af9033.c 22.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
/*
 * Afatech AF9033 demodulator driver
 *
 * Copyright (C) 2009 Antti Palosaari <crope@iki.fi>
 * Copyright (C) 2012 Antti Palosaari <crope@iki.fi>
 *
 *    This program is free software; you can redistribute it and/or modify
 *    it under the terms of the GNU General Public License as published by
 *    the Free Software Foundation; either version 2 of the License, or
 *    (at your option) any later version.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *    GNU General Public License for more details.
 *
 *    You should have received a copy of the GNU General Public License along
 *    with this program; if not, write to the Free Software Foundation, Inc.,
 *    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 */

#include "af9033_priv.h"

struct af9033_state {
	struct i2c_adapter *i2c;
	struct dvb_frontend fe;
	struct af9033_config cfg;

	u32 bandwidth_hz;
	bool ts_mode_parallel;
	bool ts_mode_serial;
32 33 34 35

	u32 ber;
	u32 ucb;
	unsigned long last_stat_check;
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
};

/* write multiple registers */
static int af9033_wr_regs(struct af9033_state *state, u32 reg, const u8 *val,
		int len)
{
	int ret;
	u8 buf[3 + len];
	struct i2c_msg msg[1] = {
		{
			.addr = state->cfg.i2c_addr,
			.flags = 0,
			.len = sizeof(buf),
			.buf = buf,
		}
	};

	buf[0] = (reg >> 16) & 0xff;
	buf[1] = (reg >>  8) & 0xff;
	buf[2] = (reg >>  0) & 0xff;
	memcpy(&buf[3], val, len);

	ret = i2c_transfer(state->i2c, msg, 1);
	if (ret == 1) {
		ret = 0;
	} else {
62 63
		dev_warn(&state->i2c->dev, "%s: i2c wr failed=%d reg=%06x " \
				"len=%d\n", KBUILD_MODNAME, ret, reg, len);
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
		ret = -EREMOTEIO;
	}

	return ret;
}

/* read multiple registers */
static int af9033_rd_regs(struct af9033_state *state, u32 reg, u8 *val, int len)
{
	int ret;
	u8 buf[3] = { (reg >> 16) & 0xff, (reg >> 8) & 0xff,
			(reg >> 0) & 0xff };
	struct i2c_msg msg[2] = {
		{
			.addr = state->cfg.i2c_addr,
			.flags = 0,
			.len = sizeof(buf),
			.buf = buf
		}, {
			.addr = state->cfg.i2c_addr,
			.flags = I2C_M_RD,
			.len = len,
			.buf = val
		}
	};

	ret = i2c_transfer(state->i2c, msg, 2);
	if (ret == 2) {
		ret = 0;
	} else {
94 95
		dev_warn(&state->i2c->dev, "%s: i2c rd failed=%d reg=%06x " \
				"len=%d\n", KBUILD_MODNAME, ret, reg, len);
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
		ret = -EREMOTEIO;
	}

	return ret;
}


/* write single register */
static int af9033_wr_reg(struct af9033_state *state, u32 reg, u8 val)
{
	return af9033_wr_regs(state, reg, &val, 1);
}

/* read single register */
static int af9033_rd_reg(struct af9033_state *state, u32 reg, u8 *val)
{
	return af9033_rd_regs(state, reg, val, 1);
}

/* write single register with mask */
static int af9033_wr_reg_mask(struct af9033_state *state, u32 reg, u8 val,
		u8 mask)
{
	int ret;
	u8 tmp;

	/* no need for read if whole reg is written */
	if (mask != 0xff) {
		ret = af9033_rd_regs(state, reg, &tmp, 1);
		if (ret)
			return ret;

		val &= mask;
		tmp &= ~mask;
		val |= tmp;
	}

	return af9033_wr_regs(state, reg, &val, 1);
}

/* read single register with mask */
static int af9033_rd_reg_mask(struct af9033_state *state, u32 reg, u8 *val,
		u8 mask)
{
	int ret, i;
	u8 tmp;

	ret = af9033_rd_regs(state, reg, &tmp, 1);
	if (ret)
		return ret;

	tmp &= mask;

	/* find position of the first bit */
	for (i = 0; i < 8; i++) {
		if ((mask >> i) & 0x01)
			break;
	}
	*val = tmp >> i;

	return 0;
}

159
static u32 af9033_div(struct af9033_state *state, u32 a, u32 b, u32 x)
160 161 162
{
	u32 r = 0, c = 0, i;

163
	dev_dbg(&state->i2c->dev, "%s: a=%d b=%d x=%d\n", __func__, a, b, x);
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179

	if (a > b) {
		c = a / b;
		a = a - c * b;
	}

	for (i = 0; i < x; i++) {
		if (a >= b) {
			r += 1;
			a -= b;
		}
		a <<= 1;
		r <<= 1;
	}
	r = (c << (u32)x) + r;

180 181
	dev_dbg(&state->i2c->dev, "%s: a=%d b=%d x=%d r=%d r=%x\n",
			__func__, a, b, x, r, r);
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225

	return r;
}

static void af9033_release(struct dvb_frontend *fe)
{
	struct af9033_state *state = fe->demodulator_priv;

	kfree(state);
}

static int af9033_init(struct dvb_frontend *fe)
{
	struct af9033_state *state = fe->demodulator_priv;
	int ret, i, len;
	const struct reg_val *init;
	u8 buf[4];
	u32 adc_cw, clock_cw;
	struct reg_val_mask tab[] = {
		{ 0x80fb24, 0x00, 0x08 },
		{ 0x80004c, 0x00, 0xff },
		{ 0x00f641, state->cfg.tuner, 0xff },
		{ 0x80f5ca, 0x01, 0x01 },
		{ 0x80f715, 0x01, 0x01 },
		{ 0x00f41f, 0x04, 0x04 },
		{ 0x00f41a, 0x01, 0x01 },
		{ 0x80f731, 0x00, 0x01 },
		{ 0x00d91e, 0x00, 0x01 },
		{ 0x00d919, 0x00, 0x01 },
		{ 0x80f732, 0x00, 0x01 },
		{ 0x00d91f, 0x00, 0x01 },
		{ 0x00d91a, 0x00, 0x01 },
		{ 0x80f730, 0x00, 0x01 },
		{ 0x80f778, 0x00, 0xff },
		{ 0x80f73c, 0x01, 0x01 },
		{ 0x80f776, 0x00, 0x01 },
		{ 0x00d8fd, 0x01, 0xff },
		{ 0x00d830, 0x01, 0xff },
		{ 0x00d831, 0x00, 0xff },
		{ 0x00d832, 0x00, 0xff },
		{ 0x80f985, state->ts_mode_serial, 0x01 },
		{ 0x80f986, state->ts_mode_parallel, 0x01 },
		{ 0x00d827, 0x00, 0xff },
		{ 0x00d829, 0x00, 0xff },
226
		{ 0x800045, state->cfg.adc_multiplier, 0xff },
227 228 229
	};

	/* program clock control */
230
	clock_cw = af9033_div(state, state->cfg.clock, 1000000ul, 19ul);
231 232 233 234 235
	buf[0] = (clock_cw >>  0) & 0xff;
	buf[1] = (clock_cw >>  8) & 0xff;
	buf[2] = (clock_cw >> 16) & 0xff;
	buf[3] = (clock_cw >> 24) & 0xff;

236 237
	dev_dbg(&state->i2c->dev, "%s: clock=%d clock_cw=%08x\n",
			__func__, state->cfg.clock, clock_cw);
238 239 240 241 242 243 244 245 246 247 248

	ret = af9033_wr_regs(state, 0x800025, buf, 4);
	if (ret < 0)
		goto err;

	/* program ADC control */
	for (i = 0; i < ARRAY_SIZE(clock_adc_lut); i++) {
		if (clock_adc_lut[i].clock == state->cfg.clock)
			break;
	}

249
	adc_cw = af9033_div(state, clock_adc_lut[i].adc, 1000000ul, 19ul);
250 251 252 253
	buf[0] = (adc_cw >>  0) & 0xff;
	buf[1] = (adc_cw >>  8) & 0xff;
	buf[2] = (adc_cw >> 16) & 0xff;

254 255
	dev_dbg(&state->i2c->dev, "%s: adc=%d adc_cw=%06x\n",
			__func__, clock_adc_lut[i].adc, adc_cw);
256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288

	ret = af9033_wr_regs(state, 0x80f1cd, buf, 3);
	if (ret < 0)
		goto err;

	/* program register table */
	for (i = 0; i < ARRAY_SIZE(tab); i++) {
		ret = af9033_wr_reg_mask(state, tab[i].reg, tab[i].val,
				tab[i].mask);
		if (ret < 0)
			goto err;
	}

	/* settings for TS interface */
	if (state->cfg.ts_mode == AF9033_TS_MODE_USB) {
		ret = af9033_wr_reg_mask(state, 0x80f9a5, 0x00, 0x01);
		if (ret < 0)
			goto err;

		ret = af9033_wr_reg_mask(state, 0x80f9b5, 0x01, 0x01);
		if (ret < 0)
			goto err;
	} else {
		ret = af9033_wr_reg_mask(state, 0x80f990, 0x00, 0x01);
		if (ret < 0)
			goto err;

		ret = af9033_wr_reg_mask(state, 0x80f9b5, 0x00, 0x01);
		if (ret < 0)
			goto err;
	}

	/* load OFSM settings */
289
	dev_dbg(&state->i2c->dev, "%s: load ofsm settings\n", __func__);
290 291 292 293
	switch (state->cfg.tuner) {
	case AF9033_TUNER_IT9135_38:
	case AF9033_TUNER_IT9135_51:
	case AF9033_TUNER_IT9135_52:
294 295 296
		len = ARRAY_SIZE(ofsm_init_it9135_v1);
		init = ofsm_init_it9135_v1;
		break;
297 298 299
	case AF9033_TUNER_IT9135_60:
	case AF9033_TUNER_IT9135_61:
	case AF9033_TUNER_IT9135_62:
300 301
		len = ARRAY_SIZE(ofsm_init_it9135_v2);
		init = ofsm_init_it9135_v2;
302 303 304 305 306 307 308
		break;
	default:
		len = ARRAY_SIZE(ofsm_init);
		init = ofsm_init;
		break;
	}

309 310 311 312 313 314 315
	for (i = 0; i < len; i++) {
		ret = af9033_wr_reg(state, init[i].reg, init[i].val);
		if (ret < 0)
			goto err;
	}

	/* load tuner specific settings */
316
	dev_dbg(&state->i2c->dev, "%s: load tuner specific settings\n",
317 318 319 320 321 322
			__func__);
	switch (state->cfg.tuner) {
	case AF9033_TUNER_TUA9001:
		len = ARRAY_SIZE(tuner_init_tua9001);
		init = tuner_init_tua9001;
		break;
323 324 325 326
	case AF9033_TUNER_FC0011:
		len = ARRAY_SIZE(tuner_init_fc0011);
		init = tuner_init_fc0011;
		break;
327 328 329 330
	case AF9033_TUNER_MXL5007T:
		len = ARRAY_SIZE(tuner_init_mxl5007t);
		init = tuner_init_mxl5007t;
		break;
331 332 333 334
	case AF9033_TUNER_TDA18218:
		len = ARRAY_SIZE(tuner_init_tda18218);
		init = tuner_init_tda18218;
		break;
335 336 337 338
	case AF9033_TUNER_FC2580:
		len = ARRAY_SIZE(tuner_init_fc2580);
		init = tuner_init_fc2580;
		break;
339 340 341 342
	case AF9033_TUNER_FC0012:
		len = ARRAY_SIZE(tuner_init_fc0012);
		init = tuner_init_fc0012;
		break;
343
	case AF9033_TUNER_IT9135_38:
344 345 346
		len = ARRAY_SIZE(tuner_init_it9135_38);
		init = tuner_init_it9135_38;
		break;
347
	case AF9033_TUNER_IT9135_51:
348 349 350
		len = ARRAY_SIZE(tuner_init_it9135_51);
		init = tuner_init_it9135_51;
		break;
351
	case AF9033_TUNER_IT9135_52:
352 353 354
		len = ARRAY_SIZE(tuner_init_it9135_52);
		init = tuner_init_it9135_52;
		break;
355
	case AF9033_TUNER_IT9135_60:
356 357 358
		len = ARRAY_SIZE(tuner_init_it9135_60);
		init = tuner_init_it9135_60;
		break;
359
	case AF9033_TUNER_IT9135_61:
360 361 362
		len = ARRAY_SIZE(tuner_init_it9135_61);
		init = tuner_init_it9135_61;
		break;
363
	case AF9033_TUNER_IT9135_62:
364 365
		len = ARRAY_SIZE(tuner_init_it9135_62);
		init = tuner_init_it9135_62;
366
		break;
367
	default:
368 369
		dev_dbg(&state->i2c->dev, "%s: unsupported tuner ID=%d\n",
				__func__, state->cfg.tuner);
370 371 372 373 374 375 376 377 378 379
		ret = -ENODEV;
		goto err;
	}

	for (i = 0; i < len; i++) {
		ret = af9033_wr_reg(state, init[i].reg, init[i].val);
		if (ret < 0)
			goto err;
	}

380 381 382 383
	if (state->cfg.ts_mode == AF9033_TS_MODE_SERIAL) {
		ret = af9033_wr_reg_mask(state, 0x00d91c, 0x01, 0x01);
		if (ret < 0)
			goto err;
384

385 386 387
		ret = af9033_wr_reg_mask(state, 0x00d917, 0x00, 0x01);
		if (ret < 0)
			goto err;
388

389 390 391 392 393
		ret = af9033_wr_reg_mask(state, 0x00d916, 0x00, 0x01);
		if (ret < 0)
			goto err;
	}

394 395 396 397 398
	state->bandwidth_hz = 0; /* force to program all parameters */

	return 0;

err:
399
	dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425

	return ret;
}

static int af9033_sleep(struct dvb_frontend *fe)
{
	struct af9033_state *state = fe->demodulator_priv;
	int ret, i;
	u8 tmp;

	ret = af9033_wr_reg(state, 0x80004c, 1);
	if (ret < 0)
		goto err;

	ret = af9033_wr_reg(state, 0x800000, 0);
	if (ret < 0)
		goto err;

	for (i = 100, tmp = 1; i && tmp; i--) {
		ret = af9033_rd_reg(state, 0x80004c, &tmp);
		if (ret < 0)
			goto err;

		usleep_range(200, 10000);
	}

426
	dev_dbg(&state->i2c->dev, "%s: loop=%d\n", __func__, i);
427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451

	if (i == 0) {
		ret = -ETIMEDOUT;
		goto err;
	}

	ret = af9033_wr_reg_mask(state, 0x80fb24, 0x08, 0x08);
	if (ret < 0)
		goto err;

	/* prevent current leak (?) */
	if (state->cfg.ts_mode == AF9033_TS_MODE_SERIAL) {
		/* enable parallel TS */
		ret = af9033_wr_reg_mask(state, 0x00d917, 0x00, 0x01);
		if (ret < 0)
			goto err;

		ret = af9033_wr_reg_mask(state, 0x00d916, 0x01, 0x01);
		if (ret < 0)
			goto err;
	}

	return 0;

err:
452
	dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
453 454 455 456 457 458 459

	return ret;
}

static int af9033_get_tune_settings(struct dvb_frontend *fe,
		struct dvb_frontend_tune_settings *fesettings)
{
460 461
	/* 800 => 2000 because IT9135 v2 is slow to gain lock */
	fesettings->min_delay_ms = 2000;
462 463 464 465 466 467 468 469 470 471
	fesettings->step_size = 0;
	fesettings->max_drift = 0;

	return 0;
}

static int af9033_set_frontend(struct dvb_frontend *fe)
{
	struct af9033_state *state = fe->demodulator_priv;
	struct dtv_frontend_properties *c = &fe->dtv_property_cache;
472
	int ret, i, spec_inv, sampling_freq;
473
	u8 tmp, buf[3], bandwidth_reg_val;
474
	u32 if_frequency, freq_cw, adc_freq;
475

476 477
	dev_dbg(&state->i2c->dev, "%s: frequency=%d bandwidth_hz=%d\n",
			__func__, c->frequency, c->bandwidth_hz);
478 479 480 481 482 483 484 485 486 487 488 489 490

	/* check bandwidth */
	switch (c->bandwidth_hz) {
	case 6000000:
		bandwidth_reg_val = 0x00;
		break;
	case 7000000:
		bandwidth_reg_val = 0x01;
		break;
	case 8000000:
		bandwidth_reg_val = 0x02;
		break;
	default:
491 492
		dev_dbg(&state->i2c->dev, "%s: invalid bandwidth_hz\n",
				__func__);
493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514
		ret = -EINVAL;
		goto err;
	}

	/* program tuner */
	if (fe->ops.tuner_ops.set_params)
		fe->ops.tuner_ops.set_params(fe);

	/* program CFOE coefficients */
	if (c->bandwidth_hz != state->bandwidth_hz) {
		for (i = 0; i < ARRAY_SIZE(coeff_lut); i++) {
			if (coeff_lut[i].clock == state->cfg.clock &&
				coeff_lut[i].bandwidth_hz == c->bandwidth_hz) {
				break;
			}
		}
		ret =  af9033_wr_regs(state, 0x800001,
				coeff_lut[i].val, sizeof(coeff_lut[i].val));
	}

	/* program frequency control */
	if (c->bandwidth_hz != state->bandwidth_hz) {
515 516 517 518 519 520 521 522
		spec_inv = state->cfg.spec_inv ? -1 : 1;

		for (i = 0; i < ARRAY_SIZE(clock_adc_lut); i++) {
			if (clock_adc_lut[i].clock == state->cfg.clock)
				break;
		}
		adc_freq = clock_adc_lut[i].adc;

523 524 525 526 527 528
		/* get used IF frequency */
		if (fe->ops.tuner_ops.get_if_frequency)
			fe->ops.tuner_ops.get_if_frequency(fe, &if_frequency);
		else
			if_frequency = 0;

529
		sampling_freq = if_frequency;
530

531 532 533 534
		while (sampling_freq > (adc_freq / 2))
			sampling_freq -= adc_freq;

		if (sampling_freq >= 0)
535 536
			spec_inv *= -1;
		else
537
			sampling_freq *= -1;
538

539
		freq_cw = af9033_div(state, sampling_freq, adc_freq, 23ul);
540 541

		if (spec_inv == -1)
542
			freq_cw = 0x800000 - freq_cw;
543

544
		if (state->cfg.adc_multiplier == AF9033_ADC_MULTIPLIER_2X)
545 546
			freq_cw /= 2;

547 548 549
		buf[0] = (freq_cw >>  0) & 0xff;
		buf[1] = (freq_cw >>  8) & 0xff;
		buf[2] = (freq_cw >> 16) & 0x7f;
550 551 552 553 554

		/* FIXME: there seems to be calculation error here... */
		if (if_frequency == 0)
			buf[2] = 0;

555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593
		ret = af9033_wr_regs(state, 0x800029, buf, 3);
		if (ret < 0)
			goto err;

		state->bandwidth_hz = c->bandwidth_hz;
	}

	ret = af9033_wr_reg_mask(state, 0x80f904, bandwidth_reg_val, 0x03);
	if (ret < 0)
		goto err;

	ret = af9033_wr_reg(state, 0x800040, 0x00);
	if (ret < 0)
		goto err;

	ret = af9033_wr_reg(state, 0x800047, 0x00);
	if (ret < 0)
		goto err;

	ret = af9033_wr_reg_mask(state, 0x80f999, 0x00, 0x01);
	if (ret < 0)
		goto err;

	if (c->frequency <= 230000000)
		tmp = 0x00; /* VHF */
	else
		tmp = 0x01; /* UHF */

	ret = af9033_wr_reg(state, 0x80004b, tmp);
	if (ret < 0)
		goto err;

	ret = af9033_wr_reg(state, 0x800000, 0x00);
	if (ret < 0)
		goto err;

	return 0;

err:
594
	dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
595 596 597 598

	return ret;
}

599 600 601
static int af9033_get_frontend(struct dvb_frontend *fe)
{
	struct af9033_state *state = fe->demodulator_priv;
602
	struct dtv_frontend_properties *c = &fe->dtv_property_cache;
603 604 605
	int ret;
	u8 buf[8];

606
	dev_dbg(&state->i2c->dev, "%s:\n", __func__);
607 608 609

	/* read all needed registers */
	ret = af9033_rd_regs(state, 0x80f900, buf, sizeof(buf));
610 611
	if (ret < 0)
		goto err;
612 613 614

	switch ((buf[0] >> 0) & 3) {
	case 0:
615
		c->transmission_mode = TRANSMISSION_MODE_2K;
616 617
		break;
	case 1:
618
		c->transmission_mode = TRANSMISSION_MODE_8K;
619 620 621 622 623
		break;
	}

	switch ((buf[1] >> 0) & 3) {
	case 0:
624
		c->guard_interval = GUARD_INTERVAL_1_32;
625 626
		break;
	case 1:
627
		c->guard_interval = GUARD_INTERVAL_1_16;
628 629
		break;
	case 2:
630
		c->guard_interval = GUARD_INTERVAL_1_8;
631 632
		break;
	case 3:
633
		c->guard_interval = GUARD_INTERVAL_1_4;
634 635 636 637 638
		break;
	}

	switch ((buf[2] >> 0) & 7) {
	case 0:
639
		c->hierarchy = HIERARCHY_NONE;
640 641
		break;
	case 1:
642
		c->hierarchy = HIERARCHY_1;
643 644
		break;
	case 2:
645
		c->hierarchy = HIERARCHY_2;
646 647
		break;
	case 3:
648
		c->hierarchy = HIERARCHY_4;
649 650 651 652 653
		break;
	}

	switch ((buf[3] >> 0) & 3) {
	case 0:
654
		c->modulation = QPSK;
655 656
		break;
	case 1:
657
		c->modulation = QAM_16;
658 659
		break;
	case 2:
660
		c->modulation = QAM_64;
661 662 663 664 665
		break;
	}

	switch ((buf[4] >> 0) & 3) {
	case 0:
666
		c->bandwidth_hz = 6000000;
667 668
		break;
	case 1:
669
		c->bandwidth_hz = 7000000;
670 671
		break;
	case 2:
672
		c->bandwidth_hz = 8000000;
673 674 675 676 677
		break;
	}

	switch ((buf[6] >> 0) & 7) {
	case 0:
678
		c->code_rate_HP = FEC_1_2;
679 680
		break;
	case 1:
681
		c->code_rate_HP = FEC_2_3;
682 683
		break;
	case 2:
684
		c->code_rate_HP = FEC_3_4;
685 686
		break;
	case 3:
687
		c->code_rate_HP = FEC_5_6;
688 689
		break;
	case 4:
690
		c->code_rate_HP = FEC_7_8;
691 692
		break;
	case 5:
693
		c->code_rate_HP = FEC_NONE;
694 695 696 697 698
		break;
	}

	switch ((buf[7] >> 0) & 7) {
	case 0:
699
		c->code_rate_LP = FEC_1_2;
700 701
		break;
	case 1:
702
		c->code_rate_LP = FEC_2_3;
703 704
		break;
	case 2:
705
		c->code_rate_LP = FEC_3_4;
706 707
		break;
	case 3:
708
		c->code_rate_LP = FEC_5_6;
709 710
		break;
	case 4:
711
		c->code_rate_LP = FEC_7_8;
712 713
		break;
	case 5:
714
		c->code_rate_LP = FEC_NONE;
715 716 717
		break;
	}

718
	return 0;
719

720
err:
721
	dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
722 723 724 725

	return ret;
}

726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766
static int af9033_read_status(struct dvb_frontend *fe, fe_status_t *status)
{
	struct af9033_state *state = fe->demodulator_priv;
	int ret;
	u8 tmp;

	*status = 0;

	/* radio channel status, 0=no result, 1=has signal, 2=no signal */
	ret = af9033_rd_reg(state, 0x800047, &tmp);
	if (ret < 0)
		goto err;

	/* has signal */
	if (tmp == 0x01)
		*status |= FE_HAS_SIGNAL;

	if (tmp != 0x02) {
		/* TPS lock */
		ret = af9033_rd_reg_mask(state, 0x80f5a9, &tmp, 0x01);
		if (ret < 0)
			goto err;

		if (tmp)
			*status |= FE_HAS_SIGNAL | FE_HAS_CARRIER |
					FE_HAS_VITERBI;

		/* full lock */
		ret = af9033_rd_reg_mask(state, 0x80f999, &tmp, 0x01);
		if (ret < 0)
			goto err;

		if (tmp)
			*status |= FE_HAS_SIGNAL | FE_HAS_CARRIER |
					FE_HAS_VITERBI | FE_HAS_SYNC |
					FE_HAS_LOCK;
	}

	return 0;

err:
767
	dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
768 769 770 771 772 773

	return ret;
}

static int af9033_read_snr(struct dvb_frontend *fe, u16 *snr)
{
774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816
	struct af9033_state *state = fe->demodulator_priv;
	int ret, i, len;
	u8 buf[3], tmp;
	u32 snr_val;
	const struct val_snr *uninitialized_var(snr_lut);

	/* read value */
	ret = af9033_rd_regs(state, 0x80002c, buf, 3);
	if (ret < 0)
		goto err;

	snr_val = (buf[2] << 16) | (buf[1] << 8) | buf[0];

	/* read current modulation */
	ret = af9033_rd_reg(state, 0x80f903, &tmp);
	if (ret < 0)
		goto err;

	switch ((tmp >> 0) & 3) {
	case 0:
		len = ARRAY_SIZE(qpsk_snr_lut);
		snr_lut = qpsk_snr_lut;
		break;
	case 1:
		len = ARRAY_SIZE(qam16_snr_lut);
		snr_lut = qam16_snr_lut;
		break;
	case 2:
		len = ARRAY_SIZE(qam64_snr_lut);
		snr_lut = qam64_snr_lut;
		break;
	default:
		goto err;
	}

	for (i = 0; i < len; i++) {
		tmp = snr_lut[i].snr;

		if (snr_val < snr_lut[i].val)
			break;
	}

	*snr = tmp * 10; /* dB/10 */
817 818

	return 0;
819 820

err:
821
	dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
822 823

	return ret;
824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842
}

static int af9033_read_signal_strength(struct dvb_frontend *fe, u16 *strength)
{
	struct af9033_state *state = fe->demodulator_priv;
	int ret;
	u8 strength2;

	/* read signal strength of 0-100 scale */
	ret = af9033_rd_reg(state, 0x800048, &strength2);
	if (ret < 0)
		goto err;

	/* scale value to 0x0000-0xffff */
	*strength = strength2 * 0xffff / 100;

	return 0;

err:
843
	dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
844 845 846 847

	return ret;
}

848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886
static int af9033_update_ch_stat(struct af9033_state *state)
{
	int ret = 0;
	u32 err_cnt, bit_cnt;
	u16 abort_cnt;
	u8 buf[7];

	/* only update data every half second */
	if (time_after(jiffies, state->last_stat_check + msecs_to_jiffies(500))) {
		ret = af9033_rd_regs(state, 0x800032, buf, sizeof(buf));
		if (ret < 0)
			goto err;
		/* in 8 byte packets? */
		abort_cnt = (buf[1] << 8) + buf[0];
		/* in bits */
		err_cnt = (buf[4] << 16) + (buf[3] << 8) + buf[2];
		/* in 8 byte packets? always(?) 0x2710 = 10000 */
		bit_cnt = (buf[6] << 8) + buf[5];

		if (bit_cnt < abort_cnt) {
			abort_cnt = 1000;
			state->ber = 0xffffffff;
		} else {
			/* 8 byte packets, that have not been rejected already */
			bit_cnt -= (u32)abort_cnt;
			if (bit_cnt == 0) {
				state->ber = 0xffffffff;
			} else {
				err_cnt -= (u32)abort_cnt * 8 * 8;
				bit_cnt *= 8 * 8;
				state->ber = err_cnt * (0xffffffff / bit_cnt);
			}
		}
		state->ucb += abort_cnt;
		state->last_stat_check = jiffies;
	}

	return 0;
err:
887 888
	dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);

889 890 891
	return ret;
}

892 893
static int af9033_read_ber(struct dvb_frontend *fe, u32 *ber)
{
894 895 896 897 898 899 900 901
	struct af9033_state *state = fe->demodulator_priv;
	int ret;

	ret = af9033_update_ch_stat(state);
	if (ret < 0)
		return ret;

	*ber = state->ber;
902 903 904 905 906 907

	return 0;
}

static int af9033_read_ucblocks(struct dvb_frontend *fe, u32 *ucblocks)
{
908 909 910 911 912 913 914 915
	struct af9033_state *state = fe->demodulator_priv;
	int ret;

	ret = af9033_update_ch_stat(state);
	if (ret < 0)
		return ret;

	*ucblocks = state->ucb;
916 917 918 919 920 921 922 923 924

	return 0;
}

static int af9033_i2c_gate_ctrl(struct dvb_frontend *fe, int enable)
{
	struct af9033_state *state = fe->demodulator_priv;
	int ret;

925
	dev_dbg(&state->i2c->dev, "%s: enable=%d\n", __func__, enable);
926 927 928 929 930 931 932 933

	ret = af9033_wr_reg_mask(state, 0x00fa04, enable, 0x01);
	if (ret < 0)
		goto err;

	return 0;

err:
934
	dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
935 936 937 938 939 940 941 942 943 944 945 946 947

	return ret;
}

static struct dvb_frontend_ops af9033_ops;

struct dvb_frontend *af9033_attach(const struct af9033_config *config,
		struct i2c_adapter *i2c)
{
	int ret;
	struct af9033_state *state;
	u8 buf[8];

948
	dev_dbg(&i2c->dev, "%s:\n", __func__);
949 950 951 952 953 954 955 956 957 958

	/* allocate memory for the internal state */
	state = kzalloc(sizeof(struct af9033_state), GFP_KERNEL);
	if (state == NULL)
		goto err;

	/* setup the state */
	state->i2c = i2c;
	memcpy(&state->cfg, config, sizeof(struct af9033_config));

959
	if (state->cfg.clock != 12000000) {
960 961 962
		dev_err(&state->i2c->dev, "%s: af9033: unsupported clock=%d, " \
				"only 12000000 Hz is supported currently\n",
				KBUILD_MODNAME, state->cfg.clock);
963 964 965
		goto err;
	}

966 967 968 969 970 971 972 973 974
	/* firmware version */
	ret = af9033_rd_regs(state, 0x0083e9, &buf[0], 4);
	if (ret < 0)
		goto err;

	ret = af9033_rd_regs(state, 0x804191, &buf[4], 4);
	if (ret < 0)
		goto err;

975 976 977
	dev_info(&state->i2c->dev, "%s: firmware version: LINK=%d.%d.%d.%d " \
			"OFDM=%d.%d.%d.%d\n", KBUILD_MODNAME, buf[0], buf[1],
			buf[2], buf[3], buf[4], buf[5], buf[6], buf[7]);
978

979

980 981 982 983 984 985 986 987 988 989 990
	/* FIXME: Do not abuse adc_multiplier for detecting IT9135 */
	if (state->cfg.adc_multiplier != AF9033_ADC_MULTIPLIER_2X) {
		/* sleep */
		ret = af9033_wr_reg(state, 0x80004c, 1);
		if (ret < 0)
			goto err;

		ret = af9033_wr_reg(state, 0x800000, 0);
		if (ret < 0)
			goto err;
	}
991

992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
	/* configure internal TS mode */
	switch (state->cfg.ts_mode) {
	case AF9033_TS_MODE_PARALLEL:
		state->ts_mode_parallel = true;
		break;
	case AF9033_TS_MODE_SERIAL:
		state->ts_mode_serial = true;
		break;
	case AF9033_TS_MODE_USB:
		/* usb mode for AF9035 */
	default:
		break;
	}

	/* create dvb_frontend */
	memcpy(&state->fe.ops, &af9033_ops, sizeof(struct dvb_frontend_ops));
	state->fe.demodulator_priv = state;

	return &state->fe;

err:
	kfree(state);
	return NULL;
}
EXPORT_SYMBOL(af9033_attach);

static struct dvb_frontend_ops af9033_ops = {
	.delsys = { SYS_DVBT },
	.info = {
		.name = "Afatech AF9033 (DVB-T)",
		.frequency_min = 174000000,
		.frequency_max = 862000000,
		.frequency_stepsize = 250000,
		.frequency_tolerance = 0,
		.caps =	FE_CAN_FEC_1_2 |
			FE_CAN_FEC_2_3 |
			FE_CAN_FEC_3_4 |
			FE_CAN_FEC_5_6 |
			FE_CAN_FEC_7_8 |
			FE_CAN_FEC_AUTO |
			FE_CAN_QPSK |
			FE_CAN_QAM_16 |
			FE_CAN_QAM_64 |
			FE_CAN_QAM_AUTO |
			FE_CAN_TRANSMISSION_MODE_AUTO |
			FE_CAN_GUARD_INTERVAL_AUTO |
			FE_CAN_HIERARCHY_AUTO |
			FE_CAN_RECOVER |
			FE_CAN_MUTE_TS
	},

	.release = af9033_release,

	.init = af9033_init,
	.sleep = af9033_sleep,

	.get_tune_settings = af9033_get_tune_settings,
	.set_frontend = af9033_set_frontend,
1050
	.get_frontend = af9033_get_frontend,
1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063

	.read_status = af9033_read_status,
	.read_snr = af9033_read_snr,
	.read_signal_strength = af9033_read_signal_strength,
	.read_ber = af9033_read_ber,
	.read_ucblocks = af9033_read_ucblocks,

	.i2c_gate_ctrl = af9033_i2c_gate_ctrl,
};

MODULE_AUTHOR("Antti Palosaari <crope@iki.fi>");
MODULE_DESCRIPTION("Afatech AF9033 DVB-T demodulator driver");
MODULE_LICENSE("GPL");