af9033.c 25.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/*
 * Afatech AF9033 demodulator driver
 *
 * Copyright (C) 2009 Antti Palosaari <crope@iki.fi>
 * Copyright (C) 2012 Antti Palosaari <crope@iki.fi>
 *
 *    This program is free software; you can redistribute it and/or modify
 *    it under the terms of the GNU General Public License as published by
 *    the Free Software Foundation; either version 2 of the License, or
 *    (at your option) any later version.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *    GNU General Public License for more details.
 *
 *    You should have received a copy of the GNU General Public License along
 *    with this program; if not, write to the Free Software Foundation, Inc.,
 *    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 */

#include "af9033_priv.h"

24 25 26
/* Max transfer size done by I2C transfer functions */
#define MAX_XFER_SIZE  64

27 28 29 30 31 32 33 34
struct af9033_state {
	struct i2c_adapter *i2c;
	struct dvb_frontend fe;
	struct af9033_config cfg;

	u32 bandwidth_hz;
	bool ts_mode_parallel;
	bool ts_mode_serial;
35 36 37 38

	u32 ber;
	u32 ucb;
	unsigned long last_stat_check;
39 40 41 42 43 44 45
};

/* write multiple registers */
static int af9033_wr_regs(struct af9033_state *state, u32 reg, const u8 *val,
		int len)
{
	int ret;
46
	u8 buf[MAX_XFER_SIZE];
47 48 49 50
	struct i2c_msg msg[1] = {
		{
			.addr = state->cfg.i2c_addr,
			.flags = 0,
51
			.len = 3 + len,
52 53 54 55
			.buf = buf,
		}
	};

56 57 58 59 60 61 62
	if (3 + len > sizeof(buf)) {
		dev_warn(&state->i2c->dev,
			 "%s: i2c wr reg=%04x: len=%d is too big!\n",
			 KBUILD_MODNAME, reg, len);
		return -EINVAL;
	}

63 64 65 66 67 68 69 70 71
	buf[0] = (reg >> 16) & 0xff;
	buf[1] = (reg >>  8) & 0xff;
	buf[2] = (reg >>  0) & 0xff;
	memcpy(&buf[3], val, len);

	ret = i2c_transfer(state->i2c, msg, 1);
	if (ret == 1) {
		ret = 0;
	} else {
72 73
		dev_warn(&state->i2c->dev, "%s: i2c wr failed=%d reg=%06x " \
				"len=%d\n", KBUILD_MODNAME, ret, reg, len);
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
		ret = -EREMOTEIO;
	}

	return ret;
}

/* read multiple registers */
static int af9033_rd_regs(struct af9033_state *state, u32 reg, u8 *val, int len)
{
	int ret;
	u8 buf[3] = { (reg >> 16) & 0xff, (reg >> 8) & 0xff,
			(reg >> 0) & 0xff };
	struct i2c_msg msg[2] = {
		{
			.addr = state->cfg.i2c_addr,
			.flags = 0,
			.len = sizeof(buf),
			.buf = buf
		}, {
			.addr = state->cfg.i2c_addr,
			.flags = I2C_M_RD,
			.len = len,
			.buf = val
		}
	};

	ret = i2c_transfer(state->i2c, msg, 2);
	if (ret == 2) {
		ret = 0;
	} else {
104 105
		dev_warn(&state->i2c->dev, "%s: i2c rd failed=%d reg=%06x " \
				"len=%d\n", KBUILD_MODNAME, ret, reg, len);
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
		ret = -EREMOTEIO;
	}

	return ret;
}


/* write single register */
static int af9033_wr_reg(struct af9033_state *state, u32 reg, u8 val)
{
	return af9033_wr_regs(state, reg, &val, 1);
}

/* read single register */
static int af9033_rd_reg(struct af9033_state *state, u32 reg, u8 *val)
{
	return af9033_rd_regs(state, reg, val, 1);
}

/* write single register with mask */
static int af9033_wr_reg_mask(struct af9033_state *state, u32 reg, u8 val,
		u8 mask)
{
	int ret;
	u8 tmp;

	/* no need for read if whole reg is written */
	if (mask != 0xff) {
		ret = af9033_rd_regs(state, reg, &tmp, 1);
		if (ret)
			return ret;

		val &= mask;
		tmp &= ~mask;
		val |= tmp;
	}

	return af9033_wr_regs(state, reg, &val, 1);
}

/* read single register with mask */
static int af9033_rd_reg_mask(struct af9033_state *state, u32 reg, u8 *val,
		u8 mask)
{
	int ret, i;
	u8 tmp;

	ret = af9033_rd_regs(state, reg, &tmp, 1);
	if (ret)
		return ret;

	tmp &= mask;

	/* find position of the first bit */
	for (i = 0; i < 8; i++) {
		if ((mask >> i) & 0x01)
			break;
	}
	*val = tmp >> i;

	return 0;
}

169 170 171 172
/* write reg val table using reg addr auto increment */
static int af9033_wr_reg_val_tab(struct af9033_state *state,
		const struct reg_val *tab, int tab_len)
{
A
Antti Palosaari 已提交
173
#define MAX_TAB_LEN 212
174
	int ret, i, j;
A
Antti Palosaari 已提交
175 176 177
	u8 buf[1 + MAX_TAB_LEN];

	dev_dbg(&state->i2c->dev, "%s: tab_len=%d\n", __func__, tab_len);
178 179

	if (tab_len > sizeof(buf)) {
A
Antti Palosaari 已提交
180 181
		dev_warn(&state->i2c->dev, "%s: tab len %d is too big\n",
				KBUILD_MODNAME, tab_len);
182 183
		return -EINVAL;
	}
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206

	for (i = 0, j = 0; i < tab_len; i++) {
		buf[j] = tab[i].val;

		if (i == tab_len - 1 || tab[i].reg != tab[i + 1].reg - 1) {
			ret = af9033_wr_regs(state, tab[i].reg - j, buf, j + 1);
			if (ret < 0)
				goto err;

			j = 0;
		} else {
			j++;
		}
	}

	return 0;

err:
	dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);

	return ret;
}

207
static u32 af9033_div(struct af9033_state *state, u32 a, u32 b, u32 x)
208 209 210
{
	u32 r = 0, c = 0, i;

211
	dev_dbg(&state->i2c->dev, "%s: a=%d b=%d x=%d\n", __func__, a, b, x);
212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227

	if (a > b) {
		c = a / b;
		a = a - c * b;
	}

	for (i = 0; i < x; i++) {
		if (a >= b) {
			r += 1;
			a -= b;
		}
		a <<= 1;
		r <<= 1;
	}
	r = (c << (u32)x) + r;

228 229
	dev_dbg(&state->i2c->dev, "%s: a=%d b=%d x=%d r=%d r=%x\n",
			__func__, a, b, x, r, r);
230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273

	return r;
}

static void af9033_release(struct dvb_frontend *fe)
{
	struct af9033_state *state = fe->demodulator_priv;

	kfree(state);
}

static int af9033_init(struct dvb_frontend *fe)
{
	struct af9033_state *state = fe->demodulator_priv;
	int ret, i, len;
	const struct reg_val *init;
	u8 buf[4];
	u32 adc_cw, clock_cw;
	struct reg_val_mask tab[] = {
		{ 0x80fb24, 0x00, 0x08 },
		{ 0x80004c, 0x00, 0xff },
		{ 0x00f641, state->cfg.tuner, 0xff },
		{ 0x80f5ca, 0x01, 0x01 },
		{ 0x80f715, 0x01, 0x01 },
		{ 0x00f41f, 0x04, 0x04 },
		{ 0x00f41a, 0x01, 0x01 },
		{ 0x80f731, 0x00, 0x01 },
		{ 0x00d91e, 0x00, 0x01 },
		{ 0x00d919, 0x00, 0x01 },
		{ 0x80f732, 0x00, 0x01 },
		{ 0x00d91f, 0x00, 0x01 },
		{ 0x00d91a, 0x00, 0x01 },
		{ 0x80f730, 0x00, 0x01 },
		{ 0x80f778, 0x00, 0xff },
		{ 0x80f73c, 0x01, 0x01 },
		{ 0x80f776, 0x00, 0x01 },
		{ 0x00d8fd, 0x01, 0xff },
		{ 0x00d830, 0x01, 0xff },
		{ 0x00d831, 0x00, 0xff },
		{ 0x00d832, 0x00, 0xff },
		{ 0x80f985, state->ts_mode_serial, 0x01 },
		{ 0x80f986, state->ts_mode_parallel, 0x01 },
		{ 0x00d827, 0x00, 0xff },
		{ 0x00d829, 0x00, 0xff },
274
		{ 0x800045, state->cfg.adc_multiplier, 0xff },
275 276 277
	};

	/* program clock control */
278
	clock_cw = af9033_div(state, state->cfg.clock, 1000000ul, 19ul);
279 280 281 282 283
	buf[0] = (clock_cw >>  0) & 0xff;
	buf[1] = (clock_cw >>  8) & 0xff;
	buf[2] = (clock_cw >> 16) & 0xff;
	buf[3] = (clock_cw >> 24) & 0xff;

284 285
	dev_dbg(&state->i2c->dev, "%s: clock=%d clock_cw=%08x\n",
			__func__, state->cfg.clock, clock_cw);
286 287 288 289 290 291 292 293 294 295 296

	ret = af9033_wr_regs(state, 0x800025, buf, 4);
	if (ret < 0)
		goto err;

	/* program ADC control */
	for (i = 0; i < ARRAY_SIZE(clock_adc_lut); i++) {
		if (clock_adc_lut[i].clock == state->cfg.clock)
			break;
	}

297
	adc_cw = af9033_div(state, clock_adc_lut[i].adc, 1000000ul, 19ul);
298 299 300 301
	buf[0] = (adc_cw >>  0) & 0xff;
	buf[1] = (adc_cw >>  8) & 0xff;
	buf[2] = (adc_cw >> 16) & 0xff;

302 303
	dev_dbg(&state->i2c->dev, "%s: adc=%d adc_cw=%06x\n",
			__func__, clock_adc_lut[i].adc, adc_cw);
304 305 306 307 308 309 310 311 312 313 314 315 316

	ret = af9033_wr_regs(state, 0x80f1cd, buf, 3);
	if (ret < 0)
		goto err;

	/* program register table */
	for (i = 0; i < ARRAY_SIZE(tab); i++) {
		ret = af9033_wr_reg_mask(state, tab[i].reg, tab[i].val,
				tab[i].mask);
		if (ret < 0)
			goto err;
	}

317 318 319 320 321 322 323 324 325 326 327 328 329
	/* feed clock to RF tuner */
	switch (state->cfg.tuner) {
	case AF9033_TUNER_IT9135_38:
	case AF9033_TUNER_IT9135_51:
	case AF9033_TUNER_IT9135_52:
	case AF9033_TUNER_IT9135_60:
	case AF9033_TUNER_IT9135_61:
	case AF9033_TUNER_IT9135_62:
		ret = af9033_wr_reg(state, 0x80fba8, 0x00);
		if (ret < 0)
			goto err;
	}

330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349
	/* settings for TS interface */
	if (state->cfg.ts_mode == AF9033_TS_MODE_USB) {
		ret = af9033_wr_reg_mask(state, 0x80f9a5, 0x00, 0x01);
		if (ret < 0)
			goto err;

		ret = af9033_wr_reg_mask(state, 0x80f9b5, 0x01, 0x01);
		if (ret < 0)
			goto err;
	} else {
		ret = af9033_wr_reg_mask(state, 0x80f990, 0x00, 0x01);
		if (ret < 0)
			goto err;

		ret = af9033_wr_reg_mask(state, 0x80f9b5, 0x00, 0x01);
		if (ret < 0)
			goto err;
	}

	/* load OFSM settings */
350
	dev_dbg(&state->i2c->dev, "%s: load ofsm settings\n", __func__);
351 352 353 354
	switch (state->cfg.tuner) {
	case AF9033_TUNER_IT9135_38:
	case AF9033_TUNER_IT9135_51:
	case AF9033_TUNER_IT9135_52:
355 356 357
		len = ARRAY_SIZE(ofsm_init_it9135_v1);
		init = ofsm_init_it9135_v1;
		break;
358 359 360
	case AF9033_TUNER_IT9135_60:
	case AF9033_TUNER_IT9135_61:
	case AF9033_TUNER_IT9135_62:
361 362
		len = ARRAY_SIZE(ofsm_init_it9135_v2);
		init = ofsm_init_it9135_v2;
363 364 365 366 367 368 369
		break;
	default:
		len = ARRAY_SIZE(ofsm_init);
		init = ofsm_init;
		break;
	}

370 371 372
	ret = af9033_wr_reg_val_tab(state, init, len);
	if (ret < 0)
		goto err;
373 374

	/* load tuner specific settings */
375
	dev_dbg(&state->i2c->dev, "%s: load tuner specific settings\n",
376 377 378 379 380 381
			__func__);
	switch (state->cfg.tuner) {
	case AF9033_TUNER_TUA9001:
		len = ARRAY_SIZE(tuner_init_tua9001);
		init = tuner_init_tua9001;
		break;
382 383 384 385
	case AF9033_TUNER_FC0011:
		len = ARRAY_SIZE(tuner_init_fc0011);
		init = tuner_init_fc0011;
		break;
386 387 388 389
	case AF9033_TUNER_MXL5007T:
		len = ARRAY_SIZE(tuner_init_mxl5007t);
		init = tuner_init_mxl5007t;
		break;
390 391 392 393
	case AF9033_TUNER_TDA18218:
		len = ARRAY_SIZE(tuner_init_tda18218);
		init = tuner_init_tda18218;
		break;
394 395 396 397
	case AF9033_TUNER_FC2580:
		len = ARRAY_SIZE(tuner_init_fc2580);
		init = tuner_init_fc2580;
		break;
398 399 400 401
	case AF9033_TUNER_FC0012:
		len = ARRAY_SIZE(tuner_init_fc0012);
		init = tuner_init_fc0012;
		break;
402
	case AF9033_TUNER_IT9135_38:
403 404 405
		len = ARRAY_SIZE(tuner_init_it9135_38);
		init = tuner_init_it9135_38;
		break;
406
	case AF9033_TUNER_IT9135_51:
407 408 409
		len = ARRAY_SIZE(tuner_init_it9135_51);
		init = tuner_init_it9135_51;
		break;
410
	case AF9033_TUNER_IT9135_52:
411 412 413
		len = ARRAY_SIZE(tuner_init_it9135_52);
		init = tuner_init_it9135_52;
		break;
414
	case AF9033_TUNER_IT9135_60:
415 416 417
		len = ARRAY_SIZE(tuner_init_it9135_60);
		init = tuner_init_it9135_60;
		break;
418
	case AF9033_TUNER_IT9135_61:
419 420 421
		len = ARRAY_SIZE(tuner_init_it9135_61);
		init = tuner_init_it9135_61;
		break;
422
	case AF9033_TUNER_IT9135_62:
423 424
		len = ARRAY_SIZE(tuner_init_it9135_62);
		init = tuner_init_it9135_62;
425
		break;
426
	default:
427 428
		dev_dbg(&state->i2c->dev, "%s: unsupported tuner ID=%d\n",
				__func__, state->cfg.tuner);
429 430 431 432
		ret = -ENODEV;
		goto err;
	}

433 434 435
	ret = af9033_wr_reg_val_tab(state, init, len);
	if (ret < 0)
		goto err;
436

437 438 439 440
	if (state->cfg.ts_mode == AF9033_TS_MODE_SERIAL) {
		ret = af9033_wr_reg_mask(state, 0x00d91c, 0x01, 0x01);
		if (ret < 0)
			goto err;
441

442 443 444
		ret = af9033_wr_reg_mask(state, 0x00d917, 0x00, 0x01);
		if (ret < 0)
			goto err;
445

446 447 448 449 450
		ret = af9033_wr_reg_mask(state, 0x00d916, 0x00, 0x01);
		if (ret < 0)
			goto err;
	}

451 452 453 454 455 456 457 458 459
	switch (state->cfg.tuner) {
	case AF9033_TUNER_IT9135_60:
	case AF9033_TUNER_IT9135_61:
	case AF9033_TUNER_IT9135_62:
		ret = af9033_wr_reg(state, 0x800000, 0x01);
		if (ret < 0)
			goto err;
	}

460 461 462 463 464
	state->bandwidth_hz = 0; /* force to program all parameters */

	return 0;

err:
465
	dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491

	return ret;
}

static int af9033_sleep(struct dvb_frontend *fe)
{
	struct af9033_state *state = fe->demodulator_priv;
	int ret, i;
	u8 tmp;

	ret = af9033_wr_reg(state, 0x80004c, 1);
	if (ret < 0)
		goto err;

	ret = af9033_wr_reg(state, 0x800000, 0);
	if (ret < 0)
		goto err;

	for (i = 100, tmp = 1; i && tmp; i--) {
		ret = af9033_rd_reg(state, 0x80004c, &tmp);
		if (ret < 0)
			goto err;

		usleep_range(200, 10000);
	}

492
	dev_dbg(&state->i2c->dev, "%s: loop=%d\n", __func__, i);
493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517

	if (i == 0) {
		ret = -ETIMEDOUT;
		goto err;
	}

	ret = af9033_wr_reg_mask(state, 0x80fb24, 0x08, 0x08);
	if (ret < 0)
		goto err;

	/* prevent current leak (?) */
	if (state->cfg.ts_mode == AF9033_TS_MODE_SERIAL) {
		/* enable parallel TS */
		ret = af9033_wr_reg_mask(state, 0x00d917, 0x00, 0x01);
		if (ret < 0)
			goto err;

		ret = af9033_wr_reg_mask(state, 0x00d916, 0x01, 0x01);
		if (ret < 0)
			goto err;
	}

	return 0;

err:
518
	dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
519 520 521 522 523 524 525

	return ret;
}

static int af9033_get_tune_settings(struct dvb_frontend *fe,
		struct dvb_frontend_tune_settings *fesettings)
{
526 527
	/* 800 => 2000 because IT9135 v2 is slow to gain lock */
	fesettings->min_delay_ms = 2000;
528 529 530 531 532 533 534 535 536 537
	fesettings->step_size = 0;
	fesettings->max_drift = 0;

	return 0;
}

static int af9033_set_frontend(struct dvb_frontend *fe)
{
	struct af9033_state *state = fe->demodulator_priv;
	struct dtv_frontend_properties *c = &fe->dtv_property_cache;
538
	int ret, i, spec_inv, sampling_freq;
539
	u8 tmp, buf[3], bandwidth_reg_val;
540
	u32 if_frequency, freq_cw, adc_freq;
541

542 543
	dev_dbg(&state->i2c->dev, "%s: frequency=%d bandwidth_hz=%d\n",
			__func__, c->frequency, c->bandwidth_hz);
544 545 546 547 548 549 550 551 552 553 554 555 556

	/* check bandwidth */
	switch (c->bandwidth_hz) {
	case 6000000:
		bandwidth_reg_val = 0x00;
		break;
	case 7000000:
		bandwidth_reg_val = 0x01;
		break;
	case 8000000:
		bandwidth_reg_val = 0x02;
		break;
	default:
557 558
		dev_dbg(&state->i2c->dev, "%s: invalid bandwidth_hz\n",
				__func__);
559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580
		ret = -EINVAL;
		goto err;
	}

	/* program tuner */
	if (fe->ops.tuner_ops.set_params)
		fe->ops.tuner_ops.set_params(fe);

	/* program CFOE coefficients */
	if (c->bandwidth_hz != state->bandwidth_hz) {
		for (i = 0; i < ARRAY_SIZE(coeff_lut); i++) {
			if (coeff_lut[i].clock == state->cfg.clock &&
				coeff_lut[i].bandwidth_hz == c->bandwidth_hz) {
				break;
			}
		}
		ret =  af9033_wr_regs(state, 0x800001,
				coeff_lut[i].val, sizeof(coeff_lut[i].val));
	}

	/* program frequency control */
	if (c->bandwidth_hz != state->bandwidth_hz) {
581 582 583 584 585 586 587 588
		spec_inv = state->cfg.spec_inv ? -1 : 1;

		for (i = 0; i < ARRAY_SIZE(clock_adc_lut); i++) {
			if (clock_adc_lut[i].clock == state->cfg.clock)
				break;
		}
		adc_freq = clock_adc_lut[i].adc;

589 590 591 592 593 594
		/* get used IF frequency */
		if (fe->ops.tuner_ops.get_if_frequency)
			fe->ops.tuner_ops.get_if_frequency(fe, &if_frequency);
		else
			if_frequency = 0;

595
		sampling_freq = if_frequency;
596

597 598 599 600
		while (sampling_freq > (adc_freq / 2))
			sampling_freq -= adc_freq;

		if (sampling_freq >= 0)
601 602
			spec_inv *= -1;
		else
603
			sampling_freq *= -1;
604

605
		freq_cw = af9033_div(state, sampling_freq, adc_freq, 23ul);
606 607

		if (spec_inv == -1)
608
			freq_cw = 0x800000 - freq_cw;
609

610
		if (state->cfg.adc_multiplier == AF9033_ADC_MULTIPLIER_2X)
611 612
			freq_cw /= 2;

613 614 615
		buf[0] = (freq_cw >>  0) & 0xff;
		buf[1] = (freq_cw >>  8) & 0xff;
		buf[2] = (freq_cw >> 16) & 0x7f;
616 617 618 619 620

		/* FIXME: there seems to be calculation error here... */
		if (if_frequency == 0)
			buf[2] = 0;

621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659
		ret = af9033_wr_regs(state, 0x800029, buf, 3);
		if (ret < 0)
			goto err;

		state->bandwidth_hz = c->bandwidth_hz;
	}

	ret = af9033_wr_reg_mask(state, 0x80f904, bandwidth_reg_val, 0x03);
	if (ret < 0)
		goto err;

	ret = af9033_wr_reg(state, 0x800040, 0x00);
	if (ret < 0)
		goto err;

	ret = af9033_wr_reg(state, 0x800047, 0x00);
	if (ret < 0)
		goto err;

	ret = af9033_wr_reg_mask(state, 0x80f999, 0x00, 0x01);
	if (ret < 0)
		goto err;

	if (c->frequency <= 230000000)
		tmp = 0x00; /* VHF */
	else
		tmp = 0x01; /* UHF */

	ret = af9033_wr_reg(state, 0x80004b, tmp);
	if (ret < 0)
		goto err;

	ret = af9033_wr_reg(state, 0x800000, 0x00);
	if (ret < 0)
		goto err;

	return 0;

err:
660
	dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
661 662 663 664

	return ret;
}

665 666 667
static int af9033_get_frontend(struct dvb_frontend *fe)
{
	struct af9033_state *state = fe->demodulator_priv;
668
	struct dtv_frontend_properties *c = &fe->dtv_property_cache;
669 670 671
	int ret;
	u8 buf[8];

672
	dev_dbg(&state->i2c->dev, "%s:\n", __func__);
673 674 675

	/* read all needed registers */
	ret = af9033_rd_regs(state, 0x80f900, buf, sizeof(buf));
676 677
	if (ret < 0)
		goto err;
678 679 680

	switch ((buf[0] >> 0) & 3) {
	case 0:
681
		c->transmission_mode = TRANSMISSION_MODE_2K;
682 683
		break;
	case 1:
684
		c->transmission_mode = TRANSMISSION_MODE_8K;
685 686 687 688 689
		break;
	}

	switch ((buf[1] >> 0) & 3) {
	case 0:
690
		c->guard_interval = GUARD_INTERVAL_1_32;
691 692
		break;
	case 1:
693
		c->guard_interval = GUARD_INTERVAL_1_16;
694 695
		break;
	case 2:
696
		c->guard_interval = GUARD_INTERVAL_1_8;
697 698
		break;
	case 3:
699
		c->guard_interval = GUARD_INTERVAL_1_4;
700 701 702 703 704
		break;
	}

	switch ((buf[2] >> 0) & 7) {
	case 0:
705
		c->hierarchy = HIERARCHY_NONE;
706 707
		break;
	case 1:
708
		c->hierarchy = HIERARCHY_1;
709 710
		break;
	case 2:
711
		c->hierarchy = HIERARCHY_2;
712 713
		break;
	case 3:
714
		c->hierarchy = HIERARCHY_4;
715 716 717 718 719
		break;
	}

	switch ((buf[3] >> 0) & 3) {
	case 0:
720
		c->modulation = QPSK;
721 722
		break;
	case 1:
723
		c->modulation = QAM_16;
724 725
		break;
	case 2:
726
		c->modulation = QAM_64;
727 728 729 730 731
		break;
	}

	switch ((buf[4] >> 0) & 3) {
	case 0:
732
		c->bandwidth_hz = 6000000;
733 734
		break;
	case 1:
735
		c->bandwidth_hz = 7000000;
736 737
		break;
	case 2:
738
		c->bandwidth_hz = 8000000;
739 740 741 742 743
		break;
	}

	switch ((buf[6] >> 0) & 7) {
	case 0:
744
		c->code_rate_HP = FEC_1_2;
745 746
		break;
	case 1:
747
		c->code_rate_HP = FEC_2_3;
748 749
		break;
	case 2:
750
		c->code_rate_HP = FEC_3_4;
751 752
		break;
	case 3:
753
		c->code_rate_HP = FEC_5_6;
754 755
		break;
	case 4:
756
		c->code_rate_HP = FEC_7_8;
757 758
		break;
	case 5:
759
		c->code_rate_HP = FEC_NONE;
760 761 762 763 764
		break;
	}

	switch ((buf[7] >> 0) & 7) {
	case 0:
765
		c->code_rate_LP = FEC_1_2;
766 767
		break;
	case 1:
768
		c->code_rate_LP = FEC_2_3;
769 770
		break;
	case 2:
771
		c->code_rate_LP = FEC_3_4;
772 773
		break;
	case 3:
774
		c->code_rate_LP = FEC_5_6;
775 776
		break;
	case 4:
777
		c->code_rate_LP = FEC_7_8;
778 779
		break;
	case 5:
780
		c->code_rate_LP = FEC_NONE;
781 782 783
		break;
	}

784
	return 0;
785

786
err:
787
	dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
788 789 790 791

	return ret;
}

792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832
static int af9033_read_status(struct dvb_frontend *fe, fe_status_t *status)
{
	struct af9033_state *state = fe->demodulator_priv;
	int ret;
	u8 tmp;

	*status = 0;

	/* radio channel status, 0=no result, 1=has signal, 2=no signal */
	ret = af9033_rd_reg(state, 0x800047, &tmp);
	if (ret < 0)
		goto err;

	/* has signal */
	if (tmp == 0x01)
		*status |= FE_HAS_SIGNAL;

	if (tmp != 0x02) {
		/* TPS lock */
		ret = af9033_rd_reg_mask(state, 0x80f5a9, &tmp, 0x01);
		if (ret < 0)
			goto err;

		if (tmp)
			*status |= FE_HAS_SIGNAL | FE_HAS_CARRIER |
					FE_HAS_VITERBI;

		/* full lock */
		ret = af9033_rd_reg_mask(state, 0x80f999, &tmp, 0x01);
		if (ret < 0)
			goto err;

		if (tmp)
			*status |= FE_HAS_SIGNAL | FE_HAS_CARRIER |
					FE_HAS_VITERBI | FE_HAS_SYNC |
					FE_HAS_LOCK;
	}

	return 0;

err:
833
	dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
834 835 836 837 838 839

	return ret;
}

static int af9033_read_snr(struct dvb_frontend *fe, u16 *snr)
{
840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882
	struct af9033_state *state = fe->demodulator_priv;
	int ret, i, len;
	u8 buf[3], tmp;
	u32 snr_val;
	const struct val_snr *uninitialized_var(snr_lut);

	/* read value */
	ret = af9033_rd_regs(state, 0x80002c, buf, 3);
	if (ret < 0)
		goto err;

	snr_val = (buf[2] << 16) | (buf[1] << 8) | buf[0];

	/* read current modulation */
	ret = af9033_rd_reg(state, 0x80f903, &tmp);
	if (ret < 0)
		goto err;

	switch ((tmp >> 0) & 3) {
	case 0:
		len = ARRAY_SIZE(qpsk_snr_lut);
		snr_lut = qpsk_snr_lut;
		break;
	case 1:
		len = ARRAY_SIZE(qam16_snr_lut);
		snr_lut = qam16_snr_lut;
		break;
	case 2:
		len = ARRAY_SIZE(qam64_snr_lut);
		snr_lut = qam64_snr_lut;
		break;
	default:
		goto err;
	}

	for (i = 0; i < len; i++) {
		tmp = snr_lut[i].snr;

		if (snr_val < snr_lut[i].val)
			break;
	}

	*snr = tmp * 10; /* dB/10 */
883 884

	return 0;
885 886

err:
887
	dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
888 889

	return ret;
890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908
}

static int af9033_read_signal_strength(struct dvb_frontend *fe, u16 *strength)
{
	struct af9033_state *state = fe->demodulator_priv;
	int ret;
	u8 strength2;

	/* read signal strength of 0-100 scale */
	ret = af9033_rd_reg(state, 0x800048, &strength2);
	if (ret < 0)
		goto err;

	/* scale value to 0x0000-0xffff */
	*strength = strength2 * 0xffff / 100;

	return 0;

err:
909
	dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
910 911 912 913

	return ret;
}

914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952
static int af9033_update_ch_stat(struct af9033_state *state)
{
	int ret = 0;
	u32 err_cnt, bit_cnt;
	u16 abort_cnt;
	u8 buf[7];

	/* only update data every half second */
	if (time_after(jiffies, state->last_stat_check + msecs_to_jiffies(500))) {
		ret = af9033_rd_regs(state, 0x800032, buf, sizeof(buf));
		if (ret < 0)
			goto err;
		/* in 8 byte packets? */
		abort_cnt = (buf[1] << 8) + buf[0];
		/* in bits */
		err_cnt = (buf[4] << 16) + (buf[3] << 8) + buf[2];
		/* in 8 byte packets? always(?) 0x2710 = 10000 */
		bit_cnt = (buf[6] << 8) + buf[5];

		if (bit_cnt < abort_cnt) {
			abort_cnt = 1000;
			state->ber = 0xffffffff;
		} else {
			/* 8 byte packets, that have not been rejected already */
			bit_cnt -= (u32)abort_cnt;
			if (bit_cnt == 0) {
				state->ber = 0xffffffff;
			} else {
				err_cnt -= (u32)abort_cnt * 8 * 8;
				bit_cnt *= 8 * 8;
				state->ber = err_cnt * (0xffffffff / bit_cnt);
			}
		}
		state->ucb += abort_cnt;
		state->last_stat_check = jiffies;
	}

	return 0;
err:
953 954
	dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);

955 956 957
	return ret;
}

958 959
static int af9033_read_ber(struct dvb_frontend *fe, u32 *ber)
{
960 961 962 963 964 965 966 967
	struct af9033_state *state = fe->demodulator_priv;
	int ret;

	ret = af9033_update_ch_stat(state);
	if (ret < 0)
		return ret;

	*ber = state->ber;
968 969 970 971 972 973

	return 0;
}

static int af9033_read_ucblocks(struct dvb_frontend *fe, u32 *ucblocks)
{
974 975 976 977 978 979 980 981
	struct af9033_state *state = fe->demodulator_priv;
	int ret;

	ret = af9033_update_ch_stat(state);
	if (ret < 0)
		return ret;

	*ucblocks = state->ucb;
982 983 984 985 986 987 988 989 990

	return 0;
}

static int af9033_i2c_gate_ctrl(struct dvb_frontend *fe, int enable)
{
	struct af9033_state *state = fe->demodulator_priv;
	int ret;

991
	dev_dbg(&state->i2c->dev, "%s: enable=%d\n", __func__, enable);
992 993 994 995 996 997 998 999

	ret = af9033_wr_reg_mask(state, 0x00fa04, enable, 0x01);
	if (ret < 0)
		goto err;

	return 0;

err:
1000
	dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
1001 1002 1003 1004

	return ret;
}

1005
static int af9033_pid_filter_ctrl(struct dvb_frontend *fe, int onoff)
1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
{
	struct af9033_state *state = fe->demodulator_priv;
	int ret;

	dev_dbg(&state->i2c->dev, "%s: onoff=%d\n", __func__, onoff);

	ret = af9033_wr_reg_mask(state, 0x80f993, onoff, 0x01);
	if (ret < 0)
		goto err;

	return 0;

err:
	dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);

	return ret;
}

1024
static int af9033_pid_filter(struct dvb_frontend *fe, int index, u16 pid, int onoff)
1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
{
	struct af9033_state *state = fe->demodulator_priv;
	int ret;
	u8 wbuf[2] = {(pid >> 0) & 0xff, (pid >> 8) & 0xff};

	dev_dbg(&state->i2c->dev, "%s: index=%d pid=%04x onoff=%d\n",
			__func__, index, pid, onoff);

	if (pid > 0x1fff)
		return 0;

	ret = af9033_wr_regs(state, 0x80f996, wbuf, 2);
	if (ret < 0)
		goto err;

	ret = af9033_wr_reg(state, 0x80f994, onoff);
	if (ret < 0)
		goto err;

	ret = af9033_wr_reg(state, 0x80f995, index);
	if (ret < 0)
		goto err;

	return 0;

err:
	dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);

	return ret;
}

1056 1057 1058
static struct dvb_frontend_ops af9033_ops;

struct dvb_frontend *af9033_attach(const struct af9033_config *config,
1059 1060
				   struct i2c_adapter *i2c,
				   struct af9033_ops *ops)
1061 1062 1063 1064 1065
{
	int ret;
	struct af9033_state *state;
	u8 buf[8];

1066
	dev_dbg(&i2c->dev, "%s:\n", __func__);
1067 1068 1069 1070 1071 1072 1073 1074 1075 1076

	/* allocate memory for the internal state */
	state = kzalloc(sizeof(struct af9033_state), GFP_KERNEL);
	if (state == NULL)
		goto err;

	/* setup the state */
	state->i2c = i2c;
	memcpy(&state->cfg, config, sizeof(struct af9033_config));

1077
	if (state->cfg.clock != 12000000) {
1078 1079 1080
		dev_err(&state->i2c->dev, "%s: af9033: unsupported clock=%d, " \
				"only 12000000 Hz is supported currently\n",
				KBUILD_MODNAME, state->cfg.clock);
1081 1082 1083
		goto err;
	}

1084 1085 1086 1087 1088 1089 1090 1091 1092
	/* firmware version */
	ret = af9033_rd_regs(state, 0x0083e9, &buf[0], 4);
	if (ret < 0)
		goto err;

	ret = af9033_rd_regs(state, 0x804191, &buf[4], 4);
	if (ret < 0)
		goto err;

1093 1094 1095
	dev_info(&state->i2c->dev, "%s: firmware version: LINK=%d.%d.%d.%d " \
			"OFDM=%d.%d.%d.%d\n", KBUILD_MODNAME, buf[0], buf[1],
			buf[2], buf[3], buf[4], buf[5], buf[6], buf[7]);
1096

1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107
	/* sleep */
	switch (state->cfg.tuner) {
	case AF9033_TUNER_IT9135_38:
	case AF9033_TUNER_IT9135_51:
	case AF9033_TUNER_IT9135_52:
	case AF9033_TUNER_IT9135_60:
	case AF9033_TUNER_IT9135_61:
	case AF9033_TUNER_IT9135_62:
		/* IT9135 did not like to sleep at that early */
		break;
	default:
1108 1109 1110 1111 1112 1113 1114 1115
		ret = af9033_wr_reg(state, 0x80004c, 1);
		if (ret < 0)
			goto err;

		ret = af9033_wr_reg(state, 0x800000, 0);
		if (ret < 0)
			goto err;
	}
1116

1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
	/* configure internal TS mode */
	switch (state->cfg.ts_mode) {
	case AF9033_TS_MODE_PARALLEL:
		state->ts_mode_parallel = true;
		break;
	case AF9033_TS_MODE_SERIAL:
		state->ts_mode_serial = true;
		break;
	case AF9033_TS_MODE_USB:
		/* usb mode for AF9035 */
	default:
		break;
	}

	/* create dvb_frontend */
	memcpy(&state->fe.ops, &af9033_ops, sizeof(struct dvb_frontend_ops));
	state->fe.demodulator_priv = state;

1135 1136 1137 1138 1139
	if (ops) {
		ops->pid_filter = af9033_pid_filter;
		ops->pid_filter_ctrl = af9033_pid_filter_ctrl;
	}

1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179
	return &state->fe;

err:
	kfree(state);
	return NULL;
}
EXPORT_SYMBOL(af9033_attach);

static struct dvb_frontend_ops af9033_ops = {
	.delsys = { SYS_DVBT },
	.info = {
		.name = "Afatech AF9033 (DVB-T)",
		.frequency_min = 174000000,
		.frequency_max = 862000000,
		.frequency_stepsize = 250000,
		.frequency_tolerance = 0,
		.caps =	FE_CAN_FEC_1_2 |
			FE_CAN_FEC_2_3 |
			FE_CAN_FEC_3_4 |
			FE_CAN_FEC_5_6 |
			FE_CAN_FEC_7_8 |
			FE_CAN_FEC_AUTO |
			FE_CAN_QPSK |
			FE_CAN_QAM_16 |
			FE_CAN_QAM_64 |
			FE_CAN_QAM_AUTO |
			FE_CAN_TRANSMISSION_MODE_AUTO |
			FE_CAN_GUARD_INTERVAL_AUTO |
			FE_CAN_HIERARCHY_AUTO |
			FE_CAN_RECOVER |
			FE_CAN_MUTE_TS
	},

	.release = af9033_release,

	.init = af9033_init,
	.sleep = af9033_sleep,

	.get_tune_settings = af9033_get_tune_settings,
	.set_frontend = af9033_set_frontend,
1180
	.get_frontend = af9033_get_frontend,
1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193

	.read_status = af9033_read_status,
	.read_snr = af9033_read_snr,
	.read_signal_strength = af9033_read_signal_strength,
	.read_ber = af9033_read_ber,
	.read_ucblocks = af9033_read_ucblocks,

	.i2c_gate_ctrl = af9033_i2c_gate_ctrl,
};

MODULE_AUTHOR("Antti Palosaari <crope@iki.fi>");
MODULE_DESCRIPTION("Afatech AF9033 DVB-T demodulator driver");
MODULE_LICENSE("GPL");