relocation.c 100.1 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2 3 4 5 6 7 8 9 10
/*
 * Copyright (C) 2009 Oracle.  All rights reserved.
 */

#include <linux/sched.h>
#include <linux/pagemap.h>
#include <linux/writeback.h>
#include <linux/blkdev.h>
#include <linux/rbtree.h>
11
#include <linux/slab.h>
12
#include <linux/error-injection.h>
13 14 15 16 17 18 19
#include "ctree.h"
#include "disk-io.h"
#include "transaction.h"
#include "volumes.h"
#include "locking.h"
#include "btrfs_inode.h"
#include "async-thread.h"
20
#include "free-space-cache.h"
21
#include "inode-map.h"
22
#include "qgroup.h"
23
#include "print-tree.h"
24
#include "delalloc-space.h"
25
#include "block-group.h"
26
#include "backref.h"
27
#include "misc.h"
28

29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
/*
 * Relocation overview
 *
 * [What does relocation do]
 *
 * The objective of relocation is to relocate all extents of the target block
 * group to other block groups.
 * This is utilized by resize (shrink only), profile converting, compacting
 * space, or balance routine to spread chunks over devices.
 *
 * 		Before		|		After
 * ------------------------------------------------------------------
 *  BG A: 10 data extents	| BG A: deleted
 *  BG B:  2 data extents	| BG B: 10 data extents (2 old + 8 relocated)
 *  BG C:  1 extents		| BG C:  3 data extents (1 old + 2 relocated)
 *
 * [How does relocation work]
 *
 * 1.   Mark the target block group read-only
 *      New extents won't be allocated from the target block group.
 *
 * 2.1  Record each extent in the target block group
 *      To build a proper map of extents to be relocated.
 *
 * 2.2  Build data reloc tree and reloc trees
 *      Data reloc tree will contain an inode, recording all newly relocated
 *      data extents.
 *      There will be only one data reloc tree for one data block group.
 *
 *      Reloc tree will be a special snapshot of its source tree, containing
 *      relocated tree blocks.
 *      Each tree referring to a tree block in target block group will get its
 *      reloc tree built.
 *
 * 2.3  Swap source tree with its corresponding reloc tree
 *      Each involved tree only refers to new extents after swap.
 *
 * 3.   Cleanup reloc trees and data reloc tree.
 *      As old extents in the target block group are still referenced by reloc
 *      trees, we need to clean them up before really freeing the target block
 *      group.
 *
 * The main complexity is in steps 2.2 and 2.3.
 *
 * The entry point of relocation is relocate_block_group() function.
 */

76
#define RELOCATION_RESERVED_NODES	256
77 78 79 80
/*
 * map address of tree root to tree
 */
struct mapping_node {
81 82 83 84
	struct {
		struct rb_node rb_node;
		u64 bytenr;
	}; /* Use rb_simle_node for search/insert */
85 86 87 88 89 90 91 92 93 94 95 96
	void *data;
};

struct mapping_tree {
	struct rb_root rb_root;
	spinlock_t lock;
};

/*
 * present a tree block to process
 */
struct tree_block {
97 98 99 100
	struct {
		struct rb_node rb_node;
		u64 bytenr;
	}; /* Use rb_simple_node for search/insert */
101 102 103 104 105
	struct btrfs_key key;
	unsigned int level:8;
	unsigned int key_ready:1;
};

106 107 108 109 110 111 112 113 114
#define MAX_EXTENTS 128

struct file_extent_cluster {
	u64 start;
	u64 end;
	u64 boundary[MAX_EXTENTS];
	unsigned int nr;
};

115 116
struct reloc_control {
	/* block group to relocate */
117
	struct btrfs_block_group *block_group;
118 119 120 121
	/* extent tree */
	struct btrfs_root *extent_root;
	/* inode for moving data */
	struct inode *data_inode;
122 123 124

	struct btrfs_block_rsv *block_rsv;

125
	struct btrfs_backref_cache backref_cache;
126 127

	struct file_extent_cluster cluster;
128 129 130 131 132 133
	/* tree blocks have been processed */
	struct extent_io_tree processed_blocks;
	/* map start of tree root to corresponding reloc tree */
	struct mapping_tree reloc_root_tree;
	/* list of reloc trees */
	struct list_head reloc_roots;
134 135
	/* list of subvolume trees that get relocated */
	struct list_head dirty_subvol_roots;
136 137 138 139
	/* size of metadata reservation for merging reloc trees */
	u64 merging_rsv_size;
	/* size of relocated tree nodes */
	u64 nodes_relocated;
140 141
	/* reserved size for block group relocation*/
	u64 reserved_bytes;
142

143 144
	u64 search_start;
	u64 extents_found;
145 146 147 148

	unsigned int stage:8;
	unsigned int create_reloc_tree:1;
	unsigned int merge_reloc_tree:1;
149 150 151 152 153 154 155
	unsigned int found_file_extent:1;
};

/* stages of data relocation */
#define MOVE_DATA_EXTENTS	0
#define UPDATE_DATA_PTRS	1

156
static void mark_block_processed(struct reloc_control *rc,
157
				 struct btrfs_backref_node *node)
158 159 160 161 162 163 164 165 166 167 168 169 170
{
	u32 blocksize;

	if (node->level == 0 ||
	    in_range(node->bytenr, rc->block_group->start,
		     rc->block_group->length)) {
		blocksize = rc->extent_root->fs_info->nodesize;
		set_extent_bits(&rc->processed_blocks, node->bytenr,
				node->bytenr + blocksize - 1, EXTENT_DIRTY);
	}
	node->processed = 1;
}

171 172 173

static void mapping_tree_init(struct mapping_tree *tree)
{
174
	tree->rb_root = RB_ROOT;
175 176 177 178 179 180
	spin_lock_init(&tree->lock);
}

/*
 * walk up backref nodes until reach node presents tree root
 */
181 182 183
static struct btrfs_backref_node *walk_up_backref(
		struct btrfs_backref_node *node,
		struct btrfs_backref_edge *edges[], int *index)
184
{
185
	struct btrfs_backref_edge *edge;
186 187 188 189
	int idx = *index;

	while (!list_empty(&node->upper)) {
		edge = list_entry(node->upper.next,
190
				  struct btrfs_backref_edge, list[LOWER]);
191 192 193
		edges[idx++] = edge;
		node = edge->node[UPPER];
	}
194
	BUG_ON(node->detached);
195 196 197 198 199 200 201
	*index = idx;
	return node;
}

/*
 * walk down backref nodes to find start of next reference path
 */
202 203
static struct btrfs_backref_node *walk_down_backref(
		struct btrfs_backref_edge *edges[], int *index)
204
{
205 206
	struct btrfs_backref_edge *edge;
	struct btrfs_backref_node *lower;
207 208 209 210 211 212 213 214 215 216
	int idx = *index;

	while (idx > 0) {
		edge = edges[idx - 1];
		lower = edge->node[LOWER];
		if (list_is_last(&edge->list[LOWER], &lower->upper)) {
			idx--;
			continue;
		}
		edge = list_entry(edge->list[LOWER].next,
217
				  struct btrfs_backref_edge, list[LOWER]);
218 219 220 221 222 223 224 225
		edges[idx - 1] = edge;
		*index = idx;
		return edge->node[UPPER];
	}
	*index = 0;
	return NULL;
}

226 227
static void update_backref_node(struct btrfs_backref_cache *cache,
				struct btrfs_backref_node *node, u64 bytenr)
228 229 230 231
{
	struct rb_node *rb_node;
	rb_erase(&node->rb_node, &cache->rb_root);
	node->bytenr = bytenr;
232
	rb_node = rb_simple_insert(&cache->rb_root, node->bytenr, &node->rb_node);
233
	if (rb_node)
234
		btrfs_backref_panic(cache->fs_info, bytenr, -EEXIST);
235 236 237 238 239 240
}

/*
 * update backref cache after a transaction commit
 */
static int update_backref_cache(struct btrfs_trans_handle *trans,
241
				struct btrfs_backref_cache *cache)
242
{
243
	struct btrfs_backref_node *node;
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
	int level = 0;

	if (cache->last_trans == 0) {
		cache->last_trans = trans->transid;
		return 0;
	}

	if (cache->last_trans == trans->transid)
		return 0;

	/*
	 * detached nodes are used to avoid unnecessary backref
	 * lookup. transaction commit changes the extent tree.
	 * so the detached nodes are no longer useful.
	 */
	while (!list_empty(&cache->detached)) {
		node = list_entry(cache->detached.next,
261
				  struct btrfs_backref_node, list);
262
		btrfs_backref_cleanup_node(cache, node);
263 264 265 266
	}

	while (!list_empty(&cache->changed)) {
		node = list_entry(cache->changed.next,
267
				  struct btrfs_backref_node, list);
268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
		list_del_init(&node->list);
		BUG_ON(node->pending);
		update_backref_node(cache, node, node->new_bytenr);
	}

	/*
	 * some nodes can be left in the pending list if there were
	 * errors during processing the pending nodes.
	 */
	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
		list_for_each_entry(node, &cache->pending[level], list) {
			BUG_ON(!node->pending);
			if (node->bytenr == node->new_bytenr)
				continue;
			update_backref_node(cache, node, node->new_bytenr);
		}
	}

	cache->last_trans = 0;
	return 1;
}

290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
static bool reloc_root_is_dead(struct btrfs_root *root)
{
	/*
	 * Pair with set_bit/clear_bit in clean_dirty_subvols and
	 * btrfs_update_reloc_root. We need to see the updated bit before
	 * trying to access reloc_root
	 */
	smp_rmb();
	if (test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state))
		return true;
	return false;
}

/*
 * Check if this subvolume tree has valid reloc tree.
 *
 * Reloc tree after swap is considered dead, thus not considered as valid.
 * This is enough for most callers, as they don't distinguish dead reloc root
308 309
 * from no reloc root.  But btrfs_should_ignore_reloc_root() below is a
 * special case.
310 311 312 313 314 315 316 317 318
 */
static bool have_reloc_root(struct btrfs_root *root)
{
	if (reloc_root_is_dead(root))
		return false;
	if (!root->reloc_root)
		return false;
	return true;
}
319

320
int btrfs_should_ignore_reloc_root(struct btrfs_root *root)
321 322 323
{
	struct btrfs_root *reloc_root;

324
	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
325 326
		return 0;

327 328 329 330
	/* This root has been merged with its reloc tree, we can ignore it */
	if (reloc_root_is_dead(root))
		return 1;

331 332 333 334
	reloc_root = root->reloc_root;
	if (!reloc_root)
		return 0;

335 336
	if (btrfs_header_generation(reloc_root->commit_root) ==
	    root->fs_info->running_transaction->transid)
337 338 339 340 341 342 343 344 345
		return 0;
	/*
	 * if there is reloc tree and it was created in previous
	 * transaction backref lookup can find the reloc tree,
	 * so backref node for the fs tree root is useless for
	 * relocation.
	 */
	return 1;
}
346

347 348 349
/*
 * find reloc tree by address of tree root
 */
350
struct btrfs_root *find_reloc_root(struct btrfs_fs_info *fs_info, u64 bytenr)
351
{
352
	struct reloc_control *rc = fs_info->reloc_ctl;
353 354 355 356
	struct rb_node *rb_node;
	struct mapping_node *node;
	struct btrfs_root *root = NULL;

357
	ASSERT(rc);
358
	spin_lock(&rc->reloc_root_tree.lock);
359
	rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root, bytenr);
360 361 362 363 364
	if (rb_node) {
		node = rb_entry(rb_node, struct mapping_node, rb_node);
		root = (struct btrfs_root *)node->data;
	}
	spin_unlock(&rc->reloc_root_tree.lock);
365
	return btrfs_grab_root(root);
366 367
}

368 369 370 371 372 373 374 375 376 377 378 379 380 381
/*
 * For useless nodes, do two major clean ups:
 *
 * - Cleanup the children edges and nodes
 *   If child node is also orphan (no parent) during cleanup, then the child
 *   node will also be cleaned up.
 *
 * - Freeing up leaves (level 0), keeps nodes detached
 *   For nodes, the node is still cached as "detached"
 *
 * Return false if @node is not in the @useless_nodes list.
 * Return true if @node is in the @useless_nodes list.
 */
static bool handle_useless_nodes(struct reloc_control *rc,
382
				 struct btrfs_backref_node *node)
383
{
384
	struct btrfs_backref_cache *cache = &rc->backref_cache;
385 386 387 388
	struct list_head *useless_node = &cache->useless_node;
	bool ret = false;

	while (!list_empty(useless_node)) {
389
		struct btrfs_backref_node *cur;
390

391
		cur = list_first_entry(useless_node, struct btrfs_backref_node,
392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408
				 list);
		list_del_init(&cur->list);

		/* Only tree root nodes can be added to @useless_nodes */
		ASSERT(list_empty(&cur->upper));

		if (cur == node)
			ret = true;

		/* The node is the lowest node */
		if (cur->lowest) {
			list_del_init(&cur->lower);
			cur->lowest = 0;
		}

		/* Cleanup the lower edges */
		while (!list_empty(&cur->lower)) {
409 410
			struct btrfs_backref_edge *edge;
			struct btrfs_backref_node *lower;
411 412

			edge = list_entry(cur->lower.next,
413
					struct btrfs_backref_edge, list[UPPER]);
414 415 416
			list_del(&edge->list[UPPER]);
			list_del(&edge->list[LOWER]);
			lower = edge->node[LOWER];
417
			btrfs_backref_free_edge(cache, edge);
418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435

			/* Child node is also orphan, queue for cleanup */
			if (list_empty(&lower->upper))
				list_add(&lower->list, useless_node);
		}
		/* Mark this block processed for relocation */
		mark_block_processed(rc, cur);

		/*
		 * Backref nodes for tree leaves are deleted from the cache.
		 * Backref nodes for upper level tree blocks are left in the
		 * cache to avoid unnecessary backref lookup.
		 */
		if (cur->level > 0) {
			list_add(&cur->list, &cache->detached);
			cur->detached = 1;
		} else {
			rb_erase(&cur->rb_node, &cache->rb_root);
436
			btrfs_backref_free_node(cache, cur);
437 438 439 440 441
		}
	}
	return ret;
}

442 443 444 445 446 447 448 449 450 451 452 453 454 455
/*
 * Build backref tree for a given tree block. Root of the backref tree
 * corresponds the tree block, leaves of the backref tree correspond roots of
 * b-trees that reference the tree block.
 *
 * The basic idea of this function is check backrefs of a given block to find
 * upper level blocks that reference the block, and then check backrefs of
 * these upper level blocks recursively. The recursion stops when tree root is
 * reached or backrefs for the block is cached.
 *
 * NOTE: if we find that backrefs for a block are cached, we know backrefs for
 * all upper level blocks that directly/indirectly reference the block are also
 * cached.
 */
456
static noinline_for_stack struct btrfs_backref_node *build_backref_tree(
457 458 459 460
			struct reloc_control *rc, struct btrfs_key *node_key,
			int level, u64 bytenr)
{
	struct btrfs_backref_iter *iter;
461
	struct btrfs_backref_cache *cache = &rc->backref_cache;
462 463
	/* For searching parent of TREE_BLOCK_REF */
	struct btrfs_path *path;
464 465 466
	struct btrfs_backref_node *cur;
	struct btrfs_backref_node *node = NULL;
	struct btrfs_backref_edge *edge;
467 468
	int ret;
	int err = 0;
469

470 471 472 473 474 475 476 477 478
	iter = btrfs_backref_iter_alloc(rc->extent_root->fs_info, GFP_NOFS);
	if (!iter)
		return ERR_PTR(-ENOMEM);
	path = btrfs_alloc_path();
	if (!path) {
		err = -ENOMEM;
		goto out;
	}

479
	node = btrfs_backref_alloc_node(cache, bytenr, level);
480 481 482
	if (!node) {
		err = -ENOMEM;
		goto out;
483 484
	}

485 486 487 488 489
	node->lowest = 1;
	cur = node;

	/* Breadth-first search to build backref cache */
	do {
490 491
		ret = btrfs_backref_add_tree_node(cache, path, iter, node_key,
						  cur);
492 493 494 495 496
		if (ret < 0) {
			err = ret;
			goto out;
		}
		edge = list_first_entry_or_null(&cache->pending_edge,
497
				struct btrfs_backref_edge, list[UPPER]);
498 499 500 501 502 503 504 505 506 507
		/*
		 * The pending list isn't empty, take the first block to
		 * process
		 */
		if (edge) {
			list_del_init(&edge->list[UPPER]);
			cur = edge->node[UPPER];
		}
	} while (edge);

508
	/* Finish the upper linkage of newly added edges/nodes */
509
	ret = btrfs_backref_finish_upper_links(cache, node);
510 511 512
	if (ret < 0) {
		err = ret;
		goto out;
513
	}
514

515 516
	if (handle_useless_nodes(rc, node))
		node = NULL;
517
out:
518 519
	btrfs_backref_iter_free(iter);
	btrfs_free_path(path);
520
	if (err) {
521
		btrfs_backref_error_cleanup(cache, node);
522 523
		return ERR_PTR(err);
	}
524
	ASSERT(!node || !node->detached);
525 526
	ASSERT(list_empty(&cache->useless_node) &&
	       list_empty(&cache->pending_edge));
527 528 529
	return node;
}

530 531 532 533 534 535 536 537 538 539 540
/*
 * helper to add backref node for the newly created snapshot.
 * the backref node is created by cloning backref node that
 * corresponds to root of source tree
 */
static int clone_backref_node(struct btrfs_trans_handle *trans,
			      struct reloc_control *rc,
			      struct btrfs_root *src,
			      struct btrfs_root *dest)
{
	struct btrfs_root *reloc_root = src->reloc_root;
541 542 543 544 545
	struct btrfs_backref_cache *cache = &rc->backref_cache;
	struct btrfs_backref_node *node = NULL;
	struct btrfs_backref_node *new_node;
	struct btrfs_backref_edge *edge;
	struct btrfs_backref_edge *new_edge;
546 547 548 549 550
	struct rb_node *rb_node;

	if (cache->last_trans > 0)
		update_backref_cache(trans, cache);

551
	rb_node = rb_simple_search(&cache->rb_root, src->commit_root->start);
552
	if (rb_node) {
553
		node = rb_entry(rb_node, struct btrfs_backref_node, rb_node);
554 555 556 557 558 559 560
		if (node->detached)
			node = NULL;
		else
			BUG_ON(node->new_bytenr != reloc_root->node->start);
	}

	if (!node) {
561 562
		rb_node = rb_simple_search(&cache->rb_root,
					   reloc_root->commit_root->start);
563
		if (rb_node) {
564
			node = rb_entry(rb_node, struct btrfs_backref_node,
565 566 567 568 569 570 571 572
					rb_node);
			BUG_ON(node->detached);
		}
	}

	if (!node)
		return 0;

573 574
	new_node = btrfs_backref_alloc_node(cache, dest->node->start,
					    node->level);
575 576 577 578
	if (!new_node)
		return -ENOMEM;

	new_node->lowest = node->lowest;
Y
Yan, Zheng 已提交
579
	new_node->checked = 1;
580
	new_node->root = btrfs_grab_root(dest);
581
	ASSERT(new_node->root);
582 583 584

	if (!node->lowest) {
		list_for_each_entry(edge, &node->lower, list[UPPER]) {
585
			new_edge = btrfs_backref_alloc_edge(cache);
586 587 588
			if (!new_edge)
				goto fail;

589 590
			btrfs_backref_link_edge(new_edge, edge->node[LOWER],
						new_node, LINK_UPPER);
591
		}
M
Miao Xie 已提交
592 593
	} else {
		list_add_tail(&new_node->lower, &cache->leaves);
594 595
	}

596 597
	rb_node = rb_simple_insert(&cache->rb_root, new_node->bytenr,
				   &new_node->rb_node);
598
	if (rb_node)
599
		btrfs_backref_panic(trans->fs_info, new_node->bytenr, -EEXIST);
600 601 602 603 604 605 606 607 608 609 610

	if (!new_node->lowest) {
		list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) {
			list_add_tail(&new_edge->list[LOWER],
				      &new_edge->node[LOWER]->upper);
		}
	}
	return 0;
fail:
	while (!list_empty(&new_node->lower)) {
		new_edge = list_entry(new_node->lower.next,
611
				      struct btrfs_backref_edge, list[UPPER]);
612
		list_del(&new_edge->list[UPPER]);
613
		btrfs_backref_free_edge(cache, new_edge);
614
	}
615
	btrfs_backref_free_node(cache, new_node);
616 617 618
	return -ENOMEM;
}

619 620 621
/*
 * helper to add 'address of tree root -> reloc tree' mapping
 */
622
static int __must_check __add_reloc_root(struct btrfs_root *root)
623
{
624
	struct btrfs_fs_info *fs_info = root->fs_info;
625 626
	struct rb_node *rb_node;
	struct mapping_node *node;
627
	struct reloc_control *rc = fs_info->reloc_ctl;
628 629

	node = kmalloc(sizeof(*node), GFP_NOFS);
630 631
	if (!node)
		return -ENOMEM;
632

633
	node->bytenr = root->commit_root->start;
634 635 636
	node->data = root;

	spin_lock(&rc->reloc_root_tree.lock);
637 638
	rb_node = rb_simple_insert(&rc->reloc_root_tree.rb_root,
				   node->bytenr, &node->rb_node);
639
	spin_unlock(&rc->reloc_root_tree.lock);
640
	if (rb_node) {
641
		btrfs_panic(fs_info, -EEXIST,
J
Jeff Mahoney 已提交
642 643
			    "Duplicate root found for start=%llu while inserting into relocation tree",
			    node->bytenr);
644
	}
645 646 647 648 649 650

	list_add_tail(&root->root_list, &rc->reloc_roots);
	return 0;
}

/*
651
 * helper to delete the 'address of tree root -> reloc tree'
652 653
 * mapping
 */
654
static void __del_reloc_root(struct btrfs_root *root)
655
{
656
	struct btrfs_fs_info *fs_info = root->fs_info;
657 658
	struct rb_node *rb_node;
	struct mapping_node *node = NULL;
659
	struct reloc_control *rc = fs_info->reloc_ctl;
660
	bool put_ref = false;
661

662
	if (rc && root->node) {
663
		spin_lock(&rc->reloc_root_tree.lock);
664 665
		rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root,
					   root->commit_root->start);
666 667 668
		if (rb_node) {
			node = rb_entry(rb_node, struct mapping_node, rb_node);
			rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
669
			RB_CLEAR_NODE(&node->rb_node);
670 671 672 673 674
		}
		spin_unlock(&rc->reloc_root_tree.lock);
		if (!node)
			return;
		BUG_ON((struct btrfs_root *)node->data != root);
675 676
	}

677 678 679 680 681 682 683 684
	/*
	 * We only put the reloc root here if it's on the list.  There's a lot
	 * of places where the pattern is to splice the rc->reloc_roots, process
	 * the reloc roots, and then add the reloc root back onto
	 * rc->reloc_roots.  If we call __del_reloc_root while it's off of the
	 * list we don't want the reference being dropped, because the guy
	 * messing with the list is in charge of the reference.
	 */
685
	spin_lock(&fs_info->trans_lock);
686 687 688 689
	if (!list_empty(&root->root_list)) {
		put_ref = true;
		list_del_init(&root->root_list);
	}
690
	spin_unlock(&fs_info->trans_lock);
691 692
	if (put_ref)
		btrfs_put_root(root);
693 694 695 696 697 698 699
	kfree(node);
}

/*
 * helper to update the 'address of tree root -> reloc tree'
 * mapping
 */
700
static int __update_reloc_root(struct btrfs_root *root)
701
{
702
	struct btrfs_fs_info *fs_info = root->fs_info;
703 704
	struct rb_node *rb_node;
	struct mapping_node *node = NULL;
705
	struct reloc_control *rc = fs_info->reloc_ctl;
706 707

	spin_lock(&rc->reloc_root_tree.lock);
708 709
	rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root,
				   root->commit_root->start);
710 711 712
	if (rb_node) {
		node = rb_entry(rb_node, struct mapping_node, rb_node);
		rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
713
	}
714 715 716 717 718 719 720
	spin_unlock(&rc->reloc_root_tree.lock);

	if (!node)
		return 0;
	BUG_ON((struct btrfs_root *)node->data != root);

	spin_lock(&rc->reloc_root_tree.lock);
721
	node->bytenr = root->node->start;
722 723
	rb_node = rb_simple_insert(&rc->reloc_root_tree.rb_root,
				   node->bytenr, &node->rb_node);
724 725
	spin_unlock(&rc->reloc_root_tree.lock);
	if (rb_node)
726
		btrfs_backref_panic(fs_info, node->bytenr, -EEXIST);
727 728 729
	return 0;
}

730 731
static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans,
					struct btrfs_root *root, u64 objectid)
732
{
733
	struct btrfs_fs_info *fs_info = root->fs_info;
734 735 736 737 738 739 740 741 742 743 744
	struct btrfs_root *reloc_root;
	struct extent_buffer *eb;
	struct btrfs_root_item *root_item;
	struct btrfs_key root_key;
	int ret;

	root_item = kmalloc(sizeof(*root_item), GFP_NOFS);
	BUG_ON(!root_item);

	root_key.objectid = BTRFS_TREE_RELOC_OBJECTID;
	root_key.type = BTRFS_ROOT_ITEM_KEY;
745
	root_key.offset = objectid;
746

747
	if (root->root_key.objectid == objectid) {
748 749
		u64 commit_root_gen;

750 751 752 753
		/* called by btrfs_init_reloc_root */
		ret = btrfs_copy_root(trans, root, root->commit_root, &eb,
				      BTRFS_TREE_RELOC_OBJECTID);
		BUG_ON(ret);
754 755 756 757 758 759 760 761 762 763
		/*
		 * Set the last_snapshot field to the generation of the commit
		 * root - like this ctree.c:btrfs_block_can_be_shared() behaves
		 * correctly (returns true) when the relocation root is created
		 * either inside the critical section of a transaction commit
		 * (through transaction.c:qgroup_account_snapshot()) and when
		 * it's created before the transaction commit is started.
		 */
		commit_root_gen = btrfs_header_generation(root->commit_root);
		btrfs_set_root_last_snapshot(&root->root_item, commit_root_gen);
764 765 766 767 768 769 770 771 772 773 774 775
	} else {
		/*
		 * called by btrfs_reloc_post_snapshot_hook.
		 * the source tree is a reloc tree, all tree blocks
		 * modified after it was created have RELOC flag
		 * set in their headers. so it's OK to not update
		 * the 'last_snapshot'.
		 */
		ret = btrfs_copy_root(trans, root, root->node, &eb,
				      BTRFS_TREE_RELOC_OBJECTID);
		BUG_ON(ret);
	}
776 777 778 779 780

	memcpy(root_item, &root->root_item, sizeof(*root_item));
	btrfs_set_root_bytenr(root_item, eb->start);
	btrfs_set_root_level(root_item, btrfs_header_level(eb));
	btrfs_set_root_generation(root_item, trans->transid);
781 782 783 784 785 786 787

	if (root->root_key.objectid == objectid) {
		btrfs_set_root_refs(root_item, 0);
		memset(&root_item->drop_progress, 0,
		       sizeof(struct btrfs_disk_key));
		root_item->drop_level = 0;
	}
788 789 790 791

	btrfs_tree_unlock(eb);
	free_extent_buffer(eb);

792
	ret = btrfs_insert_root(trans, fs_info->tree_root,
793 794 795 796
				&root_key, root_item);
	BUG_ON(ret);
	kfree(root_item);

797
	reloc_root = btrfs_read_tree_root(fs_info->tree_root, &root_key);
798
	BUG_ON(IS_ERR(reloc_root));
799
	set_bit(BTRFS_ROOT_SHAREABLE, &reloc_root->state);
800
	reloc_root->last_trans = trans->transid;
801 802 803 804 805 806
	return reloc_root;
}

/*
 * create reloc tree for a given fs tree. reloc tree is just a
 * snapshot of the fs tree with special root objectid.
807 808 809
 *
 * The reloc_root comes out of here with two references, one for
 * root->reloc_root, and another for being on the rc->reloc_roots list.
810 811 812 813
 */
int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
			  struct btrfs_root *root)
{
814
	struct btrfs_fs_info *fs_info = root->fs_info;
815
	struct btrfs_root *reloc_root;
816
	struct reloc_control *rc = fs_info->reloc_ctl;
817
	struct btrfs_block_rsv *rsv;
818
	int clear_rsv = 0;
819
	int ret;
820

821
	if (!rc)
822 823
		return 0;

824 825 826 827
	/*
	 * The subvolume has reloc tree but the swap is finished, no need to
	 * create/update the dead reloc tree
	 */
828
	if (reloc_root_is_dead(root))
829 830
		return 0;

831 832 833 834 835 836 837 838
	/*
	 * This is subtle but important.  We do not do
	 * record_root_in_transaction for reloc roots, instead we record their
	 * corresponding fs root, and then here we update the last trans for the
	 * reloc root.  This means that we have to do this for the entire life
	 * of the reloc root, regardless of which stage of the relocation we are
	 * in.
	 */
839 840 841 842 843 844
	if (root->reloc_root) {
		reloc_root = root->reloc_root;
		reloc_root->last_trans = trans->transid;
		return 0;
	}

845 846 847 848 849 850 851 852
	/*
	 * We are merging reloc roots, we do not need new reloc trees.  Also
	 * reloc trees never need their own reloc tree.
	 */
	if (!rc->create_reloc_tree ||
	    root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
		return 0;

853 854
	if (!trans->reloc_reserved) {
		rsv = trans->block_rsv;
855 856 857 858 859
		trans->block_rsv = rc->block_rsv;
		clear_rsv = 1;
	}
	reloc_root = create_reloc_root(trans, root, root->root_key.objectid);
	if (clear_rsv)
860
		trans->block_rsv = rsv;
861

862 863
	ret = __add_reloc_root(reloc_root);
	BUG_ON(ret < 0);
864
	root->reloc_root = btrfs_grab_root(reloc_root);
865 866 867 868 869 870 871 872 873
	return 0;
}

/*
 * update root item of reloc tree
 */
int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
			    struct btrfs_root *root)
{
874
	struct btrfs_fs_info *fs_info = root->fs_info;
875 876 877 878
	struct btrfs_root *reloc_root;
	struct btrfs_root_item *root_item;
	int ret;

879
	if (!have_reloc_root(root))
C
Chris Mason 已提交
880
		goto out;
881 882 883 884

	reloc_root = root->reloc_root;
	root_item = &reloc_root->root_item;

885 886 887 888 889 890 891
	/*
	 * We are probably ok here, but __del_reloc_root() will drop its ref of
	 * the root.  We have the ref for root->reloc_root, but just in case
	 * hold it while we update the reloc root.
	 */
	btrfs_grab_root(reloc_root);

892
	/* root->reloc_root will stay until current relocation finished */
893
	if (fs_info->reloc_ctl->merge_reloc_tree &&
894
	    btrfs_root_refs(root_item) == 0) {
895
		set_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state);
896 897 898 899 900
		/*
		 * Mark the tree as dead before we change reloc_root so
		 * have_reloc_root will not touch it from now on.
		 */
		smp_wmb();
901
		__del_reloc_root(reloc_root);
902 903 904
	}

	if (reloc_root->commit_root != reloc_root->node) {
905
		__update_reloc_root(reloc_root);
906 907 908 909 910
		btrfs_set_root_node(root_item, reloc_root->node);
		free_extent_buffer(reloc_root->commit_root);
		reloc_root->commit_root = btrfs_root_node(reloc_root);
	}

911
	ret = btrfs_update_root(trans, fs_info->tree_root,
912 913
				&reloc_root->root_key, root_item);
	BUG_ON(ret);
914
	btrfs_put_root(reloc_root);
C
Chris Mason 已提交
915
out:
916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937
	return 0;
}

/*
 * helper to find first cached inode with inode number >= objectid
 * in a subvolume
 */
static struct inode *find_next_inode(struct btrfs_root *root, u64 objectid)
{
	struct rb_node *node;
	struct rb_node *prev;
	struct btrfs_inode *entry;
	struct inode *inode;

	spin_lock(&root->inode_lock);
again:
	node = root->inode_tree.rb_node;
	prev = NULL;
	while (node) {
		prev = node;
		entry = rb_entry(node, struct btrfs_inode, rb_node);

938
		if (objectid < btrfs_ino(entry))
939
			node = node->rb_left;
940
		else if (objectid > btrfs_ino(entry))
941 942 943 944 945 946 947
			node = node->rb_right;
		else
			break;
	}
	if (!node) {
		while (prev) {
			entry = rb_entry(prev, struct btrfs_inode, rb_node);
948
			if (objectid <= btrfs_ino(entry)) {
949 950 951 952 953 954 955 956 957 958 959 960 961 962
				node = prev;
				break;
			}
			prev = rb_next(prev);
		}
	}
	while (node) {
		entry = rb_entry(node, struct btrfs_inode, rb_node);
		inode = igrab(&entry->vfs_inode);
		if (inode) {
			spin_unlock(&root->inode_lock);
			return inode;
		}

963
		objectid = btrfs_ino(entry) + 1;
964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989
		if (cond_resched_lock(&root->inode_lock))
			goto again;

		node = rb_next(node);
	}
	spin_unlock(&root->inode_lock);
	return NULL;
}

/*
 * get new location of data
 */
static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr,
			    u64 bytenr, u64 num_bytes)
{
	struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
	struct btrfs_path *path;
	struct btrfs_file_extent_item *fi;
	struct extent_buffer *leaf;
	int ret;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	bytenr -= BTRFS_I(reloc_inode)->index_cnt;
990 991
	ret = btrfs_lookup_file_extent(NULL, root, path,
			btrfs_ino(BTRFS_I(reloc_inode)), bytenr, 0);
992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008
	if (ret < 0)
		goto out;
	if (ret > 0) {
		ret = -ENOENT;
		goto out;
	}

	leaf = path->nodes[0];
	fi = btrfs_item_ptr(leaf, path->slots[0],
			    struct btrfs_file_extent_item);

	BUG_ON(btrfs_file_extent_offset(leaf, fi) ||
	       btrfs_file_extent_compression(leaf, fi) ||
	       btrfs_file_extent_encryption(leaf, fi) ||
	       btrfs_file_extent_other_encoding(leaf, fi));

	if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) {
1009
		ret = -EINVAL;
1010 1011 1012
		goto out;
	}

1013
	*new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
	ret = 0;
out:
	btrfs_free_path(path);
	return ret;
}

/*
 * update file extent items in the tree leaf to point to
 * the new locations.
 */
1024 1025 1026 1027 1028
static noinline_for_stack
int replace_file_extents(struct btrfs_trans_handle *trans,
			 struct reloc_control *rc,
			 struct btrfs_root *root,
			 struct extent_buffer *leaf)
1029
{
1030
	struct btrfs_fs_info *fs_info = root->fs_info;
1031 1032 1033 1034 1035
	struct btrfs_key key;
	struct btrfs_file_extent_item *fi;
	struct inode *inode = NULL;
	u64 parent;
	u64 bytenr;
1036
	u64 new_bytenr = 0;
1037 1038 1039 1040
	u64 num_bytes;
	u64 end;
	u32 nritems;
	u32 i;
1041
	int ret = 0;
1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
	int first = 1;
	int dirty = 0;

	if (rc->stage != UPDATE_DATA_PTRS)
		return 0;

	/* reloc trees always use full backref */
	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
		parent = leaf->start;
	else
		parent = 0;

	nritems = btrfs_header_nritems(leaf);
	for (i = 0; i < nritems; i++) {
1056 1057
		struct btrfs_ref ref = { 0 };

1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069
		cond_resched();
		btrfs_item_key_to_cpu(leaf, &key, i);
		if (key.type != BTRFS_EXTENT_DATA_KEY)
			continue;
		fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
		if (btrfs_file_extent_type(leaf, fi) ==
		    BTRFS_FILE_EXTENT_INLINE)
			continue;
		bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
		num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
		if (bytenr == 0)
			continue;
1070 1071
		if (!in_range(bytenr, rc->block_group->start,
			      rc->block_group->length))
1072 1073 1074 1075 1076 1077 1078 1079 1080 1081
			continue;

		/*
		 * if we are modifying block in fs tree, wait for readpage
		 * to complete and drop the extent cache
		 */
		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
			if (first) {
				inode = find_next_inode(root, key.objectid);
				first = 0;
1082
			} else if (inode && btrfs_ino(BTRFS_I(inode)) < key.objectid) {
1083
				btrfs_add_delayed_iput(inode);
1084 1085
				inode = find_next_inode(root, key.objectid);
			}
1086
			if (inode && btrfs_ino(BTRFS_I(inode)) == key.objectid) {
1087 1088 1089
				end = key.offset +
				      btrfs_file_extent_num_bytes(leaf, fi);
				WARN_ON(!IS_ALIGNED(key.offset,
1090 1091
						    fs_info->sectorsize));
				WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
1092 1093
				end--;
				ret = try_lock_extent(&BTRFS_I(inode)->io_tree,
1094
						      key.offset, end);
1095 1096 1097
				if (!ret)
					continue;

1098 1099
				btrfs_drop_extent_cache(BTRFS_I(inode),
						key.offset,	end, 1);
1100
				unlock_extent(&BTRFS_I(inode)->io_tree,
1101
					      key.offset, end);
1102 1103 1104 1105 1106
			}
		}

		ret = get_new_location(rc->data_inode, &new_bytenr,
				       bytenr, num_bytes);
1107 1108 1109 1110 1111 1112
		if (ret) {
			/*
			 * Don't have to abort since we've not changed anything
			 * in the file extent yet.
			 */
			break;
1113
		}
1114 1115 1116 1117 1118

		btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr);
		dirty = 1;

		key.offset -= btrfs_file_extent_offset(leaf, fi);
1119 1120 1121 1122 1123 1124
		btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new_bytenr,
				       num_bytes, parent);
		ref.real_root = root->root_key.objectid;
		btrfs_init_data_ref(&ref, btrfs_header_owner(leaf),
				    key.objectid, key.offset);
		ret = btrfs_inc_extent_ref(trans, &ref);
1125
		if (ret) {
1126
			btrfs_abort_transaction(trans, ret);
1127 1128
			break;
		}
1129

1130 1131 1132 1133 1134 1135
		btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
				       num_bytes, parent);
		ref.real_root = root->root_key.objectid;
		btrfs_init_data_ref(&ref, btrfs_header_owner(leaf),
				    key.objectid, key.offset);
		ret = btrfs_free_extent(trans, &ref);
1136
		if (ret) {
1137
			btrfs_abort_transaction(trans, ret);
1138 1139
			break;
		}
1140 1141 1142
	}
	if (dirty)
		btrfs_mark_buffer_dirty(leaf);
1143 1144
	if (inode)
		btrfs_add_delayed_iput(inode);
1145
	return ret;
1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
}

static noinline_for_stack
int memcmp_node_keys(struct extent_buffer *eb, int slot,
		     struct btrfs_path *path, int level)
{
	struct btrfs_disk_key key1;
	struct btrfs_disk_key key2;
	btrfs_node_key(eb, &key1, slot);
	btrfs_node_key(path->nodes[level], &key2, path->slots[level]);
	return memcmp(&key1, &key2, sizeof(key1));
}

/*
 * try to replace tree blocks in fs tree with the new blocks
 * in reloc tree. tree blocks haven't been modified since the
 * reloc tree was create can be replaced.
 *
 * if a block was replaced, level of the block + 1 is returned.
 * if no block got replaced, 0 is returned. if there are other
 * errors, a negative error number is returned.
 */
1168
static noinline_for_stack
1169
int replace_path(struct btrfs_trans_handle *trans, struct reloc_control *rc,
1170 1171 1172
		 struct btrfs_root *dest, struct btrfs_root *src,
		 struct btrfs_path *path, struct btrfs_key *next_key,
		 int lowest_level, int max_level)
1173
{
1174
	struct btrfs_fs_info *fs_info = dest->fs_info;
1175 1176
	struct extent_buffer *eb;
	struct extent_buffer *parent;
1177
	struct btrfs_ref ref = { 0 };
1178 1179 1180 1181 1182 1183 1184
	struct btrfs_key key;
	u64 old_bytenr;
	u64 new_bytenr;
	u64 old_ptr_gen;
	u64 new_ptr_gen;
	u64 last_snapshot;
	u32 blocksize;
1185
	int cow = 0;
1186 1187 1188 1189 1190 1191 1192 1193
	int level;
	int ret;
	int slot;

	BUG_ON(src->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
	BUG_ON(dest->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID);

	last_snapshot = btrfs_root_last_snapshot(&src->root_item);
1194
again:
1195 1196 1197 1198
	slot = path->slots[lowest_level];
	btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot);

	eb = btrfs_lock_root_node(dest);
1199
	btrfs_set_lock_blocking_write(eb);
1200 1201 1202 1203 1204 1205 1206 1207
	level = btrfs_header_level(eb);

	if (level < lowest_level) {
		btrfs_tree_unlock(eb);
		free_extent_buffer(eb);
		return 0;
	}

1208
	if (cow) {
1209 1210
		ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb,
				      BTRFS_NESTING_COW);
1211 1212
		BUG_ON(ret);
	}
1213
	btrfs_set_lock_blocking_write(eb);
1214 1215 1216 1217 1218 1219 1220 1221 1222

	if (next_key) {
		next_key->objectid = (u64)-1;
		next_key->type = (u8)-1;
		next_key->offset = (u64)-1;
	}

	parent = eb;
	while (1) {
1223 1224
		struct btrfs_key first_key;

1225 1226 1227
		level = btrfs_header_level(parent);
		BUG_ON(level < lowest_level);

1228
		ret = btrfs_bin_search(parent, &key, &slot);
1229 1230
		if (ret < 0)
			break;
1231 1232 1233 1234 1235 1236 1237
		if (ret && slot > 0)
			slot--;

		if (next_key && slot + 1 < btrfs_header_nritems(parent))
			btrfs_node_key_to_cpu(parent, next_key, slot + 1);

		old_bytenr = btrfs_node_blockptr(parent, slot);
1238
		blocksize = fs_info->nodesize;
1239
		old_ptr_gen = btrfs_node_ptr_generation(parent, slot);
1240
		btrfs_node_key_to_cpu(parent, &first_key, slot);
1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252

		if (level <= max_level) {
			eb = path->nodes[level];
			new_bytenr = btrfs_node_blockptr(eb,
							path->slots[level]);
			new_ptr_gen = btrfs_node_ptr_generation(eb,
							path->slots[level]);
		} else {
			new_bytenr = 0;
			new_ptr_gen = 0;
		}

1253
		if (WARN_ON(new_bytenr > 0 && new_bytenr == old_bytenr)) {
1254 1255 1256 1257 1258 1259
			ret = level;
			break;
		}

		if (new_bytenr == 0 || old_ptr_gen > last_snapshot ||
		    memcmp_node_keys(parent, slot, path, level)) {
1260
			if (level <= lowest_level) {
1261 1262 1263 1264
				ret = 0;
				break;
			}

1265 1266
			eb = read_tree_block(fs_info, old_bytenr, old_ptr_gen,
					     level - 1, &first_key);
1267 1268
			if (IS_ERR(eb)) {
				ret = PTR_ERR(eb);
1269
				break;
1270 1271
			} else if (!extent_buffer_uptodate(eb)) {
				ret = -EIO;
1272
				free_extent_buffer(eb);
1273
				break;
1274
			}
1275
			btrfs_tree_lock(eb);
1276 1277
			if (cow) {
				ret = btrfs_cow_block(trans, dest, eb, parent,
1278 1279
						      slot, &eb,
						      BTRFS_NESTING_COW);
1280
				BUG_ON(ret);
1281
			}
1282
			btrfs_set_lock_blocking_write(eb);
1283 1284 1285 1286 1287 1288 1289 1290

			btrfs_tree_unlock(parent);
			free_extent_buffer(parent);

			parent = eb;
			continue;
		}

1291 1292 1293 1294 1295 1296 1297
		if (!cow) {
			btrfs_tree_unlock(parent);
			free_extent_buffer(parent);
			cow = 1;
			goto again;
		}

1298 1299
		btrfs_node_key_to_cpu(path->nodes[level], &key,
				      path->slots[level]);
1300
		btrfs_release_path(path);
1301 1302 1303 1304 1305 1306

		path->lowest_level = level;
		ret = btrfs_search_slot(trans, src, &key, path, 0, 1);
		path->lowest_level = 0;
		BUG_ON(ret);

1307 1308 1309 1310 1311 1312 1313 1314
		/*
		 * Info qgroup to trace both subtrees.
		 *
		 * We must trace both trees.
		 * 1) Tree reloc subtree
		 *    If not traced, we will leak data numbers
		 * 2) Fs subtree
		 *    If not traced, we will double count old data
1315 1316 1317 1318 1319
		 *
		 * We don't scan the subtree right now, but only record
		 * the swapped tree blocks.
		 * The real subtree rescan is delayed until we have new
		 * CoW on the subtree root node before transaction commit.
1320
		 */
1321 1322 1323 1324 1325 1326
		ret = btrfs_qgroup_add_swapped_blocks(trans, dest,
				rc->block_group, parent, slot,
				path->nodes[level], path->slots[level],
				last_snapshot);
		if (ret < 0)
			break;
1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339
		/*
		 * swap blocks in fs tree and reloc tree.
		 */
		btrfs_set_node_blockptr(parent, slot, new_bytenr);
		btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen);
		btrfs_mark_buffer_dirty(parent);

		btrfs_set_node_blockptr(path->nodes[level],
					path->slots[level], old_bytenr);
		btrfs_set_node_ptr_generation(path->nodes[level],
					      path->slots[level], old_ptr_gen);
		btrfs_mark_buffer_dirty(path->nodes[level]);

1340 1341 1342 1343 1344
		btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, old_bytenr,
				       blocksize, path->nodes[level]->start);
		ref.skip_qgroup = true;
		btrfs_init_tree_ref(&ref, level - 1, src->root_key.objectid);
		ret = btrfs_inc_extent_ref(trans, &ref);
1345
		BUG_ON(ret);
1346 1347 1348 1349 1350
		btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new_bytenr,
				       blocksize, 0);
		ref.skip_qgroup = true;
		btrfs_init_tree_ref(&ref, level - 1, dest->root_key.objectid);
		ret = btrfs_inc_extent_ref(trans, &ref);
1351 1352
		BUG_ON(ret);

1353 1354 1355 1356 1357
		btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, new_bytenr,
				       blocksize, path->nodes[level]->start);
		btrfs_init_tree_ref(&ref, level - 1, src->root_key.objectid);
		ref.skip_qgroup = true;
		ret = btrfs_free_extent(trans, &ref);
1358 1359
		BUG_ON(ret);

1360 1361 1362 1363 1364
		btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, old_bytenr,
				       blocksize, 0);
		btrfs_init_tree_ref(&ref, level - 1, dest->root_key.objectid);
		ref.skip_qgroup = true;
		ret = btrfs_free_extent(trans, &ref);
1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420
		BUG_ON(ret);

		btrfs_unlock_up_safe(path, 0);

		ret = level;
		break;
	}
	btrfs_tree_unlock(parent);
	free_extent_buffer(parent);
	return ret;
}

/*
 * helper to find next relocated block in reloc tree
 */
static noinline_for_stack
int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
		       int *level)
{
	struct extent_buffer *eb;
	int i;
	u64 last_snapshot;
	u32 nritems;

	last_snapshot = btrfs_root_last_snapshot(&root->root_item);

	for (i = 0; i < *level; i++) {
		free_extent_buffer(path->nodes[i]);
		path->nodes[i] = NULL;
	}

	for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) {
		eb = path->nodes[i];
		nritems = btrfs_header_nritems(eb);
		while (path->slots[i] + 1 < nritems) {
			path->slots[i]++;
			if (btrfs_node_ptr_generation(eb, path->slots[i]) <=
			    last_snapshot)
				continue;

			*level = i;
			return 0;
		}
		free_extent_buffer(path->nodes[i]);
		path->nodes[i] = NULL;
	}
	return 1;
}

/*
 * walk down reloc tree to find relocated block of lowest level
 */
static noinline_for_stack
int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
			 int *level)
{
1421
	struct btrfs_fs_info *fs_info = root->fs_info;
1422 1423 1424 1425 1426 1427 1428 1429 1430 1431
	struct extent_buffer *eb = NULL;
	int i;
	u64 bytenr;
	u64 ptr_gen = 0;
	u64 last_snapshot;
	u32 nritems;

	last_snapshot = btrfs_root_last_snapshot(&root->root_item);

	for (i = *level; i > 0; i--) {
1432 1433
		struct btrfs_key first_key;

1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453
		eb = path->nodes[i];
		nritems = btrfs_header_nritems(eb);
		while (path->slots[i] < nritems) {
			ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]);
			if (ptr_gen > last_snapshot)
				break;
			path->slots[i]++;
		}
		if (path->slots[i] >= nritems) {
			if (i == *level)
				break;
			*level = i + 1;
			return 0;
		}
		if (i == 1) {
			*level = i;
			return 0;
		}

		bytenr = btrfs_node_blockptr(eb, path->slots[i]);
1454 1455 1456
		btrfs_node_key_to_cpu(eb, &first_key, path->slots[i]);
		eb = read_tree_block(fs_info, bytenr, ptr_gen, i - 1,
				     &first_key);
1457 1458 1459
		if (IS_ERR(eb)) {
			return PTR_ERR(eb);
		} else if (!extent_buffer_uptodate(eb)) {
1460 1461 1462
			free_extent_buffer(eb);
			return -EIO;
		}
1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477
		BUG_ON(btrfs_header_level(eb) != i - 1);
		path->nodes[i - 1] = eb;
		path->slots[i - 1] = 0;
	}
	return 1;
}

/*
 * invalidate extent cache for file extents whose key in range of
 * [min_key, max_key)
 */
static int invalidate_extent_cache(struct btrfs_root *root,
				   struct btrfs_key *min_key,
				   struct btrfs_key *max_key)
{
1478
	struct btrfs_fs_info *fs_info = root->fs_info;
1479 1480 1481
	struct inode *inode = NULL;
	u64 objectid;
	u64 start, end;
L
Li Zefan 已提交
1482
	u64 ino;
1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494

	objectid = min_key->objectid;
	while (1) {
		cond_resched();
		iput(inode);

		if (objectid > max_key->objectid)
			break;

		inode = find_next_inode(root, objectid);
		if (!inode)
			break;
1495
		ino = btrfs_ino(BTRFS_I(inode));
1496

L
Li Zefan 已提交
1497
		if (ino > max_key->objectid) {
1498 1499 1500 1501
			iput(inode);
			break;
		}

L
Li Zefan 已提交
1502
		objectid = ino + 1;
1503 1504 1505
		if (!S_ISREG(inode->i_mode))
			continue;

L
Li Zefan 已提交
1506
		if (unlikely(min_key->objectid == ino)) {
1507 1508 1509 1510 1511 1512
			if (min_key->type > BTRFS_EXTENT_DATA_KEY)
				continue;
			if (min_key->type < BTRFS_EXTENT_DATA_KEY)
				start = 0;
			else {
				start = min_key->offset;
1513
				WARN_ON(!IS_ALIGNED(start, fs_info->sectorsize));
1514 1515 1516 1517 1518
			}
		} else {
			start = 0;
		}

L
Li Zefan 已提交
1519
		if (unlikely(max_key->objectid == ino)) {
1520 1521 1522 1523 1524 1525 1526 1527
			if (max_key->type < BTRFS_EXTENT_DATA_KEY)
				continue;
			if (max_key->type > BTRFS_EXTENT_DATA_KEY) {
				end = (u64)-1;
			} else {
				if (max_key->offset == 0)
					continue;
				end = max_key->offset;
1528
				WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
1529 1530 1531 1532 1533 1534 1535
				end--;
			}
		} else {
			end = (u64)-1;
		}

		/* the lock_extent waits for readpage to complete */
1536
		lock_extent(&BTRFS_I(inode)->io_tree, start, end);
1537
		btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 1);
1538
		unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560
	}
	return 0;
}

static int find_next_key(struct btrfs_path *path, int level,
			 struct btrfs_key *key)

{
	while (level < BTRFS_MAX_LEVEL) {
		if (!path->nodes[level])
			break;
		if (path->slots[level] + 1 <
		    btrfs_header_nritems(path->nodes[level])) {
			btrfs_node_key_to_cpu(path->nodes[level], key,
					      path->slots[level] + 1);
			return 0;
		}
		level++;
	}
	return 1;
}

1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582
/*
 * Insert current subvolume into reloc_control::dirty_subvol_roots
 */
static void insert_dirty_subvol(struct btrfs_trans_handle *trans,
				struct reloc_control *rc,
				struct btrfs_root *root)
{
	struct btrfs_root *reloc_root = root->reloc_root;
	struct btrfs_root_item *reloc_root_item;

	/* @root must be a subvolume tree root with a valid reloc tree */
	ASSERT(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
	ASSERT(reloc_root);

	reloc_root_item = &reloc_root->root_item;
	memset(&reloc_root_item->drop_progress, 0,
		sizeof(reloc_root_item->drop_progress));
	reloc_root_item->drop_level = 0;
	btrfs_set_root_refs(reloc_root_item, 0);
	btrfs_update_reloc_root(trans, root);

	if (list_empty(&root->reloc_dirty_list)) {
1583
		btrfs_grab_root(root);
1584 1585 1586 1587 1588 1589 1590 1591 1592
		list_add_tail(&root->reloc_dirty_list, &rc->dirty_subvol_roots);
	}
}

static int clean_dirty_subvols(struct reloc_control *rc)
{
	struct btrfs_root *root;
	struct btrfs_root *next;
	int ret = 0;
1593
	int ret2;
1594 1595 1596

	list_for_each_entry_safe(root, next, &rc->dirty_subvol_roots,
				 reloc_dirty_list) {
1597 1598 1599
		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
			/* Merged subvolume, cleanup its reloc root */
			struct btrfs_root *reloc_root = root->reloc_root;
1600

1601 1602
			list_del_init(&root->reloc_dirty_list);
			root->reloc_root = NULL;
1603 1604 1605 1606 1607
			/*
			 * Need barrier to ensure clear_bit() only happens after
			 * root->reloc_root = NULL. Pairs with have_reloc_root.
			 */
			smp_wmb();
1608
			clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state);
1609
			if (reloc_root) {
1610 1611 1612 1613 1614
				/*
				 * btrfs_drop_snapshot drops our ref we hold for
				 * ->reloc_root.  If it fails however we must
				 * drop the ref ourselves.
				 */
1615
				ret2 = btrfs_drop_snapshot(reloc_root, 0, 1);
1616 1617 1618 1619 1620
				if (ret2 < 0) {
					btrfs_put_root(reloc_root);
					if (!ret)
						ret = ret2;
				}
1621
			}
1622
			btrfs_put_root(root);
1623 1624
		} else {
			/* Orphan reloc tree, just clean it up */
1625
			ret2 = btrfs_drop_snapshot(root, 0, 1);
1626 1627 1628 1629 1630
			if (ret2 < 0) {
				btrfs_put_root(root);
				if (!ret)
					ret = ret2;
			}
1631 1632 1633 1634 1635
		}
	}
	return ret;
}

1636 1637 1638 1639 1640 1641 1642
/*
 * merge the relocated tree blocks in reloc tree with corresponding
 * fs tree.
 */
static noinline_for_stack int merge_reloc_root(struct reloc_control *rc,
					       struct btrfs_root *root)
{
1643
	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
1644 1645
	struct btrfs_key key;
	struct btrfs_key next_key;
1646
	struct btrfs_trans_handle *trans = NULL;
1647 1648 1649
	struct btrfs_root *reloc_root;
	struct btrfs_root_item *root_item;
	struct btrfs_path *path;
1650
	struct extent_buffer *leaf;
1651 1652 1653 1654 1655
	int level;
	int max_level;
	int replaced = 0;
	int ret;
	int err = 0;
1656
	u32 min_reserved;
1657 1658 1659 1660

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;
1661
	path->reada = READA_FORWARD;
1662 1663 1664 1665 1666 1667

	reloc_root = root->reloc_root;
	root_item = &reloc_root->root_item;

	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
		level = btrfs_root_level(root_item);
D
David Sterba 已提交
1668
		atomic_inc(&reloc_root->node->refs);
1669 1670 1671 1672 1673 1674 1675 1676 1677
		path->nodes[level] = reloc_root->node;
		path->slots[level] = 0;
	} else {
		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);

		level = root_item->drop_level;
		BUG_ON(level == 0);
		path->lowest_level = level;
		ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0);
1678
		path->lowest_level = 0;
1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690
		if (ret < 0) {
			btrfs_free_path(path);
			return ret;
		}

		btrfs_node_key_to_cpu(path->nodes[level], &next_key,
				      path->slots[level]);
		WARN_ON(memcmp(&key, &next_key, sizeof(key)));

		btrfs_unlock_up_safe(path, 0);
	}

1691 1692 1693 1694 1695 1696 1697 1698 1699
	/*
	 * In merge_reloc_root(), we modify the upper level pointer to swap the
	 * tree blocks between reloc tree and subvolume tree.  Thus for tree
	 * block COW, we COW at most from level 1 to root level for each tree.
	 *
	 * Thus the needed metadata size is at most root_level * nodesize,
	 * and * 2 since we have two trees to COW.
	 */
	min_reserved = fs_info->nodesize * btrfs_root_level(root_item) * 2;
1700
	memset(&next_key, 0, sizeof(next_key));
1701

1702
	while (1) {
M
Miao Xie 已提交
1703
		ret = btrfs_block_rsv_refill(root, rc->block_rsv, min_reserved,
1704
					     BTRFS_RESERVE_FLUSH_LIMIT);
1705
		if (ret) {
1706 1707
			err = ret;
			goto out;
1708
		}
1709 1710 1711 1712 1713 1714
		trans = btrfs_start_transaction(root, 0);
		if (IS_ERR(trans)) {
			err = PTR_ERR(trans);
			trans = NULL;
			goto out;
		}
1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726

		/*
		 * At this point we no longer have a reloc_control, so we can't
		 * depend on btrfs_init_reloc_root to update our last_trans.
		 *
		 * But that's ok, we started the trans handle on our
		 * corresponding fs_root, which means it's been added to the
		 * dirty list.  At commit time we'll still call
		 * btrfs_update_reloc_root() and update our root item
		 * appropriately.
		 */
		reloc_root->last_trans = trans->transid;
1727
		trans->block_rsv = rc->block_rsv;
1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743

		replaced = 0;
		max_level = level;

		ret = walk_down_reloc_tree(reloc_root, path, &level);
		if (ret < 0) {
			err = ret;
			goto out;
		}
		if (ret > 0)
			break;

		if (!find_next_key(path, level, &key) &&
		    btrfs_comp_cpu_keys(&next_key, &key) >= 0) {
			ret = 0;
		} else {
1744
			ret = replace_path(trans, rc, root, reloc_root, path,
1745
					   &next_key, level, max_level);
1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771
		}
		if (ret < 0) {
			err = ret;
			goto out;
		}

		if (ret > 0) {
			level = ret;
			btrfs_node_key_to_cpu(path->nodes[level], &key,
					      path->slots[level]);
			replaced = 1;
		}

		ret = walk_up_reloc_tree(reloc_root, path, &level);
		if (ret > 0)
			break;

		BUG_ON(level == 0);
		/*
		 * save the merging progress in the drop_progress.
		 * this is OK since root refs == 1 in this case.
		 */
		btrfs_node_key(path->nodes[level], &root_item->drop_progress,
			       path->slots[level]);
		root_item->drop_level = level;

1772
		btrfs_end_transaction_throttle(trans);
1773
		trans = NULL;
1774

1775
		btrfs_btree_balance_dirty(fs_info);
1776 1777 1778 1779 1780 1781 1782 1783 1784 1785

		if (replaced && rc->stage == UPDATE_DATA_PTRS)
			invalidate_extent_cache(root, &key, &next_key);
	}

	/*
	 * handle the case only one block in the fs tree need to be
	 * relocated and the block is tree root.
	 */
	leaf = btrfs_lock_root_node(root);
1786 1787
	ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf,
			      BTRFS_NESTING_COW);
1788 1789 1790 1791 1792 1793 1794
	btrfs_tree_unlock(leaf);
	free_extent_buffer(leaf);
	if (ret < 0)
		err = ret;
out:
	btrfs_free_path(path);

1795 1796
	if (err == 0)
		insert_dirty_subvol(trans, rc, root);
1797

1798
	if (trans)
1799
		btrfs_end_transaction_throttle(trans);
1800

1801
	btrfs_btree_balance_dirty(fs_info);
1802 1803 1804 1805 1806 1807 1808

	if (replaced && rc->stage == UPDATE_DATA_PTRS)
		invalidate_extent_cache(root, &key, &next_key);

	return err;
}

1809 1810
static noinline_for_stack
int prepare_to_merge(struct reloc_control *rc, int err)
1811
{
1812
	struct btrfs_root *root = rc->extent_root;
1813
	struct btrfs_fs_info *fs_info = root->fs_info;
1814
	struct btrfs_root *reloc_root;
1815 1816 1817 1818 1819
	struct btrfs_trans_handle *trans;
	LIST_HEAD(reloc_roots);
	u64 num_bytes = 0;
	int ret;

1820 1821
	mutex_lock(&fs_info->reloc_mutex);
	rc->merging_rsv_size += fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
1822
	rc->merging_rsv_size += rc->nodes_relocated * 2;
1823
	mutex_unlock(&fs_info->reloc_mutex);
C
Chris Mason 已提交
1824

1825 1826 1827
again:
	if (!err) {
		num_bytes = rc->merging_rsv_size;
M
Miao Xie 已提交
1828 1829
		ret = btrfs_block_rsv_add(root, rc->block_rsv, num_bytes,
					  BTRFS_RESERVE_FLUSH_ALL);
1830 1831 1832 1833
		if (ret)
			err = ret;
	}

1834
	trans = btrfs_join_transaction(rc->extent_root);
1835 1836
	if (IS_ERR(trans)) {
		if (!err)
1837
			btrfs_block_rsv_release(fs_info, rc->block_rsv,
1838
						num_bytes, NULL);
1839 1840
		return PTR_ERR(trans);
	}
1841 1842 1843

	if (!err) {
		if (num_bytes != rc->merging_rsv_size) {
1844
			btrfs_end_transaction(trans);
1845
			btrfs_block_rsv_release(fs_info, rc->block_rsv,
1846
						num_bytes, NULL);
1847 1848 1849
			goto again;
		}
	}
1850

1851 1852 1853 1854 1855 1856
	rc->merge_reloc_tree = 1;

	while (!list_empty(&rc->reloc_roots)) {
		reloc_root = list_entry(rc->reloc_roots.next,
					struct btrfs_root, root_list);
		list_del_init(&reloc_root->root_list);
1857

D
David Sterba 已提交
1858 1859
		root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
				false);
1860 1861 1862
		BUG_ON(IS_ERR(root));
		BUG_ON(root->reloc_root != reloc_root);

1863 1864 1865 1866 1867 1868
		/*
		 * set reference count to 1, so btrfs_recover_relocation
		 * knows it should resumes merging
		 */
		if (!err)
			btrfs_set_root_refs(&reloc_root->root_item, 1);
1869 1870
		btrfs_update_reloc_root(trans, root);

1871
		list_add(&reloc_root->root_list, &reloc_roots);
1872
		btrfs_put_root(root);
1873
	}
1874

1875
	list_splice(&reloc_roots, &rc->reloc_roots);
1876

1877
	if (!err)
1878
		btrfs_commit_transaction(trans);
1879
	else
1880
		btrfs_end_transaction(trans);
1881
	return err;
1882 1883
}

1884 1885 1886
static noinline_for_stack
void free_reloc_roots(struct list_head *list)
{
1887
	struct btrfs_root *reloc_root, *tmp;
1888

1889
	list_for_each_entry_safe(reloc_root, tmp, list, root_list)
1890
		__del_reloc_root(reloc_root);
1891 1892
}

1893
static noinline_for_stack
1894
void merge_reloc_roots(struct reloc_control *rc)
1895
{
1896
	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
1897
	struct btrfs_root *root;
1898 1899 1900
	struct btrfs_root *reloc_root;
	LIST_HEAD(reloc_roots);
	int found = 0;
1901
	int ret = 0;
1902 1903
again:
	root = rc->extent_root;
C
Chris Mason 已提交
1904 1905 1906 1907 1908 1909 1910

	/*
	 * this serializes us with btrfs_record_root_in_transaction,
	 * we have to make sure nobody is in the middle of
	 * adding their roots to the list while we are
	 * doing this splice
	 */
1911
	mutex_lock(&fs_info->reloc_mutex);
1912
	list_splice_init(&rc->reloc_roots, &reloc_roots);
1913
	mutex_unlock(&fs_info->reloc_mutex);
1914

1915 1916 1917 1918
	while (!list_empty(&reloc_roots)) {
		found = 1;
		reloc_root = list_entry(reloc_roots.next,
					struct btrfs_root, root_list);
1919

D
David Sterba 已提交
1920 1921
		root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
					 false);
1922 1923 1924 1925
		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
			BUG_ON(IS_ERR(root));
			BUG_ON(root->reloc_root != reloc_root);
			ret = merge_reloc_root(rc, root);
1926
			btrfs_put_root(root);
1927
			if (ret) {
1928 1929 1930
				if (list_empty(&reloc_root->root_list))
					list_add_tail(&reloc_root->root_list,
						      &reloc_roots);
1931
				goto out;
1932
			}
1933
		} else {
1934 1935 1936 1937 1938
			if (!IS_ERR(root)) {
				if (root->reloc_root == reloc_root) {
					root->reloc_root = NULL;
					btrfs_put_root(reloc_root);
				}
1939 1940
				clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE,
					  &root->state);
1941 1942 1943
				btrfs_put_root(root);
			}

1944
			list_del_init(&reloc_root->root_list);
1945 1946 1947
			/* Don't forget to queue this reloc root for cleanup */
			list_add_tail(&reloc_root->reloc_dirty_list,
				      &rc->dirty_subvol_roots);
1948
		}
1949 1950
	}

1951 1952 1953 1954
	if (found) {
		found = 0;
		goto again;
	}
1955 1956
out:
	if (ret) {
1957
		btrfs_handle_fs_error(fs_info, ret, NULL);
1958
		free_reloc_roots(&reloc_roots);
1959 1960

		/* new reloc root may be added */
1961
		mutex_lock(&fs_info->reloc_mutex);
1962
		list_splice_init(&rc->reloc_roots, &reloc_roots);
1963
		mutex_unlock(&fs_info->reloc_mutex);
1964
		free_reloc_roots(&reloc_roots);
1965 1966
	}

1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981
	/*
	 * We used to have
	 *
	 * BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root));
	 *
	 * here, but it's wrong.  If we fail to start the transaction in
	 * prepare_to_merge() we will have only 0 ref reloc roots, none of which
	 * have actually been removed from the reloc_root_tree rb tree.  This is
	 * fine because we're bailing here, and we hold a reference on the root
	 * for the list that holds it, so these roots will be cleaned up when we
	 * do the reloc_dirty_list afterwards.  Meanwhile the root->reloc_root
	 * will be cleaned up on unmount.
	 *
	 * The remaining nodes will be cleaned up by free_reloc_control.
	 */
1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997
}

static void free_block_list(struct rb_root *blocks)
{
	struct tree_block *block;
	struct rb_node *rb_node;
	while ((rb_node = rb_first(blocks))) {
		block = rb_entry(rb_node, struct tree_block, rb_node);
		rb_erase(rb_node, blocks);
		kfree(block);
	}
}

static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans,
				      struct btrfs_root *reloc_root)
{
1998
	struct btrfs_fs_info *fs_info = reloc_root->fs_info;
1999
	struct btrfs_root *root;
2000
	int ret;
2001 2002 2003 2004

	if (reloc_root->last_trans == trans->transid)
		return 0;

D
David Sterba 已提交
2005
	root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset, false);
2006 2007
	BUG_ON(IS_ERR(root));
	BUG_ON(root->reloc_root != reloc_root);
2008
	ret = btrfs_record_root_in_trans(trans, root);
2009
	btrfs_put_root(root);
2010

2011
	return ret;
2012 2013
}

2014 2015 2016
static noinline_for_stack
struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans,
				     struct reloc_control *rc,
2017 2018
				     struct btrfs_backref_node *node,
				     struct btrfs_backref_edge *edges[])
2019
{
2020
	struct btrfs_backref_node *next;
2021
	struct btrfs_root *root;
2022 2023
	int index = 0;

2024 2025 2026 2027 2028
	next = node;
	while (1) {
		cond_resched();
		next = walk_up_backref(next, edges, &index);
		root = next->root;
2029
		BUG_ON(!root);
2030
		BUG_ON(!test_bit(BTRFS_ROOT_SHAREABLE, &root->state));
2031 2032 2033 2034 2035 2036

		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
			record_reloc_root_in_trans(trans, root);
			break;
		}

2037 2038 2039 2040 2041 2042 2043
		btrfs_record_root_in_trans(trans, root);
		root = root->reloc_root;

		if (next->new_bytenr != root->node->start) {
			BUG_ON(next->new_bytenr);
			BUG_ON(!list_empty(&next->list));
			next->new_bytenr = root->node->start;
2044 2045
			btrfs_put_root(next->root);
			next->root = btrfs_grab_root(root);
2046
			ASSERT(next->root);
2047 2048
			list_add_tail(&next->list,
				      &rc->backref_cache.changed);
2049
			mark_block_processed(rc, next);
2050 2051 2052
			break;
		}

2053
		WARN_ON(1);
2054 2055 2056 2057 2058
		root = NULL;
		next = walk_down_backref(edges, &index);
		if (!next || next->level <= node->level)
			break;
	}
2059 2060
	if (!root)
		return NULL;
2061

2062 2063 2064 2065 2066 2067 2068
	next = node;
	/* setup backref node path for btrfs_reloc_cow_block */
	while (1) {
		rc->backref_cache.path[next->level] = next;
		if (--index < 0)
			break;
		next = edges[index]->node[UPPER];
2069 2070 2071 2072
	}
	return root;
}

2073
/*
2074 2075 2076 2077 2078 2079 2080
 * Select a tree root for relocation.
 *
 * Return NULL if the block is not shareable. We should use do_relocation() in
 * this case.
 *
 * Return a tree root pointer if the block is shareable.
 * Return -ENOENT if the block is root of reloc tree.
2081
 */
2082
static noinline_for_stack
2083
struct btrfs_root *select_one_root(struct btrfs_backref_node *node)
2084
{
2085
	struct btrfs_backref_node *next;
2086 2087
	struct btrfs_root *root;
	struct btrfs_root *fs_root = NULL;
2088
	struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2089 2090 2091 2092 2093 2094 2095 2096 2097
	int index = 0;

	next = node;
	while (1) {
		cond_resched();
		next = walk_up_backref(next, edges, &index);
		root = next->root;
		BUG_ON(!root);

2098 2099
		/* No other choice for non-shareable tree */
		if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115
			return root;

		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID)
			fs_root = root;

		if (next != node)
			return NULL;

		next = walk_down_backref(edges, &index);
		if (!next || next->level <= node->level)
			break;
	}

	if (!fs_root)
		return ERR_PTR(-ENOENT);
	return fs_root;
2116 2117 2118
}

static noinline_for_stack
2119
u64 calcu_metadata_size(struct reloc_control *rc,
2120
			struct btrfs_backref_node *node, int reserve)
2121
{
2122
	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2123 2124 2125
	struct btrfs_backref_node *next = node;
	struct btrfs_backref_edge *edge;
	struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136
	u64 num_bytes = 0;
	int index = 0;

	BUG_ON(reserve && node->processed);

	while (next) {
		cond_resched();
		while (1) {
			if (next->processed && (reserve || next != node))
				break;

2137
			num_bytes += fs_info->nodesize;
2138 2139 2140 2141 2142

			if (list_empty(&next->upper))
				break;

			edge = list_entry(next->upper.next,
2143
					struct btrfs_backref_edge, list[LOWER]);
2144 2145 2146 2147 2148 2149
			edges[index++] = edge;
			next = edge->node[UPPER];
		}
		next = walk_down_backref(edges, &index);
	}
	return num_bytes;
2150 2151
}

2152 2153
static int reserve_metadata_space(struct btrfs_trans_handle *trans,
				  struct reloc_control *rc,
2154
				  struct btrfs_backref_node *node)
2155
{
2156
	struct btrfs_root *root = rc->extent_root;
2157
	struct btrfs_fs_info *fs_info = root->fs_info;
2158 2159
	u64 num_bytes;
	int ret;
2160
	u64 tmp;
2161 2162

	num_bytes = calcu_metadata_size(rc, node, 1) * 2;
2163

2164
	trans->block_rsv = rc->block_rsv;
2165
	rc->reserved_bytes += num_bytes;
2166 2167 2168 2169 2170 2171

	/*
	 * We are under a transaction here so we can only do limited flushing.
	 * If we get an enospc just kick back -EAGAIN so we know to drop the
	 * transaction and try to refill when we can flush all the things.
	 */
2172
	ret = btrfs_block_rsv_refill(root, rc->block_rsv, num_bytes,
2173
				BTRFS_RESERVE_FLUSH_LIMIT);
2174
	if (ret) {
2175
		tmp = fs_info->nodesize * RELOCATION_RESERVED_NODES;
2176 2177 2178 2179 2180 2181
		while (tmp <= rc->reserved_bytes)
			tmp <<= 1;
		/*
		 * only one thread can access block_rsv at this point,
		 * so we don't need hold lock to protect block_rsv.
		 * we expand more reservation size here to allow enough
2182
		 * space for relocation and we will return earlier in
2183 2184
		 * enospc case.
		 */
2185 2186
		rc->block_rsv->size = tmp + fs_info->nodesize *
				      RELOCATION_RESERVED_NODES;
2187
		return -EAGAIN;
2188
	}
2189 2190 2191 2192

	return 0;
}

2193 2194 2195 2196 2197 2198 2199 2200
/*
 * relocate a block tree, and then update pointers in upper level
 * blocks that reference the block to point to the new location.
 *
 * if called by link_to_upper, the block has already been relocated.
 * in that case this function just updates pointers.
 */
static int do_relocation(struct btrfs_trans_handle *trans,
2201
			 struct reloc_control *rc,
2202
			 struct btrfs_backref_node *node,
2203 2204 2205
			 struct btrfs_key *key,
			 struct btrfs_path *path, int lowest)
{
2206
	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2207 2208 2209
	struct btrfs_backref_node *upper;
	struct btrfs_backref_edge *edge;
	struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221
	struct btrfs_root *root;
	struct extent_buffer *eb;
	u32 blocksize;
	u64 bytenr;
	u64 generation;
	int slot;
	int ret;
	int err = 0;

	BUG_ON(lowest && node->eb);

	path->lowest_level = node->level + 1;
2222
	rc->backref_cache.path[node->level] = node;
2223
	list_for_each_entry(edge, &node->upper, list[LOWER]) {
2224
		struct btrfs_key first_key;
2225
		struct btrfs_ref ref = { 0 };
2226

2227 2228 2229
		cond_resched();

		upper = edge->node[UPPER];
2230
		root = select_reloc_root(trans, rc, upper, edges);
2231 2232 2233 2234
		BUG_ON(!root);

		if (upper->eb && !upper->locked) {
			if (!lowest) {
2235
				ret = btrfs_bin_search(upper->eb, key, &slot);
2236 2237 2238 2239
				if (ret < 0) {
					err = ret;
					goto next;
				}
2240 2241 2242 2243 2244
				BUG_ON(ret);
				bytenr = btrfs_node_blockptr(upper->eb, slot);
				if (node->eb->start == bytenr)
					goto next;
			}
2245
			btrfs_backref_drop_node_buffer(upper);
2246
		}
2247 2248 2249

		if (!upper->eb) {
			ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2250 2251 2252 2253 2254 2255 2256
			if (ret) {
				if (ret < 0)
					err = ret;
				else
					err = -ENOENT;

				btrfs_release_path(path);
2257 2258 2259
				break;
			}

2260 2261 2262 2263 2264 2265
			if (!upper->eb) {
				upper->eb = path->nodes[upper->level];
				path->nodes[upper->level] = NULL;
			} else {
				BUG_ON(upper->eb != path->nodes[upper->level]);
			}
2266

2267 2268
			upper->locked = 1;
			path->locks[upper->level] = 0;
2269

2270
			slot = path->slots[upper->level];
2271
			btrfs_release_path(path);
2272
		} else {
2273
			ret = btrfs_bin_search(upper->eb, key, &slot);
2274 2275 2276 2277
			if (ret < 0) {
				err = ret;
				goto next;
			}
2278 2279 2280 2281
			BUG_ON(ret);
		}

		bytenr = btrfs_node_blockptr(upper->eb, slot);
2282
		if (lowest) {
L
Liu Bo 已提交
2283 2284 2285 2286 2287 2288 2289 2290
			if (bytenr != node->bytenr) {
				btrfs_err(root->fs_info,
		"lowest leaf/node mismatch: bytenr %llu node->bytenr %llu slot %d upper %llu",
					  bytenr, node->bytenr, slot,
					  upper->eb->start);
				err = -EIO;
				goto next;
			}
2291
		} else {
2292 2293
			if (node->eb->start == bytenr)
				goto next;
2294 2295
		}

2296
		blocksize = root->fs_info->nodesize;
2297
		generation = btrfs_node_ptr_generation(upper->eb, slot);
2298 2299 2300
		btrfs_node_key_to_cpu(upper->eb, &first_key, slot);
		eb = read_tree_block(fs_info, bytenr, generation,
				     upper->level - 1, &first_key);
2301 2302 2303 2304
		if (IS_ERR(eb)) {
			err = PTR_ERR(eb);
			goto next;
		} else if (!extent_buffer_uptodate(eb)) {
2305
			free_extent_buffer(eb);
2306 2307 2308
			err = -EIO;
			goto next;
		}
2309
		btrfs_tree_lock(eb);
2310
		btrfs_set_lock_blocking_write(eb);
2311 2312 2313

		if (!node->eb) {
			ret = btrfs_cow_block(trans, root, eb, upper->eb,
2314
					      slot, &eb, BTRFS_NESTING_COW);
2315 2316
			btrfs_tree_unlock(eb);
			free_extent_buffer(eb);
2317 2318
			if (ret < 0) {
				err = ret;
2319
				goto next;
2320
			}
2321
			BUG_ON(node->eb != eb);
2322 2323 2324 2325 2326 2327 2328
		} else {
			btrfs_set_node_blockptr(upper->eb, slot,
						node->eb->start);
			btrfs_set_node_ptr_generation(upper->eb, slot,
						      trans->transid);
			btrfs_mark_buffer_dirty(upper->eb);

2329 2330 2331 2332 2333 2334 2335
			btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF,
					       node->eb->start, blocksize,
					       upper->eb->start);
			ref.real_root = root->root_key.objectid;
			btrfs_init_tree_ref(&ref, node->level,
					    btrfs_header_owner(upper->eb));
			ret = btrfs_inc_extent_ref(trans, &ref);
2336 2337 2338 2339 2340
			BUG_ON(ret);

			ret = btrfs_drop_subtree(trans, root, eb, upper->eb);
			BUG_ON(ret);
		}
2341 2342
next:
		if (!upper->pending)
2343
			btrfs_backref_drop_node_buffer(upper);
2344
		else
2345
			btrfs_backref_unlock_node_buffer(upper);
2346 2347
		if (err)
			break;
2348
	}
2349 2350

	if (!err && node->pending) {
2351
		btrfs_backref_drop_node_buffer(node);
2352 2353 2354 2355
		list_move_tail(&node->list, &rc->backref_cache.changed);
		node->pending = 0;
	}

2356
	path->lowest_level = 0;
2357
	BUG_ON(err == -ENOSPC);
2358 2359 2360 2361
	return err;
}

static int link_to_upper(struct btrfs_trans_handle *trans,
2362
			 struct reloc_control *rc,
2363
			 struct btrfs_backref_node *node,
2364 2365 2366 2367 2368
			 struct btrfs_path *path)
{
	struct btrfs_key key;

	btrfs_node_key_to_cpu(node->eb, &key, 0);
2369
	return do_relocation(trans, rc, node, &key, path, 0);
2370 2371 2372
}

static int finish_pending_nodes(struct btrfs_trans_handle *trans,
2373 2374
				struct reloc_control *rc,
				struct btrfs_path *path, int err)
2375
{
2376
	LIST_HEAD(list);
2377 2378
	struct btrfs_backref_cache *cache = &rc->backref_cache;
	struct btrfs_backref_node *node;
2379 2380 2381 2382 2383 2384
	int level;
	int ret;

	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
		while (!list_empty(&cache->pending[level])) {
			node = list_entry(cache->pending[level].next,
2385
					  struct btrfs_backref_node, list);
2386 2387
			list_move_tail(&node->list, &list);
			BUG_ON(!node->pending);
2388

2389 2390 2391 2392 2393
			if (!err) {
				ret = link_to_upper(trans, rc, node, path);
				if (ret < 0)
					err = ret;
			}
2394
		}
2395
		list_splice_init(&list, &cache->pending[level]);
2396 2397 2398 2399 2400 2401 2402 2403 2404
	}
	return err;
}

/*
 * mark a block and all blocks directly/indirectly reference the block
 * as processed.
 */
static void update_processed_blocks(struct reloc_control *rc,
2405
				    struct btrfs_backref_node *node)
2406
{
2407 2408 2409
	struct btrfs_backref_node *next = node;
	struct btrfs_backref_edge *edge;
	struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2410 2411 2412 2413 2414 2415 2416 2417
	int index = 0;

	while (next) {
		cond_resched();
		while (1) {
			if (next->processed)
				break;

2418
			mark_block_processed(rc, next);
2419 2420 2421 2422 2423

			if (list_empty(&next->upper))
				break;

			edge = list_entry(next->upper.next,
2424
					struct btrfs_backref_edge, list[LOWER]);
2425 2426 2427 2428 2429 2430 2431
			edges[index++] = edge;
			next = edge->node[UPPER];
		}
		next = walk_down_backref(edges, &index);
	}
}

2432
static int tree_block_processed(u64 bytenr, struct reloc_control *rc)
2433
{
2434
	u32 blocksize = rc->extent_root->fs_info->nodesize;
2435

2436 2437 2438 2439
	if (test_range_bit(&rc->processed_blocks, bytenr,
			   bytenr + blocksize - 1, EXTENT_DIRTY, 1, NULL))
		return 1;
	return 0;
2440 2441
}

2442
static int get_tree_block_key(struct btrfs_fs_info *fs_info,
2443 2444 2445 2446
			      struct tree_block *block)
{
	struct extent_buffer *eb;

2447 2448
	eb = read_tree_block(fs_info, block->bytenr, block->key.offset,
			     block->level, NULL);
2449 2450 2451
	if (IS_ERR(eb)) {
		return PTR_ERR(eb);
	} else if (!extent_buffer_uptodate(eb)) {
2452 2453 2454
		free_extent_buffer(eb);
		return -EIO;
	}
2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468
	if (block->level == 0)
		btrfs_item_key_to_cpu(eb, &block->key, 0);
	else
		btrfs_node_key_to_cpu(eb, &block->key, 0);
	free_extent_buffer(eb);
	block->key_ready = 1;
	return 0;
}

/*
 * helper function to relocate a tree block
 */
static int relocate_tree_block(struct btrfs_trans_handle *trans,
				struct reloc_control *rc,
2469
				struct btrfs_backref_node *node,
2470 2471 2472 2473
				struct btrfs_key *key,
				struct btrfs_path *path)
{
	struct btrfs_root *root;
2474 2475 2476 2477
	int ret = 0;

	if (!node)
		return 0;
2478

2479 2480 2481 2482 2483 2484 2485 2486
	/*
	 * If we fail here we want to drop our backref_node because we are going
	 * to start over and regenerate the tree for it.
	 */
	ret = reserve_metadata_space(trans, rc, node);
	if (ret)
		goto out;

2487
	BUG_ON(node->processed);
2488
	root = select_one_root(node);
2489
	if (root == ERR_PTR(-ENOENT)) {
2490
		update_processed_blocks(rc, node);
2491
		goto out;
2492 2493
	}

2494
	if (root) {
2495
		if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
2496 2497 2498 2499 2500
			BUG_ON(node->new_bytenr);
			BUG_ON(!list_empty(&node->list));
			btrfs_record_root_in_trans(trans, root);
			root = root->reloc_root;
			node->new_bytenr = root->node->start;
2501 2502
			btrfs_put_root(node->root);
			node->root = btrfs_grab_root(root);
2503
			ASSERT(node->root);
2504 2505 2506 2507
			list_add_tail(&node->list, &rc->backref_cache.changed);
		} else {
			path->lowest_level = node->level;
			ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2508
			btrfs_release_path(path);
2509 2510 2511 2512 2513 2514 2515 2516
			if (ret > 0)
				ret = 0;
		}
		if (!ret)
			update_processed_blocks(rc, node);
	} else {
		ret = do_relocation(trans, rc, node, key, path, 1);
	}
2517
out:
2518
	if (ret || node->level == 0 || node->cowonly)
2519
		btrfs_backref_cleanup_node(&rc->backref_cache, node);
2520 2521 2522 2523 2524 2525 2526 2527 2528 2529
	return ret;
}

/*
 * relocate a list of blocks
 */
static noinline_for_stack
int relocate_tree_blocks(struct btrfs_trans_handle *trans,
			 struct reloc_control *rc, struct rb_root *blocks)
{
2530
	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2531
	struct btrfs_backref_node *node;
2532 2533
	struct btrfs_path *path;
	struct tree_block *block;
2534
	struct tree_block *next;
2535 2536 2537 2538
	int ret;
	int err = 0;

	path = btrfs_alloc_path();
2539 2540
	if (!path) {
		err = -ENOMEM;
2541
		goto out_free_blocks;
2542
	}
2543

2544 2545
	/* Kick in readahead for tree blocks with missing keys */
	rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2546
		if (!block->key_ready)
2547
			readahead_tree_block(fs_info, block->bytenr);
2548 2549
	}

2550 2551
	/* Get first keys */
	rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2552
		if (!block->key_ready) {
2553
			err = get_tree_block_key(fs_info, block);
2554 2555 2556
			if (err)
				goto out_free_path;
		}
2557 2558
	}

2559 2560
	/* Do tree relocation */
	rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2561
		node = build_backref_tree(rc, &block->key,
2562 2563 2564 2565 2566 2567 2568 2569 2570
					  block->level, block->bytenr);
		if (IS_ERR(node)) {
			err = PTR_ERR(node);
			goto out;
		}

		ret = relocate_tree_block(trans, rc, node, &block->key,
					  path);
		if (ret < 0) {
2571 2572
			err = ret;
			break;
2573 2574 2575
		}
	}
out:
2576
	err = finish_pending_nodes(trans, rc, path, err);
2577

2578
out_free_path:
2579
	btrfs_free_path(path);
2580
out_free_blocks:
2581
	free_block_list(blocks);
2582 2583 2584
	return err;
}

2585 2586 2587
static noinline_for_stack int prealloc_file_extent_cluster(
				struct btrfs_inode *inode,
				struct file_extent_cluster *cluster)
2588 2589 2590 2591
{
	u64 alloc_hint = 0;
	u64 start;
	u64 end;
2592
	u64 offset = inode->index_cnt;
2593
	u64 num_bytes;
2594
	int nr;
2595
	int ret = 0;
2596 2597
	u64 prealloc_start = cluster->start - offset;
	u64 prealloc_end = cluster->end - offset;
2598
	u64 cur_offset = prealloc_start;
2599 2600

	BUG_ON(cluster->start != cluster->boundary[0]);
2601
	ret = btrfs_alloc_data_chunk_ondemand(inode,
2602
					      prealloc_end + 1 - prealloc_start);
2603
	if (ret)
2604
		return ret;
2605

2606
	inode_lock(&inode->vfs_inode);
2607
	for (nr = 0; nr < cluster->nr; nr++) {
2608 2609 2610 2611 2612 2613
		start = cluster->boundary[nr] - offset;
		if (nr + 1 < cluster->nr)
			end = cluster->boundary[nr + 1] - 1 - offset;
		else
			end = cluster->end - offset;

2614
		lock_extent(&inode->io_tree, start, end);
2615
		num_bytes = end + 1 - start;
2616
		ret = btrfs_prealloc_file_range(&inode->vfs_inode, 0, start,
2617 2618
						num_bytes, num_bytes,
						end + 1, &alloc_hint);
2619
		cur_offset = end + 1;
2620
		unlock_extent(&inode->io_tree, start, end);
2621 2622 2623
		if (ret)
			break;
	}
2624
	inode_unlock(&inode->vfs_inode);
2625

2626
	if (cur_offset < prealloc_end)
2627
		btrfs_free_reserved_data_space_noquota(inode->root->fs_info,
2628
					       prealloc_end + 1 - cur_offset);
2629 2630 2631
	return ret;
}

2632
static noinline_for_stack
2633 2634 2635 2636 2637 2638 2639
int setup_extent_mapping(struct inode *inode, u64 start, u64 end,
			 u64 block_start)
{
	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
	struct extent_map *em;
	int ret = 0;

2640
	em = alloc_extent_map();
2641 2642 2643 2644 2645 2646 2647 2648 2649
	if (!em)
		return -ENOMEM;

	em->start = start;
	em->len = end + 1 - start;
	em->block_len = em->len;
	em->block_start = block_start;
	set_bit(EXTENT_FLAG_PINNED, &em->flags);

2650
	lock_extent(&BTRFS_I(inode)->io_tree, start, end);
2651 2652
	while (1) {
		write_lock(&em_tree->lock);
J
Josef Bacik 已提交
2653
		ret = add_extent_mapping(em_tree, em, 0);
2654 2655 2656 2657 2658
		write_unlock(&em_tree->lock);
		if (ret != -EEXIST) {
			free_extent_map(em);
			break;
		}
2659
		btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0);
2660
	}
2661
	unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
2662 2663 2664
	return ret;
}

2665 2666 2667 2668 2669
/*
 * Allow error injection to test balance cancellation
 */
int btrfs_should_cancel_balance(struct btrfs_fs_info *fs_info)
{
2670 2671
	return atomic_read(&fs_info->balance_cancel_req) ||
		fatal_signal_pending(current);
2672 2673 2674
}
ALLOW_ERROR_INJECTION(btrfs_should_cancel_balance, TRUE);

2675 2676
static int relocate_file_extent_cluster(struct inode *inode,
					struct file_extent_cluster *cluster)
2677
{
2678
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2679 2680
	u64 page_start;
	u64 page_end;
2681 2682
	u64 offset = BTRFS_I(inode)->index_cnt;
	unsigned long index;
2683 2684 2685
	unsigned long last_index;
	struct page *page;
	struct file_ra_state *ra;
2686
	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
2687
	int nr = 0;
2688 2689
	int ret = 0;

2690 2691 2692
	if (!cluster->nr)
		return 0;

2693 2694 2695 2696
	ra = kzalloc(sizeof(*ra), GFP_NOFS);
	if (!ra)
		return -ENOMEM;

2697
	ret = prealloc_file_extent_cluster(BTRFS_I(inode), cluster);
2698 2699
	if (ret)
		goto out;
2700

2701
	file_ra_state_init(ra, inode->i_mapping);
2702

2703 2704
	ret = setup_extent_mapping(inode, cluster->start - offset,
				   cluster->end - offset, cluster->start);
2705
	if (ret)
2706
		goto out;
2707

2708 2709
	index = (cluster->start - offset) >> PAGE_SHIFT;
	last_index = (cluster->end - offset) >> PAGE_SHIFT;
2710
	while (index <= last_index) {
2711 2712
		ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
				PAGE_SIZE);
2713 2714 2715
		if (ret)
			goto out;

2716
		page = find_lock_page(inode->i_mapping, index);
2717
		if (!page) {
2718 2719 2720
			page_cache_sync_readahead(inode->i_mapping,
						  ra, NULL, index,
						  last_index + 1 - index);
2721
			page = find_or_create_page(inode->i_mapping, index,
2722
						   mask);
2723
			if (!page) {
2724
				btrfs_delalloc_release_metadata(BTRFS_I(inode),
2725
							PAGE_SIZE, true);
2726
				btrfs_delalloc_release_extents(BTRFS_I(inode),
2727
							PAGE_SIZE);
2728
				ret = -ENOMEM;
2729
				goto out;
2730
			}
2731
		}
2732 2733 2734 2735 2736 2737 2738

		if (PageReadahead(page)) {
			page_cache_async_readahead(inode->i_mapping,
						   ra, NULL, page, index,
						   last_index + 1 - index);
		}

2739 2740 2741 2742 2743
		if (!PageUptodate(page)) {
			btrfs_readpage(NULL, page);
			lock_page(page);
			if (!PageUptodate(page)) {
				unlock_page(page);
2744
				put_page(page);
2745
				btrfs_delalloc_release_metadata(BTRFS_I(inode),
2746
							PAGE_SIZE, true);
J
Josef Bacik 已提交
2747
				btrfs_delalloc_release_extents(BTRFS_I(inode),
2748
							       PAGE_SIZE);
2749
				ret = -EIO;
2750
				goto out;
2751 2752 2753
			}
		}

M
Miao Xie 已提交
2754
		page_start = page_offset(page);
2755
		page_end = page_start + PAGE_SIZE - 1;
2756

2757
		lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end);
2758

2759 2760
		set_page_extent_mapped(page);

2761 2762 2763 2764
		if (nr < cluster->nr &&
		    page_start + offset == cluster->boundary[nr]) {
			set_extent_bits(&BTRFS_I(inode)->io_tree,
					page_start, page_end,
2765
					EXTENT_BOUNDARY);
2766 2767
			nr++;
		}
2768

2769 2770
		ret = btrfs_set_extent_delalloc(BTRFS_I(inode), page_start,
						page_end, 0, NULL);
2771 2772 2773 2774
		if (ret) {
			unlock_page(page);
			put_page(page);
			btrfs_delalloc_release_metadata(BTRFS_I(inode),
2775
							 PAGE_SIZE, true);
2776
			btrfs_delalloc_release_extents(BTRFS_I(inode),
2777
			                               PAGE_SIZE);
2778 2779 2780 2781 2782 2783 2784

			clear_extent_bits(&BTRFS_I(inode)->io_tree,
					  page_start, page_end,
					  EXTENT_LOCKED | EXTENT_BOUNDARY);
			goto out;

		}
2785 2786
		set_page_dirty(page);

2787
		unlock_extent(&BTRFS_I(inode)->io_tree,
2788
			      page_start, page_end);
2789
		unlock_page(page);
2790
		put_page(page);
2791 2792

		index++;
2793
		btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
2794
		balance_dirty_pages_ratelimited(inode->i_mapping);
2795
		btrfs_throttle(fs_info);
2796 2797 2798 2799
		if (btrfs_should_cancel_balance(fs_info)) {
			ret = -ECANCELED;
			goto out;
		}
2800
	}
2801
	WARN_ON(nr != cluster->nr);
2802
out:
2803 2804 2805 2806 2807
	kfree(ra);
	return ret;
}

static noinline_for_stack
2808 2809
int relocate_data_extent(struct inode *inode, struct btrfs_key *extent_key,
			 struct file_extent_cluster *cluster)
2810
{
2811
	int ret;
2812

2813 2814 2815 2816 2817
	if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) {
		ret = relocate_file_extent_cluster(inode, cluster);
		if (ret)
			return ret;
		cluster->nr = 0;
2818 2819
	}

2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834
	if (!cluster->nr)
		cluster->start = extent_key->objectid;
	else
		BUG_ON(cluster->nr >= MAX_EXTENTS);
	cluster->end = extent_key->objectid + extent_key->offset - 1;
	cluster->boundary[cluster->nr] = extent_key->objectid;
	cluster->nr++;

	if (cluster->nr >= MAX_EXTENTS) {
		ret = relocate_file_extent_cluster(inode, cluster);
		if (ret)
			return ret;
		cluster->nr = 0;
	}
	return 0;
2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852
}

/*
 * helper to add a tree block to the list.
 * the major work is getting the generation and level of the block
 */
static int add_tree_block(struct reloc_control *rc,
			  struct btrfs_key *extent_key,
			  struct btrfs_path *path,
			  struct rb_root *blocks)
{
	struct extent_buffer *eb;
	struct btrfs_extent_item *ei;
	struct btrfs_tree_block_info *bi;
	struct tree_block *block;
	struct rb_node *rb_node;
	u32 item_size;
	int level = -1;
2853
	u64 generation;
2854 2855 2856 2857

	eb =  path->nodes[0];
	item_size = btrfs_item_size_nr(eb, path->slots[0]);

2858 2859
	if (extent_key->type == BTRFS_METADATA_ITEM_KEY ||
	    item_size >= sizeof(*ei) + sizeof(*bi)) {
2860 2861
		ei = btrfs_item_ptr(eb, path->slots[0],
				struct btrfs_extent_item);
2862 2863 2864 2865 2866 2867
		if (extent_key->type == BTRFS_EXTENT_ITEM_KEY) {
			bi = (struct btrfs_tree_block_info *)(ei + 1);
			level = btrfs_tree_block_level(eb, bi);
		} else {
			level = (int)extent_key->offset;
		}
2868
		generation = btrfs_extent_generation(eb, ei);
2869
	} else if (unlikely(item_size == sizeof(struct btrfs_extent_item_v0))) {
2870 2871 2872
		btrfs_print_v0_err(eb->fs_info);
		btrfs_handle_fs_error(eb->fs_info, -EINVAL, NULL);
		return -EINVAL;
2873 2874 2875 2876
	} else {
		BUG();
	}

2877
	btrfs_release_path(path);
2878 2879 2880 2881 2882 2883 2884 2885

	BUG_ON(level == -1);

	block = kmalloc(sizeof(*block), GFP_NOFS);
	if (!block)
		return -ENOMEM;

	block->bytenr = extent_key->objectid;
2886
	block->key.objectid = rc->extent_root->fs_info->nodesize;
2887 2888 2889 2890
	block->key.offset = generation;
	block->level = level;
	block->key_ready = 0;

2891
	rb_node = rb_simple_insert(blocks, block->bytenr, &block->rb_node);
2892
	if (rb_node)
2893 2894
		btrfs_backref_panic(rc->extent_root->fs_info, block->bytenr,
				    -EEXIST);
2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905

	return 0;
}

/*
 * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY
 */
static int __add_tree_block(struct reloc_control *rc,
			    u64 bytenr, u32 blocksize,
			    struct rb_root *blocks)
{
2906
	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2907 2908 2909
	struct btrfs_path *path;
	struct btrfs_key key;
	int ret;
2910
	bool skinny = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
2911

2912
	if (tree_block_processed(bytenr, rc))
2913 2914
		return 0;

2915
	if (rb_simple_search(blocks, bytenr))
2916 2917 2918 2919 2920
		return 0;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;
2921
again:
2922
	key.objectid = bytenr;
2923 2924 2925 2926 2927 2928 2929
	if (skinny) {
		key.type = BTRFS_METADATA_ITEM_KEY;
		key.offset = (u64)-1;
	} else {
		key.type = BTRFS_EXTENT_ITEM_KEY;
		key.offset = blocksize;
	}
2930 2931 2932 2933 2934 2935 2936

	path->search_commit_root = 1;
	path->skip_locking = 1;
	ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0);
	if (ret < 0)
		goto out;

2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953
	if (ret > 0 && skinny) {
		if (path->slots[0]) {
			path->slots[0]--;
			btrfs_item_key_to_cpu(path->nodes[0], &key,
					      path->slots[0]);
			if (key.objectid == bytenr &&
			    (key.type == BTRFS_METADATA_ITEM_KEY ||
			     (key.type == BTRFS_EXTENT_ITEM_KEY &&
			      key.offset == blocksize)))
				ret = 0;
		}

		if (ret) {
			skinny = false;
			btrfs_release_path(path);
			goto again;
		}
2954
	}
2955 2956 2957 2958 2959 2960 2961 2962 2963 2964
	if (ret) {
		ASSERT(ret == 1);
		btrfs_print_leaf(path->nodes[0]);
		btrfs_err(fs_info,
	     "tree block extent item (%llu) is not found in extent tree",
		     bytenr);
		WARN_ON(1);
		ret = -EINVAL;
		goto out;
	}
2965

2966 2967 2968 2969 2970 2971
	ret = add_tree_block(rc, &key, path, blocks);
out:
	btrfs_free_path(path);
	return ret;
}

2972
static int delete_block_group_cache(struct btrfs_fs_info *fs_info,
2973
				    struct btrfs_block_group *block_group,
2974 2975
				    struct inode *inode,
				    u64 ino)
2976 2977 2978 2979 2980 2981 2982 2983
{
	struct btrfs_root *root = fs_info->tree_root;
	struct btrfs_trans_handle *trans;
	int ret = 0;

	if (inode)
		goto truncate;

D
David Sterba 已提交
2984
	inode = btrfs_iget(fs_info->sb, ino, root);
2985
	if (IS_ERR(inode))
2986 2987 2988
		return -ENOENT;

truncate:
2989
	ret = btrfs_check_trunc_cache_free_space(fs_info,
2990 2991 2992 2993
						 &fs_info->global_block_rsv);
	if (ret)
		goto out;

2994
	trans = btrfs_join_transaction(root);
2995
	if (IS_ERR(trans)) {
2996
		ret = PTR_ERR(trans);
2997 2998 2999
		goto out;
	}

3000
	ret = btrfs_truncate_free_space_cache(trans, block_group, inode);
3001

3002
	btrfs_end_transaction(trans);
3003
	btrfs_btree_balance_dirty(fs_info);
3004 3005 3006 3007 3008
out:
	iput(inode);
	return ret;
}

3009
/*
3010 3011
 * Locate the free space cache EXTENT_DATA in root tree leaf and delete the
 * cache inode, to avoid free space cache data extent blocking data relocation.
3012
 */
3013 3014 3015
static int delete_v1_space_cache(struct extent_buffer *leaf,
				 struct btrfs_block_group *block_group,
				 u64 data_bytenr)
3016
{
3017 3018
	u64 space_cache_ino;
	struct btrfs_file_extent_item *ei;
3019
	struct btrfs_key key;
3020 3021
	bool found = false;
	int i;
3022 3023
	int ret;

3024 3025
	if (btrfs_header_owner(leaf) != BTRFS_ROOT_TREE_OBJECTID)
		return 0;
3026

3027 3028 3029 3030 3031 3032 3033 3034 3035
	for (i = 0; i < btrfs_header_nritems(leaf); i++) {
		btrfs_item_key_to_cpu(leaf, &key, i);
		if (key.type != BTRFS_EXTENT_DATA_KEY)
			continue;
		ei = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
		if (btrfs_file_extent_type(leaf, ei) == BTRFS_FILE_EXTENT_REG &&
		    btrfs_file_extent_disk_bytenr(leaf, ei) == data_bytenr) {
			found = true;
			space_cache_ino = key.objectid;
3036 3037 3038
			break;
		}
	}
3039 3040 3041 3042 3043
	if (!found)
		return -ENOENT;
	ret = delete_block_group_cache(leaf->fs_info, block_group, NULL,
					space_cache_ino);
	return ret;
3044 3045 3046
}

/*
L
Liu Bo 已提交
3047
 * helper to find all tree blocks that reference a given data extent
3048 3049 3050 3051 3052 3053 3054
 */
static noinline_for_stack
int add_data_references(struct reloc_control *rc,
			struct btrfs_key *extent_key,
			struct btrfs_path *path,
			struct rb_root *blocks)
{
3055 3056 3057 3058 3059
	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
	struct ulist *leaves = NULL;
	struct ulist_iterator leaf_uiter;
	struct ulist_node *ref_node = NULL;
	const u32 blocksize = fs_info->nodesize;
3060
	int ret = 0;
3061

3062 3063 3064 3065 3066
	btrfs_release_path(path);
	ret = btrfs_find_all_leafs(NULL, fs_info, extent_key->objectid,
				   0, &leaves, NULL, true);
	if (ret < 0)
		return ret;
3067

3068 3069 3070
	ULIST_ITER_INIT(&leaf_uiter);
	while ((ref_node = ulist_next(leaves, &leaf_uiter))) {
		struct extent_buffer *eb;
3071

3072 3073 3074
		eb = read_tree_block(fs_info, ref_node->val, 0, 0, NULL);
		if (IS_ERR(eb)) {
			ret = PTR_ERR(eb);
3075 3076
			break;
		}
3077 3078 3079 3080 3081 3082 3083
		ret = delete_v1_space_cache(eb, rc->block_group,
					    extent_key->objectid);
		free_extent_buffer(eb);
		if (ret < 0)
			break;
		ret = __add_tree_block(rc, ref_node->val, blocksize, blocks);
		if (ret < 0)
3084 3085
			break;
	}
3086
	if (ret < 0)
3087
		free_block_list(blocks);
3088 3089
	ulist_free(leaves);
	return ret;
3090 3091 3092
}

/*
L
Liu Bo 已提交
3093
 * helper to find next unprocessed extent
3094 3095
 */
static noinline_for_stack
3096
int find_next_extent(struct reloc_control *rc, struct btrfs_path *path,
3097
		     struct btrfs_key *extent_key)
3098
{
3099
	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3100 3101 3102 3103 3104
	struct btrfs_key key;
	struct extent_buffer *leaf;
	u64 start, end, last;
	int ret;

3105
	last = rc->block_group->start + rc->block_group->length;
3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137
	while (1) {
		cond_resched();
		if (rc->search_start >= last) {
			ret = 1;
			break;
		}

		key.objectid = rc->search_start;
		key.type = BTRFS_EXTENT_ITEM_KEY;
		key.offset = 0;

		path->search_commit_root = 1;
		path->skip_locking = 1;
		ret = btrfs_search_slot(NULL, rc->extent_root, &key, path,
					0, 0);
		if (ret < 0)
			break;
next:
		leaf = path->nodes[0];
		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
			ret = btrfs_next_leaf(rc->extent_root, path);
			if (ret != 0)
				break;
			leaf = path->nodes[0];
		}

		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
		if (key.objectid >= last) {
			ret = 1;
			break;
		}

3138 3139 3140 3141 3142 3143 3144
		if (key.type != BTRFS_EXTENT_ITEM_KEY &&
		    key.type != BTRFS_METADATA_ITEM_KEY) {
			path->slots[0]++;
			goto next;
		}

		if (key.type == BTRFS_EXTENT_ITEM_KEY &&
3145 3146 3147 3148 3149
		    key.objectid + key.offset <= rc->search_start) {
			path->slots[0]++;
			goto next;
		}

3150
		if (key.type == BTRFS_METADATA_ITEM_KEY &&
3151
		    key.objectid + fs_info->nodesize <=
3152 3153 3154 3155 3156
		    rc->search_start) {
			path->slots[0]++;
			goto next;
		}

3157 3158
		ret = find_first_extent_bit(&rc->processed_blocks,
					    key.objectid, &start, &end,
3159
					    EXTENT_DIRTY, NULL);
3160 3161

		if (ret == 0 && start <= key.objectid) {
3162
			btrfs_release_path(path);
3163 3164
			rc->search_start = end + 1;
		} else {
3165 3166 3167 3168
			if (key.type == BTRFS_EXTENT_ITEM_KEY)
				rc->search_start = key.objectid + key.offset;
			else
				rc->search_start = key.objectid +
3169
					fs_info->nodesize;
3170
			memcpy(extent_key, &key, sizeof(key));
3171 3172 3173
			return 0;
		}
	}
3174
	btrfs_release_path(path);
3175 3176 3177 3178 3179 3180
	return ret;
}

static void set_reloc_control(struct reloc_control *rc)
{
	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
C
Chris Mason 已提交
3181 3182

	mutex_lock(&fs_info->reloc_mutex);
3183
	fs_info->reloc_ctl = rc;
C
Chris Mason 已提交
3184
	mutex_unlock(&fs_info->reloc_mutex);
3185 3186 3187 3188 3189
}

static void unset_reloc_control(struct reloc_control *rc)
{
	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
C
Chris Mason 已提交
3190 3191

	mutex_lock(&fs_info->reloc_mutex);
3192
	fs_info->reloc_ctl = NULL;
C
Chris Mason 已提交
3193
	mutex_unlock(&fs_info->reloc_mutex);
3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209
}

static int check_extent_flags(u64 flags)
{
	if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
	    (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
		return 1;
	if (!(flags & BTRFS_EXTENT_FLAG_DATA) &&
	    !(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
		return 1;
	if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
	    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
		return 1;
	return 0;
}

3210 3211 3212 3213
static noinline_for_stack
int prepare_to_relocate(struct reloc_control *rc)
{
	struct btrfs_trans_handle *trans;
3214
	int ret;
3215

3216
	rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root->fs_info,
3217
					      BTRFS_BLOCK_RSV_TEMP);
3218 3219 3220 3221
	if (!rc->block_rsv)
		return -ENOMEM;

	memset(&rc->cluster, 0, sizeof(rc->cluster));
3222
	rc->search_start = rc->block_group->start;
3223 3224 3225
	rc->extents_found = 0;
	rc->nodes_relocated = 0;
	rc->merging_rsv_size = 0;
3226
	rc->reserved_bytes = 0;
3227
	rc->block_rsv->size = rc->extent_root->fs_info->nodesize *
3228
			      RELOCATION_RESERVED_NODES;
3229 3230 3231 3232 3233
	ret = btrfs_block_rsv_refill(rc->extent_root,
				     rc->block_rsv, rc->block_rsv->size,
				     BTRFS_RESERVE_FLUSH_ALL);
	if (ret)
		return ret;
3234 3235 3236 3237

	rc->create_reloc_tree = 1;
	set_reloc_control(rc);

3238
	trans = btrfs_join_transaction(rc->extent_root);
3239 3240 3241 3242 3243 3244 3245 3246 3247
	if (IS_ERR(trans)) {
		unset_reloc_control(rc);
		/*
		 * extent tree is not a ref_cow tree and has no reloc_root to
		 * cleanup.  And callers are responsible to free the above
		 * block rsv.
		 */
		return PTR_ERR(trans);
	}
3248
	btrfs_commit_transaction(trans);
3249 3250
	return 0;
}
3251

3252 3253
static noinline_for_stack int relocate_block_group(struct reloc_control *rc)
{
3254
	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3255 3256 3257 3258 3259 3260 3261 3262 3263
	struct rb_root blocks = RB_ROOT;
	struct btrfs_key key;
	struct btrfs_trans_handle *trans = NULL;
	struct btrfs_path *path;
	struct btrfs_extent_item *ei;
	u64 flags;
	u32 item_size;
	int ret;
	int err = 0;
3264
	int progress = 0;
3265 3266

	path = btrfs_alloc_path();
3267
	if (!path)
3268
		return -ENOMEM;
3269
	path->reada = READA_FORWARD;
3270

3271 3272 3273 3274 3275
	ret = prepare_to_relocate(rc);
	if (ret) {
		err = ret;
		goto out_free;
	}
3276 3277

	while (1) {
3278 3279 3280 3281 3282 3283 3284 3285
		rc->reserved_bytes = 0;
		ret = btrfs_block_rsv_refill(rc->extent_root,
					rc->block_rsv, rc->block_rsv->size,
					BTRFS_RESERVE_FLUSH_ALL);
		if (ret) {
			err = ret;
			break;
		}
3286
		progress++;
3287
		trans = btrfs_start_transaction(rc->extent_root, 0);
3288 3289 3290 3291 3292
		if (IS_ERR(trans)) {
			err = PTR_ERR(trans);
			trans = NULL;
			break;
		}
3293
restart:
3294
		if (update_backref_cache(trans, &rc->backref_cache)) {
3295
			btrfs_end_transaction(trans);
3296
			trans = NULL;
3297 3298 3299
			continue;
		}

3300
		ret = find_next_extent(rc, path, &key);
3301 3302 3303 3304 3305 3306 3307 3308 3309
		if (ret < 0)
			err = ret;
		if (ret != 0)
			break;

		rc->extents_found++;

		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
				    struct btrfs_extent_item);
3310
		item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
3311 3312 3313 3314
		if (item_size >= sizeof(*ei)) {
			flags = btrfs_extent_flags(path->nodes[0], ei);
			ret = check_extent_flags(flags);
			BUG_ON(ret);
3315
		} else if (unlikely(item_size == sizeof(struct btrfs_extent_item_v0))) {
3316 3317 3318 3319
			err = -EINVAL;
			btrfs_print_v0_err(trans->fs_info);
			btrfs_abort_transaction(trans, err);
			break;
3320 3321 3322 3323 3324 3325 3326
		} else {
			BUG();
		}

		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
			ret = add_tree_block(rc, &key, path, &blocks);
		} else if (rc->stage == UPDATE_DATA_PTRS &&
3327
			   (flags & BTRFS_EXTENT_FLAG_DATA)) {
3328 3329
			ret = add_data_references(rc, &key, path, &blocks);
		} else {
3330
			btrfs_release_path(path);
3331 3332 3333
			ret = 0;
		}
		if (ret < 0) {
3334
			err = ret;
3335 3336 3337 3338 3339 3340
			break;
		}

		if (!RB_EMPTY_ROOT(&blocks)) {
			ret = relocate_tree_blocks(trans, rc, &blocks);
			if (ret < 0) {
3341 3342 3343 3344 3345 3346 3347 3348 3349
				if (ret != -EAGAIN) {
					err = ret;
					break;
				}
				rc->extents_found--;
				rc->search_start = key.objectid;
			}
		}

3350
		btrfs_end_transaction_throttle(trans);
3351
		btrfs_btree_balance_dirty(fs_info);
3352 3353 3354 3355 3356
		trans = NULL;

		if (rc->stage == MOVE_DATA_EXTENTS &&
		    (flags & BTRFS_EXTENT_FLAG_DATA)) {
			rc->found_file_extent = 1;
3357
			ret = relocate_data_extent(rc->data_inode,
3358
						   &key, &rc->cluster);
3359 3360 3361 3362 3363
			if (ret < 0) {
				err = ret;
				break;
			}
		}
3364 3365 3366 3367
		if (btrfs_should_cancel_balance(fs_info)) {
			err = -ECANCELED;
			break;
		}
3368
	}
3369
	if (trans && progress && err == -ENOSPC) {
3370
		ret = btrfs_force_chunk_alloc(trans, rc->block_group->flags);
3371
		if (ret == 1) {
3372 3373 3374 3375 3376
			err = 0;
			progress = 0;
			goto restart;
		}
	}
3377

3378
	btrfs_release_path(path);
3379
	clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY);
3380 3381

	if (trans) {
3382
		btrfs_end_transaction_throttle(trans);
3383
		btrfs_btree_balance_dirty(fs_info);
3384 3385
	}

3386
	if (!err) {
3387 3388
		ret = relocate_file_extent_cluster(rc->data_inode,
						   &rc->cluster);
3389 3390 3391 3392
		if (ret < 0)
			err = ret;
	}

3393 3394
	rc->create_reloc_tree = 0;
	set_reloc_control(rc);
3395

3396
	btrfs_backref_release_cache(&rc->backref_cache);
3397
	btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL);
3398

3399 3400 3401 3402 3403 3404 3405 3406
	/*
	 * Even in the case when the relocation is cancelled, we should all go
	 * through prepare_to_merge() and merge_reloc_roots().
	 *
	 * For error (including cancelled balance), prepare_to_merge() will
	 * mark all reloc trees orphan, then queue them for cleanup in
	 * merge_reloc_roots()
	 */
3407
	err = prepare_to_merge(rc, err);
3408 3409 3410

	merge_reloc_roots(rc);

3411
	rc->merge_reloc_tree = 0;
3412
	unset_reloc_control(rc);
3413
	btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL);
3414 3415

	/* get rid of pinned extents */
3416
	trans = btrfs_join_transaction(rc->extent_root);
3417
	if (IS_ERR(trans)) {
3418
		err = PTR_ERR(trans);
3419 3420
		goto out_free;
	}
3421
	btrfs_commit_transaction(trans);
3422
out_free:
3423 3424 3425
	ret = clean_dirty_subvols(rc);
	if (ret < 0 && !err)
		err = ret;
3426
	btrfs_free_block_rsv(fs_info, rc->block_rsv);
3427
	btrfs_free_path(path);
3428 3429 3430 3431
	return err;
}

static int __insert_orphan_inode(struct btrfs_trans_handle *trans,
3432
				 struct btrfs_root *root, u64 objectid)
3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448
{
	struct btrfs_path *path;
	struct btrfs_inode_item *item;
	struct extent_buffer *leaf;
	int ret;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	ret = btrfs_insert_empty_inode(trans, root, path, objectid);
	if (ret)
		goto out;

	leaf = path->nodes[0];
	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item);
3449
	memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3450
	btrfs_set_inode_generation(leaf, item, 1);
3451
	btrfs_set_inode_size(leaf, item, 0);
3452
	btrfs_set_inode_mode(leaf, item, S_IFREG | 0600);
3453 3454
	btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS |
					  BTRFS_INODE_PREALLOC);
3455 3456 3457 3458 3459 3460 3461 3462 3463 3464
	btrfs_mark_buffer_dirty(leaf);
out:
	btrfs_free_path(path);
	return ret;
}

/*
 * helper to create inode for data relocation.
 * the inode is in data relocation tree and its link count is 0
 */
3465 3466
static noinline_for_stack
struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info,
3467
				 struct btrfs_block_group *group)
3468 3469 3470 3471
{
	struct inode *inode = NULL;
	struct btrfs_trans_handle *trans;
	struct btrfs_root *root;
3472
	u64 objectid;
3473 3474
	int err = 0;

3475
	root = btrfs_grab_root(fs_info->data_reloc_root);
3476
	trans = btrfs_start_transaction(root, 6);
3477
	if (IS_ERR(trans)) {
3478
		btrfs_put_root(root);
3479
		return ERR_CAST(trans);
3480
	}
3481

3482
	err = btrfs_find_free_objectid(root, &objectid);
3483 3484 3485
	if (err)
		goto out;

3486
	err = __insert_orphan_inode(trans, root, objectid);
3487 3488
	BUG_ON(err);

D
David Sterba 已提交
3489
	inode = btrfs_iget(fs_info->sb, objectid, root);
3490
	BUG_ON(IS_ERR(inode));
3491
	BTRFS_I(inode)->index_cnt = group->start;
3492

3493
	err = btrfs_orphan_add(trans, BTRFS_I(inode));
3494
out:
3495
	btrfs_put_root(root);
3496
	btrfs_end_transaction(trans);
3497
	btrfs_btree_balance_dirty(fs_info);
3498 3499 3500 3501 3502 3503 3504 3505
	if (err) {
		if (inode)
			iput(inode);
		inode = ERR_PTR(err);
	}
	return inode;
}

3506
static struct reloc_control *alloc_reloc_control(struct btrfs_fs_info *fs_info)
3507 3508 3509 3510 3511 3512 3513 3514
{
	struct reloc_control *rc;

	rc = kzalloc(sizeof(*rc), GFP_NOFS);
	if (!rc)
		return NULL;

	INIT_LIST_HEAD(&rc->reloc_roots);
3515
	INIT_LIST_HEAD(&rc->dirty_subvol_roots);
3516
	btrfs_backref_init_cache(fs_info, &rc->backref_cache, 1);
3517
	mapping_tree_init(&rc->reloc_root_tree);
3518 3519
	extent_io_tree_init(fs_info, &rc->processed_blocks,
			    IO_TREE_RELOC_BLOCKS, NULL);
3520 3521 3522
	return rc;
}

3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534
static void free_reloc_control(struct reloc_control *rc)
{
	struct mapping_node *node, *tmp;

	free_reloc_roots(&rc->reloc_roots);
	rbtree_postorder_for_each_entry_safe(node, tmp,
			&rc->reloc_root_tree.rb_root, rb_node)
		kfree(node);

	kfree(rc);
}

3535 3536 3537 3538
/*
 * Print the block group being relocated
 */
static void describe_relocation(struct btrfs_fs_info *fs_info,
3539
				struct btrfs_block_group *block_group)
3540
{
3541
	char buf[128] = {'\0'};
3542

3543
	btrfs_describe_block_groups(block_group->flags, buf, sizeof(buf));
3544 3545 3546

	btrfs_info(fs_info,
		   "relocating block group %llu flags %s",
3547
		   block_group->start, buf);
3548 3549
}

3550 3551 3552 3553 3554 3555 3556 3557 3558
static const char *stage_to_string(int stage)
{
	if (stage == MOVE_DATA_EXTENTS)
		return "move data extents";
	if (stage == UPDATE_DATA_PTRS)
		return "update data pointers";
	return "unknown";
}

3559 3560 3561
/*
 * function to relocate all extents in a block group.
 */
3562
int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start)
3563
{
3564
	struct btrfs_block_group *bg;
3565
	struct btrfs_root *extent_root = fs_info->extent_root;
3566
	struct reloc_control *rc;
3567 3568
	struct inode *inode;
	struct btrfs_path *path;
3569
	int ret;
3570
	int rw = 0;
3571 3572
	int err = 0;

3573 3574 3575 3576 3577 3578 3579 3580 3581
	bg = btrfs_lookup_block_group(fs_info, group_start);
	if (!bg)
		return -ENOENT;

	if (btrfs_pinned_by_swapfile(fs_info, bg)) {
		btrfs_put_block_group(bg);
		return -ETXTBSY;
	}

3582
	rc = alloc_reloc_control(fs_info);
3583 3584
	if (!rc) {
		btrfs_put_block_group(bg);
3585
		return -ENOMEM;
3586
	}
3587

3588
	rc->extent_root = extent_root;
3589
	rc->block_group = bg;
3590

3591
	ret = btrfs_inc_block_group_ro(rc->block_group, true);
3592 3593 3594
	if (ret) {
		err = ret;
		goto out;
3595
	}
3596
	rw = 1;
3597

3598 3599 3600 3601 3602 3603
	path = btrfs_alloc_path();
	if (!path) {
		err = -ENOMEM;
		goto out;
	}

3604
	inode = lookup_free_space_inode(rc->block_group, path);
3605 3606 3607
	btrfs_free_path(path);

	if (!IS_ERR(inode))
3608
		ret = delete_block_group_cache(fs_info, rc->block_group, inode, 0);
3609 3610 3611 3612 3613 3614 3615 3616
	else
		ret = PTR_ERR(inode);

	if (ret && ret != -ENOENT) {
		err = ret;
		goto out;
	}

3617 3618 3619 3620 3621 3622 3623
	rc->data_inode = create_reloc_inode(fs_info, rc->block_group);
	if (IS_ERR(rc->data_inode)) {
		err = PTR_ERR(rc->data_inode);
		rc->data_inode = NULL;
		goto out;
	}

3624
	describe_relocation(fs_info, rc->block_group);
3625

3626
	btrfs_wait_block_group_reservations(rc->block_group);
3627
	btrfs_wait_nocow_writers(rc->block_group);
3628
	btrfs_wait_ordered_roots(fs_info, U64_MAX,
3629 3630
				 rc->block_group->start,
				 rc->block_group->length);
3631 3632

	while (1) {
3633 3634
		int finishes_stage;

3635
		mutex_lock(&fs_info->cleaner_mutex);
3636
		ret = relocate_block_group(rc);
3637
		mutex_unlock(&fs_info->cleaner_mutex);
3638
		if (ret < 0)
3639 3640
			err = ret;

3641
		finishes_stage = rc->stage;
3642 3643 3644 3645 3646 3647 3648 3649 3650
		/*
		 * We may have gotten ENOSPC after we already dirtied some
		 * extents.  If writeout happens while we're relocating a
		 * different block group we could end up hitting the
		 * BUG_ON(rc->stage == UPDATE_DATA_PTRS) in
		 * btrfs_reloc_cow_block.  Make sure we write everything out
		 * properly so we don't trip over this problem, and then break
		 * out of the loop if we hit an error.
		 */
3651
		if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) {
3652 3653
			ret = btrfs_wait_ordered_range(rc->data_inode, 0,
						       (u64)-1);
3654
			if (ret)
3655
				err = ret;
3656 3657 3658 3659
			invalidate_mapping_pages(rc->data_inode->i_mapping,
						 0, -1);
			rc->stage = UPDATE_DATA_PTRS;
		}
3660 3661 3662 3663 3664 3665 3666

		if (err < 0)
			goto out;

		if (rc->extents_found == 0)
			break;

3667 3668
		btrfs_info(fs_info, "found %llu extents, stage: %s",
			   rc->extents_found, stage_to_string(finishes_stage));
3669 3670 3671 3672
	}

	WARN_ON(rc->block_group->pinned > 0);
	WARN_ON(rc->block_group->reserved > 0);
3673
	WARN_ON(rc->block_group->used > 0);
3674
out:
3675
	if (err && rw)
3676
		btrfs_dec_block_group_ro(rc->block_group);
3677 3678
	iput(rc->data_inode);
	btrfs_put_block_group(rc->block_group);
3679
	free_reloc_control(rc);
3680 3681 3682
	return err;
}

3683 3684
static noinline_for_stack int mark_garbage_root(struct btrfs_root *root)
{
3685
	struct btrfs_fs_info *fs_info = root->fs_info;
3686
	struct btrfs_trans_handle *trans;
3687
	int ret, err;
3688

3689
	trans = btrfs_start_transaction(fs_info->tree_root, 0);
3690 3691
	if (IS_ERR(trans))
		return PTR_ERR(trans);
3692 3693 3694 3695 3696

	memset(&root->root_item.drop_progress, 0,
		sizeof(root->root_item.drop_progress));
	root->root_item.drop_level = 0;
	btrfs_set_root_refs(&root->root_item, 0);
3697
	ret = btrfs_update_root(trans, fs_info->tree_root,
3698 3699
				&root->root_key, &root->root_item);

3700
	err = btrfs_end_transaction(trans);
3701 3702 3703
	if (err)
		return err;
	return ret;
3704 3705
}

3706 3707 3708 3709 3710 3711 3712 3713
/*
 * recover relocation interrupted by system crash.
 *
 * this function resumes merging reloc trees with corresponding fs trees.
 * this is important for keeping the sharing of tree blocks
 */
int btrfs_recover_relocation(struct btrfs_root *root)
{
3714
	struct btrfs_fs_info *fs_info = root->fs_info;
3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728
	LIST_HEAD(reloc_roots);
	struct btrfs_key key;
	struct btrfs_root *fs_root;
	struct btrfs_root *reloc_root;
	struct btrfs_path *path;
	struct extent_buffer *leaf;
	struct reloc_control *rc = NULL;
	struct btrfs_trans_handle *trans;
	int ret;
	int err = 0;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;
3729
	path->reada = READA_BACK;
3730 3731 3732 3733 3734 3735

	key.objectid = BTRFS_TREE_RELOC_OBJECTID;
	key.type = BTRFS_ROOT_ITEM_KEY;
	key.offset = (u64)-1;

	while (1) {
3736
		ret = btrfs_search_slot(NULL, fs_info->tree_root, &key,
3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748
					path, 0, 0);
		if (ret < 0) {
			err = ret;
			goto out;
		}
		if (ret > 0) {
			if (path->slots[0] == 0)
				break;
			path->slots[0]--;
		}
		leaf = path->nodes[0];
		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3749
		btrfs_release_path(path);
3750 3751 3752 3753 3754

		if (key.objectid != BTRFS_TREE_RELOC_OBJECTID ||
		    key.type != BTRFS_ROOT_ITEM_KEY)
			break;

3755
		reloc_root = btrfs_read_tree_root(root, &key);
3756 3757 3758 3759 3760
		if (IS_ERR(reloc_root)) {
			err = PTR_ERR(reloc_root);
			goto out;
		}

3761
		set_bit(BTRFS_ROOT_SHAREABLE, &reloc_root->state);
3762 3763 3764
		list_add(&reloc_root->root_list, &reloc_roots);

		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
D
David Sterba 已提交
3765 3766
			fs_root = btrfs_get_fs_root(fs_info,
					reloc_root->root_key.offset, false);
3767
			if (IS_ERR(fs_root)) {
3768 3769 3770 3771 3772
				ret = PTR_ERR(fs_root);
				if (ret != -ENOENT) {
					err = ret;
					goto out;
				}
3773 3774 3775 3776 3777
				ret = mark_garbage_root(reloc_root);
				if (ret < 0) {
					err = ret;
					goto out;
				}
3778
			} else {
3779
				btrfs_put_root(fs_root);
3780 3781 3782 3783 3784 3785 3786 3787
			}
		}

		if (key.offset == 0)
			break;

		key.offset--;
	}
3788
	btrfs_release_path(path);
3789 3790 3791 3792

	if (list_empty(&reloc_roots))
		goto out;

3793
	rc = alloc_reloc_control(fs_info);
3794 3795 3796 3797 3798
	if (!rc) {
		err = -ENOMEM;
		goto out;
	}

3799
	rc->extent_root = fs_info->extent_root;
3800 3801 3802

	set_reloc_control(rc);

3803
	trans = btrfs_join_transaction(rc->extent_root);
3804 3805
	if (IS_ERR(trans)) {
		err = PTR_ERR(trans);
3806
		goto out_unset;
3807
	}
3808 3809 3810

	rc->merge_reloc_tree = 1;

3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821
	while (!list_empty(&reloc_roots)) {
		reloc_root = list_entry(reloc_roots.next,
					struct btrfs_root, root_list);
		list_del(&reloc_root->root_list);

		if (btrfs_root_refs(&reloc_root->root_item) == 0) {
			list_add_tail(&reloc_root->root_list,
				      &rc->reloc_roots);
			continue;
		}

D
David Sterba 已提交
3822 3823
		fs_root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
					    false);
3824 3825
		if (IS_ERR(fs_root)) {
			err = PTR_ERR(fs_root);
3826
			list_add_tail(&reloc_root->root_list, &reloc_roots);
3827
			btrfs_end_transaction(trans);
3828
			goto out_unset;
3829
		}
3830

3831
		err = __add_reloc_root(reloc_root);
3832
		BUG_ON(err < 0); /* -ENOMEM or logic error */
3833
		fs_root->reloc_root = btrfs_grab_root(reloc_root);
3834
		btrfs_put_root(fs_root);
3835 3836
	}

3837
	err = btrfs_commit_transaction(trans);
3838
	if (err)
3839
		goto out_unset;
3840 3841 3842 3843 3844

	merge_reloc_roots(rc);

	unset_reloc_control(rc);

3845
	trans = btrfs_join_transaction(rc->extent_root);
3846
	if (IS_ERR(trans)) {
3847
		err = PTR_ERR(trans);
3848
		goto out_clean;
3849
	}
3850
	err = btrfs_commit_transaction(trans);
3851
out_clean:
3852 3853 3854
	ret = clean_dirty_subvols(rc);
	if (ret < 0 && !err)
		err = ret;
3855 3856
out_unset:
	unset_reloc_control(rc);
3857
	free_reloc_control(rc);
3858
out:
3859
	free_reloc_roots(&reloc_roots);
3860

3861 3862 3863 3864
	btrfs_free_path(path);

	if (err == 0) {
		/* cleanup orphan inode in data relocation tree */
3865 3866 3867 3868
		fs_root = btrfs_grab_root(fs_info->data_reloc_root);
		ASSERT(fs_root);
		err = btrfs_orphan_cleanup(fs_root);
		btrfs_put_root(fs_root);
3869 3870 3871 3872 3873 3874 3875 3876 3877 3878
	}
	return err;
}

/*
 * helper to add ordered checksum for data relocation.
 *
 * cloning checksum properly handles the nodatasum extents.
 * it also saves CPU time to re-calculate the checksum.
 */
3879
int btrfs_reloc_clone_csums(struct btrfs_inode *inode, u64 file_pos, u64 len)
3880
{
3881
	struct btrfs_fs_info *fs_info = inode->root->fs_info;
3882 3883 3884 3885
	struct btrfs_ordered_sum *sums;
	struct btrfs_ordered_extent *ordered;
	int ret;
	u64 disk_bytenr;
3886
	u64 new_bytenr;
3887 3888
	LIST_HEAD(list);

3889
	ordered = btrfs_lookup_ordered_extent(inode, file_pos);
3890
	BUG_ON(ordered->file_offset != file_pos || ordered->num_bytes != len);
3891

3892
	disk_bytenr = file_pos + inode->index_cnt;
3893
	ret = btrfs_lookup_csums_range(fs_info->csum_root, disk_bytenr,
A
Arne Jansen 已提交
3894
				       disk_bytenr + len - 1, &list, 0);
3895 3896
	if (ret)
		goto out;
3897 3898 3899 3900 3901

	while (!list_empty(&list)) {
		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
		list_del_init(&sums->list);

3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913
		/*
		 * We need to offset the new_bytenr based on where the csum is.
		 * We need to do this because we will read in entire prealloc
		 * extents but we may have written to say the middle of the
		 * prealloc extent, so we need to make sure the csum goes with
		 * the right disk offset.
		 *
		 * We can do this because the data reloc inode refers strictly
		 * to the on disk bytes, so we don't have to worry about
		 * disk_len vs real len like with real inodes since it's all
		 * disk length.
		 */
3914
		new_bytenr = ordered->disk_bytenr + sums->bytenr - disk_bytenr;
3915
		sums->bytenr = new_bytenr;
3916

3917
		btrfs_add_ordered_sum(ordered, sums);
3918
	}
3919
out:
3920
	btrfs_put_ordered_extent(ordered);
3921
	return ret;
3922
}
3923

3924 3925 3926
int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
			  struct btrfs_root *root, struct extent_buffer *buf,
			  struct extent_buffer *cow)
3927
{
3928
	struct btrfs_fs_info *fs_info = root->fs_info;
3929
	struct reloc_control *rc;
3930
	struct btrfs_backref_node *node;
3931 3932
	int first_cow = 0;
	int level;
3933
	int ret = 0;
3934

3935
	rc = fs_info->reloc_ctl;
3936
	if (!rc)
3937
		return 0;
3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954

	BUG_ON(rc->stage == UPDATE_DATA_PTRS &&
	       root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID);

	level = btrfs_header_level(buf);
	if (btrfs_header_generation(buf) <=
	    btrfs_root_last_snapshot(&root->root_item))
		first_cow = 1;

	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID &&
	    rc->create_reloc_tree) {
		WARN_ON(!first_cow && level == 0);

		node = rc->backref_cache.path[level];
		BUG_ON(node->bytenr != buf->start &&
		       node->new_bytenr != buf->start);

3955
		btrfs_backref_drop_node_buffer(node);
D
David Sterba 已提交
3956
		atomic_inc(&cow->refs);
3957 3958 3959 3960 3961 3962 3963 3964 3965 3966
		node->eb = cow;
		node->new_bytenr = cow->start;

		if (!node->pending) {
			list_move_tail(&node->list,
				       &rc->backref_cache.pending[level]);
			node->pending = 1;
		}

		if (first_cow)
3967
			mark_block_processed(rc, node);
3968 3969 3970 3971 3972

		if (first_cow && level > 0)
			rc->nodes_relocated += buf->len;
	}

3973
	if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS)
3974
		ret = replace_file_extents(trans, rc, root, cow);
3975
	return ret;
3976 3977 3978 3979
}

/*
 * called before creating snapshot. it calculates metadata reservation
3980
 * required for relocating tree blocks in the snapshot
3981
 */
3982
void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending,
3983 3984
			      u64 *bytes_to_reserve)
{
3985 3986
	struct btrfs_root *root = pending->root;
	struct reloc_control *rc = root->fs_info->reloc_ctl;
3987

3988
	if (!rc || !have_reloc_root(root))
3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011
		return;

	if (!rc->merge_reloc_tree)
		return;

	root = root->reloc_root;
	BUG_ON(btrfs_root_refs(&root->root_item) == 0);
	/*
	 * relocation is in the stage of merging trees. the space
	 * used by merging a reloc tree is twice the size of
	 * relocated tree nodes in the worst case. half for cowing
	 * the reloc tree, half for cowing the fs tree. the space
	 * used by cowing the reloc tree will be freed after the
	 * tree is dropped. if we create snapshot, cowing the fs
	 * tree may use more space than it frees. so we need
	 * reserve extra space.
	 */
	*bytes_to_reserve += rc->nodes_relocated;
}

/*
 * called after snapshot is created. migrate block reservation
 * and create reloc root for the newly created snapshot
4012 4013 4014 4015
 *
 * This is similar to btrfs_init_reloc_root(), we come out of here with two
 * references held on the reloc_root, one for root->reloc_root and one for
 * rc->reloc_roots.
4016
 */
4017
int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
4018 4019 4020 4021 4022
			       struct btrfs_pending_snapshot *pending)
{
	struct btrfs_root *root = pending->root;
	struct btrfs_root *reloc_root;
	struct btrfs_root *new_root;
4023
	struct reloc_control *rc = root->fs_info->reloc_ctl;
4024 4025
	int ret;

4026
	if (!rc || !have_reloc_root(root))
4027
		return 0;
4028 4029 4030 4031 4032 4033 4034

	rc = root->fs_info->reloc_ctl;
	rc->merging_rsv_size += rc->nodes_relocated;

	if (rc->merge_reloc_tree) {
		ret = btrfs_block_rsv_migrate(&pending->block_rsv,
					      rc->block_rsv,
4035
					      rc->nodes_relocated, true);
4036 4037
		if (ret)
			return ret;
4038 4039 4040 4041 4042
	}

	new_root = pending->snap;
	reloc_root = create_reloc_root(trans, root->reloc_root,
				       new_root->root_key.objectid);
4043 4044
	if (IS_ERR(reloc_root))
		return PTR_ERR(reloc_root);
4045

4046 4047
	ret = __add_reloc_root(reloc_root);
	BUG_ON(ret < 0);
4048
	new_root->reloc_root = btrfs_grab_root(reloc_root);
4049

4050
	if (rc->create_reloc_tree)
4051
		ret = clone_backref_node(trans, rc, root, reloc_root);
4052
	return ret;
4053
}