af9033.c 23.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
/*
 * Afatech AF9033 demodulator driver
 *
 * Copyright (C) 2009 Antti Palosaari <crope@iki.fi>
 * Copyright (C) 2012 Antti Palosaari <crope@iki.fi>
 *
 *    This program is free software; you can redistribute it and/or modify
 *    it under the terms of the GNU General Public License as published by
 *    the Free Software Foundation; either version 2 of the License, or
 *    (at your option) any later version.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *    GNU General Public License for more details.
 *
 *    You should have received a copy of the GNU General Public License along
 *    with this program; if not, write to the Free Software Foundation, Inc.,
 *    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 */

#include "af9033_priv.h"

struct af9033_state {
	struct i2c_adapter *i2c;
	struct dvb_frontend fe;
	struct af9033_config cfg;

	u32 bandwidth_hz;
	bool ts_mode_parallel;
	bool ts_mode_serial;
32 33 34 35

	u32 ber;
	u32 ucb;
	unsigned long last_stat_check;
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
};

/* write multiple registers */
static int af9033_wr_regs(struct af9033_state *state, u32 reg, const u8 *val,
		int len)
{
	int ret;
	u8 buf[3 + len];
	struct i2c_msg msg[1] = {
		{
			.addr = state->cfg.i2c_addr,
			.flags = 0,
			.len = sizeof(buf),
			.buf = buf,
		}
	};

	buf[0] = (reg >> 16) & 0xff;
	buf[1] = (reg >>  8) & 0xff;
	buf[2] = (reg >>  0) & 0xff;
	memcpy(&buf[3], val, len);

	ret = i2c_transfer(state->i2c, msg, 1);
	if (ret == 1) {
		ret = 0;
	} else {
62 63
		dev_warn(&state->i2c->dev, "%s: i2c wr failed=%d reg=%06x " \
				"len=%d\n", KBUILD_MODNAME, ret, reg, len);
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
		ret = -EREMOTEIO;
	}

	return ret;
}

/* read multiple registers */
static int af9033_rd_regs(struct af9033_state *state, u32 reg, u8 *val, int len)
{
	int ret;
	u8 buf[3] = { (reg >> 16) & 0xff, (reg >> 8) & 0xff,
			(reg >> 0) & 0xff };
	struct i2c_msg msg[2] = {
		{
			.addr = state->cfg.i2c_addr,
			.flags = 0,
			.len = sizeof(buf),
			.buf = buf
		}, {
			.addr = state->cfg.i2c_addr,
			.flags = I2C_M_RD,
			.len = len,
			.buf = val
		}
	};

	ret = i2c_transfer(state->i2c, msg, 2);
	if (ret == 2) {
		ret = 0;
	} else {
94 95
		dev_warn(&state->i2c->dev, "%s: i2c rd failed=%d reg=%06x " \
				"len=%d\n", KBUILD_MODNAME, ret, reg, len);
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
		ret = -EREMOTEIO;
	}

	return ret;
}


/* write single register */
static int af9033_wr_reg(struct af9033_state *state, u32 reg, u8 val)
{
	return af9033_wr_regs(state, reg, &val, 1);
}

/* read single register */
static int af9033_rd_reg(struct af9033_state *state, u32 reg, u8 *val)
{
	return af9033_rd_regs(state, reg, val, 1);
}

/* write single register with mask */
static int af9033_wr_reg_mask(struct af9033_state *state, u32 reg, u8 val,
		u8 mask)
{
	int ret;
	u8 tmp;

	/* no need for read if whole reg is written */
	if (mask != 0xff) {
		ret = af9033_rd_regs(state, reg, &tmp, 1);
		if (ret)
			return ret;

		val &= mask;
		tmp &= ~mask;
		val |= tmp;
	}

	return af9033_wr_regs(state, reg, &val, 1);
}

/* read single register with mask */
static int af9033_rd_reg_mask(struct af9033_state *state, u32 reg, u8 *val,
		u8 mask)
{
	int ret, i;
	u8 tmp;

	ret = af9033_rd_regs(state, reg, &tmp, 1);
	if (ret)
		return ret;

	tmp &= mask;

	/* find position of the first bit */
	for (i = 0; i < 8; i++) {
		if ((mask >> i) & 0x01)
			break;
	}
	*val = tmp >> i;

	return 0;
}

159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
/* write reg val table using reg addr auto increment */
static int af9033_wr_reg_val_tab(struct af9033_state *state,
		const struct reg_val *tab, int tab_len)
{
	int ret, i, j;
	u8 buf[tab_len];

	dev_dbg(&state->i2c->dev, "%s: tab_len=%d\n", __func__, tab_len);

	for (i = 0, j = 0; i < tab_len; i++) {
		buf[j] = tab[i].val;

		if (i == tab_len - 1 || tab[i].reg != tab[i + 1].reg - 1) {
			ret = af9033_wr_regs(state, tab[i].reg - j, buf, j + 1);
			if (ret < 0)
				goto err;

			j = 0;
		} else {
			j++;
		}
	}

	return 0;

err:
	dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);

	return ret;
}

190
static u32 af9033_div(struct af9033_state *state, u32 a, u32 b, u32 x)
191 192 193
{
	u32 r = 0, c = 0, i;

194
	dev_dbg(&state->i2c->dev, "%s: a=%d b=%d x=%d\n", __func__, a, b, x);
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210

	if (a > b) {
		c = a / b;
		a = a - c * b;
	}

	for (i = 0; i < x; i++) {
		if (a >= b) {
			r += 1;
			a -= b;
		}
		a <<= 1;
		r <<= 1;
	}
	r = (c << (u32)x) + r;

211 212
	dev_dbg(&state->i2c->dev, "%s: a=%d b=%d x=%d r=%d r=%x\n",
			__func__, a, b, x, r, r);
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256

	return r;
}

static void af9033_release(struct dvb_frontend *fe)
{
	struct af9033_state *state = fe->demodulator_priv;

	kfree(state);
}

static int af9033_init(struct dvb_frontend *fe)
{
	struct af9033_state *state = fe->demodulator_priv;
	int ret, i, len;
	const struct reg_val *init;
	u8 buf[4];
	u32 adc_cw, clock_cw;
	struct reg_val_mask tab[] = {
		{ 0x80fb24, 0x00, 0x08 },
		{ 0x80004c, 0x00, 0xff },
		{ 0x00f641, state->cfg.tuner, 0xff },
		{ 0x80f5ca, 0x01, 0x01 },
		{ 0x80f715, 0x01, 0x01 },
		{ 0x00f41f, 0x04, 0x04 },
		{ 0x00f41a, 0x01, 0x01 },
		{ 0x80f731, 0x00, 0x01 },
		{ 0x00d91e, 0x00, 0x01 },
		{ 0x00d919, 0x00, 0x01 },
		{ 0x80f732, 0x00, 0x01 },
		{ 0x00d91f, 0x00, 0x01 },
		{ 0x00d91a, 0x00, 0x01 },
		{ 0x80f730, 0x00, 0x01 },
		{ 0x80f778, 0x00, 0xff },
		{ 0x80f73c, 0x01, 0x01 },
		{ 0x80f776, 0x00, 0x01 },
		{ 0x00d8fd, 0x01, 0xff },
		{ 0x00d830, 0x01, 0xff },
		{ 0x00d831, 0x00, 0xff },
		{ 0x00d832, 0x00, 0xff },
		{ 0x80f985, state->ts_mode_serial, 0x01 },
		{ 0x80f986, state->ts_mode_parallel, 0x01 },
		{ 0x00d827, 0x00, 0xff },
		{ 0x00d829, 0x00, 0xff },
257
		{ 0x800045, state->cfg.adc_multiplier, 0xff },
258 259 260
	};

	/* program clock control */
261
	clock_cw = af9033_div(state, state->cfg.clock, 1000000ul, 19ul);
262 263 264 265 266
	buf[0] = (clock_cw >>  0) & 0xff;
	buf[1] = (clock_cw >>  8) & 0xff;
	buf[2] = (clock_cw >> 16) & 0xff;
	buf[3] = (clock_cw >> 24) & 0xff;

267 268
	dev_dbg(&state->i2c->dev, "%s: clock=%d clock_cw=%08x\n",
			__func__, state->cfg.clock, clock_cw);
269 270 271 272 273 274 275 276 277 278 279

	ret = af9033_wr_regs(state, 0x800025, buf, 4);
	if (ret < 0)
		goto err;

	/* program ADC control */
	for (i = 0; i < ARRAY_SIZE(clock_adc_lut); i++) {
		if (clock_adc_lut[i].clock == state->cfg.clock)
			break;
	}

280
	adc_cw = af9033_div(state, clock_adc_lut[i].adc, 1000000ul, 19ul);
281 282 283 284
	buf[0] = (adc_cw >>  0) & 0xff;
	buf[1] = (adc_cw >>  8) & 0xff;
	buf[2] = (adc_cw >> 16) & 0xff;

285 286
	dev_dbg(&state->i2c->dev, "%s: adc=%d adc_cw=%06x\n",
			__func__, clock_adc_lut[i].adc, adc_cw);
287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319

	ret = af9033_wr_regs(state, 0x80f1cd, buf, 3);
	if (ret < 0)
		goto err;

	/* program register table */
	for (i = 0; i < ARRAY_SIZE(tab); i++) {
		ret = af9033_wr_reg_mask(state, tab[i].reg, tab[i].val,
				tab[i].mask);
		if (ret < 0)
			goto err;
	}

	/* settings for TS interface */
	if (state->cfg.ts_mode == AF9033_TS_MODE_USB) {
		ret = af9033_wr_reg_mask(state, 0x80f9a5, 0x00, 0x01);
		if (ret < 0)
			goto err;

		ret = af9033_wr_reg_mask(state, 0x80f9b5, 0x01, 0x01);
		if (ret < 0)
			goto err;
	} else {
		ret = af9033_wr_reg_mask(state, 0x80f990, 0x00, 0x01);
		if (ret < 0)
			goto err;

		ret = af9033_wr_reg_mask(state, 0x80f9b5, 0x00, 0x01);
		if (ret < 0)
			goto err;
	}

	/* load OFSM settings */
320
	dev_dbg(&state->i2c->dev, "%s: load ofsm settings\n", __func__);
321 322 323 324
	switch (state->cfg.tuner) {
	case AF9033_TUNER_IT9135_38:
	case AF9033_TUNER_IT9135_51:
	case AF9033_TUNER_IT9135_52:
325 326 327
		len = ARRAY_SIZE(ofsm_init_it9135_v1);
		init = ofsm_init_it9135_v1;
		break;
328 329 330
	case AF9033_TUNER_IT9135_60:
	case AF9033_TUNER_IT9135_61:
	case AF9033_TUNER_IT9135_62:
331 332
		len = ARRAY_SIZE(ofsm_init_it9135_v2);
		init = ofsm_init_it9135_v2;
333 334 335 336 337 338 339
		break;
	default:
		len = ARRAY_SIZE(ofsm_init);
		init = ofsm_init;
		break;
	}

340 341 342
	ret = af9033_wr_reg_val_tab(state, init, len);
	if (ret < 0)
		goto err;
343 344

	/* load tuner specific settings */
345
	dev_dbg(&state->i2c->dev, "%s: load tuner specific settings\n",
346 347 348 349 350 351
			__func__);
	switch (state->cfg.tuner) {
	case AF9033_TUNER_TUA9001:
		len = ARRAY_SIZE(tuner_init_tua9001);
		init = tuner_init_tua9001;
		break;
352 353 354 355
	case AF9033_TUNER_FC0011:
		len = ARRAY_SIZE(tuner_init_fc0011);
		init = tuner_init_fc0011;
		break;
356 357 358 359
	case AF9033_TUNER_MXL5007T:
		len = ARRAY_SIZE(tuner_init_mxl5007t);
		init = tuner_init_mxl5007t;
		break;
360 361 362 363
	case AF9033_TUNER_TDA18218:
		len = ARRAY_SIZE(tuner_init_tda18218);
		init = tuner_init_tda18218;
		break;
364 365 366 367
	case AF9033_TUNER_FC2580:
		len = ARRAY_SIZE(tuner_init_fc2580);
		init = tuner_init_fc2580;
		break;
368 369 370 371
	case AF9033_TUNER_FC0012:
		len = ARRAY_SIZE(tuner_init_fc0012);
		init = tuner_init_fc0012;
		break;
372
	case AF9033_TUNER_IT9135_38:
373 374 375
		len = ARRAY_SIZE(tuner_init_it9135_38);
		init = tuner_init_it9135_38;
		break;
376
	case AF9033_TUNER_IT9135_51:
377 378 379
		len = ARRAY_SIZE(tuner_init_it9135_51);
		init = tuner_init_it9135_51;
		break;
380
	case AF9033_TUNER_IT9135_52:
381 382 383
		len = ARRAY_SIZE(tuner_init_it9135_52);
		init = tuner_init_it9135_52;
		break;
384
	case AF9033_TUNER_IT9135_60:
385 386 387
		len = ARRAY_SIZE(tuner_init_it9135_60);
		init = tuner_init_it9135_60;
		break;
388
	case AF9033_TUNER_IT9135_61:
389 390 391
		len = ARRAY_SIZE(tuner_init_it9135_61);
		init = tuner_init_it9135_61;
		break;
392
	case AF9033_TUNER_IT9135_62:
393 394
		len = ARRAY_SIZE(tuner_init_it9135_62);
		init = tuner_init_it9135_62;
395
		break;
396
	default:
397 398
		dev_dbg(&state->i2c->dev, "%s: unsupported tuner ID=%d\n",
				__func__, state->cfg.tuner);
399 400 401 402
		ret = -ENODEV;
		goto err;
	}

403 404 405
	ret = af9033_wr_reg_val_tab(state, init, len);
	if (ret < 0)
		goto err;
406

407 408 409 410
	if (state->cfg.ts_mode == AF9033_TS_MODE_SERIAL) {
		ret = af9033_wr_reg_mask(state, 0x00d91c, 0x01, 0x01);
		if (ret < 0)
			goto err;
411

412 413 414
		ret = af9033_wr_reg_mask(state, 0x00d917, 0x00, 0x01);
		if (ret < 0)
			goto err;
415

416 417 418 419 420
		ret = af9033_wr_reg_mask(state, 0x00d916, 0x00, 0x01);
		if (ret < 0)
			goto err;
	}

421 422 423 424 425 426 427 428 429
	switch (state->cfg.tuner) {
	case AF9033_TUNER_IT9135_60:
	case AF9033_TUNER_IT9135_61:
	case AF9033_TUNER_IT9135_62:
		ret = af9033_wr_reg(state, 0x800000, 0x01);
		if (ret < 0)
			goto err;
	}

430 431 432 433 434
	state->bandwidth_hz = 0; /* force to program all parameters */

	return 0;

err:
435
	dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461

	return ret;
}

static int af9033_sleep(struct dvb_frontend *fe)
{
	struct af9033_state *state = fe->demodulator_priv;
	int ret, i;
	u8 tmp;

	ret = af9033_wr_reg(state, 0x80004c, 1);
	if (ret < 0)
		goto err;

	ret = af9033_wr_reg(state, 0x800000, 0);
	if (ret < 0)
		goto err;

	for (i = 100, tmp = 1; i && tmp; i--) {
		ret = af9033_rd_reg(state, 0x80004c, &tmp);
		if (ret < 0)
			goto err;

		usleep_range(200, 10000);
	}

462
	dev_dbg(&state->i2c->dev, "%s: loop=%d\n", __func__, i);
463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487

	if (i == 0) {
		ret = -ETIMEDOUT;
		goto err;
	}

	ret = af9033_wr_reg_mask(state, 0x80fb24, 0x08, 0x08);
	if (ret < 0)
		goto err;

	/* prevent current leak (?) */
	if (state->cfg.ts_mode == AF9033_TS_MODE_SERIAL) {
		/* enable parallel TS */
		ret = af9033_wr_reg_mask(state, 0x00d917, 0x00, 0x01);
		if (ret < 0)
			goto err;

		ret = af9033_wr_reg_mask(state, 0x00d916, 0x01, 0x01);
		if (ret < 0)
			goto err;
	}

	return 0;

err:
488
	dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
489 490 491 492 493 494 495

	return ret;
}

static int af9033_get_tune_settings(struct dvb_frontend *fe,
		struct dvb_frontend_tune_settings *fesettings)
{
496 497
	/* 800 => 2000 because IT9135 v2 is slow to gain lock */
	fesettings->min_delay_ms = 2000;
498 499 500 501 502 503 504 505 506 507
	fesettings->step_size = 0;
	fesettings->max_drift = 0;

	return 0;
}

static int af9033_set_frontend(struct dvb_frontend *fe)
{
	struct af9033_state *state = fe->demodulator_priv;
	struct dtv_frontend_properties *c = &fe->dtv_property_cache;
508
	int ret, i, spec_inv, sampling_freq;
509
	u8 tmp, buf[3], bandwidth_reg_val;
510
	u32 if_frequency, freq_cw, adc_freq;
511

512 513
	dev_dbg(&state->i2c->dev, "%s: frequency=%d bandwidth_hz=%d\n",
			__func__, c->frequency, c->bandwidth_hz);
514 515 516 517 518 519 520 521 522 523 524 525 526

	/* check bandwidth */
	switch (c->bandwidth_hz) {
	case 6000000:
		bandwidth_reg_val = 0x00;
		break;
	case 7000000:
		bandwidth_reg_val = 0x01;
		break;
	case 8000000:
		bandwidth_reg_val = 0x02;
		break;
	default:
527 528
		dev_dbg(&state->i2c->dev, "%s: invalid bandwidth_hz\n",
				__func__);
529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550
		ret = -EINVAL;
		goto err;
	}

	/* program tuner */
	if (fe->ops.tuner_ops.set_params)
		fe->ops.tuner_ops.set_params(fe);

	/* program CFOE coefficients */
	if (c->bandwidth_hz != state->bandwidth_hz) {
		for (i = 0; i < ARRAY_SIZE(coeff_lut); i++) {
			if (coeff_lut[i].clock == state->cfg.clock &&
				coeff_lut[i].bandwidth_hz == c->bandwidth_hz) {
				break;
			}
		}
		ret =  af9033_wr_regs(state, 0x800001,
				coeff_lut[i].val, sizeof(coeff_lut[i].val));
	}

	/* program frequency control */
	if (c->bandwidth_hz != state->bandwidth_hz) {
551 552 553 554 555 556 557 558
		spec_inv = state->cfg.spec_inv ? -1 : 1;

		for (i = 0; i < ARRAY_SIZE(clock_adc_lut); i++) {
			if (clock_adc_lut[i].clock == state->cfg.clock)
				break;
		}
		adc_freq = clock_adc_lut[i].adc;

559 560 561 562 563 564
		/* get used IF frequency */
		if (fe->ops.tuner_ops.get_if_frequency)
			fe->ops.tuner_ops.get_if_frequency(fe, &if_frequency);
		else
			if_frequency = 0;

565
		sampling_freq = if_frequency;
566

567 568 569 570
		while (sampling_freq > (adc_freq / 2))
			sampling_freq -= adc_freq;

		if (sampling_freq >= 0)
571 572
			spec_inv *= -1;
		else
573
			sampling_freq *= -1;
574

575
		freq_cw = af9033_div(state, sampling_freq, adc_freq, 23ul);
576 577

		if (spec_inv == -1)
578
			freq_cw = 0x800000 - freq_cw;
579

580
		if (state->cfg.adc_multiplier == AF9033_ADC_MULTIPLIER_2X)
581 582
			freq_cw /= 2;

583 584 585
		buf[0] = (freq_cw >>  0) & 0xff;
		buf[1] = (freq_cw >>  8) & 0xff;
		buf[2] = (freq_cw >> 16) & 0x7f;
586 587 588 589 590

		/* FIXME: there seems to be calculation error here... */
		if (if_frequency == 0)
			buf[2] = 0;

591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629
		ret = af9033_wr_regs(state, 0x800029, buf, 3);
		if (ret < 0)
			goto err;

		state->bandwidth_hz = c->bandwidth_hz;
	}

	ret = af9033_wr_reg_mask(state, 0x80f904, bandwidth_reg_val, 0x03);
	if (ret < 0)
		goto err;

	ret = af9033_wr_reg(state, 0x800040, 0x00);
	if (ret < 0)
		goto err;

	ret = af9033_wr_reg(state, 0x800047, 0x00);
	if (ret < 0)
		goto err;

	ret = af9033_wr_reg_mask(state, 0x80f999, 0x00, 0x01);
	if (ret < 0)
		goto err;

	if (c->frequency <= 230000000)
		tmp = 0x00; /* VHF */
	else
		tmp = 0x01; /* UHF */

	ret = af9033_wr_reg(state, 0x80004b, tmp);
	if (ret < 0)
		goto err;

	ret = af9033_wr_reg(state, 0x800000, 0x00);
	if (ret < 0)
		goto err;

	return 0;

err:
630
	dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
631 632 633 634

	return ret;
}

635 636 637
static int af9033_get_frontend(struct dvb_frontend *fe)
{
	struct af9033_state *state = fe->demodulator_priv;
638
	struct dtv_frontend_properties *c = &fe->dtv_property_cache;
639 640 641
	int ret;
	u8 buf[8];

642
	dev_dbg(&state->i2c->dev, "%s:\n", __func__);
643 644 645

	/* read all needed registers */
	ret = af9033_rd_regs(state, 0x80f900, buf, sizeof(buf));
646 647
	if (ret < 0)
		goto err;
648 649 650

	switch ((buf[0] >> 0) & 3) {
	case 0:
651
		c->transmission_mode = TRANSMISSION_MODE_2K;
652 653
		break;
	case 1:
654
		c->transmission_mode = TRANSMISSION_MODE_8K;
655 656 657 658 659
		break;
	}

	switch ((buf[1] >> 0) & 3) {
	case 0:
660
		c->guard_interval = GUARD_INTERVAL_1_32;
661 662
		break;
	case 1:
663
		c->guard_interval = GUARD_INTERVAL_1_16;
664 665
		break;
	case 2:
666
		c->guard_interval = GUARD_INTERVAL_1_8;
667 668
		break;
	case 3:
669
		c->guard_interval = GUARD_INTERVAL_1_4;
670 671 672 673 674
		break;
	}

	switch ((buf[2] >> 0) & 7) {
	case 0:
675
		c->hierarchy = HIERARCHY_NONE;
676 677
		break;
	case 1:
678
		c->hierarchy = HIERARCHY_1;
679 680
		break;
	case 2:
681
		c->hierarchy = HIERARCHY_2;
682 683
		break;
	case 3:
684
		c->hierarchy = HIERARCHY_4;
685 686 687 688 689
		break;
	}

	switch ((buf[3] >> 0) & 3) {
	case 0:
690
		c->modulation = QPSK;
691 692
		break;
	case 1:
693
		c->modulation = QAM_16;
694 695
		break;
	case 2:
696
		c->modulation = QAM_64;
697 698 699 700 701
		break;
	}

	switch ((buf[4] >> 0) & 3) {
	case 0:
702
		c->bandwidth_hz = 6000000;
703 704
		break;
	case 1:
705
		c->bandwidth_hz = 7000000;
706 707
		break;
	case 2:
708
		c->bandwidth_hz = 8000000;
709 710 711 712 713
		break;
	}

	switch ((buf[6] >> 0) & 7) {
	case 0:
714
		c->code_rate_HP = FEC_1_2;
715 716
		break;
	case 1:
717
		c->code_rate_HP = FEC_2_3;
718 719
		break;
	case 2:
720
		c->code_rate_HP = FEC_3_4;
721 722
		break;
	case 3:
723
		c->code_rate_HP = FEC_5_6;
724 725
		break;
	case 4:
726
		c->code_rate_HP = FEC_7_8;
727 728
		break;
	case 5:
729
		c->code_rate_HP = FEC_NONE;
730 731 732 733 734
		break;
	}

	switch ((buf[7] >> 0) & 7) {
	case 0:
735
		c->code_rate_LP = FEC_1_2;
736 737
		break;
	case 1:
738
		c->code_rate_LP = FEC_2_3;
739 740
		break;
	case 2:
741
		c->code_rate_LP = FEC_3_4;
742 743
		break;
	case 3:
744
		c->code_rate_LP = FEC_5_6;
745 746
		break;
	case 4:
747
		c->code_rate_LP = FEC_7_8;
748 749
		break;
	case 5:
750
		c->code_rate_LP = FEC_NONE;
751 752 753
		break;
	}

754
	return 0;
755

756
err:
757
	dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
758 759 760 761

	return ret;
}

762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802
static int af9033_read_status(struct dvb_frontend *fe, fe_status_t *status)
{
	struct af9033_state *state = fe->demodulator_priv;
	int ret;
	u8 tmp;

	*status = 0;

	/* radio channel status, 0=no result, 1=has signal, 2=no signal */
	ret = af9033_rd_reg(state, 0x800047, &tmp);
	if (ret < 0)
		goto err;

	/* has signal */
	if (tmp == 0x01)
		*status |= FE_HAS_SIGNAL;

	if (tmp != 0x02) {
		/* TPS lock */
		ret = af9033_rd_reg_mask(state, 0x80f5a9, &tmp, 0x01);
		if (ret < 0)
			goto err;

		if (tmp)
			*status |= FE_HAS_SIGNAL | FE_HAS_CARRIER |
					FE_HAS_VITERBI;

		/* full lock */
		ret = af9033_rd_reg_mask(state, 0x80f999, &tmp, 0x01);
		if (ret < 0)
			goto err;

		if (tmp)
			*status |= FE_HAS_SIGNAL | FE_HAS_CARRIER |
					FE_HAS_VITERBI | FE_HAS_SYNC |
					FE_HAS_LOCK;
	}

	return 0;

err:
803
	dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
804 805 806 807 808 809

	return ret;
}

static int af9033_read_snr(struct dvb_frontend *fe, u16 *snr)
{
810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852
	struct af9033_state *state = fe->demodulator_priv;
	int ret, i, len;
	u8 buf[3], tmp;
	u32 snr_val;
	const struct val_snr *uninitialized_var(snr_lut);

	/* read value */
	ret = af9033_rd_regs(state, 0x80002c, buf, 3);
	if (ret < 0)
		goto err;

	snr_val = (buf[2] << 16) | (buf[1] << 8) | buf[0];

	/* read current modulation */
	ret = af9033_rd_reg(state, 0x80f903, &tmp);
	if (ret < 0)
		goto err;

	switch ((tmp >> 0) & 3) {
	case 0:
		len = ARRAY_SIZE(qpsk_snr_lut);
		snr_lut = qpsk_snr_lut;
		break;
	case 1:
		len = ARRAY_SIZE(qam16_snr_lut);
		snr_lut = qam16_snr_lut;
		break;
	case 2:
		len = ARRAY_SIZE(qam64_snr_lut);
		snr_lut = qam64_snr_lut;
		break;
	default:
		goto err;
	}

	for (i = 0; i < len; i++) {
		tmp = snr_lut[i].snr;

		if (snr_val < snr_lut[i].val)
			break;
	}

	*snr = tmp * 10; /* dB/10 */
853 854

	return 0;
855 856

err:
857
	dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
858 859

	return ret;
860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878
}

static int af9033_read_signal_strength(struct dvb_frontend *fe, u16 *strength)
{
	struct af9033_state *state = fe->demodulator_priv;
	int ret;
	u8 strength2;

	/* read signal strength of 0-100 scale */
	ret = af9033_rd_reg(state, 0x800048, &strength2);
	if (ret < 0)
		goto err;

	/* scale value to 0x0000-0xffff */
	*strength = strength2 * 0xffff / 100;

	return 0;

err:
879
	dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
880 881 882 883

	return ret;
}

884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922
static int af9033_update_ch_stat(struct af9033_state *state)
{
	int ret = 0;
	u32 err_cnt, bit_cnt;
	u16 abort_cnt;
	u8 buf[7];

	/* only update data every half second */
	if (time_after(jiffies, state->last_stat_check + msecs_to_jiffies(500))) {
		ret = af9033_rd_regs(state, 0x800032, buf, sizeof(buf));
		if (ret < 0)
			goto err;
		/* in 8 byte packets? */
		abort_cnt = (buf[1] << 8) + buf[0];
		/* in bits */
		err_cnt = (buf[4] << 16) + (buf[3] << 8) + buf[2];
		/* in 8 byte packets? always(?) 0x2710 = 10000 */
		bit_cnt = (buf[6] << 8) + buf[5];

		if (bit_cnt < abort_cnt) {
			abort_cnt = 1000;
			state->ber = 0xffffffff;
		} else {
			/* 8 byte packets, that have not been rejected already */
			bit_cnt -= (u32)abort_cnt;
			if (bit_cnt == 0) {
				state->ber = 0xffffffff;
			} else {
				err_cnt -= (u32)abort_cnt * 8 * 8;
				bit_cnt *= 8 * 8;
				state->ber = err_cnt * (0xffffffff / bit_cnt);
			}
		}
		state->ucb += abort_cnt;
		state->last_stat_check = jiffies;
	}

	return 0;
err:
923 924
	dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);

925 926 927
	return ret;
}

928 929
static int af9033_read_ber(struct dvb_frontend *fe, u32 *ber)
{
930 931 932 933 934 935 936 937
	struct af9033_state *state = fe->demodulator_priv;
	int ret;

	ret = af9033_update_ch_stat(state);
	if (ret < 0)
		return ret;

	*ber = state->ber;
938 939 940 941 942 943

	return 0;
}

static int af9033_read_ucblocks(struct dvb_frontend *fe, u32 *ucblocks)
{
944 945 946 947 948 949 950 951
	struct af9033_state *state = fe->demodulator_priv;
	int ret;

	ret = af9033_update_ch_stat(state);
	if (ret < 0)
		return ret;

	*ucblocks = state->ucb;
952 953 954 955 956 957 958 959 960

	return 0;
}

static int af9033_i2c_gate_ctrl(struct dvb_frontend *fe, int enable)
{
	struct af9033_state *state = fe->demodulator_priv;
	int ret;

961
	dev_dbg(&state->i2c->dev, "%s: enable=%d\n", __func__, enable);
962 963 964 965 966 967 968 969

	ret = af9033_wr_reg_mask(state, 0x00fa04, enable, 0x01);
	if (ret < 0)
		goto err;

	return 0;

err:
970
	dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
971 972 973 974 975 976 977 978 979 980 981 982 983

	return ret;
}

static struct dvb_frontend_ops af9033_ops;

struct dvb_frontend *af9033_attach(const struct af9033_config *config,
		struct i2c_adapter *i2c)
{
	int ret;
	struct af9033_state *state;
	u8 buf[8];

984
	dev_dbg(&i2c->dev, "%s:\n", __func__);
985 986 987 988 989 990 991 992 993 994

	/* allocate memory for the internal state */
	state = kzalloc(sizeof(struct af9033_state), GFP_KERNEL);
	if (state == NULL)
		goto err;

	/* setup the state */
	state->i2c = i2c;
	memcpy(&state->cfg, config, sizeof(struct af9033_config));

995
	if (state->cfg.clock != 12000000) {
996 997 998
		dev_err(&state->i2c->dev, "%s: af9033: unsupported clock=%d, " \
				"only 12000000 Hz is supported currently\n",
				KBUILD_MODNAME, state->cfg.clock);
999 1000 1001
		goto err;
	}

1002 1003 1004 1005 1006 1007 1008 1009 1010
	/* firmware version */
	ret = af9033_rd_regs(state, 0x0083e9, &buf[0], 4);
	if (ret < 0)
		goto err;

	ret = af9033_rd_regs(state, 0x804191, &buf[4], 4);
	if (ret < 0)
		goto err;

1011 1012 1013
	dev_info(&state->i2c->dev, "%s: firmware version: LINK=%d.%d.%d.%d " \
			"OFDM=%d.%d.%d.%d\n", KBUILD_MODNAME, buf[0], buf[1],
			buf[2], buf[3], buf[4], buf[5], buf[6], buf[7]);
1014

1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
	/* sleep */
	switch (state->cfg.tuner) {
	case AF9033_TUNER_IT9135_38:
	case AF9033_TUNER_IT9135_51:
	case AF9033_TUNER_IT9135_52:
	case AF9033_TUNER_IT9135_60:
	case AF9033_TUNER_IT9135_61:
	case AF9033_TUNER_IT9135_62:
		/* IT9135 did not like to sleep at that early */
		break;
	default:
1026 1027 1028 1029 1030 1031 1032 1033
		ret = af9033_wr_reg(state, 0x80004c, 1);
		if (ret < 0)
			goto err;

		ret = af9033_wr_reg(state, 0x800000, 0);
		if (ret < 0)
			goto err;
	}
1034

1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
	/* configure internal TS mode */
	switch (state->cfg.ts_mode) {
	case AF9033_TS_MODE_PARALLEL:
		state->ts_mode_parallel = true;
		break;
	case AF9033_TS_MODE_SERIAL:
		state->ts_mode_serial = true;
		break;
	case AF9033_TS_MODE_USB:
		/* usb mode for AF9035 */
	default:
		break;
	}

	/* create dvb_frontend */
	memcpy(&state->fe.ops, &af9033_ops, sizeof(struct dvb_frontend_ops));
	state->fe.demodulator_priv = state;

	return &state->fe;

err:
	kfree(state);
	return NULL;
}
EXPORT_SYMBOL(af9033_attach);

static struct dvb_frontend_ops af9033_ops = {
	.delsys = { SYS_DVBT },
	.info = {
		.name = "Afatech AF9033 (DVB-T)",
		.frequency_min = 174000000,
		.frequency_max = 862000000,
		.frequency_stepsize = 250000,
		.frequency_tolerance = 0,
		.caps =	FE_CAN_FEC_1_2 |
			FE_CAN_FEC_2_3 |
			FE_CAN_FEC_3_4 |
			FE_CAN_FEC_5_6 |
			FE_CAN_FEC_7_8 |
			FE_CAN_FEC_AUTO |
			FE_CAN_QPSK |
			FE_CAN_QAM_16 |
			FE_CAN_QAM_64 |
			FE_CAN_QAM_AUTO |
			FE_CAN_TRANSMISSION_MODE_AUTO |
			FE_CAN_GUARD_INTERVAL_AUTO |
			FE_CAN_HIERARCHY_AUTO |
			FE_CAN_RECOVER |
			FE_CAN_MUTE_TS
	},

	.release = af9033_release,

	.init = af9033_init,
	.sleep = af9033_sleep,

	.get_tune_settings = af9033_get_tune_settings,
	.set_frontend = af9033_set_frontend,
1093
	.get_frontend = af9033_get_frontend,
1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106

	.read_status = af9033_read_status,
	.read_snr = af9033_read_snr,
	.read_signal_strength = af9033_read_signal_strength,
	.read_ber = af9033_read_ber,
	.read_ucblocks = af9033_read_ucblocks,

	.i2c_gate_ctrl = af9033_i2c_gate_ctrl,
};

MODULE_AUTHOR("Antti Palosaari <crope@iki.fi>");
MODULE_DESCRIPTION("Afatech AF9033 DVB-T demodulator driver");
MODULE_LICENSE("GPL");