smu_v11_0.c 56.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
/*
 * Copyright 2019 Advanced Micro Devices, Inc.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 * OTHER DEALINGS IN THE SOFTWARE.
 */

#include "pp_debug.h"
#include <linux/firmware.h>
#include "amdgpu.h"
#include "amdgpu_smu.h"
27
#include "atomfirmware.h"
28
#include "amdgpu_atomfirmware.h"
29
#include "smu_v11_0.h"
30
#include "smu11_driver_if.h"
31
#include "soc15_common.h"
32
#include "atom.h"
33
#include "vega20_ppt.h"
34
#include "pp_thermal.h"
35 36 37 38 39 40

#include "asic_reg/thm/thm_11_0_2_offset.h"
#include "asic_reg/thm/thm_11_0_2_sh_mask.h"
#include "asic_reg/mp/mp_9_0_offset.h"
#include "asic_reg/mp/mp_9_0_sh_mask.h"
#include "asic_reg/nbio/nbio_7_4_offset.h"
41 42
#include "asic_reg/smuio/smuio_9_0_offset.h"
#include "asic_reg/smuio/smuio_9_0_sh_mask.h"
43

44 45
MODULE_FIRMWARE("amdgpu/vega20_smc.bin");

46
#define SMU11_TOOL_SIZE		0x19000
47 48
#define SMU11_THERMAL_MINIMUM_ALERT_TEMP      0
#define SMU11_THERMAL_MAXIMUM_ALERT_TEMP      255
49

50
#define SMU11_TEMPERATURE_UNITS_PER_CENTIGRADES 1000
51
#define SMU11_VOLTAGE_SCALE 4
52

53 54 55 56 57 58 59 60 61 62
#define SMC_DPM_FEATURE (FEATURE_DPM_PREFETCHER_MASK | \
			 FEATURE_DPM_GFXCLK_MASK | \
			 FEATURE_DPM_UCLK_MASK | \
			 FEATURE_DPM_SOCCLK_MASK | \
			 FEATURE_DPM_UVD_MASK | \
			 FEATURE_DPM_VCE_MASK | \
			 FEATURE_DPM_MP0CLK_MASK | \
			 FEATURE_DPM_LINK_MASK | \
			 FEATURE_DPM_DCEFCLK_MASK)

63 64 65 66 67 68 69 70
static int smu_v11_0_send_msg_without_waiting(struct smu_context *smu,
					      uint16_t msg)
{
	struct amdgpu_device *adev = smu->adev;
	WREG32_SOC15(MP1, 0, mmMP1_SMN_C2PMSG_66, msg);
	return 0;
}

71 72 73 74 75 76 77 78
static int smu_v11_0_read_arg(struct smu_context *smu, uint32_t *arg)
{
	struct amdgpu_device *adev = smu->adev;

	*arg = RREG32_SOC15(MP1, 0, mmMP1_SMN_C2PMSG_82);
	return 0;
}

79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
static int smu_v11_0_wait_for_response(struct smu_context *smu)
{
	struct amdgpu_device *adev = smu->adev;
	uint32_t cur_value, i;

	for (i = 0; i < adev->usec_timeout; i++) {
		cur_value = RREG32_SOC15(MP1, 0, mmMP1_SMN_C2PMSG_90);
		if ((cur_value & MP1_C2PMSG_90__CONTENT_MASK) != 0)
			break;
		udelay(1);
	}

	/* timeout means wrong logic */
	if (i == adev->usec_timeout)
		return -ETIME;

95
	return RREG32_SOC15(MP1, 0, mmMP1_SMN_C2PMSG_90) == 0x1 ? 0 : -EIO;
96 97 98 99 100
}

static int smu_v11_0_send_msg(struct smu_context *smu, uint16_t msg)
{
	struct amdgpu_device *adev = smu->adev;
101 102 103 104 105
	int ret = 0, index = 0;

	index = smu_msg_get_index(smu, msg);
	if (index < 0)
		return index;
106 107 108 109 110

	smu_v11_0_wait_for_response(smu);

	WREG32_SOC15(MP1, 0, mmMP1_SMN_C2PMSG_90, 0);

111
	smu_v11_0_send_msg_without_waiting(smu, (uint16_t)index);
112 113 114 115

	ret = smu_v11_0_wait_for_response(smu);

	if (ret)
116
		pr_err("Failed to send message 0x%x, response 0x%x\n", index,
117 118 119 120 121 122 123 124 125 126 127 128
		       ret);

	return ret;

}

static int
smu_v11_0_send_msg_with_param(struct smu_context *smu, uint16_t msg,
			      uint32_t param)
{

	struct amdgpu_device *adev = smu->adev;
129 130 131 132 133
	int ret = 0, index = 0;

	index = smu_msg_get_index(smu, msg);
	if (index < 0)
		return index;
134 135 136

	ret = smu_v11_0_wait_for_response(smu);
	if (ret)
137 138
		pr_err("Failed to send message 0x%x, response 0x%x, param 0x%x\n",
		       index, ret, param);
139 140 141 142 143

	WREG32_SOC15(MP1, 0, mmMP1_SMN_C2PMSG_90, 0);

	WREG32_SOC15(MP1, 0, mmMP1_SMN_C2PMSG_82, param);

144
	smu_v11_0_send_msg_without_waiting(smu, (uint16_t)index);
145 146 147

	ret = smu_v11_0_wait_for_response(smu);
	if (ret)
148 149
		pr_err("Failed to send message 0x%x, response 0x%x param 0x%x\n",
		       index, ret, param);
150 151 152 153

	return ret;
}

154 155 156
static int smu_v11_0_init_microcode(struct smu_context *smu)
{
	struct amdgpu_device *adev = smu->adev;
157 158 159 160 161 162
	const char *chip_name;
	char fw_name[30];
	int err = 0;
	const struct smc_firmware_header_v1_0 *hdr;
	const struct common_firmware_header *header;
	struct amdgpu_firmware_info *ucode = NULL;
163

164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
	switch (adev->asic_type) {
	case CHIP_VEGA20:
		chip_name = "vega20";
		break;
	default:
		BUG();
	}

	snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_smc.bin", chip_name);

	err = request_firmware(&adev->pm.fw, fw_name, adev->dev);
	if (err)
		goto out;
	err = amdgpu_ucode_validate(adev->pm.fw);
	if (err)
		goto out;

	hdr = (const struct smc_firmware_header_v1_0 *) adev->pm.fw->data;
	amdgpu_ucode_print_smc_hdr(&hdr->header);
	adev->pm.fw_version = le32_to_cpu(hdr->header.ucode_version);

	if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) {
		ucode = &adev->firmware.ucode[AMDGPU_UCODE_ID_SMC];
		ucode->ucode_id = AMDGPU_UCODE_ID_SMC;
		ucode->fw = adev->pm.fw;
		header = (const struct common_firmware_header *)ucode->fw->data;
		adev->firmware.fw_size +=
			ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
	}

out:
	if (err) {
		DRM_ERROR("smu_v11_0: Failed to load firmware \"%s\"\n",
			  fw_name);
		release_firmware(adev->pm.fw);
		adev->pm.fw = NULL;
	}
	return err;
202 203
}

204 205 206 207 208
static int smu_v11_0_load_microcode(struct smu_context *smu)
{
	return 0;
}

209 210
static int smu_v11_0_check_fw_status(struct smu_context *smu)
{
211 212 213
	struct amdgpu_device *adev = smu->adev;
	uint32_t mp1_fw_flags;

214 215
	mp1_fw_flags = RREG32_PCIE(MP1_Public |
				   (smnMP1_FIRMWARE_FLAGS & 0xffffffff));
216 217 218 219

	if ((mp1_fw_flags & MP1_FIRMWARE_FLAGS__INTERRUPTS_ENABLED_MASK) >>
	    MP1_FIRMWARE_FLAGS__INTERRUPTS_ENABLED__SHIFT)
		return 0;
220

221
	return -EIO;
222 223
}

224 225
static int smu_v11_0_check_fw_version(struct smu_context *smu)
{
226 227 228
	uint32_t if_version = 0xff, smu_version = 0xff;
	uint16_t smu_major;
	uint8_t smu_minor, smu_debug;
229 230
	int ret = 0;

231
	ret = smu_get_smc_version(smu, &if_version, &smu_version);
232
	if (ret)
233
		return ret;
234

235 236 237 238 239 240
	smu_major = (smu_version >> 16) & 0xffff;
	smu_minor = (smu_version >> 8) & 0xff;
	smu_debug = (smu_version >> 0) & 0xff;

	pr_info("SMU Driver IF Version = 0x%08x, SMU FW Version = 0x%08x (%d.%d.%d)\n",
		if_version, smu_version, smu_major, smu_minor, smu_debug);
241

242 243
	if (if_version != smu->smc_if_version) {
		pr_err("SMU driver if version not matched\n");
244
		ret = -EINVAL;
245 246
	}

247 248 249
	return ret;
}

250 251 252 253 254
static int smu_v11_0_read_pptable_from_vbios(struct smu_context *smu)
{
	int ret, index;
	uint16_t size;
	uint8_t frev, crev;
255
	void *table;
256 257 258 259 260 261 262 263 264

	index = get_index_into_master_table(atom_master_list_of_data_tables_v2_1,
					    powerplayinfo);

	ret = smu_get_atom_data_table(smu, index, &size, &frev, &crev,
				      (uint8_t **)&table);
	if (ret)
		return ret;

265 266 267 268
	if (!smu->smu_table.power_play_table)
		smu->smu_table.power_play_table = table;
	if (!smu->smu_table.power_play_table_size)
		smu->smu_table.power_play_table_size = size;
269 270 271 272

	return 0;
}

273 274 275 276 277 278 279
static int smu_v11_0_init_dpm_context(struct smu_context *smu)
{
	struct smu_dpm_context *smu_dpm = &smu->smu_dpm;

	if (smu_dpm->dpm_context || smu_dpm->dpm_context_size != 0)
		return -EINVAL;

280
	return smu_alloc_dpm_context(smu);
281 282 283 284 285 286 287 288 289 290
}

static int smu_v11_0_fini_dpm_context(struct smu_context *smu)
{
	struct smu_dpm_context *smu_dpm = &smu->smu_dpm;

	if (!smu_dpm->dpm_context || smu_dpm->dpm_context_size == 0)
		return -EINVAL;

	kfree(smu_dpm->dpm_context);
291
	kfree(smu_dpm->golden_dpm_context);
292 293
	kfree(smu_dpm->dpm_current_power_state);
	kfree(smu_dpm->dpm_request_power_state);
294
	smu_dpm->dpm_context = NULL;
295
	smu_dpm->golden_dpm_context = NULL;
296
	smu_dpm->dpm_context_size = 0;
297 298
	smu_dpm->dpm_current_power_state = NULL;
	smu_dpm->dpm_request_power_state = NULL;
299 300 301 302

	return 0;
}

303 304 305 306
static int smu_v11_0_init_smc_tables(struct smu_context *smu)
{
	struct smu_table_context *smu_table = &smu->smu_table;
	struct smu_table *tables = NULL;
307
	int ret = 0;
308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326

	if (smu_table->tables || smu_table->table_count != 0)
		return -EINVAL;

	tables = kcalloc(TABLE_COUNT, sizeof(struct smu_table), GFP_KERNEL);
	if (!tables)
		return -ENOMEM;

	smu_table->tables = tables;
	smu_table->table_count = TABLE_COUNT;

	SMU_TABLE_INIT(tables, TABLE_PPTABLE, sizeof(PPTable_t),
		       PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM);
	SMU_TABLE_INIT(tables, TABLE_WATERMARKS, sizeof(Watermarks_t),
		       PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM);
	SMU_TABLE_INIT(tables, TABLE_SMU_METRICS, sizeof(SmuMetrics_t),
		       PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM);
	SMU_TABLE_INIT(tables, TABLE_OVERDRIVE, sizeof(OverDriveTable_t),
		       PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM);
327 328
	SMU_TABLE_INIT(tables, TABLE_PMSTATUSLOG, SMU11_TOOL_SIZE, PAGE_SIZE,
		       AMDGPU_GEM_DOMAIN_VRAM);
329 330 331 332
	SMU_TABLE_INIT(tables, TABLE_ACTIVITY_MONITOR_COEFF,
		       sizeof(DpmActivityMonitorCoeffInt_t),
		       PAGE_SIZE,
		       AMDGPU_GEM_DOMAIN_VRAM);
333

334 335 336 337
	ret = smu_v11_0_init_dpm_context(smu);
	if (ret)
		return ret;

338 339 340 341 342 343
	return 0;
}

static int smu_v11_0_fini_smc_tables(struct smu_context *smu)
{
	struct smu_table_context *smu_table = &smu->smu_table;
344
	int ret = 0;
345 346 347 348 349 350 351 352

	if (!smu_table->tables || smu_table->table_count == 0)
		return -EINVAL;

	kfree(smu_table->tables);
	smu_table->tables = NULL;
	smu_table->table_count = 0;

353 354 355
	ret = smu_v11_0_fini_dpm_context(smu);
	if (ret)
		return ret;
356 357
	return 0;
}
358 359 360 361 362

static int smu_v11_0_init_power(struct smu_context *smu)
{
	struct smu_power_context *smu_power = &smu->smu_power;

363 364
	if (!smu->pm_enabled)
		return 0;
365 366 367 368 369 370 371 372 373
	if (smu_power->power_context || smu_power->power_context_size != 0)
		return -EINVAL;

	smu_power->power_context = kzalloc(sizeof(struct smu_11_0_dpm_context),
					   GFP_KERNEL);
	if (!smu_power->power_context)
		return -ENOMEM;
	smu_power->power_context_size = sizeof(struct smu_11_0_dpm_context);

374 375 376 377 378 379 380
	smu->metrics_time = 0;
	smu->metrics_table = kzalloc(sizeof(SmuMetrics_t), GFP_KERNEL);
	if (!smu->metrics_table) {
		kfree(smu_power->power_context);
		return -ENOMEM;
	}

381 382 383 384 385 386 387
	return 0;
}

static int smu_v11_0_fini_power(struct smu_context *smu)
{
	struct smu_power_context *smu_power = &smu->smu_power;

388 389
	if (!smu->pm_enabled)
		return 0;
390 391 392
	if (!smu_power->power_context || smu_power->power_context_size == 0)
		return -EINVAL;

393
	kfree(smu->metrics_table);
394
	kfree(smu_power->power_context);
395
	smu->metrics_table = NULL;
396 397 398 399 400 401
	smu_power->power_context = NULL;
	smu_power->power_context_size = 0;

	return 0;
}

402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
int smu_v11_0_get_vbios_bootup_values(struct smu_context *smu)
{
	int ret, index;
	uint16_t size;
	uint8_t frev, crev;
	struct atom_common_table_header *header;
	struct atom_firmware_info_v3_3 *v_3_3;
	struct atom_firmware_info_v3_1 *v_3_1;

	index = get_index_into_master_table(atom_master_list_of_data_tables_v2_1,
					    firmwareinfo);

	ret = smu_get_atom_data_table(smu, index, &size, &frev, &crev,
				      (uint8_t **)&header);
	if (ret)
		return ret;

	if (header->format_revision != 3) {
		pr_err("unknown atom_firmware_info version! for smu11\n");
		return -EINVAL;
	}

	switch (header->content_revision) {
	case 0:
	case 1:
	case 2:
		v_3_1 = (struct atom_firmware_info_v3_1 *)header;
		smu->smu_table.boot_values.revision = v_3_1->firmware_revision;
		smu->smu_table.boot_values.gfxclk = v_3_1->bootup_sclk_in10khz;
		smu->smu_table.boot_values.uclk = v_3_1->bootup_mclk_in10khz;
		smu->smu_table.boot_values.socclk = 0;
		smu->smu_table.boot_values.dcefclk = 0;
		smu->smu_table.boot_values.vddc = v_3_1->bootup_vddc_mv;
		smu->smu_table.boot_values.vddci = v_3_1->bootup_vddci_mv;
		smu->smu_table.boot_values.mvddc = v_3_1->bootup_mvddc_mv;
		smu->smu_table.boot_values.vdd_gfx = v_3_1->bootup_vddgfx_mv;
		smu->smu_table.boot_values.cooling_id = v_3_1->coolingsolution_id;
		smu->smu_table.boot_values.pp_table_id = 0;
		break;
	case 3:
	default:
		v_3_3 = (struct atom_firmware_info_v3_3 *)header;
		smu->smu_table.boot_values.revision = v_3_3->firmware_revision;
		smu->smu_table.boot_values.gfxclk = v_3_3->bootup_sclk_in10khz;
		smu->smu_table.boot_values.uclk = v_3_3->bootup_mclk_in10khz;
		smu->smu_table.boot_values.socclk = 0;
		smu->smu_table.boot_values.dcefclk = 0;
		smu->smu_table.boot_values.vddc = v_3_3->bootup_vddc_mv;
		smu->smu_table.boot_values.vddci = v_3_3->bootup_vddci_mv;
		smu->smu_table.boot_values.mvddc = v_3_3->bootup_mvddc_mv;
		smu->smu_table.boot_values.vdd_gfx = v_3_3->bootup_vddgfx_mv;
		smu->smu_table.boot_values.cooling_id = v_3_3->coolingsolution_id;
		smu->smu_table.boot_values.pp_table_id = v_3_3->pplib_pptable_id;
	}

	return 0;
}

460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493
static int smu_v11_0_get_clk_info_from_vbios(struct smu_context *smu)
{
	int ret, index;
	struct amdgpu_device *adev = smu->adev;
	struct atom_get_smu_clock_info_parameters_v3_1 input = {0};
	struct atom_get_smu_clock_info_output_parameters_v3_1 *output;

	input.clk_id = SMU11_SYSPLL0_SOCCLK_ID;
	input.command = GET_SMU_CLOCK_INFO_V3_1_GET_CLOCK_FREQ;
	index = get_index_into_master_table(atom_master_list_of_command_functions_v2_1,
					    getsmuclockinfo);

	ret = amdgpu_atom_execute_table(adev->mode_info.atom_context, index,
					(uint32_t *)&input);
	if (ret)
		return -EINVAL;

	output = (struct atom_get_smu_clock_info_output_parameters_v3_1 *)&input;
	smu->smu_table.boot_values.socclk = le32_to_cpu(output->atom_smu_outputclkfreq.smu_clock_freq_hz) / 10000;

	memset(&input, 0, sizeof(input));
	input.clk_id = SMU11_SYSPLL0_DCEFCLK_ID;
	input.command = GET_SMU_CLOCK_INFO_V3_1_GET_CLOCK_FREQ;
	index = get_index_into_master_table(atom_master_list_of_command_functions_v2_1,
					    getsmuclockinfo);

	ret = amdgpu_atom_execute_table(adev->mode_info.atom_context, index,
					(uint32_t *)&input);
	if (ret)
		return -EINVAL;

	output = (struct atom_get_smu_clock_info_output_parameters_v3_1 *)&input;
	smu->smu_table.boot_values.dcefclk = le32_to_cpu(output->atom_smu_outputclkfreq.smu_clock_freq_hz) / 10000;

494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535
	memset(&input, 0, sizeof(input));
	input.clk_id = SMU11_SYSPLL0_ECLK_ID;
	input.command = GET_SMU_CLOCK_INFO_V3_1_GET_CLOCK_FREQ;
	index = get_index_into_master_table(atom_master_list_of_command_functions_v2_1,
					    getsmuclockinfo);

	ret = amdgpu_atom_execute_table(adev->mode_info.atom_context, index,
					(uint32_t *)&input);
	if (ret)
		return -EINVAL;

	output = (struct atom_get_smu_clock_info_output_parameters_v3_1 *)&input;
	smu->smu_table.boot_values.eclk = le32_to_cpu(output->atom_smu_outputclkfreq.smu_clock_freq_hz) / 10000;

	memset(&input, 0, sizeof(input));
	input.clk_id = SMU11_SYSPLL0_VCLK_ID;
	input.command = GET_SMU_CLOCK_INFO_V3_1_GET_CLOCK_FREQ;
	index = get_index_into_master_table(atom_master_list_of_command_functions_v2_1,
					    getsmuclockinfo);

	ret = amdgpu_atom_execute_table(adev->mode_info.atom_context, index,
					(uint32_t *)&input);
	if (ret)
		return -EINVAL;

	output = (struct atom_get_smu_clock_info_output_parameters_v3_1 *)&input;
	smu->smu_table.boot_values.vclk = le32_to_cpu(output->atom_smu_outputclkfreq.smu_clock_freq_hz) / 10000;

	memset(&input, 0, sizeof(input));
	input.clk_id = SMU11_SYSPLL0_DCLK_ID;
	input.command = GET_SMU_CLOCK_INFO_V3_1_GET_CLOCK_FREQ;
	index = get_index_into_master_table(atom_master_list_of_command_functions_v2_1,
					    getsmuclockinfo);

	ret = amdgpu_atom_execute_table(adev->mode_info.atom_context, index,
					(uint32_t *)&input);
	if (ret)
		return -EINVAL;

	output = (struct atom_get_smu_clock_info_output_parameters_v3_1 *)&input;
	smu->smu_table.boot_values.dclk = le32_to_cpu(output->atom_smu_outputclkfreq.smu_clock_freq_hz) / 10000;

536 537 538
	return 0;
}

539 540 541 542 543 544 545 546 547 548 549
static int smu_v11_0_notify_memory_pool_location(struct smu_context *smu)
{
	struct smu_table_context *smu_table = &smu->smu_table;
	struct smu_table *memory_pool = &smu_table->memory_pool;
	int ret = 0;
	uint64_t address;
	uint32_t address_low, address_high;

	if (memory_pool->size == 0 || memory_pool->cpu_addr == NULL)
		return ret;

550
	address = (uintptr_t)memory_pool->cpu_addr;
551 552 553 554
	address_high = (uint32_t)upper_32_bits(address);
	address_low  = (uint32_t)lower_32_bits(address);

	ret = smu_send_smc_msg_with_param(smu,
555
					  SMU_MSG_SetSystemVirtualDramAddrHigh,
556 557 558 559
					  address_high);
	if (ret)
		return ret;
	ret = smu_send_smc_msg_with_param(smu,
560
					  SMU_MSG_SetSystemVirtualDramAddrLow,
561 562 563 564 565 566 567 568
					  address_low);
	if (ret)
		return ret;

	address = memory_pool->mc_address;
	address_high = (uint32_t)upper_32_bits(address);
	address_low  = (uint32_t)lower_32_bits(address);

569
	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_DramLogSetDramAddrHigh,
570 571 572
					  address_high);
	if (ret)
		return ret;
573
	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_DramLogSetDramAddrLow,
574 575 576
					  address_low);
	if (ret)
		return ret;
577
	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_DramLogSetDramSize,
578 579 580 581 582 583 584
					  (uint32_t)memory_pool->size);
	if (ret)
		return ret;

	return ret;
}

585 586 587 588 589 590 591 592
static int smu_v11_0_check_pptable(struct smu_context *smu)
{
	int ret;

	ret = smu_check_powerplay_table(smu);
	return ret;
}

593 594 595 596 597 598 599 600 601 602 603 604 605 606 607
static int smu_v11_0_parse_pptable(struct smu_context *smu)
{
	int ret;

	struct smu_table_context *table_context = &smu->smu_table;

	if (table_context->driver_pptable)
		return -EINVAL;

	table_context->driver_pptable = kzalloc(sizeof(PPTable_t), GFP_KERNEL);

	if (!table_context->driver_pptable)
		return -ENOMEM;

	ret = smu_store_powerplay_table(smu);
608 609 610 611
	if (ret)
		return -EINVAL;

	ret = smu_append_powerplay_table(smu);
612 613 614 615

	return ret;
}

616 617
static int smu_v11_0_populate_smc_pptable(struct smu_context *smu)
{
618
	int ret;
619

620
	ret = smu_set_default_dpm_table(smu);
621

622
	return ret;
623 624
}

625 626
static int smu_v11_0_write_pptable(struct smu_context *smu)
{
627
	struct smu_table_context *table_context = &smu->smu_table;
628 629
	int ret = 0;

630
	ret = smu_update_table(smu, TABLE_PPTABLE, table_context->driver_pptable, true);
631 632 633 634

	return ret;
}

635 636 637 638 639 640
static int smu_v11_0_write_watermarks_table(struct smu_context *smu)
{
	return smu_update_table(smu, TABLE_WATERMARKS,
				smu->smu_table.tables[TABLE_WATERMARKS].cpu_addr, true);
}

641 642 643 644 645 646 647 648 649 650 651 652
static int smu_v11_0_set_deep_sleep_dcefclk(struct smu_context *smu, uint32_t clk)
{
	int ret;

	ret = smu_send_smc_msg_with_param(smu,
					  SMU_MSG_SetMinDeepSleepDcefclk, clk);
	if (ret)
		pr_err("SMU11 attempt to set divider for DCEFCLK Failed!");

	return ret;
}

653 654 655 656
static int smu_v11_0_set_min_dcef_deep_sleep(struct smu_context *smu)
{
	struct smu_table_context *table_context = &smu->smu_table;

657 658
	if (!smu->pm_enabled)
		return 0;
659 660 661
	if (!table_context)
		return -EINVAL;

662
	return smu_set_deep_sleep_dcefclk(smu,
663 664 665
					  table_context->boot_values.dcefclk / 100);
}

666 667 668 669 670 671 672
static int smu_v11_0_set_tool_table_location(struct smu_context *smu)
{
	int ret = 0;
	struct smu_table *tool_table = &smu->smu_table.tables[TABLE_PMSTATUSLOG];

	if (tool_table->mc_address) {
		ret = smu_send_smc_msg_with_param(smu,
673
				SMU_MSG_SetToolsDramAddrHigh,
674 675 676
				upper_32_bits(tool_table->mc_address));
		if (!ret)
			ret = smu_send_smc_msg_with_param(smu,
677
				SMU_MSG_SetToolsDramAddrLow,
678 679 680 681 682 683
				lower_32_bits(tool_table->mc_address));
	}

	return ret;
}

684 685 686
static int smu_v11_0_init_display(struct smu_context *smu)
{
	int ret = 0;
687 688 689

	if (!smu->pm_enabled)
		return ret;
690 691 692 693
	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_NumOfDisplays, 0);
	return ret;
}

694 695 696 697 698
static int smu_v11_0_update_feature_enable_state(struct smu_context *smu, uint32_t feature_id, bool enabled)
{
	uint32_t feature_low = 0, feature_high = 0;
	int ret = 0;

699 700
	if (!smu->pm_enabled)
		return ret;
701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732
	if (feature_id >= 0 && feature_id < 31)
		feature_low = (1 << feature_id);
	else if (feature_id > 31 && feature_id < 63)
		feature_high = (1 << feature_id);
	else
		return -EINVAL;

	if (enabled) {
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_EnableSmuFeaturesLow,
						  feature_low);
		if (ret)
			return ret;
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_EnableSmuFeaturesHigh,
						  feature_high);
		if (ret)
			return ret;

	} else {
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_DisableSmuFeaturesLow,
						  feature_low);
		if (ret)
			return ret;
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_DisableSmuFeaturesHigh,
						  feature_high);
		if (ret)
			return ret;

	}

	return ret;
}

733 734 735 736 737 738
static int smu_v11_0_set_allowed_mask(struct smu_context *smu)
{
	struct smu_feature *feature = &smu->smu_feature;
	int ret = 0;
	uint32_t feature_mask[2];

739
	mutex_lock(&feature->mutex);
740
	if (bitmap_empty(feature->allowed, SMU_FEATURE_MAX) || feature->feature_num < 64)
741
		goto failed;
742 743 744 745 746 747

	bitmap_copy((unsigned long *)feature_mask, feature->allowed, 64);

	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetAllowedFeaturesMaskHigh,
					  feature_mask[1]);
	if (ret)
748
		goto failed;
749 750 751 752

	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetAllowedFeaturesMaskLow,
					  feature_mask[0]);
	if (ret)
753
		goto failed;
754

755 756
failed:
	mutex_unlock(&feature->mutex);
757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788
	return ret;
}

static int smu_v11_0_get_enabled_mask(struct smu_context *smu,
				      uint32_t *feature_mask, uint32_t num)
{
	uint32_t feature_mask_high = 0, feature_mask_low = 0;
	int ret = 0;

	if (!feature_mask || num < 2)
		return -EINVAL;

	ret = smu_send_smc_msg(smu, SMU_MSG_GetEnabledSmuFeaturesHigh);
	if (ret)
		return ret;
	ret = smu_read_smc_arg(smu, &feature_mask_high);
	if (ret)
		return ret;

	ret = smu_send_smc_msg(smu, SMU_MSG_GetEnabledSmuFeaturesLow);
	if (ret)
		return ret;
	ret = smu_read_smc_arg(smu, &feature_mask_low);
	if (ret)
		return ret;

	feature_mask[0] = feature_mask_low;
	feature_mask[1] = feature_mask_high;

	return ret;
}

789 790 791 792 793 794 795 796 797 798 799
static bool smu_v11_0_is_dpm_running(struct smu_context *smu)
{
	int ret = 0;
	uint32_t feature_mask[2];
	unsigned long feature_enabled;
	ret = smu_v11_0_get_enabled_mask(smu, feature_mask, 2);
	feature_enabled = (unsigned long)((uint64_t)feature_mask[0] |
			   ((uint64_t)feature_mask[1] << 32));
	return !!(feature_enabled & SMC_DPM_FEATURE);
}

800 801
static int smu_v11_0_system_features_control(struct smu_context *smu,
					     bool en)
802 803 804 805 806
{
	struct smu_feature *feature = &smu->smu_feature;
	uint32_t feature_mask[2];
	int ret = 0;

807 808 809 810 811 812 813
	if (smu->pm_enabled) {
		ret = smu_send_smc_msg(smu, (en ? SMU_MSG_EnableAllSmuFeatures :
					     SMU_MSG_DisableAllSmuFeatures));
		if (ret)
			return ret;
	}

814 815 816 817 818 819 820 821 822 823 824 825
	ret = smu_feature_get_enabled_mask(smu, feature_mask, 2);
	if (ret)
		return ret;

	bitmap_copy(feature->enabled, (unsigned long *)&feature_mask,
		    feature->feature_num);
	bitmap_copy(feature->supported, (unsigned long *)&feature_mask,
		    feature->feature_num);

	return ret;
}

826 827 828 829
static int smu_v11_0_notify_display_change(struct smu_context *smu)
{
	int ret = 0;

830 831
	if (!smu->pm_enabled)
		return ret;
832 833 834 835 836 837
	if (smu_feature_is_enabled(smu, FEATURE_DPM_UCLK_BIT))
	    ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetUclkFastSwitch, 1);

	return ret;
}

838 839 840 841 842 843
static int
smu_v11_0_get_max_sustainable_clock(struct smu_context *smu, uint32_t *clock,
				    PPCLK_e clock_select)
{
	int ret = 0;

844 845
	if (!smu->pm_enabled)
		return ret;
846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952
	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_GetDcModeMaxDpmFreq,
					  clock_select << 16);
	if (ret) {
		pr_err("[GetMaxSustainableClock] Failed to get max DC clock from SMC!");
		return ret;
	}

	ret = smu_read_smc_arg(smu, clock);
	if (ret)
		return ret;

	if (*clock != 0)
		return 0;

	/* if DC limit is zero, return AC limit */
	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_GetMaxDpmFreq,
					  clock_select << 16);
	if (ret) {
		pr_err("[GetMaxSustainableClock] failed to get max AC clock from SMC!");
		return ret;
	}

	ret = smu_read_smc_arg(smu, clock);

	return ret;
}

static int smu_v11_0_init_max_sustainable_clocks(struct smu_context *smu)
{
	struct smu_11_0_max_sustainable_clocks *max_sustainable_clocks;
	int ret = 0;

	max_sustainable_clocks = kzalloc(sizeof(struct smu_11_0_max_sustainable_clocks),
					 GFP_KERNEL);
	smu->smu_table.max_sustainable_clocks = (void *)max_sustainable_clocks;

	max_sustainable_clocks->uclock = smu->smu_table.boot_values.uclk / 100;
	max_sustainable_clocks->soc_clock = smu->smu_table.boot_values.socclk / 100;
	max_sustainable_clocks->dcef_clock = smu->smu_table.boot_values.dcefclk / 100;
	max_sustainable_clocks->display_clock = 0xFFFFFFFF;
	max_sustainable_clocks->phy_clock = 0xFFFFFFFF;
	max_sustainable_clocks->pixel_clock = 0xFFFFFFFF;

	if (smu_feature_is_enabled(smu, FEATURE_DPM_UCLK_BIT)) {
		ret = smu_v11_0_get_max_sustainable_clock(smu,
							  &(max_sustainable_clocks->uclock),
							  PPCLK_UCLK);
		if (ret) {
			pr_err("[%s] failed to get max UCLK from SMC!",
			       __func__);
			return ret;
		}
	}

	if (smu_feature_is_enabled(smu, FEATURE_DPM_SOCCLK_BIT)) {
		ret = smu_v11_0_get_max_sustainable_clock(smu,
							  &(max_sustainable_clocks->soc_clock),
							  PPCLK_SOCCLK);
		if (ret) {
			pr_err("[%s] failed to get max SOCCLK from SMC!",
			       __func__);
			return ret;
		}
	}

	if (smu_feature_is_enabled(smu, FEATURE_DPM_DCEFCLK_BIT)) {
		ret = smu_v11_0_get_max_sustainable_clock(smu,
							  &(max_sustainable_clocks->dcef_clock),
							  PPCLK_DCEFCLK);
		if (ret) {
			pr_err("[%s] failed to get max DCEFCLK from SMC!",
			       __func__);
			return ret;
		}

		ret = smu_v11_0_get_max_sustainable_clock(smu,
							  &(max_sustainable_clocks->display_clock),
							  PPCLK_DISPCLK);
		if (ret) {
			pr_err("[%s] failed to get max DISPCLK from SMC!",
			       __func__);
			return ret;
		}
		ret = smu_v11_0_get_max_sustainable_clock(smu,
							  &(max_sustainable_clocks->phy_clock),
							  PPCLK_PHYCLK);
		if (ret) {
			pr_err("[%s] failed to get max PHYCLK from SMC!",
			       __func__);
			return ret;
		}
		ret = smu_v11_0_get_max_sustainable_clock(smu,
							  &(max_sustainable_clocks->pixel_clock),
							  PPCLK_PIXCLK);
		if (ret) {
			pr_err("[%s] failed to get max PIXCLK from SMC!",
			       __func__);
			return ret;
		}
	}

	if (max_sustainable_clocks->soc_clock < max_sustainable_clocks->uclock)
		max_sustainable_clocks->uclock = max_sustainable_clocks->soc_clock;

	return 0;
}

953 954 955
static int smu_v11_0_get_power_limit(struct smu_context *smu,
				     uint32_t *limit,
				     bool get_default)
956
{
957
	int ret = 0;
958

959 960 961
	if (get_default) {
		mutex_lock(&smu->mutex);
		*limit = smu->default_power_limit;
962 963 964 965
		if (smu->od_enabled) {
			*limit *= (100 + smu->smu_table.TDPODLimit);
			*limit /= 100;
		}
966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982
		mutex_unlock(&smu->mutex);
	} else {
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_GetPptLimit,
						  POWER_SOURCE_AC << 16);
		if (ret) {
			pr_err("[%s] get PPT limit failed!", __func__);
			return ret;
		}
		smu_read_smc_arg(smu, limit);
		smu->power_limit = *limit;
	}

	return ret;
}

static int smu_v11_0_set_power_limit(struct smu_context *smu, uint32_t n)
{
983
	uint32_t max_power_limit;
984 985
	int ret = 0;

986 987 988 989 990 991 992 993 994 995
	if (n == 0)
		n = smu->default_power_limit;

	max_power_limit = smu->default_power_limit;

	if (smu->od_enabled) {
		max_power_limit *= (100 + smu->smu_table.TDPODLimit);
		max_power_limit /= 100;
	}

996 997
	if (smu_feature_is_enabled(smu, FEATURE_PPT_BIT))
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetPptLimit, n);
998
	if (ret) {
999
		pr_err("[%s] Set power limit Failed!", __func__);
1000 1001 1002
		return ret;
	}

1003
	return ret;
1004 1005
}

1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028
static int smu_v11_0_get_current_clk_freq(struct smu_context *smu, uint32_t clk_id, uint32_t *value)
{
	int ret = 0;
	uint32_t freq;

	if (clk_id >= PPCLK_COUNT || !value)
		return -EINVAL;

	ret = smu_send_smc_msg_with_param(smu,
			SMU_MSG_GetDpmClockFreq, (clk_id << 16));
	if (ret)
		return ret;

	ret = smu_read_smc_arg(smu, &freq);
	if (ret)
		return ret;

	freq *= 100;
	*value = freq;

	return ret;
}

1029 1030 1031
static int smu_v11_0_get_thermal_range(struct smu_context *smu,
				struct PP_TemperatureRange *range)
{
1032
	PPTable_t *pptable = smu->smu_table.driver_pptable;
1033 1034
	memcpy(range, &SMU7ThermalWithDelayPolicy[0], sizeof(struct PP_TemperatureRange));

1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
	range->max = pptable->TedgeLimit *
		PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
	range->edge_emergency_max = (pptable->TedgeLimit + CTF_OFFSET_EDGE) *
		PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
	range->hotspot_crit_max = pptable->ThotspotLimit *
		PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
	range->hotspot_emergency_max = (pptable->ThotspotLimit + CTF_OFFSET_HOTSPOT) *
		PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
	range->mem_crit_max = pptable->ThbmLimit *
		PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
	range->mem_emergency_max = (pptable->ThbmLimit + CTF_OFFSET_HBM)*
1046 1047 1048 1049 1050
		PP_TEMPERATURE_UNITS_PER_CENTIGRADES;

	return 0;
}

1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080
static int smu_v11_0_set_thermal_range(struct smu_context *smu,
			struct PP_TemperatureRange *range)
{
	struct amdgpu_device *adev = smu->adev;
	int low = SMU11_THERMAL_MINIMUM_ALERT_TEMP *
		PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
	int high = SMU11_THERMAL_MAXIMUM_ALERT_TEMP *
		PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
	uint32_t val;

	if (low < range->min)
		low = range->min;
	if (high > range->max)
		high = range->max;

	if (low > high)
		return -EINVAL;

	val = RREG32_SOC15(THM, 0, mmTHM_THERMAL_INT_CTRL);
	val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, MAX_IH_CREDIT, 5);
	val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, THERM_IH_HW_ENA, 1);
	val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, DIG_THERM_INTH, (high / PP_TEMPERATURE_UNITS_PER_CENTIGRADES));
	val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, DIG_THERM_INTL, (low / PP_TEMPERATURE_UNITS_PER_CENTIGRADES));
	val = val & (~THM_THERMAL_INT_CTRL__THERM_TRIGGER_MASK_MASK);

	WREG32_SOC15(THM, 0, mmTHM_THERMAL_INT_CTRL, val);

	return 0;
}

1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094
static int smu_v11_0_enable_thermal_alert(struct smu_context *smu)
{
	struct amdgpu_device *adev = smu->adev;
	uint32_t val = 0;

	val |= (1 << THM_THERMAL_INT_ENA__THERM_INTH_CLR__SHIFT);
	val |= (1 << THM_THERMAL_INT_ENA__THERM_INTL_CLR__SHIFT);
	val |= (1 << THM_THERMAL_INT_ENA__THERM_TRIGGER_CLR__SHIFT);

	WREG32_SOC15(THM, 0, mmTHM_THERMAL_INT_ENA, val);

	return 0;
}

1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106
static int smu_v11_0_set_thermal_fan_table(struct smu_context *smu)
{
	int ret;
	struct smu_table_context *table_context = &smu->smu_table;
	PPTable_t *pptable = table_context->driver_pptable;

	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetFanTemperatureTarget,
			(uint32_t)pptable->FanTargetTemperature);

	return ret;
}

1107 1108 1109
static int smu_v11_0_start_thermal_control(struct smu_context *smu)
{
	int ret = 0;
1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
	struct PP_TemperatureRange range = {
		TEMP_RANGE_MIN,
		TEMP_RANGE_MAX,
		TEMP_RANGE_MAX,
		TEMP_RANGE_MIN,
		TEMP_RANGE_MAX,
		TEMP_RANGE_MAX,
		TEMP_RANGE_MIN,
		TEMP_RANGE_MAX,
		TEMP_RANGE_MAX};
1120 1121
	struct amdgpu_device *adev = smu->adev;

1122 1123
	if (!smu->pm_enabled)
		return ret;
1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140
	smu_v11_0_get_thermal_range(smu, &range);

	if (smu->smu_table.thermal_controller_type) {
		ret = smu_v11_0_set_thermal_range(smu, &range);
		if (ret)
			return ret;

		ret = smu_v11_0_enable_thermal_alert(smu);
		if (ret)
			return ret;
		ret = smu_v11_0_set_thermal_fan_table(smu);
		if (ret)
			return ret;
	}

	adev->pm.dpm.thermal.min_temp = range.min;
	adev->pm.dpm.thermal.max_temp = range.max;
1141 1142 1143 1144 1145 1146 1147
	adev->pm.dpm.thermal.max_edge_emergency_temp = range.edge_emergency_max;
	adev->pm.dpm.thermal.min_hotspot_temp = range.hotspot_min;
	adev->pm.dpm.thermal.max_hotspot_crit_temp = range.hotspot_crit_max;
	adev->pm.dpm.thermal.max_hotspot_emergency_temp = range.hotspot_emergency_max;
	adev->pm.dpm.thermal.min_mem_temp = range.mem_min;
	adev->pm.dpm.thermal.max_mem_crit_temp = range.mem_crit_max;
	adev->pm.dpm.thermal.max_mem_emergency_temp = range.mem_emergency_max;
1148 1149 1150 1151

	return ret;
}

1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171
static int smu_v11_0_get_metrics_table(struct smu_context *smu,
		SmuMetrics_t *metrics_table)
{
	int ret = 0;

	if (!smu->metrics_time || time_after(jiffies, smu->metrics_time + HZ / 1000)) {
		ret = smu_update_table(smu, TABLE_SMU_METRICS,
				(void *)metrics_table, false);
		if (ret) {
			pr_info("Failed to export SMU metrics table!\n");
			return ret;
		}
		memcpy(smu->metrics_table, metrics_table, sizeof(SmuMetrics_t));
		smu->metrics_time = jiffies;
	} else
		memcpy(metrics_table, smu->metrics_table, sizeof(SmuMetrics_t));

	return ret;
}

1172
static int smu_v11_0_get_current_activity_percent(struct smu_context *smu,
1173
						  enum amd_pp_sensors sensor,
1174 1175 1176 1177 1178 1179 1180 1181
						  uint32_t *value)
{
	int ret = 0;
	SmuMetrics_t metrics;

	if (!value)
		return -EINVAL;

1182
	ret = smu_v11_0_get_metrics_table(smu, &metrics);
1183 1184 1185
	if (ret)
		return ret;

1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196
	switch (sensor) {
	case AMDGPU_PP_SENSOR_GPU_LOAD:
		*value = metrics.AverageGfxActivity;
		break;
	case AMDGPU_PP_SENSOR_MEM_LOAD:
		*value = metrics.AverageUclkActivity;
		break;
	default:
		pr_err("Invalid sensor for retrieving clock activity\n");
		return -EINVAL;
	}
1197 1198 1199 1200

	return 0;
}

1201 1202 1203
static int smu_v11_0_thermal_get_temperature(struct smu_context *smu,
					     enum amd_pp_sensors sensor,
					     uint32_t *value)
1204 1205
{
	struct amdgpu_device *adev = smu->adev;
1206
	SmuMetrics_t metrics;
1207
	uint32_t temp = 0;
1208
	int ret = 0;
1209 1210 1211 1212

	if (!value)
		return -EINVAL;

1213 1214 1215 1216 1217 1218 1219 1220 1221
	ret = smu_v11_0_get_metrics_table(smu, &metrics);
	if (ret)
		return ret;

	switch (sensor) {
	case AMDGPU_PP_SENSOR_HOTSPOT_TEMP:
		temp = RREG32_SOC15(THM, 0, mmCG_MULT_THERMAL_STATUS);
		temp = (temp & CG_MULT_THERMAL_STATUS__CTF_TEMP_MASK) >>
				CG_MULT_THERMAL_STATUS__CTF_TEMP__SHIFT;
1222

1223 1224
		temp = temp & 0x1ff;
		temp *= SMU11_TEMPERATURE_UNITS_PER_CENTIGRADES;
1225

1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239
		*value = temp;
		break;
	case AMDGPU_PP_SENSOR_EDGE_TEMP:
		*value = metrics.TemperatureEdge *
			PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
		break;
	case AMDGPU_PP_SENSOR_MEM_TEMP:
		*value = metrics.TemperatureHBM *
			PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
		break;
	default:
		pr_err("Invalid sensor for retrieving temp\n");
		return -EINVAL;
	}
1240 1241 1242 1243

	return 0;
}

1244 1245 1246 1247 1248 1249 1250 1251
static int smu_v11_0_get_gpu_power(struct smu_context *smu, uint32_t *value)
{
	int ret = 0;
	SmuMetrics_t metrics;

	if (!value)
		return -EINVAL;

1252
	ret = smu_v11_0_get_metrics_table(smu, &metrics);
1253 1254 1255 1256 1257 1258 1259 1260
	if (ret)
		return ret;

	*value = metrics.CurrSocketPower << 8;

	return 0;
}

1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284
static uint16_t convert_to_vddc(uint8_t vid)
{
	return (uint16_t) ((6200 - (vid * 25)) / SMU11_VOLTAGE_SCALE);
}

static int smu_v11_0_get_gfx_vdd(struct smu_context *smu, uint32_t *value)
{
	struct amdgpu_device *adev = smu->adev;
	uint32_t vdd = 0, val_vid = 0;

	if (!value)
		return -EINVAL;
	val_vid = (RREG32_SOC15(SMUIO, 0, mmSMUSVI0_TEL_PLANE0) &
		SMUSVI0_TEL_PLANE0__SVI0_PLANE0_VDDCOR_MASK) >>
		SMUSVI0_TEL_PLANE0__SVI0_PLANE0_VDDCOR__SHIFT;

	vdd = (uint32_t)convert_to_vddc((uint8_t)val_vid);

	*value = vdd;

	return 0;

}

1285 1286 1287 1288
static int smu_v11_0_read_sensor(struct smu_context *smu,
				 enum amd_pp_sensors sensor,
				 void *data, uint32_t *size)
{
1289 1290
	struct smu_table_context *table_context = &smu->smu_table;
	PPTable_t *pptable = table_context->driver_pptable;
1291 1292 1293
	int ret = 0;
	switch (sensor) {
	case AMDGPU_PP_SENSOR_GPU_LOAD:
1294
	case AMDGPU_PP_SENSOR_MEM_LOAD:
1295
		ret = smu_v11_0_get_current_activity_percent(smu,
1296
							     sensor,
1297 1298
							     (uint32_t *)data);
		*size = 4;
1299 1300 1301 1302 1303 1304 1305 1306
		break;
	case AMDGPU_PP_SENSOR_GFX_MCLK:
		ret = smu_get_current_clk_freq(smu, PPCLK_UCLK, (uint32_t *)data);
		*size = 4;
		break;
	case AMDGPU_PP_SENSOR_GFX_SCLK:
		ret = smu_get_current_clk_freq(smu, PPCLK_GFXCLK, (uint32_t *)data);
		*size = 4;
1307
		break;
1308 1309 1310 1311
	case AMDGPU_PP_SENSOR_HOTSPOT_TEMP:
	case AMDGPU_PP_SENSOR_EDGE_TEMP:
	case AMDGPU_PP_SENSOR_MEM_TEMP:
		ret = smu_v11_0_thermal_get_temperature(smu, sensor, (uint32_t *)data);
1312
		*size = 4;
1313 1314 1315 1316
		break;
	case AMDGPU_PP_SENSOR_GPU_POWER:
		ret = smu_v11_0_get_gpu_power(smu, (uint32_t *)data);
		*size = 4;
1317 1318 1319 1320
		break;
	case AMDGPU_PP_SENSOR_VDDGFX:
		ret = smu_v11_0_get_gfx_vdd(smu, (uint32_t *)data);
		*size = 4;
1321
		break;
1322 1323 1324 1325 1326 1327 1328 1329
	case AMDGPU_PP_SENSOR_UVD_POWER:
		*(uint32_t *)data = smu_feature_is_enabled(smu, FEATURE_DPM_UVD_BIT) ? 1 : 0;
		*size = 4;
		break;
	case AMDGPU_PP_SENSOR_VCE_POWER:
		*(uint32_t *)data = smu_feature_is_enabled(smu, FEATURE_DPM_VCE_BIT) ? 1 : 0;
		*size = 4;
		break;
1330 1331 1332 1333 1334 1335 1336 1337
	case AMDGPU_PP_SENSOR_MIN_FAN_RPM:
		*(uint32_t *)data = 0;
		*size = 4;
		break;
	case AMDGPU_PP_SENSOR_MAX_FAN_RPM:
		*(uint32_t *)data = pptable->FanMaximumRpm;
		*size = 4;
		break;
1338
	default:
1339
		ret = smu_common_read_sensor(smu, sensor, data, size);
1340 1341 1342 1343 1344 1345 1346 1347 1348
		break;
	}

	if (ret)
		*size = 0;

	return ret;
}

1349 1350 1351 1352 1353 1354 1355 1356 1357 1358
static int
smu_v11_0_display_clock_voltage_request(struct smu_context *smu,
					struct pp_display_clock_request
					*clock_req)
{
	enum amd_pp_clock_type clk_type = clock_req->clock_type;
	int ret = 0;
	PPCLK_e clk_select = 0;
	uint32_t clk_freq = clock_req->clock_freq_in_khz / 1000;

1359 1360
	if (!smu->pm_enabled)
		return -EINVAL;
1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
	if (smu_feature_is_enabled(smu, FEATURE_DPM_DCEFCLK_BIT)) {
		switch (clk_type) {
		case amd_pp_dcef_clock:
			clk_select = PPCLK_DCEFCLK;
			break;
		case amd_pp_disp_clock:
			clk_select = PPCLK_DISPCLK;
			break;
		case amd_pp_pixel_clock:
			clk_select = PPCLK_PIXCLK;
			break;
		case amd_pp_phy_clock:
			clk_select = PPCLK_PHYCLK;
			break;
		default:
			pr_info("[%s] Invalid Clock Type!", __func__);
			ret = -EINVAL;
			break;
		}

		if (ret)
			goto failed;

		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetHardMinByFreq,
						  (clk_select << 16) | clk_freq);
	}

failed:
	return ret;
}

1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470
static int smu_v11_0_set_watermarks_table(struct smu_context *smu,
					  Watermarks_t *table, struct
					  dm_pp_wm_sets_with_clock_ranges_soc15
					  *clock_ranges)
{
	int i;

	if (!table || !clock_ranges)
		return -EINVAL;

	if (clock_ranges->num_wm_dmif_sets > 4 ||
	    clock_ranges->num_wm_mcif_sets > 4)
                return -EINVAL;

        for (i = 0; i < clock_ranges->num_wm_dmif_sets; i++) {
		table->WatermarkRow[1][i].MinClock =
			cpu_to_le16((uint16_t)
			(clock_ranges->wm_dmif_clocks_ranges[i].wm_min_dcfclk_clk_in_khz /
			1000));
		table->WatermarkRow[1][i].MaxClock =
			cpu_to_le16((uint16_t)
			(clock_ranges->wm_dmif_clocks_ranges[i].wm_max_dcfclk_clk_in_khz /
			1000));
		table->WatermarkRow[1][i].MinUclk =
			cpu_to_le16((uint16_t)
			(clock_ranges->wm_dmif_clocks_ranges[i].wm_min_mem_clk_in_khz /
			1000));
		table->WatermarkRow[1][i].MaxUclk =
			cpu_to_le16((uint16_t)
			(clock_ranges->wm_dmif_clocks_ranges[i].wm_max_mem_clk_in_khz /
			1000));
		table->WatermarkRow[1][i].WmSetting = (uint8_t)
				clock_ranges->wm_dmif_clocks_ranges[i].wm_set_id;
        }

	for (i = 0; i < clock_ranges->num_wm_mcif_sets; i++) {
		table->WatermarkRow[0][i].MinClock =
			cpu_to_le16((uint16_t)
			(clock_ranges->wm_mcif_clocks_ranges[i].wm_min_socclk_clk_in_khz /
			1000));
		table->WatermarkRow[0][i].MaxClock =
			cpu_to_le16((uint16_t)
			(clock_ranges->wm_mcif_clocks_ranges[i].wm_max_socclk_clk_in_khz /
			1000));
		table->WatermarkRow[0][i].MinUclk =
			cpu_to_le16((uint16_t)
			(clock_ranges->wm_mcif_clocks_ranges[i].wm_min_mem_clk_in_khz /
			1000));
		table->WatermarkRow[0][i].MaxUclk =
			cpu_to_le16((uint16_t)
			(clock_ranges->wm_mcif_clocks_ranges[i].wm_max_mem_clk_in_khz /
			1000));
		table->WatermarkRow[0][i].WmSetting = (uint8_t)
				clock_ranges->wm_mcif_clocks_ranges[i].wm_set_id;
        }

	return 0;
}

static int
smu_v11_0_set_watermarks_for_clock_ranges(struct smu_context *smu, struct
					  dm_pp_wm_sets_with_clock_ranges_soc15
					  *clock_ranges)
{
	int ret = 0;
	struct smu_table *watermarks = &smu->smu_table.tables[TABLE_WATERMARKS];
	Watermarks_t *table = watermarks->cpu_addr;

	if (!smu->disable_watermark &&
	    smu_feature_is_enabled(smu, FEATURE_DPM_DCEFCLK_BIT) &&
	    smu_feature_is_enabled(smu, FEATURE_DPM_SOCCLK_BIT)) {
		smu_v11_0_set_watermarks_table(smu, table, clock_ranges);
		smu->watermarks_bitmap |= WATERMARKS_EXIST;
		smu->watermarks_bitmap &= ~WATERMARKS_LOADED;
	}

	return ret;
}

1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552
static int smu_v11_0_get_clock_ranges(struct smu_context *smu,
				      uint32_t *clock,
				      PPCLK_e clock_select,
				      bool max)
{
	int ret;
	*clock = 0;
	if (max) {
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_GetMaxDpmFreq,
					    (clock_select << 16));
		if (ret) {
			pr_err("[GetClockRanges] Failed to get max clock from SMC!\n");
			return ret;
		}
		smu_read_smc_arg(smu, clock);
	} else {
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_GetMinDpmFreq,
					    (clock_select << 16));
		if (ret) {
			pr_err("[GetClockRanges] Failed to get min clock from SMC!\n");
			return ret;
		}
		smu_read_smc_arg(smu, clock);
	}

	return 0;
}

static uint32_t smu_v11_0_dpm_get_sclk(struct smu_context *smu, bool low)
{
	uint32_t gfx_clk;
	int ret;

	if (!smu_feature_is_enabled(smu, FEATURE_DPM_GFXCLK_BIT)) {
		pr_err("[GetSclks]: gfxclk dpm not enabled!\n");
		return -EPERM;
	}

	if (low) {
		ret = smu_v11_0_get_clock_ranges(smu, &gfx_clk, PPCLK_GFXCLK, false);
		if (ret) {
			pr_err("[GetSclks]: fail to get min PPCLK_GFXCLK\n");
			return ret;
		}
	} else {
		ret = smu_v11_0_get_clock_ranges(smu, &gfx_clk, PPCLK_GFXCLK, true);
		if (ret) {
			pr_err("[GetSclks]: fail to get max PPCLK_GFXCLK\n");
			return ret;
		}
	}

	return (gfx_clk * 100);
}

static uint32_t smu_v11_0_dpm_get_mclk(struct smu_context *smu, bool low)
{
	uint32_t mem_clk;
	int ret;

	if (!smu_feature_is_enabled(smu, FEATURE_DPM_UCLK_BIT)) {
		pr_err("[GetMclks]: memclk dpm not enabled!\n");
		return -EPERM;
	}

	if (low) {
		ret = smu_v11_0_get_clock_ranges(smu, &mem_clk, PPCLK_UCLK, false);
		if (ret) {
			pr_err("[GetMclks]: fail to get min PPCLK_UCLK\n");
			return ret;
		}
	} else {
		ret = smu_v11_0_get_clock_ranges(smu, &mem_clk, PPCLK_GFXCLK, true);
		if (ret) {
			pr_err("[GetMclks]: fail to get max PPCLK_UCLK\n");
			return ret;
		}
	}

	return (mem_clk * 100);
}

1553 1554
static int smu_v11_0_set_od8_default_settings(struct smu_context *smu,
					      bool initialize)
1555 1556 1557 1558
{
	struct smu_table_context *table_context = &smu->smu_table;
	int ret;

1559 1560 1561
	if (initialize) {
		if (table_context->overdrive_table)
			return -EINVAL;
1562

1563
		table_context->overdrive_table = kzalloc(sizeof(OverDriveTable_t), GFP_KERNEL);
1564

1565 1566
		if (!table_context->overdrive_table)
			return -ENOMEM;
1567

1568 1569 1570 1571 1572
		ret = smu_update_table(smu, TABLE_OVERDRIVE, table_context->overdrive_table, false);
		if (ret) {
			pr_err("Failed to export over drive table!\n");
			return ret;
		}
1573

1574 1575
		smu_set_default_od8_settings(smu);
	}
1576 1577 1578 1579 1580 1581 1582 1583 1584 1585

	ret = smu_update_table(smu, TABLE_OVERDRIVE, table_context->overdrive_table, true);
	if (ret) {
		pr_err("Failed to import over drive table!\n");
		return ret;
	}

	return 0;
}

1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643
static int smu_v11_0_conv_power_profile_to_pplib_workload(int power_profile)
{
	int pplib_workload = 0;

	switch (power_profile) {
	case PP_SMC_POWER_PROFILE_BOOTUP_DEFAULT:
	     pplib_workload = WORKLOAD_DEFAULT_BIT;
	     break;
	case PP_SMC_POWER_PROFILE_FULLSCREEN3D:
	     pplib_workload = WORKLOAD_PPLIB_FULL_SCREEN_3D_BIT;
	     break;
	case PP_SMC_POWER_PROFILE_POWERSAVING:
	     pplib_workload = WORKLOAD_PPLIB_POWER_SAVING_BIT;
	     break;
	case PP_SMC_POWER_PROFILE_VIDEO:
	     pplib_workload = WORKLOAD_PPLIB_VIDEO_BIT;
	     break;
	case PP_SMC_POWER_PROFILE_VR:
	     pplib_workload = WORKLOAD_PPLIB_VR_BIT;
	     break;
	case PP_SMC_POWER_PROFILE_COMPUTE:
	     pplib_workload = WORKLOAD_PPLIB_COMPUTE_BIT;
	     break;
	case PP_SMC_POWER_PROFILE_CUSTOM:
		pplib_workload = WORKLOAD_PPLIB_CUSTOM_BIT;
		break;
	}

	return pplib_workload;
}

static int smu_v11_0_get_power_profile_mode(struct smu_context *smu, char *buf)
{
	DpmActivityMonitorCoeffInt_t activity_monitor;
	uint32_t i, size = 0;
	uint16_t workload_type = 0;
	static const char *profile_name[] = {
					"BOOTUP_DEFAULT",
					"3D_FULL_SCREEN",
					"POWER_SAVING",
					"VIDEO",
					"VR",
					"COMPUTE",
					"CUSTOM"};
	static const char *title[] = {
			"PROFILE_INDEX(NAME)",
			"CLOCK_TYPE(NAME)",
			"FPS",
			"UseRlcBusy",
			"MinActiveFreqType",
			"MinActiveFreq",
			"BoosterFreqType",
			"BoosterFreq",
			"PD_Data_limit_c",
			"PD_Data_error_coeff",
			"PD_Data_error_rate_coeff"};
	int result = 0;

1644
	if (!smu->pm_enabled || !buf)
1645 1646 1647 1648 1649 1650 1651 1652 1653
		return -EINVAL;

	size += sprintf(buf + size, "%16s %s %s %s %s %s %s %s %s %s %s\n",
			title[0], title[1], title[2], title[3], title[4], title[5],
			title[6], title[7], title[8], title[9], title[10]);

	for (i = 0; i <= PP_SMC_POWER_PROFILE_CUSTOM; i++) {
		/* conv PP_SMC_POWER_PROFILE* to WORKLOAD_PPLIB_*_BIT */
		workload_type = smu_v11_0_conv_power_profile_to_pplib_workload(i);
1654 1655
		result = smu_update_table_with_arg(smu, TABLE_ACTIVITY_MONITOR_COEFF,
						   workload_type, &activity_monitor, false);
1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726
		if (result) {
			pr_err("[%s] Failed to get activity monitor!", __func__);
			return result;
		}

		size += sprintf(buf + size, "%2d %14s%s:\n",
			i, profile_name[i], (i == smu->power_profile_mode) ? "*" : " ");

		size += sprintf(buf + size, "%19s %d(%13s) %7d %7d %7d %7d %7d %7d %7d %7d %7d\n",
			" ",
			0,
			"GFXCLK",
			activity_monitor.Gfx_FPS,
			activity_monitor.Gfx_UseRlcBusy,
			activity_monitor.Gfx_MinActiveFreqType,
			activity_monitor.Gfx_MinActiveFreq,
			activity_monitor.Gfx_BoosterFreqType,
			activity_monitor.Gfx_BoosterFreq,
			activity_monitor.Gfx_PD_Data_limit_c,
			activity_monitor.Gfx_PD_Data_error_coeff,
			activity_monitor.Gfx_PD_Data_error_rate_coeff);

		size += sprintf(buf + size, "%19s %d(%13s) %7d %7d %7d %7d %7d %7d %7d %7d %7d\n",
			" ",
			1,
			"SOCCLK",
			activity_monitor.Soc_FPS,
			activity_monitor.Soc_UseRlcBusy,
			activity_monitor.Soc_MinActiveFreqType,
			activity_monitor.Soc_MinActiveFreq,
			activity_monitor.Soc_BoosterFreqType,
			activity_monitor.Soc_BoosterFreq,
			activity_monitor.Soc_PD_Data_limit_c,
			activity_monitor.Soc_PD_Data_error_coeff,
			activity_monitor.Soc_PD_Data_error_rate_coeff);

		size += sprintf(buf + size, "%19s %d(%13s) %7d %7d %7d %7d %7d %7d %7d %7d %7d\n",
			" ",
			2,
			"UCLK",
			activity_monitor.Mem_FPS,
			activity_monitor.Mem_UseRlcBusy,
			activity_monitor.Mem_MinActiveFreqType,
			activity_monitor.Mem_MinActiveFreq,
			activity_monitor.Mem_BoosterFreqType,
			activity_monitor.Mem_BoosterFreq,
			activity_monitor.Mem_PD_Data_limit_c,
			activity_monitor.Mem_PD_Data_error_coeff,
			activity_monitor.Mem_PD_Data_error_rate_coeff);

		size += sprintf(buf + size, "%19s %d(%13s) %7d %7d %7d %7d %7d %7d %7d %7d %7d\n",
			" ",
			3,
			"FCLK",
			activity_monitor.Fclk_FPS,
			activity_monitor.Fclk_UseRlcBusy,
			activity_monitor.Fclk_MinActiveFreqType,
			activity_monitor.Fclk_MinActiveFreq,
			activity_monitor.Fclk_BoosterFreqType,
			activity_monitor.Fclk_BoosterFreq,
			activity_monitor.Fclk_PD_Data_limit_c,
			activity_monitor.Fclk_PD_Data_error_coeff,
			activity_monitor.Fclk_PD_Data_error_rate_coeff);
	}

	return size;
}

static int smu_v11_0_set_power_profile_mode(struct smu_context *smu, long *input, uint32_t size)
{
	DpmActivityMonitorCoeffInt_t activity_monitor;
1727
	int workload_type = 0, ret = 0;
1728 1729 1730

	smu->power_profile_mode = input[size];

1731 1732
	if (!smu->pm_enabled)
		return ret;
1733 1734 1735 1736 1737 1738
	if (smu->power_profile_mode > PP_SMC_POWER_PROFILE_CUSTOM) {
		pr_err("Invalid power profile mode %d\n", smu->power_profile_mode);
		return -EINVAL;
	}

	if (smu->power_profile_mode == PP_SMC_POWER_PROFILE_CUSTOM) {
1739 1740
		ret = smu_update_table_with_arg(smu, TABLE_ACTIVITY_MONITOR_COEFF,
						WORKLOAD_PPLIB_CUSTOM_BIT, &activity_monitor, false);
1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792
		if (ret) {
			pr_err("[%s] Failed to get activity monitor!", __func__);
			return ret;
		}

		switch (input[0]) {
		case 0: /* Gfxclk */
			activity_monitor.Gfx_FPS = input[1];
			activity_monitor.Gfx_UseRlcBusy = input[2];
			activity_monitor.Gfx_MinActiveFreqType = input[3];
			activity_monitor.Gfx_MinActiveFreq = input[4];
			activity_monitor.Gfx_BoosterFreqType = input[5];
			activity_monitor.Gfx_BoosterFreq = input[6];
			activity_monitor.Gfx_PD_Data_limit_c = input[7];
			activity_monitor.Gfx_PD_Data_error_coeff = input[8];
			activity_monitor.Gfx_PD_Data_error_rate_coeff = input[9];
			break;
		case 1: /* Socclk */
			activity_monitor.Soc_FPS = input[1];
			activity_monitor.Soc_UseRlcBusy = input[2];
			activity_monitor.Soc_MinActiveFreqType = input[3];
			activity_monitor.Soc_MinActiveFreq = input[4];
			activity_monitor.Soc_BoosterFreqType = input[5];
			activity_monitor.Soc_BoosterFreq = input[6];
			activity_monitor.Soc_PD_Data_limit_c = input[7];
			activity_monitor.Soc_PD_Data_error_coeff = input[8];
			activity_monitor.Soc_PD_Data_error_rate_coeff = input[9];
			break;
		case 2: /* Uclk */
			activity_monitor.Mem_FPS = input[1];
			activity_monitor.Mem_UseRlcBusy = input[2];
			activity_monitor.Mem_MinActiveFreqType = input[3];
			activity_monitor.Mem_MinActiveFreq = input[4];
			activity_monitor.Mem_BoosterFreqType = input[5];
			activity_monitor.Mem_BoosterFreq = input[6];
			activity_monitor.Mem_PD_Data_limit_c = input[7];
			activity_monitor.Mem_PD_Data_error_coeff = input[8];
			activity_monitor.Mem_PD_Data_error_rate_coeff = input[9];
			break;
		case 3: /* Fclk */
			activity_monitor.Fclk_FPS = input[1];
			activity_monitor.Fclk_UseRlcBusy = input[2];
			activity_monitor.Fclk_MinActiveFreqType = input[3];
			activity_monitor.Fclk_MinActiveFreq = input[4];
			activity_monitor.Fclk_BoosterFreqType = input[5];
			activity_monitor.Fclk_BoosterFreq = input[6];
			activity_monitor.Fclk_PD_Data_limit_c = input[7];
			activity_monitor.Fclk_PD_Data_error_coeff = input[8];
			activity_monitor.Fclk_PD_Data_error_rate_coeff = input[9];
			break;
		}

1793 1794
		ret = smu_update_table_with_arg(smu, TABLE_ACTIVITY_MONITOR_COEFF,
						WORKLOAD_PPLIB_COMPUTE_BIT, &activity_monitor, true);
1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809
		if (ret) {
			pr_err("[%s] Failed to set activity monitor!", __func__);
			return ret;
		}
	}

	/* conv PP_SMC_POWER_PROFILE* to WORKLOAD_PPLIB_*_BIT */
	workload_type =
		smu_v11_0_conv_power_profile_to_pplib_workload(smu->power_profile_mode);
	smu_send_smc_msg_with_param(smu, SMU_MSG_SetWorkloadMask,
				    1 << workload_type);

	return ret;
}

1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835
static int smu_v11_0_update_od8_settings(struct smu_context *smu,
					uint32_t index,
					uint32_t value)
{
	struct smu_table_context *table_context = &smu->smu_table;
	int ret;

	ret = smu_update_table(smu, TABLE_OVERDRIVE,
			       table_context->overdrive_table, false);
	if (ret) {
		pr_err("Failed to export over drive table!\n");
		return ret;
	}

	smu_update_specified_od8_value(smu, index, value);

	ret = smu_update_table(smu, TABLE_OVERDRIVE,
			       table_context->overdrive_table, true);
	if (ret) {
		pr_err("Failed to import over drive table!\n");
		return ret;
	}

	return 0;
}

1836 1837
static int smu_v11_0_dpm_set_uvd_enable(struct smu_context *smu, bool enable)
{
1838
	if (!smu_feature_is_supported(smu, FEATURE_DPM_UVD_BIT))
1839 1840
		return 0;

1841
	if (enable == smu_feature_is_enabled(smu, FEATURE_DPM_UVD_BIT))
1842 1843
		return 0;

1844
	return smu_feature_set_enabled(smu, FEATURE_DPM_UVD_BIT, enable);
1845 1846 1847 1848
}

static int smu_v11_0_dpm_set_vce_enable(struct smu_context *smu, bool enable)
{
1849
	if (!smu_feature_is_supported(smu, FEATURE_DPM_VCE_BIT))
1850 1851
		return 0;

1852
	if (enable == smu_feature_is_enabled(smu, FEATURE_DPM_VCE_BIT))
1853 1854
		return 0;

1855
	return smu_feature_set_enabled(smu, FEATURE_DPM_VCE_BIT, enable);
1856 1857
}

1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874
static int smu_v11_0_get_current_rpm(struct smu_context *smu,
				     uint32_t *current_rpm)
{
	int ret;

	ret = smu_send_smc_msg(smu, SMU_MSG_GetCurrentRpm);

	if (ret) {
		pr_err("Attempt to get current RPM from SMC Failed!\n");
		return ret;
	}

	smu_read_smc_arg(smu, current_rpm);

	return 0;
}

1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960
static uint32_t
smu_v11_0_get_fan_control_mode(struct smu_context *smu)
{
	if (!smu_feature_is_enabled(smu, FEATURE_FAN_CONTROL_BIT))
		return AMD_FAN_CTRL_MANUAL;
	else
		return AMD_FAN_CTRL_AUTO;
}

static int
smu_v11_0_get_fan_speed_percent(struct smu_context *smu,
					   uint32_t *speed)
{
	int ret = 0;
	uint32_t percent = 0;
	uint32_t current_rpm;
	PPTable_t *pptable = smu->smu_table.driver_pptable;

	ret = smu_v11_0_get_current_rpm(smu, &current_rpm);
	percent = current_rpm * 100 / pptable->FanMaximumRpm;
	*speed = percent > 100 ? 100 : percent;

	return ret;
}

static int
smu_v11_0_smc_fan_control(struct smu_context *smu, bool start)
{
	int ret = 0;

	if (smu_feature_is_supported(smu, FEATURE_FAN_CONTROL_BIT))
		return 0;

	ret = smu_feature_set_enabled(smu, FEATURE_FAN_CONTROL_BIT, start);
	if (ret)
		pr_err("[%s]%s smc FAN CONTROL feature failed!",
		       __func__, (start ? "Start" : "Stop"));

	return ret;
}

static int
smu_v11_0_set_fan_static_mode(struct smu_context *smu, uint32_t mode)
{
	struct amdgpu_device *adev = smu->adev;

	WREG32_SOC15(THM, 0, mmCG_FDO_CTRL2,
		     REG_SET_FIELD(RREG32_SOC15(THM, 0, mmCG_FDO_CTRL2),
				   CG_FDO_CTRL2, TMIN, 0));
	WREG32_SOC15(THM, 0, mmCG_FDO_CTRL2,
		     REG_SET_FIELD(RREG32_SOC15(THM, 0, mmCG_FDO_CTRL2),
				   CG_FDO_CTRL2, FDO_PWM_MODE, mode));

	return 0;
}

static int
smu_v11_0_set_fan_speed_percent(struct smu_context *smu, uint32_t speed)
{
	struct amdgpu_device *adev = smu->adev;
	uint32_t duty100;
	uint32_t duty;
	uint64_t tmp64;
	bool stop = 0;

	if (speed > 100)
		speed = 100;

	if (smu_v11_0_smc_fan_control(smu, stop))
		return -EINVAL;
	duty100 = REG_GET_FIELD(RREG32_SOC15(THM, 0, mmCG_FDO_CTRL1),
				CG_FDO_CTRL1, FMAX_DUTY100);
	if (!duty100)
		return -EINVAL;

	tmp64 = (uint64_t)speed * duty100;
	do_div(tmp64, 100);
	duty = (uint32_t)tmp64;

	WREG32_SOC15(THM, 0, mmCG_FDO_CTRL0,
		     REG_SET_FIELD(RREG32_SOC15(THM, 0, mmCG_FDO_CTRL0),
				   CG_FDO_CTRL0, FDO_STATIC_DUTY, duty));

	return smu_v11_0_set_fan_static_mode(smu, FDO_PWM_MODE_STATIC);
}

1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983
static int
smu_v11_0_set_fan_control_mode(struct smu_context *smu,
			       uint32_t mode)
{
	int ret = 0;
	bool start = 1;
	bool stop  = 0;

	switch (mode) {
	case AMD_FAN_CTRL_NONE:
		ret = smu_v11_0_set_fan_speed_percent(smu, 100);
		break;
	case AMD_FAN_CTRL_MANUAL:
		ret = smu_v11_0_smc_fan_control(smu, stop);
		break;
	case AMD_FAN_CTRL_AUTO:
		ret = smu_v11_0_smc_fan_control(smu, start);
		break;
	default:
		break;
	}

	if (ret) {
1984
		pr_err("[%s]Set fan control mode failed!", __func__);
1985 1986 1987 1988 1989 1990
		return -EINVAL;
	}

	return ret;
}

1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
static int smu_v11_0_set_fan_speed_rpm(struct smu_context *smu,
				       uint32_t speed)
{
	struct amdgpu_device *adev = smu->adev;
	int ret;
	uint32_t tach_period, crystal_clock_freq;
	bool stop = 0;

	if (!speed)
		return -EINVAL;

	mutex_lock(&(smu->mutex));
	ret = smu_v11_0_smc_fan_control(smu, stop);
	if (ret)
		goto set_fan_speed_rpm_failed;

	crystal_clock_freq = amdgpu_asic_get_xclk(adev);
	tach_period = 60 * crystal_clock_freq * 10000 / (8 * speed);
	WREG32_SOC15(THM, 0, mmCG_TACH_CTRL,
		     REG_SET_FIELD(RREG32_SOC15(THM, 0, mmCG_TACH_CTRL),
				   CG_TACH_CTRL, TARGET_PERIOD,
				   tach_period));

	ret = smu_v11_0_set_fan_static_mode(smu, FDO_PWM_MODE_STATIC_RPM);

set_fan_speed_rpm_failed:
	mutex_unlock(&(smu->mutex));
	return ret;
}

2021 2022 2023
static int smu_v11_0_set_xgmi_pstate(struct smu_context *smu,
				     uint32_t pstate)
{
2024 2025 2026 2027 2028 2029 2030
	int ret = 0;
	mutex_lock(&(smu->mutex));
	ret = smu_send_smc_msg_with_param(smu,
					  SMU_MSG_SetXgmiMode,
					  pstate ? XGMI_STATE_D0 : XGMI_STATE_D3);
	mutex_unlock(&(smu->mutex));
	return ret;
2031 2032
}

2033 2034
static const struct smu_funcs smu_v11_0_funcs = {
	.init_microcode = smu_v11_0_init_microcode,
2035
	.load_microcode = smu_v11_0_load_microcode,
2036
	.check_fw_status = smu_v11_0_check_fw_status,
2037
	.check_fw_version = smu_v11_0_check_fw_version,
2038 2039
	.send_smc_msg = smu_v11_0_send_msg,
	.send_smc_msg_with_param = smu_v11_0_send_msg_with_param,
2040
	.read_smc_arg = smu_v11_0_read_arg,
2041
	.read_pptable_from_vbios = smu_v11_0_read_pptable_from_vbios,
2042 2043
	.init_smc_tables = smu_v11_0_init_smc_tables,
	.fini_smc_tables = smu_v11_0_fini_smc_tables,
2044 2045
	.init_power = smu_v11_0_init_power,
	.fini_power = smu_v11_0_fini_power,
2046
	.get_vbios_bootup_values = smu_v11_0_get_vbios_bootup_values,
2047
	.get_clk_info_from_vbios = smu_v11_0_get_clk_info_from_vbios,
2048
	.notify_memory_pool_location = smu_v11_0_notify_memory_pool_location,
2049
	.check_pptable = smu_v11_0_check_pptable,
2050
	.parse_pptable = smu_v11_0_parse_pptable,
2051
	.populate_smc_pptable = smu_v11_0_populate_smc_pptable,
2052
	.write_pptable = smu_v11_0_write_pptable,
2053
	.write_watermarks_table = smu_v11_0_write_watermarks_table,
2054
	.set_min_dcef_deep_sleep = smu_v11_0_set_min_dcef_deep_sleep,
2055
	.set_tool_table_location = smu_v11_0_set_tool_table_location,
2056
	.init_display = smu_v11_0_init_display,
2057 2058
	.set_allowed_mask = smu_v11_0_set_allowed_mask,
	.get_enabled_mask = smu_v11_0_get_enabled_mask,
2059
	.is_dpm_running = smu_v11_0_is_dpm_running,
2060
	.system_features_control = smu_v11_0_system_features_control,
2061
	.update_feature_enable_state = smu_v11_0_update_feature_enable_state,
2062
	.notify_display_change = smu_v11_0_notify_display_change,
2063
	.get_power_limit = smu_v11_0_get_power_limit,
2064
	.set_power_limit = smu_v11_0_set_power_limit,
2065
	.get_current_clk_freq = smu_v11_0_get_current_clk_freq,
2066
	.init_max_sustainable_clocks = smu_v11_0_init_max_sustainable_clocks,
2067
	.start_thermal_control = smu_v11_0_start_thermal_control,
2068
	.read_sensor = smu_v11_0_read_sensor,
2069
	.set_deep_sleep_dcefclk = smu_v11_0_set_deep_sleep_dcefclk,
2070
	.display_clock_voltage_request = smu_v11_0_display_clock_voltage_request,
2071
	.set_watermarks_for_clock_ranges = smu_v11_0_set_watermarks_for_clock_ranges,
2072 2073
	.get_sclk = smu_v11_0_dpm_get_sclk,
	.get_mclk = smu_v11_0_dpm_get_mclk,
2074
	.set_od8_default_settings = smu_v11_0_set_od8_default_settings,
2075 2076 2077
	.conv_power_profile_to_pplib_workload = smu_v11_0_conv_power_profile_to_pplib_workload,
	.get_power_profile_mode = smu_v11_0_get_power_profile_mode,
	.set_power_profile_mode = smu_v11_0_set_power_profile_mode,
2078
	.update_od8_settings = smu_v11_0_update_od8_settings,
2079 2080
	.dpm_set_uvd_enable = smu_v11_0_dpm_set_uvd_enable,
	.dpm_set_vce_enable = smu_v11_0_dpm_set_vce_enable,
2081
	.get_current_rpm = smu_v11_0_get_current_rpm,
2082
	.get_fan_control_mode = smu_v11_0_get_fan_control_mode,
2083
	.set_fan_control_mode = smu_v11_0_set_fan_control_mode,
2084 2085
	.get_fan_speed_percent = smu_v11_0_get_fan_speed_percent,
	.set_fan_speed_percent = smu_v11_0_set_fan_speed_percent,
2086
	.set_fan_speed_rpm = smu_v11_0_set_fan_speed_rpm,
2087
	.set_xgmi_pstate = smu_v11_0_set_xgmi_pstate,
2088 2089 2090 2091
};

void smu_v11_0_set_smu_funcs(struct smu_context *smu)
{
2092 2093
	struct amdgpu_device *adev = smu->adev;

2094
	smu->funcs = &smu_v11_0_funcs;
2095 2096 2097 2098 2099
	switch (adev->asic_type) {
	case CHIP_VEGA20:
		vega20_set_ppt_funcs(smu);
		break;
	default:
2100
		pr_warn("Unknown asic for smu11\n");
2101
	}
2102
}