}
EXPORT_SYMBOL(of_find_node_by_name);

/**
 *	of_find_node_by_type - Find a node by its "device_type" property
 *	@from:	The node to start searching from, or NULL to start searching
 *		the entire device tree. The node you pass will not be
 *		searched, only the next one will; typically, you pass
 *		what the previous call returned. of_node_put() will be
 *		called on from for you.
 *	@type:	The type string to match against
 *
 *	Returns a node pointer with refcount incremented, use
 *	of_node_put() on it when done.
 */
struct device_node *of_find_node_by_type(struct device_node *from,
	const char *type)
{
	struct device_node *np;
1041
	unsigned long flags;
1042

1043
	raw_spin_lock_irqsave(&devtree_lock, flags);
G
Grant Likely 已提交
1044
	for_each_of_allnodes_from(from, np)
1045
		if (__of_node_is_type(np, type) && of_node_get(np))
1046 1047
			break;
	of_node_put(from);
1048
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070
	return np;
}
EXPORT_SYMBOL(of_find_node_by_type);

/**
 *	of_find_compatible_node - Find a node based on type and one of the
 *                                tokens in its "compatible" property
 *	@from:		The node to start searching from or NULL, the node
 *			you pass will not be searched, only the next one
 *			will; typically, you pass what the previous call
 *			returned. of_node_put() will be called on it
 *	@type:		The type string to match "device_type" or NULL to ignore
 *	@compatible:	The string to match to one of the tokens in the device
 *			"compatible" list.
 *
 *	Returns a node pointer with refcount incremented, use
 *	of_node_put() on it when done.
 */
struct device_node *of_find_compatible_node(struct device_node *from,
	const char *type, const char *compatible)
{
	struct device_node *np;
1071
	unsigned long flags;
1072

1073
	raw_spin_lock_irqsave(&devtree_lock, flags);
G
Grant Likely 已提交
1074
	for_each_of_allnodes_from(from, np)
1075
		if (__of_device_is_compatible(np, compatible, type, NULL) &&
1076
		    of_node_get(np))
1077 1078
			break;
	of_node_put(from);
1079
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1080 1081 1082
	return np;
}
EXPORT_SYMBOL(of_find_compatible_node);
1083

1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
/**
 *	of_find_node_with_property - Find a node which has a property with
 *                                   the given name.
 *	@from:		The node to start searching from or NULL, the node
 *			you pass will not be searched, only the next one
 *			will; typically, you pass what the previous call
 *			returned. of_node_put() will be called on it
 *	@prop_name:	The name of the property to look for.
 *
 *	Returns a node pointer with refcount incremented, use
 *	of_node_put() on it when done.
 */
struct device_node *of_find_node_with_property(struct device_node *from,
	const char *prop_name)
{
	struct device_node *np;
	struct property *pp;
1101
	unsigned long flags;
1102

1103
	raw_spin_lock_irqsave(&devtree_lock, flags);
G
Grant Likely 已提交
1104
	for_each_of_allnodes_from(from, np) {
1105
		for (pp = np->properties; pp; pp = pp->next) {
1106 1107 1108 1109 1110 1111 1112 1113
			if (of_prop_cmp(pp->name, prop_name) == 0) {
				of_node_get(np);
				goto out;
			}
		}
	}
out:
	of_node_put(from);
1114
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1115 1116 1117 1118
	return np;
}
EXPORT_SYMBOL(of_find_node_with_property);

1119 1120 1121
static
const struct of_device_id *__of_match_node(const struct of_device_id *matches,
					   const struct device_node *node)
1122
{
1123 1124 1125
	const struct of_device_id *best_match = NULL;
	int score, best_score = 0;

1126 1127 1128
	if (!matches)
		return NULL;

1129 1130 1131 1132 1133 1134 1135
	for (; matches->name[0] || matches->type[0] || matches->compatible[0]; matches++) {
		score = __of_device_is_compatible(node, matches->compatible,
						  matches->type, matches->name);
		if (score > best_score) {
			best_match = matches;
			best_score = score;
		}
1136
	}
1137 1138

	return best_match;
1139
}
1140 1141

/**
G
Geert Uytterhoeven 已提交
1142
 * of_match_node - Tell if a device_node has a matching of_match structure
1143 1144 1145
 *	@matches:	array of of device match structures to search in
 *	@node:		the of device structure to match against
 *
1146
 *	Low level utility function used by device matching.
1147 1148 1149 1150 1151
 */
const struct of_device_id *of_match_node(const struct of_device_id *matches,
					 const struct device_node *node)
{
	const struct of_device_id *match;
1152
	unsigned long flags;
1153

1154
	raw_spin_lock_irqsave(&devtree_lock, flags);
1155
	match = __of_match_node(matches, node);
1156
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1157 1158
	return match;
}
1159 1160 1161
EXPORT_SYMBOL(of_match_node);

/**
1162 1163
 *	of_find_matching_node_and_match - Find a node based on an of_device_id
 *					  match table.
1164 1165 1166 1167 1168
 *	@from:		The node to start searching from or NULL, the node
 *			you pass will not be searched, only the next one
 *			will; typically, you pass what the previous call
 *			returned. of_node_put() will be called on it
 *	@matches:	array of of device match structures to search in
1169
 *	@match		Updated to point at the matches entry which matched
1170 1171 1172 1173
 *
 *	Returns a node pointer with refcount incremented, use
 *	of_node_put() on it when done.
 */
1174 1175 1176
struct device_node *of_find_matching_node_and_match(struct device_node *from,
					const struct of_device_id *matches,
					const struct of_device_id **match)
1177 1178
{
	struct device_node *np;
1179
	const struct of_device_id *m;
1180
	unsigned long flags;
1181

1182 1183 1184
	if (match)
		*match = NULL;

1185
	raw_spin_lock_irqsave(&devtree_lock, flags);
G
Grant Likely 已提交
1186
	for_each_of_allnodes_from(from, np) {
1187
		m = __of_match_node(matches, np);
1188
		if (m && of_node_get(np)) {
1189
			if (match)
1190
				*match = m;
1191
			break;
1192
		}
1193 1194
	}
	of_node_put(from);
1195
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1196 1197
	return np;
}
1198
EXPORT_SYMBOL(of_find_matching_node_and_match);
1199 1200 1201 1202 1203 1204 1205

/**
 * of_modalias_node - Lookup appropriate modalias for a device node
 * @node:	pointer to a device tree node
 * @modalias:	Pointer to buffer that modalias value will be copied into
 * @len:	Length of modalias value
 *
1206 1207 1208 1209
 * Based on the value of the compatible property, this routine will attempt
 * to choose an appropriate modalias value for a particular device tree node.
 * It does this by stripping the manufacturer prefix (as delimited by a ',')
 * from the first entry in the compatible list property.
1210
 *
1211
 * This routine returns 0 on success, <0 on failure.
1212 1213 1214
 */
int of_modalias_node(struct device_node *node, char *modalias, int len)
{
1215 1216
	const char *compatible, *p;
	int cplen;
1217 1218

	compatible = of_get_property(node, "compatible", &cplen);
1219
	if (!compatible || strlen(compatible) > cplen)
1220 1221
		return -ENODEV;
	p = strchr(compatible, ',');
1222
	strlcpy(modalias, p ? p + 1 : compatible, len);
1223 1224 1225 1226
	return 0;
}
EXPORT_SYMBOL_GPL(of_modalias_node);

J
Jeremy Kerr 已提交
1227 1228 1229 1230 1231 1232 1233 1234 1235
/**
 * of_find_node_by_phandle - Find a node given a phandle
 * @handle:	phandle of the node to find
 *
 * Returns a node pointer with refcount incremented, use
 * of_node_put() on it when done.
 */
struct device_node *of_find_node_by_phandle(phandle handle)
{
1236
	struct device_node *np = NULL;
1237
	unsigned long flags;
1238
	phandle masked_handle;
J
Jeremy Kerr 已提交
1239

1240 1241 1242
	if (!handle)
		return NULL;

1243
	raw_spin_lock_irqsave(&devtree_lock, flags);
1244 1245 1246 1247 1248 1249 1250

	masked_handle = handle & phandle_cache_mask;

	if (phandle_cache) {
		if (phandle_cache[masked_handle] &&
		    handle == phandle_cache[masked_handle]->phandle)
			np = phandle_cache[masked_handle];
1251 1252 1253 1254 1255 1256
		if (np && of_node_check_flag(np, OF_DETACHED)) {
			WARN_ON(1); /* did not uncache np on node removal */
			of_node_put(np);
			phandle_cache[masked_handle] = NULL;
			np = NULL;
		}
1257 1258 1259 1260
	}

	if (!np) {
		for_each_of_allnodes(np)
1261 1262
			if (np->phandle == handle &&
			    !of_node_check_flag(np, OF_DETACHED)) {
1263 1264 1265
				if (phandle_cache) {
					/* will put when removed from cache */
					of_node_get(np);
1266
					phandle_cache[masked_handle] = np;
1267
				}
1268 1269 1270 1271
				break;
			}
	}

J
Jeremy Kerr 已提交
1272
	of_node_get(np);
1273
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
J
Jeremy Kerr 已提交
1274 1275 1276 1277
	return np;
}
EXPORT_SYMBOL(of_find_node_by_phandle);

1278 1279 1280
void of_print_phandle_args(const char *msg, const struct of_phandle_args *args)
{
	int i;
1281
	printk("%s %pOF", msg, args->np);
1282 1283 1284 1285 1286 1287
	for (i = 0; i < args->args_count; i++) {
		const char delim = i ? ',' : ':';

		pr_cont("%c%08x", delim, args->args[i]);
	}
	pr_cont("\n");
1288 1289
}

1290 1291 1292 1293 1294
int of_phandle_iterator_init(struct of_phandle_iterator *it,
		const struct device_node *np,
		const char *list_name,
		const char *cells_name,
		int cell_count)
1295
{
1296 1297 1298 1299
	const __be32 *list;
	int size;

	memset(it, 0, sizeof(*it));
1300

1301 1302 1303 1304 1305 1306 1307
	/*
	 * one of cell_count or cells_name must be provided to determine the
	 * argument length.
	 */
	if (cell_count < 0 && !cells_name)
		return -EINVAL;

1308
	list = of_get_property(np, list_name, &size);
1309
	if (!list)
1310
		return -ENOENT;
1311

1312 1313 1314 1315 1316 1317 1318 1319 1320
	it->cells_name = cells_name;
	it->cell_count = cell_count;
	it->parent = np;
	it->list_end = list + size / sizeof(*list);
	it->phandle_end = list;
	it->cur = list;

	return 0;
}
1321
EXPORT_SYMBOL_GPL(of_phandle_iterator_init);
1322

1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340
int of_phandle_iterator_next(struct of_phandle_iterator *it)
{
	uint32_t count = 0;

	if (it->node) {
		of_node_put(it->node);
		it->node = NULL;
	}

	if (!it->cur || it->phandle_end >= it->list_end)
		return -ENOENT;

	it->cur = it->phandle_end;

	/* If phandle is 0, then it is an empty entry with no arguments. */
	it->phandle = be32_to_cpup(it->cur++);

	if (it->phandle) {
1341

1342
		/*
1343 1344
		 * Find the provider node and parse the #*-cells property to
		 * determine the argument length.
1345
		 */
1346
		it->node = of_find_node_by_phandle(it->phandle);
1347

1348 1349
		if (it->cells_name) {
			if (!it->node) {
1350 1351
				pr_err("%pOF: could not find phandle\n",
				       it->parent);
1352
				goto err;
1353
			}
1354

1355 1356
			if (of_property_read_u32(it->node, it->cells_name,
						 &count)) {
1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
				/*
				 * If both cell_count and cells_name is given,
				 * fall back to cell_count in absence
				 * of the cells_name property
				 */
				if (it->cell_count >= 0) {
					count = it->cell_count;
				} else {
					pr_err("%pOF: could not get %s for %pOF\n",
					       it->parent,
					       it->cells_name,
					       it->node);
					goto err;
				}
1371
			}
1372 1373
		} else {
			count = it->cell_count;
1374 1375
		}

1376
		/*
1377 1378 1379 1380
		 * Make sure that the arguments actually fit in the remaining
		 * property data length
		 */
		if (it->cur + count > it->list_end) {
1381 1382 1383
			pr_err("%pOF: %s = %d found %d\n",
			       it->parent, it->cells_name,
			       count, it->cell_count);
1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400
			goto err;
		}
	}

	it->phandle_end = it->cur + count;
	it->cur_count = count;

	return 0;

err:
	if (it->node) {
		of_node_put(it->node);
		it->node = NULL;
	}

	return -EINVAL;
}
1401
EXPORT_SYMBOL_GPL(of_phandle_iterator_next);
1402

1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419
int of_phandle_iterator_args(struct of_phandle_iterator *it,
			     uint32_t *args,
			     int size)
{
	int i, count;

	count = it->cur_count;

	if (WARN_ON(size < count))
		count = size;

	for (i = 0; i < count; i++)
		args[i] = be32_to_cpup(it->cur++);

	return count;
}

1420 1421
static int __of_parse_phandle_with_args(const struct device_node *np,
					const char *list_name,
1422 1423
					const char *cells_name,
					int cell_count, int index,
1424
					struct of_phandle_args *out_args)
1425
{
1426 1427
	struct of_phandle_iterator it;
	int rc, cur_index = 0;
1428

1429
	/* Loop over the phandles until all the requested entry is found */
1430
	of_for_each_phandle(&it, rc, np, list_name, cells_name, cell_count) {
1431
		/*
1432
		 * All of the error cases bail out of the loop, so at
1433 1434 1435 1436
		 * this point, the parsing is successful. If the requested
		 * index matches, then fill the out_args structure and return,
		 * or return -ENOENT for an empty entry.
		 */
1437
		rc = -ENOENT;
1438
		if (cur_index == index) {
1439
			if (!it.phandle)
1440
				goto err;
1441 1442

			if (out_args) {
1443 1444 1445 1446 1447
				int c;

				c = of_phandle_iterator_args(&it,
							     out_args->args,
							     MAX_PHANDLE_ARGS);
1448
				out_args->np = it.node;
1449
				out_args->args_count = c;
1450
			} else {
1451
				of_node_put(it.node);
1452
			}
1453 1454

			/* Found it! return success */
1455
			return 0;
1456 1457 1458 1459 1460
		}

		cur_index++;
	}

1461 1462 1463 1464 1465
	/*
	 * Unlock node before returning result; will be one of:
	 * -ENOENT : index is for empty phandle
	 * -EINVAL : parsing error on data
	 */
1466

1467
 err:
1468
	of_node_put(it.node);
1469
	return rc;
1470
}
1471

S
Stephen Warren 已提交
1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484
/**
 * of_parse_phandle - Resolve a phandle property to a device_node pointer
 * @np: Pointer to device node holding phandle property
 * @phandle_name: Name of property holding a phandle value
 * @index: For properties holding a table of phandles, this is the index into
 *         the table
 *
 * Returns the device_node pointer with refcount incremented.  Use
 * of_node_put() on it when done.
 */
struct device_node *of_parse_phandle(const struct device_node *np,
				     const char *phandle_name, int index)
{
1485 1486 1487 1488
	struct of_phandle_args args;

	if (index < 0)
		return NULL;
S
Stephen Warren 已提交
1489

1490 1491
	if (__of_parse_phandle_with_args(np, phandle_name, NULL, 0,
					 index, &args))
S
Stephen Warren 已提交
1492 1493
		return NULL;

1494
	return args.np;
S
Stephen Warren 已提交
1495 1496 1497
}
EXPORT_SYMBOL(of_parse_phandle);

1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509
/**
 * of_parse_phandle_with_args() - Find a node pointed by phandle in a list
 * @np:		pointer to a device tree node containing a list
 * @list_name:	property name that contains a list
 * @cells_name:	property name that specifies phandles' arguments count
 * @index:	index of a phandle to parse out
 * @out_args:	optional pointer to output arguments structure (will be filled)
 *
 * This function is useful to parse lists of phandles and their arguments.
 * Returns 0 on success and fills out_args, on error returns appropriate
 * errno value.
 *
1510
 * Caller is responsible to call of_node_put() on the returned out_args->np
1511 1512 1513 1514 1515
 * pointer.
 *
 * Example:
 *
 * phandle1: node1 {
G
Geert Uytterhoeven 已提交
1516
 *	#list-cells = <2>;
1517 1518 1519
 * }
 *
 * phandle2: node2 {
G
Geert Uytterhoeven 已提交
1520
 *	#list-cells = <1>;
1521 1522 1523
 * }
 *
 * node3 {
G
Geert Uytterhoeven 已提交
1524
 *	list = <&phandle1 1 2 &phandle2 3>;
1525 1526 1527 1528 1529
 * }
 *
 * To get a device_node of the `node2' node you may call this:
 * of_parse_phandle_with_args(node3, "list", "#list-cells", 1, &args);
 */
1530 1531 1532 1533
int of_parse_phandle_with_args(const struct device_node *np, const char *list_name,
				const char *cells_name, int index,
				struct of_phandle_args *out_args)
{
1534 1535
	int cell_count = -1;

1536 1537
	if (index < 0)
		return -EINVAL;
1538 1539 1540 1541 1542 1543 1544

	/* If cells_name is NULL we assume a cell count of 0 */
	if (!cells_name)
		cell_count = 0;

	return __of_parse_phandle_with_args(np, list_name, cells_name,
					    cell_count, index, out_args);
1545
}
1546
EXPORT_SYMBOL(of_parse_phandle_with_args);
1547

1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625
/**
 * of_parse_phandle_with_args_map() - Find a node pointed by phandle in a list and remap it
 * @np:		pointer to a device tree node containing a list
 * @list_name:	property name that contains a list
 * @stem_name:	stem of property names that specify phandles' arguments count
 * @index:	index of a phandle to parse out
 * @out_args:	optional pointer to output arguments structure (will be filled)
 *
 * This function is useful to parse lists of phandles and their arguments.
 * Returns 0 on success and fills out_args, on error returns appropriate errno
 * value. The difference between this function and of_parse_phandle_with_args()
 * is that this API remaps a phandle if the node the phandle points to has
 * a <@stem_name>-map property.
 *
 * Caller is responsible to call of_node_put() on the returned out_args->np
 * pointer.
 *
 * Example:
 *
 * phandle1: node1 {
 *	#list-cells = <2>;
 * }
 *
 * phandle2: node2 {
 *	#list-cells = <1>;
 * }
 *
 * phandle3: node3 {
 * 	#list-cells = <1>;
 * 	list-map = <0 &phandle2 3>,
 * 		   <1 &phandle2 2>,
 * 		   <2 &phandle1 5 1>;
 *	list-map-mask = <0x3>;
 * };
 *
 * node4 {
 *	list = <&phandle1 1 2 &phandle3 0>;
 * }
 *
 * To get a device_node of the `node2' node you may call this:
 * of_parse_phandle_with_args(node4, "list", "list", 1, &args);
 */
int of_parse_phandle_with_args_map(const struct device_node *np,
				   const char *list_name,
				   const char *stem_name,
				   int index, struct of_phandle_args *out_args)
{
	char *cells_name, *map_name = NULL, *mask_name = NULL;
	char *pass_name = NULL;
	struct device_node *cur, *new = NULL;
	const __be32 *map, *mask, *pass;
	static const __be32 dummy_mask[] = { [0 ... MAX_PHANDLE_ARGS] = ~0 };
	static const __be32 dummy_pass[] = { [0 ... MAX_PHANDLE_ARGS] = 0 };
	__be32 initial_match_array[MAX_PHANDLE_ARGS];
	const __be32 *match_array = initial_match_array;
	int i, ret, map_len, match;
	u32 list_size, new_size;

	if (index < 0)
		return -EINVAL;

	cells_name = kasprintf(GFP_KERNEL, "#%s-cells", stem_name);
	if (!cells_name)
		return -ENOMEM;

	ret = -ENOMEM;
	map_name = kasprintf(GFP_KERNEL, "%s-map", stem_name);
	if (!map_name)
		goto free;

	mask_name = kasprintf(GFP_KERNEL, "%s-map-mask", stem_name);
	if (!mask_name)
		goto free;

	pass_name = kasprintf(GFP_KERNEL, "%s-map-pass-thru", stem_name);
	if (!pass_name)
		goto free;

1626
	ret = __of_parse_phandle_with_args(np, list_name, cells_name, -1, index,
1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731
					   out_args);
	if (ret)
		goto free;

	/* Get the #<list>-cells property */
	cur = out_args->np;
	ret = of_property_read_u32(cur, cells_name, &list_size);
	if (ret < 0)
		goto put;

	/* Precalculate the match array - this simplifies match loop */
	for (i = 0; i < list_size; i++)
		initial_match_array[i] = cpu_to_be32(out_args->args[i]);

	ret = -EINVAL;
	while (cur) {
		/* Get the <list>-map property */
		map = of_get_property(cur, map_name, &map_len);
		if (!map) {
			ret = 0;
			goto free;
		}
		map_len /= sizeof(u32);

		/* Get the <list>-map-mask property (optional) */
		mask = of_get_property(cur, mask_name, NULL);
		if (!mask)
			mask = dummy_mask;
		/* Iterate through <list>-map property */
		match = 0;
		while (map_len > (list_size + 1) && !match) {
			/* Compare specifiers */
			match = 1;
			for (i = 0; i < list_size; i++, map_len--)
				match &= !((match_array[i] ^ *map++) & mask[i]);

			of_node_put(new);
			new = of_find_node_by_phandle(be32_to_cpup(map));
			map++;
			map_len--;

			/* Check if not found */
			if (!new)
				goto put;

			if (!of_device_is_available(new))
				match = 0;

			ret = of_property_read_u32(new, cells_name, &new_size);
			if (ret)
				goto put;

			/* Check for malformed properties */
			if (WARN_ON(new_size > MAX_PHANDLE_ARGS))
				goto put;
			if (map_len < new_size)
				goto put;

			/* Move forward by new node's #<list>-cells amount */
			map += new_size;
			map_len -= new_size;
		}
		if (!match)
			goto put;

		/* Get the <list>-map-pass-thru property (optional) */
		pass = of_get_property(cur, pass_name, NULL);
		if (!pass)
			pass = dummy_pass;

		/*
		 * Successfully parsed a <list>-map translation; copy new
		 * specifier into the out_args structure, keeping the
		 * bits specified in <list>-map-pass-thru.
		 */
		match_array = map - new_size;
		for (i = 0; i < new_size; i++) {
			__be32 val = *(map - new_size + i);

			if (i < list_size) {
				val &= ~pass[i];
				val |= cpu_to_be32(out_args->args[i]) & pass[i];
			}

			out_args->args[i] = be32_to_cpu(val);
		}
		out_args->args_count = list_size = new_size;
		/* Iterate again with new provider */
		out_args->np = new;
		of_node_put(cur);
		cur = new;
	}
put:
	of_node_put(cur);
	of_node_put(new);
free:
	kfree(mask_name);
	kfree(map_name);
	kfree(cells_name);
	kfree(pass_name);

	return ret;
}
EXPORT_SYMBOL(of_parse_phandle_with_args_map);

1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743
/**
 * of_parse_phandle_with_fixed_args() - Find a node pointed by phandle in a list
 * @np:		pointer to a device tree node containing a list
 * @list_name:	property name that contains a list
 * @cell_count: number of argument cells following the phandle
 * @index:	index of a phandle to parse out
 * @out_args:	optional pointer to output arguments structure (will be filled)
 *
 * This function is useful to parse lists of phandles and their arguments.
 * Returns 0 on success and fills out_args, on error returns appropriate
 * errno value.
 *
1744
 * Caller is responsible to call of_node_put() on the returned out_args->np
1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755
 * pointer.
 *
 * Example:
 *
 * phandle1: node1 {
 * }
 *
 * phandle2: node2 {
 * }
 *
 * node3 {
G
Geert Uytterhoeven 已提交
1756
 *	list = <&phandle1 0 2 &phandle2 2 3>;
1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772
 * }
 *
 * To get a device_node of the `node2' node you may call this:
 * of_parse_phandle_with_fixed_args(node3, "list", 2, 1, &args);
 */
int of_parse_phandle_with_fixed_args(const struct device_node *np,
				const char *list_name, int cell_count,
				int index, struct of_phandle_args *out_args)
{
	if (index < 0)
		return -EINVAL;
	return __of_parse_phandle_with_args(np, list_name, NULL, cell_count,
					   index, out_args);
}
EXPORT_SYMBOL(of_parse_phandle_with_fixed_args);

1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790
/**
 * of_count_phandle_with_args() - Find the number of phandles references in a property
 * @np:		pointer to a device tree node containing a list
 * @list_name:	property name that contains a list
 * @cells_name:	property name that specifies phandles' arguments count
 *
 * Returns the number of phandle + argument tuples within a property. It
 * is a typical pattern to encode a list of phandle and variable
 * arguments into a single property. The number of arguments is encoded
 * by a property in the phandle-target node. For example, a gpios
 * property would contain a list of GPIO specifies consisting of a
 * phandle and 1 or more arguments. The number of arguments are
 * determined by the #gpio-cells property in the node pointed to by the
 * phandle.
 */
int of_count_phandle_with_args(const struct device_node *np, const char *list_name,
				const char *cells_name)
{
1791 1792 1793
	struct of_phandle_iterator it;
	int rc, cur_index = 0;

1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810
	/*
	 * If cells_name is NULL we assume a cell count of 0. This makes
	 * counting the phandles trivial as each 32bit word in the list is a
	 * phandle and no arguments are to consider. So we don't iterate through
	 * the list but just use the length to determine the phandle count.
	 */
	if (!cells_name) {
		const __be32 *list;
		int size;

		list = of_get_property(np, list_name, &size);
		if (!list)
			return -ENOENT;

		return size / sizeof(*list);
	}

1811
	rc = of_phandle_iterator_init(&it, np, list_name, cells_name, -1);
1812 1813 1814 1815 1816 1817 1818 1819 1820 1821
	if (rc)
		return rc;

	while ((rc = of_phandle_iterator_next(&it)) == 0)
		cur_index += 1;

	if (rc != -ENOENT)
		return rc;

	return cur_index;
1822 1823 1824
}
EXPORT_SYMBOL(of_count_phandle_with_args);

1825 1826 1827
/**
 * __of_add_property - Add a property to a node without lock operations
 */
1828
int __of_add_property(struct device_node *np, struct property *prop)
1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845
{
	struct property **next;

	prop->next = NULL;
	next = &np->properties;
	while (*next) {
		if (strcmp(prop->name, (*next)->name) == 0)
			/* duplicate ! don't insert it */
			return -EEXIST;

		next = &(*next)->next;
	}
	*next = prop;

	return 0;
}

1846
/**
1847
 * of_add_property - Add a property to a node
1848
 */
1849
int of_add_property(struct device_node *np, struct property *prop)
1850 1851
{
	unsigned long flags;
1852 1853
	int rc;

1854
	mutex_lock(&of_mutex);
1855

1856
	raw_spin_lock_irqsave(&devtree_lock, flags);
1857
	rc = __of_add_property(np, prop);
1858
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1859

1860
	if (!rc)
1861
		__of_add_property_sysfs(np, prop);
1862

1863 1864
	mutex_unlock(&of_mutex);

1865 1866 1867
	if (!rc)
		of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop, NULL);

1868
	return rc;
1869 1870
}

1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889
int __of_remove_property(struct device_node *np, struct property *prop)
{
	struct property **next;

	for (next = &np->properties; *next; next = &(*next)->next) {
		if (*next == prop)
			break;
	}
	if (*next == NULL)
		return -ENODEV;

	/* found the node */
	*next = prop->next;
	prop->next = np->deadprops;
	np->deadprops = prop;

	return 0;
}

1890
/**
1891
 * of_remove_property - Remove a property from a node.
1892 1893 1894 1895 1896 1897
 *
 * Note that we don't actually remove it, since we have given out
 * who-knows-how-many pointers to the data using get-property.
 * Instead we just move the property to the "dead properties"
 * list, so it won't be found any more.
 */
1898
int of_remove_property(struct device_node *np, struct property *prop)
1899 1900
{
	unsigned long flags;
1901 1902
	int rc;

1903 1904 1905
	if (!prop)
		return -ENODEV;

1906
	mutex_lock(&of_mutex);
1907

1908
	raw_spin_lock_irqsave(&devtree_lock, flags);
1909
	rc = __of_remove_property(np, prop);
1910
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1911

1912 1913
	if (!rc)
		__of_remove_property_sysfs(np, prop);
1914

1915
	mutex_unlock(&of_mutex);
1916

1917 1918
	if (!rc)
		of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop, NULL);
1919

1920
	return rc;
1921 1922
}

1923 1924
int __of_update_property(struct device_node *np, struct property *newprop,
		struct property **oldpropp)
1925
{
1926
	struct property **next, *oldprop;
1927

1928 1929 1930 1931 1932
	for (next = &np->properties; *next; next = &(*next)->next) {
		if (of_prop_cmp((*next)->name, newprop->name) == 0)
			break;
	}
	*oldpropp = oldprop = *next;
1933

1934
	if (oldprop) {
1935
		/* replace the node */
1936 1937 1938 1939 1940 1941 1942 1943
		newprop->next = oldprop->next;
		*next = newprop;
		oldprop->next = np->deadprops;
		np->deadprops = oldprop;
	} else {
		/* new node */
		newprop->next = NULL;
		*next = newprop;
1944
	}
1945

1946 1947 1948
	return 0;
}

1949
/*
1950
 * of_update_property - Update a property in a node, if the property does
1951
 * not exist, add it.
1952
 *
1953 1954 1955 1956
 * Note that we don't actually remove it, since we have given out
 * who-knows-how-many pointers to the data using get-property.
 * Instead we just move the property to the "dead properties" list,
 * and add the new property to the property list
1957
 */
1958
int of_update_property(struct device_node *np, struct property *newprop)
1959
{
1960
	struct property *oldprop;
1961
	unsigned long flags;
1962 1963
	int rc;

1964 1965
	if (!newprop->name)
		return -EINVAL;
1966

1967
	mutex_lock(&of_mutex);
1968

1969
	raw_spin_lock_irqsave(&devtree_lock, flags);
1970
	rc = __of_update_property(np, newprop, &oldprop);
1971
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1972

1973 1974
	if (!rc)
		__of_update_property_sysfs(np, newprop, oldprop);
1975

1976
	mutex_unlock(&of_mutex);
1977

1978 1979
	if (!rc)
		of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop, oldprop);
1980

1981
	return rc;
1982 1983
}

1984 1985 1986 1987 1988 1989 1990 1991
static void of_alias_add(struct alias_prop *ap, struct device_node *np,
			 int id, const char *stem, int stem_len)
{
	ap->np = np;
	ap->id = id;
	strncpy(ap->stem, stem, stem_len);
	ap->stem[stem_len] = 0;
	list_add_tail(&ap->link, &aliases_lookup);
1992 1993
	pr_debug("adding DT alias:%s: stem=%s id=%i node=%pOF\n",
		 ap->alias, ap->stem, ap->id, np);
1994 1995 1996
}

/**
1997
 * of_alias_scan - Scan all properties of the 'aliases' node
1998
 *
1999 2000 2001
 * The function scans all the properties of the 'aliases' node and populates
 * the global lookup table with the properties.  It returns the
 * number of alias properties found, or an error code in case of failure.
2002 2003
 *
 * @dt_alloc:	An allocator that provides a virtual address to memory
2004
 *		for storing the resulting tree
2005 2006 2007 2008 2009
 */
void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align))
{
	struct property *pp;

2010
	of_aliases = of_find_node_by_path("/aliases");
2011 2012 2013
	of_chosen = of_find_node_by_path("/chosen");
	if (of_chosen == NULL)
		of_chosen = of_find_node_by_path("/chosen@0");
2014 2015

	if (of_chosen) {
2016
		/* linux,stdout-path and /aliases/stdout are for legacy compatibility */
2017 2018 2019 2020 2021
		const char *name = NULL;

		if (of_property_read_string(of_chosen, "stdout-path", &name))
			of_property_read_string(of_chosen, "linux,stdout-path",
						&name);
2022
		if (IS_ENABLED(CONFIG_PPC) && !name)
2023
			of_property_read_string(of_aliases, "stdout", &name);
2024
		if (name)
2025
			of_stdout = of_find_node_opts_by_path(name, &of_stdout_options);
2026 2027
	}

2028 2029 2030
	if (!of_aliases)
		return;

2031
	for_each_property_of_node(of_aliases, pp) {
2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057
		const char *start = pp->name;
		const char *end = start + strlen(start);
		struct device_node *np;
		struct alias_prop *ap;
		int id, len;

		/* Skip those we do not want to proceed */
		if (!strcmp(pp->name, "name") ||
		    !strcmp(pp->name, "phandle") ||
		    !strcmp(pp->name, "linux,phandle"))
			continue;

		np = of_find_node_by_path(pp->value);
		if (!np)
			continue;

		/* walk the alias backwards to extract the id and work out
		 * the 'stem' string */
		while (isdigit(*(end-1)) && end > start)
			end--;
		len = end - start;

		if (kstrtoint(end, 10, &id) < 0)
			continue;

		/* Allocate an alias_prop with enough space for the stem */
2058
		ap = dt_alloc(sizeof(*ap) + len + 1, __alignof__(*ap));
2059 2060
		if (!ap)
			continue;
2061
		memset(ap, 0, sizeof(*ap) + len + 1);
2062 2063 2064 2065 2066 2067 2068 2069 2070 2071
		ap->alias = start;
		of_alias_add(ap, np, id, start, len);
	}
}

/**
 * of_alias_get_id - Get alias id for the given device_node
 * @np:		Pointer to the given device_node
 * @stem:	Alias stem of the given device_node
 *
2072 2073
 * The function travels the lookup table to get the alias id for the given
 * device_node and alias stem.  It returns the alias id if found.
2074 2075 2076 2077 2078 2079
 */
int of_alias_get_id(struct device_node *np, const char *stem)
{
	struct alias_prop *app;
	int id = -ENODEV;

2080
	mutex_lock(&of_mutex);
2081 2082 2083 2084 2085 2086 2087 2088 2089
	list_for_each_entry(app, &aliases_lookup, link) {
		if (strcmp(app->stem, stem) != 0)
			continue;

		if (np == app->np) {
			id = app->id;
			break;
		}
	}
2090
	mutex_unlock(&of_mutex);
2091 2092 2093 2094

	return id;
}
EXPORT_SYMBOL_GPL(of_alias_get_id);
2095

2096 2097 2098 2099 2100
/**
 * of_alias_get_alias_list - Get alias list for the given device driver
 * @matches:	Array of OF device match structures to search in
 * @stem:	Alias stem of the given device_node
 * @bitmap:	Bitmap field pointer
2101
 * @nbits:	Maximum number of alias IDs which can be recorded in bitmap
2102 2103 2104 2105
 *
 * The function travels the lookup table to record alias ids for the given
 * device match structures and alias stem.
 *
2106 2107
 * Return:	0 or -ENOSYS when !CONFIG_OF or
 *		-EOVERFLOW if alias ID is greater then allocated nbits
2108 2109 2110 2111 2112 2113
 */
int of_alias_get_alias_list(const struct of_device_id *matches,
			     const char *stem, unsigned long *bitmap,
			     unsigned int nbits)
{
	struct alias_prop *app;
2114
	int ret = 0;
2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125

	/* Zero bitmap field to make sure that all the time it is clean */
	bitmap_zero(bitmap, nbits);

	mutex_lock(&of_mutex);
	pr_debug("%s: Looking for stem: %s\n", __func__, stem);
	list_for_each_entry(app, &aliases_lookup, link) {
		pr_debug("%s: stem: %s, id: %d\n",
			 __func__, app->stem, app->id);

		if (strcmp(app->stem, stem) != 0) {
2126
			pr_debug("%s: stem comparison didn't pass %s\n",
2127 2128 2129 2130 2131 2132
				 __func__, app->stem);
			continue;
		}

		if (of_match_node(matches, app->np)) {
			pr_debug("%s: Allocated ID %d\n", __func__, app->id);
2133 2134 2135 2136 2137 2138 2139 2140

			if (app->id >= nbits) {
				pr_warn("%s: ID %d >= than bitmap field %d\n",
					__func__, app->id, nbits);
				ret = -EOVERFLOW;
			} else {
				set_bit(app->id, bitmap);
			}
2141 2142 2143 2144
		}
	}
	mutex_unlock(&of_mutex);

2145
	return ret;
2146 2147 2148
}
EXPORT_SYMBOL_GPL(of_alias_get_alias_list);

2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174
/**
 * of_alias_get_highest_id - Get highest alias id for the given stem
 * @stem:	Alias stem to be examined
 *
 * The function travels the lookup table to get the highest alias id for the
 * given alias stem.  It returns the alias id if found.
 */
int of_alias_get_highest_id(const char *stem)
{
	struct alias_prop *app;
	int id = -ENODEV;

	mutex_lock(&of_mutex);
	list_for_each_entry(app, &aliases_lookup, link) {
		if (strcmp(app->stem, stem) != 0)
			continue;

		if (app->id > id)
			id = app->id;
	}
	mutex_unlock(&of_mutex);

	return id;
}
EXPORT_SYMBOL_GPL(of_alias_get_highest_id);

2175
/**
2176 2177 2178 2179 2180 2181 2182 2183
 * of_console_check() - Test and setup console for DT setup
 * @dn - Pointer to device node
 * @name - Name to use for preferred console without index. ex. "ttyS"
 * @index - Index to use for preferred console.
 *
 * Check if the given device node matches the stdout-path property in the
 * /chosen node. If it does then register it as the preferred console and return
 * TRUE. Otherwise return FALSE.
2184
 */
2185
bool of_console_check(struct device_node *dn, char *name, int index)
2186
{
2187
	if (!dn || dn != of_stdout || console_set_on_cmdline)
2188
		return false;
2189 2190 2191 2192 2193 2194

	/*
	 * XXX: cast `options' to char pointer to suppress complication
	 * warnings: printk, UART and console drivers expect char pointer.
	 */
	return !add_preferred_console(name, index, (char *)of_stdout_options);
2195
}
2196
EXPORT_SYMBOL_GPL(of_console_check);
2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207

/**
 *	of_find_next_cache_node - Find a node's subsidiary cache
 *	@np:	node of type "cpu" or "cache"
 *
 *	Returns a node pointer with refcount incremented, use
 *	of_node_put() on it when done.  Caller should hold a reference
 *	to np.
 */
struct device_node *of_find_next_cache_node(const struct device_node *np)
{
2208
	struct device_node *child, *cache_node;
2209

2210 2211 2212
	cache_node = of_parse_phandle(np, "l2-cache", 0);
	if (!cache_node)
		cache_node = of_parse_phandle(np, "next-level-cache", 0);
2213

2214 2215
	if (cache_node)
		return cache_node;
2216 2217 2218 2219

	/* OF on pmac has nodes instead of properties named "l2-cache"
	 * beneath CPU nodes.
	 */
2220
	if (IS_ENABLED(CONFIG_PPC_PMAC) && of_node_is_type(np, "cpu"))
2221
		for_each_child_of_node(np, child)
2222
			if (of_node_is_type(child, "cache"))
2223 2224 2225 2226
				return child;

	return NULL;
}
2227

2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251
/**
 * of_find_last_cache_level - Find the level at which the last cache is
 * 		present for the given logical cpu
 *
 * @cpu: cpu number(logical index) for which the last cache level is needed
 *
 * Returns the the level at which the last cache is present. It is exactly
 * same as  the total number of cache levels for the given logical cpu.
 */
int of_find_last_cache_level(unsigned int cpu)
{
	u32 cache_level = 0;
	struct device_node *prev = NULL, *np = of_cpu_device_node_get(cpu);

	while (np) {
		prev = np;
		of_node_put(np);
		np = of_find_next_cache_node(np);
	}

	of_property_read_u32(prev, "cache-level", &cache_level);

	return cache_level;
}
2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348

/**
 * of_map_rid - Translate a requester ID through a downstream mapping.
 * @np: root complex device node.
 * @rid: device requester ID to map.
 * @map_name: property name of the map to use.
 * @map_mask_name: optional property name of the mask to use.
 * @target: optional pointer to a target device node.
 * @id_out: optional pointer to receive the translated ID.
 *
 * Given a device requester ID, look up the appropriate implementation-defined
 * platform ID and/or the target device which receives transactions on that
 * ID, as per the "iommu-map" and "msi-map" bindings. Either of @target or
 * @id_out may be NULL if only the other is required. If @target points to
 * a non-NULL device node pointer, only entries targeting that node will be
 * matched; if it points to a NULL value, it will receive the device node of
 * the first matching target phandle, with a reference held.
 *
 * Return: 0 on success or a standard error code on failure.
 */
int of_map_rid(struct device_node *np, u32 rid,
	       const char *map_name, const char *map_mask_name,
	       struct device_node **target, u32 *id_out)
{
	u32 map_mask, masked_rid;
	int map_len;
	const __be32 *map = NULL;

	if (!np || !map_name || (!target && !id_out))
		return -EINVAL;

	map = of_get_property(np, map_name, &map_len);
	if (!map) {
		if (target)
			return -ENODEV;
		/* Otherwise, no map implies no translation */
		*id_out = rid;
		return 0;
	}

	if (!map_len || map_len % (4 * sizeof(*map))) {
		pr_err("%pOF: Error: Bad %s length: %d\n", np,
			map_name, map_len);
		return -EINVAL;
	}

	/* The default is to select all bits. */
	map_mask = 0xffffffff;

	/*
	 * Can be overridden by "{iommu,msi}-map-mask" property.
	 * If of_property_read_u32() fails, the default is used.
	 */
	if (map_mask_name)
		of_property_read_u32(np, map_mask_name, &map_mask);

	masked_rid = map_mask & rid;
	for ( ; map_len > 0; map_len -= 4 * sizeof(*map), map += 4) {
		struct device_node *phandle_node;
		u32 rid_base = be32_to_cpup(map + 0);
		u32 phandle = be32_to_cpup(map + 1);
		u32 out_base = be32_to_cpup(map + 2);
		u32 rid_len = be32_to_cpup(map + 3);

		if (rid_base & ~map_mask) {
			pr_err("%pOF: Invalid %s translation - %s-mask (0x%x) ignores rid-base (0x%x)\n",
				np, map_name, map_name,
				map_mask, rid_base);
			return -EFAULT;
		}

		if (masked_rid < rid_base || masked_rid >= rid_base + rid_len)
			continue;

		phandle_node = of_find_node_by_phandle(phandle);
		if (!phandle_node)
			return -ENODEV;

		if (target) {
			if (*target)
				of_node_put(phandle_node);
			else
				*target = phandle_node;

			if (*target != phandle_node)
				continue;
		}

		if (id_out)
			*id_out = masked_rid - rid_base + out_base;

		pr_debug("%pOF: %s, using mask %08x, rid-base: %08x, out-base: %08x, length: %08x, rid: %08x -> %08x\n",
			np, map_name, map_mask, rid_base, out_base,
			rid_len, rid, masked_rid - rid_base + out_base);
		return 0;
	}

2349 2350 2351 2352 2353 2354 2355
	pr_info("%pOF: no %s translation for rid 0x%x on %pOF\n", np, map_name,
		rid, target && *target ? *target : NULL);

	/* Bypasses translation */
	if (id_out)
		*id_out = rid;
	return 0;
2356 2357
}
EXPORT_SYMBOL_GPL(of_map_rid);