relocation.c 114.7 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2 3 4 5 6 7 8 9 10
/*
 * Copyright (C) 2009 Oracle.  All rights reserved.
 */

#include <linux/sched.h>
#include <linux/pagemap.h>
#include <linux/writeback.h>
#include <linux/blkdev.h>
#include <linux/rbtree.h>
11
#include <linux/slab.h>
12 13 14 15 16 17 18
#include "ctree.h"
#include "disk-io.h"
#include "transaction.h"
#include "volumes.h"
#include "locking.h"
#include "btrfs_inode.h"
#include "async-thread.h"
19
#include "free-space-cache.h"
20
#include "inode-map.h"
21
#include "qgroup.h"
22
#include "print-tree.h"
23
#include "delalloc-space.h"
24
#include "block-group.h"
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

/*
 * backref_node, mapping_node and tree_block start with this
 */
struct tree_entry {
	struct rb_node rb_node;
	u64 bytenr;
};

/*
 * present a tree block in the backref cache
 */
struct backref_node {
	struct rb_node rb_node;
	u64 bytenr;
40 41 42

	u64 new_bytenr;
	/* objectid of tree block owner, can be not uptodate */
43
	u64 owner;
44 45
	/* link to pending, changed or detached list */
	struct list_head list;
46 47 48 49 50 51 52 53 54 55
	/* list of upper level blocks reference this block */
	struct list_head upper;
	/* list of child blocks in the cache */
	struct list_head lower;
	/* NULL if this node is not tree root */
	struct btrfs_root *root;
	/* extent buffer got by COW the block */
	struct extent_buffer *eb;
	/* level of tree block */
	unsigned int level:8;
56 57 58
	/* is the block in non-reference counted tree */
	unsigned int cowonly:1;
	/* 1 if no child node in the cache */
59 60 61 62 63 64 65
	unsigned int lowest:1;
	/* is the extent buffer locked */
	unsigned int locked:1;
	/* has the block been processed */
	unsigned int processed:1;
	/* have backrefs of this block been checked */
	unsigned int checked:1;
66 67 68 69 70 71 72 73 74 75
	/*
	 * 1 if corresponding block has been cowed but some upper
	 * level block pointers may not point to the new location
	 */
	unsigned int pending:1;
	/*
	 * 1 if the backref node isn't connected to any other
	 * backref node.
	 */
	unsigned int detached:1;
76 77 78 79 80 81 82 83 84 85 86 87
};

/*
 * present a block pointer in the backref cache
 */
struct backref_edge {
	struct list_head list[2];
	struct backref_node *node[2];
};

#define LOWER	0
#define UPPER	1
88
#define RELOCATION_RESERVED_NODES	256
89 90 91 92

struct backref_cache {
	/* red black tree of all backref nodes in the cache */
	struct rb_root rb_root;
93 94 95 96 97 98 99
	/* for passing backref nodes to btrfs_reloc_cow_block */
	struct backref_node *path[BTRFS_MAX_LEVEL];
	/*
	 * list of blocks that have been cowed but some block
	 * pointers in upper level blocks may not reflect the
	 * new location
	 */
100
	struct list_head pending[BTRFS_MAX_LEVEL];
101 102 103 104 105 106 107 108 109 110 111
	/* list of backref nodes with no child node */
	struct list_head leaves;
	/* list of blocks that have been cowed in current transaction */
	struct list_head changed;
	/* list of detached backref node. */
	struct list_head detached;

	u64 last_trans;

	int nr_nodes;
	int nr_edges;
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
};

/*
 * map address of tree root to tree
 */
struct mapping_node {
	struct rb_node rb_node;
	u64 bytenr;
	void *data;
};

struct mapping_tree {
	struct rb_root rb_root;
	spinlock_t lock;
};

/*
 * present a tree block to process
 */
struct tree_block {
	struct rb_node rb_node;
	u64 bytenr;
	struct btrfs_key key;
	unsigned int level:8;
	unsigned int key_ready:1;
};

139 140 141 142 143 144 145 146 147
#define MAX_EXTENTS 128

struct file_extent_cluster {
	u64 start;
	u64 end;
	u64 boundary[MAX_EXTENTS];
	unsigned int nr;
};

148 149 150 151 152 153 154
struct reloc_control {
	/* block group to relocate */
	struct btrfs_block_group_cache *block_group;
	/* extent tree */
	struct btrfs_root *extent_root;
	/* inode for moving data */
	struct inode *data_inode;
155 156 157 158 159 160

	struct btrfs_block_rsv *block_rsv;

	struct backref_cache backref_cache;

	struct file_extent_cluster cluster;
161 162 163 164 165 166
	/* tree blocks have been processed */
	struct extent_io_tree processed_blocks;
	/* map start of tree root to corresponding reloc tree */
	struct mapping_tree reloc_root_tree;
	/* list of reloc trees */
	struct list_head reloc_roots;
167 168
	/* list of subvolume trees that get relocated */
	struct list_head dirty_subvol_roots;
169 170 171 172
	/* size of metadata reservation for merging reloc trees */
	u64 merging_rsv_size;
	/* size of relocated tree nodes */
	u64 nodes_relocated;
173 174
	/* reserved size for block group relocation*/
	u64 reserved_bytes;
175

176 177
	u64 search_start;
	u64 extents_found;
178 179 180 181

	unsigned int stage:8;
	unsigned int create_reloc_tree:1;
	unsigned int merge_reloc_tree:1;
182 183 184 185 186 187 188
	unsigned int found_file_extent:1;
};

/* stages of data relocation */
#define MOVE_DATA_EXTENTS	0
#define UPDATE_DATA_PTRS	1

189 190 191 192
static void remove_backref_node(struct backref_cache *cache,
				struct backref_node *node);
static void __mark_block_processed(struct reloc_control *rc,
				   struct backref_node *node);
193 194 195

static void mapping_tree_init(struct mapping_tree *tree)
{
196
	tree->rb_root = RB_ROOT;
197 198 199 200 201 202
	spin_lock_init(&tree->lock);
}

static void backref_cache_init(struct backref_cache *cache)
{
	int i;
203
	cache->rb_root = RB_ROOT;
204 205
	for (i = 0; i < BTRFS_MAX_LEVEL; i++)
		INIT_LIST_HEAD(&cache->pending[i]);
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
	INIT_LIST_HEAD(&cache->changed);
	INIT_LIST_HEAD(&cache->detached);
	INIT_LIST_HEAD(&cache->leaves);
}

static void backref_cache_cleanup(struct backref_cache *cache)
{
	struct backref_node *node;
	int i;

	while (!list_empty(&cache->detached)) {
		node = list_entry(cache->detached.next,
				  struct backref_node, list);
		remove_backref_node(cache, node);
	}

	while (!list_empty(&cache->leaves)) {
		node = list_entry(cache->leaves.next,
				  struct backref_node, lower);
		remove_backref_node(cache, node);
	}

	cache->last_trans = 0;

	for (i = 0; i < BTRFS_MAX_LEVEL; i++)
231 232 233 234 235 236
		ASSERT(list_empty(&cache->pending[i]));
	ASSERT(list_empty(&cache->changed));
	ASSERT(list_empty(&cache->detached));
	ASSERT(RB_EMPTY_ROOT(&cache->rb_root));
	ASSERT(!cache->nr_nodes);
	ASSERT(!cache->nr_edges);
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
}

static struct backref_node *alloc_backref_node(struct backref_cache *cache)
{
	struct backref_node *node;

	node = kzalloc(sizeof(*node), GFP_NOFS);
	if (node) {
		INIT_LIST_HEAD(&node->list);
		INIT_LIST_HEAD(&node->upper);
		INIT_LIST_HEAD(&node->lower);
		RB_CLEAR_NODE(&node->rb_node);
		cache->nr_nodes++;
	}
	return node;
}

static void free_backref_node(struct backref_cache *cache,
			      struct backref_node *node)
{
	if (node) {
		cache->nr_nodes--;
		kfree(node);
	}
}

static struct backref_edge *alloc_backref_edge(struct backref_cache *cache)
{
	struct backref_edge *edge;

	edge = kzalloc(sizeof(*edge), GFP_NOFS);
	if (edge)
		cache->nr_edges++;
	return edge;
271 272
}

273 274
static void free_backref_edge(struct backref_cache *cache,
			      struct backref_edge *edge)
275
{
276 277 278 279
	if (edge) {
		cache->nr_edges--;
		kfree(edge);
	}
280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
}

static struct rb_node *tree_insert(struct rb_root *root, u64 bytenr,
				   struct rb_node *node)
{
	struct rb_node **p = &root->rb_node;
	struct rb_node *parent = NULL;
	struct tree_entry *entry;

	while (*p) {
		parent = *p;
		entry = rb_entry(parent, struct tree_entry, rb_node);

		if (bytenr < entry->bytenr)
			p = &(*p)->rb_left;
		else if (bytenr > entry->bytenr)
			p = &(*p)->rb_right;
		else
			return parent;
	}

	rb_link_node(node, parent, p);
	rb_insert_color(node, root);
	return NULL;
}

static struct rb_node *tree_search(struct rb_root *root, u64 bytenr)
{
	struct rb_node *n = root->rb_node;
	struct tree_entry *entry;

	while (n) {
		entry = rb_entry(n, struct tree_entry, rb_node);

		if (bytenr < entry->bytenr)
			n = n->rb_left;
		else if (bytenr > entry->bytenr)
			n = n->rb_right;
		else
			return n;
	}
	return NULL;
}

324
static void backref_tree_panic(struct rb_node *rb_node, int errno, u64 bytenr)
325 326 327 328 329 330 331
{

	struct btrfs_fs_info *fs_info = NULL;
	struct backref_node *bnode = rb_entry(rb_node, struct backref_node,
					      rb_node);
	if (bnode->root)
		fs_info = bnode->root->fs_info;
J
Jeff Mahoney 已提交
332 333 334
	btrfs_panic(fs_info, errno,
		    "Inconsistency in backref cache found at offset %llu",
		    bytenr);
335 336
}

337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
/*
 * walk up backref nodes until reach node presents tree root
 */
static struct backref_node *walk_up_backref(struct backref_node *node,
					    struct backref_edge *edges[],
					    int *index)
{
	struct backref_edge *edge;
	int idx = *index;

	while (!list_empty(&node->upper)) {
		edge = list_entry(node->upper.next,
				  struct backref_edge, list[LOWER]);
		edges[idx++] = edge;
		node = edge->node[UPPER];
	}
353
	BUG_ON(node->detached);
354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
	*index = idx;
	return node;
}

/*
 * walk down backref nodes to find start of next reference path
 */
static struct backref_node *walk_down_backref(struct backref_edge *edges[],
					      int *index)
{
	struct backref_edge *edge;
	struct backref_node *lower;
	int idx = *index;

	while (idx > 0) {
		edge = edges[idx - 1];
		lower = edge->node[LOWER];
		if (list_is_last(&edge->list[LOWER], &lower->upper)) {
			idx--;
			continue;
		}
		edge = list_entry(edge->list[LOWER].next,
				  struct backref_edge, list[LOWER]);
		edges[idx - 1] = edge;
		*index = idx;
		return edge->node[UPPER];
	}
	*index = 0;
	return NULL;
}

385 386 387 388 389 390 391 392
static void unlock_node_buffer(struct backref_node *node)
{
	if (node->locked) {
		btrfs_tree_unlock(node->eb);
		node->locked = 0;
	}
}

393 394 395
static void drop_node_buffer(struct backref_node *node)
{
	if (node->eb) {
396
		unlock_node_buffer(node);
397 398 399 400 401 402 403 404 405 406 407
		free_extent_buffer(node->eb);
		node->eb = NULL;
	}
}

static void drop_backref_node(struct backref_cache *tree,
			      struct backref_node *node)
{
	BUG_ON(!list_empty(&node->upper));

	drop_node_buffer(node);
408
	list_del(&node->list);
409
	list_del(&node->lower);
410 411 412
	if (!RB_EMPTY_NODE(&node->rb_node))
		rb_erase(&node->rb_node, &tree->rb_root);
	free_backref_node(tree, node);
413 414 415 416 417 418 419 420 421 422 423 424 425 426
}

/*
 * remove a backref node from the backref cache
 */
static void remove_backref_node(struct backref_cache *cache,
				struct backref_node *node)
{
	struct backref_node *upper;
	struct backref_edge *edge;

	if (!node)
		return;

427
	BUG_ON(!node->lowest && !node->detached);
428 429 430 431 432 433
	while (!list_empty(&node->upper)) {
		edge = list_entry(node->upper.next, struct backref_edge,
				  list[LOWER]);
		upper = edge->node[UPPER];
		list_del(&edge->list[LOWER]);
		list_del(&edge->list[UPPER]);
434 435 436 437 438 439 440 441 442
		free_backref_edge(cache, edge);

		if (RB_EMPTY_NODE(&upper->rb_node)) {
			BUG_ON(!list_empty(&node->upper));
			drop_backref_node(cache, node);
			node = upper;
			node->lowest = 1;
			continue;
		}
443
		/*
444
		 * add the node to leaf node list if no other
445 446 447
		 * child block cached.
		 */
		if (list_empty(&upper->lower)) {
448
			list_add_tail(&upper->lower, &cache->leaves);
449 450 451
			upper->lowest = 1;
		}
	}
452

453 454 455
	drop_backref_node(cache, node);
}

456 457 458 459 460 461 462
static void update_backref_node(struct backref_cache *cache,
				struct backref_node *node, u64 bytenr)
{
	struct rb_node *rb_node;
	rb_erase(&node->rb_node, &cache->rb_root);
	node->bytenr = bytenr;
	rb_node = tree_insert(&cache->rb_root, node->bytenr, &node->rb_node);
463 464
	if (rb_node)
		backref_tree_panic(rb_node, -EEXIST, bytenr);
465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519
}

/*
 * update backref cache after a transaction commit
 */
static int update_backref_cache(struct btrfs_trans_handle *trans,
				struct backref_cache *cache)
{
	struct backref_node *node;
	int level = 0;

	if (cache->last_trans == 0) {
		cache->last_trans = trans->transid;
		return 0;
	}

	if (cache->last_trans == trans->transid)
		return 0;

	/*
	 * detached nodes are used to avoid unnecessary backref
	 * lookup. transaction commit changes the extent tree.
	 * so the detached nodes are no longer useful.
	 */
	while (!list_empty(&cache->detached)) {
		node = list_entry(cache->detached.next,
				  struct backref_node, list);
		remove_backref_node(cache, node);
	}

	while (!list_empty(&cache->changed)) {
		node = list_entry(cache->changed.next,
				  struct backref_node, list);
		list_del_init(&node->list);
		BUG_ON(node->pending);
		update_backref_node(cache, node, node->new_bytenr);
	}

	/*
	 * some nodes can be left in the pending list if there were
	 * errors during processing the pending nodes.
	 */
	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
		list_for_each_entry(node, &cache->pending[level], list) {
			BUG_ON(!node->pending);
			if (node->bytenr == node->new_bytenr)
				continue;
			update_backref_node(cache, node, node->new_bytenr);
		}
	}

	cache->last_trans = 0;
	return 1;
}

520

521 522 523 524
static int should_ignore_root(struct btrfs_root *root)
{
	struct btrfs_root *reloc_root;

525
	if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542
		return 0;

	reloc_root = root->reloc_root;
	if (!reloc_root)
		return 0;

	if (btrfs_root_last_snapshot(&reloc_root->root_item) ==
	    root->fs_info->running_transaction->transid - 1)
		return 0;
	/*
	 * if there is reloc tree and it was created in previous
	 * transaction backref lookup can find the reloc tree,
	 * so backref node for the fs tree root is useless for
	 * relocation.
	 */
	return 1;
}
543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569
/*
 * find reloc tree by address of tree root
 */
static struct btrfs_root *find_reloc_root(struct reloc_control *rc,
					  u64 bytenr)
{
	struct rb_node *rb_node;
	struct mapping_node *node;
	struct btrfs_root *root = NULL;

	spin_lock(&rc->reloc_root_tree.lock);
	rb_node = tree_search(&rc->reloc_root_tree.rb_root, bytenr);
	if (rb_node) {
		node = rb_entry(rb_node, struct mapping_node, rb_node);
		root = (struct btrfs_root *)node->data;
	}
	spin_unlock(&rc->reloc_root_tree.lock);
	return root;
}

static int is_cowonly_root(u64 root_objectid)
{
	if (root_objectid == BTRFS_ROOT_TREE_OBJECTID ||
	    root_objectid == BTRFS_EXTENT_TREE_OBJECTID ||
	    root_objectid == BTRFS_CHUNK_TREE_OBJECTID ||
	    root_objectid == BTRFS_DEV_TREE_OBJECTID ||
	    root_objectid == BTRFS_TREE_LOG_OBJECTID ||
570 571
	    root_objectid == BTRFS_CSUM_TREE_OBJECTID ||
	    root_objectid == BTRFS_UUID_TREE_OBJECTID ||
572 573
	    root_objectid == BTRFS_QUOTA_TREE_OBJECTID ||
	    root_objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589
		return 1;
	return 0;
}

static struct btrfs_root *read_fs_root(struct btrfs_fs_info *fs_info,
					u64 root_objectid)
{
	struct btrfs_key key;

	key.objectid = root_objectid;
	key.type = BTRFS_ROOT_ITEM_KEY;
	if (is_cowonly_root(root_objectid))
		key.offset = 0;
	else
		key.offset = (u64)-1;

590
	return btrfs_get_fs_root(fs_info, &key, false);
591 592 593 594 595 596
}

static noinline_for_stack
int find_inline_backref(struct extent_buffer *leaf, int slot,
			unsigned long *ptr, unsigned long *end)
{
597
	struct btrfs_key key;
598 599 600 601
	struct btrfs_extent_item *ei;
	struct btrfs_tree_block_info *bi;
	u32 item_size;

602 603
	btrfs_item_key_to_cpu(leaf, &key, slot);

604
	item_size = btrfs_item_size_nr(leaf, slot);
605 606 607 608 609
	if (item_size < sizeof(*ei)) {
		btrfs_print_v0_err(leaf->fs_info);
		btrfs_handle_fs_error(leaf->fs_info, -EINVAL, NULL);
		return 1;
	}
610 611 612 613
	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
	WARN_ON(!(btrfs_extent_flags(leaf, ei) &
		  BTRFS_EXTENT_FLAG_TREE_BLOCK));

614 615
	if (key.type == BTRFS_EXTENT_ITEM_KEY &&
	    item_size <= sizeof(*ei) + sizeof(*bi)) {
616 617 618
		WARN_ON(item_size < sizeof(*ei) + sizeof(*bi));
		return 1;
	}
619 620 621 622 623
	if (key.type == BTRFS_METADATA_ITEM_KEY &&
	    item_size <= sizeof(*ei)) {
		WARN_ON(item_size < sizeof(*ei));
		return 1;
	}
624

625 626 627 628 629 630
	if (key.type == BTRFS_EXTENT_ITEM_KEY) {
		bi = (struct btrfs_tree_block_info *)(ei + 1);
		*ptr = (unsigned long)(bi + 1);
	} else {
		*ptr = (unsigned long)(ei + 1);
	}
631 632 633 634 635 636 637 638 639 640
	*end = (unsigned long)ei + item_size;
	return 0;
}

/*
 * build backref tree for a given tree block. root of the backref tree
 * corresponds the tree block, leaves of the backref tree correspond
 * roots of b-trees that reference the tree block.
 *
 * the basic idea of this function is check backrefs of a given block
641 642
 * to find upper level blocks that reference the block, and then check
 * backrefs of these upper level blocks recursively. the recursion stop
643 644 645 646 647 648
 * when tree root is reached or backrefs for the block is cached.
 *
 * NOTE: if we find backrefs for a block are cached, we know backrefs
 * for all upper level blocks that directly/indirectly reference the
 * block are also cached.
 */
649 650 651 652
static noinline_for_stack
struct backref_node *build_backref_tree(struct reloc_control *rc,
					struct btrfs_key *node_key,
					int level, u64 bytenr)
653
{
654
	struct backref_cache *cache = &rc->backref_cache;
655 656
	struct btrfs_path *path1; /* For searching extent root */
	struct btrfs_path *path2; /* For searching parent of TREE_BLOCK_REF */
657 658 659 660 661 662 663 664 665 666 667 668
	struct extent_buffer *eb;
	struct btrfs_root *root;
	struct backref_node *cur;
	struct backref_node *upper;
	struct backref_node *lower;
	struct backref_node *node = NULL;
	struct backref_node *exist = NULL;
	struct backref_edge *edge;
	struct rb_node *rb_node;
	struct btrfs_key key;
	unsigned long end;
	unsigned long ptr;
669
	LIST_HEAD(list); /* Pending edge list, upper node needs to be checked */
670 671
	LIST_HEAD(useless);
	int cowonly;
672 673
	int ret;
	int err = 0;
674
	bool need_check = true;
675 676 677 678 679 680 681

	path1 = btrfs_alloc_path();
	path2 = btrfs_alloc_path();
	if (!path1 || !path2) {
		err = -ENOMEM;
		goto out;
	}
682 683
	path1->reada = READA_FORWARD;
	path2->reada = READA_FORWARD;
684

685
	node = alloc_backref_node(cache);
686 687 688 689 690 691 692 693 694 695 696 697 698
	if (!node) {
		err = -ENOMEM;
		goto out;
	}

	node->bytenr = bytenr;
	node->level = level;
	node->lowest = 1;
	cur = node;
again:
	end = 0;
	ptr = 0;
	key.objectid = cur->bytenr;
699
	key.type = BTRFS_METADATA_ITEM_KEY;
700 701 702 703 704 705 706 707 708 709
	key.offset = (u64)-1;

	path1->search_commit_root = 1;
	path1->skip_locking = 1;
	ret = btrfs_search_slot(NULL, rc->extent_root, &key, path1,
				0, 0);
	if (ret < 0) {
		err = ret;
		goto out;
	}
710 711
	ASSERT(ret);
	ASSERT(path1->slots[0]);
712 713 714 715 716 717

	path1->slots[0]--;

	WARN_ON(cur->checked);
	if (!list_empty(&cur->upper)) {
		/*
718
		 * the backref was added previously when processing
719 720
		 * backref of type BTRFS_TREE_BLOCK_REF_KEY
		 */
721
		ASSERT(list_is_singular(&cur->upper));
722 723
		edge = list_entry(cur->upper.next, struct backref_edge,
				  list[LOWER]);
724
		ASSERT(list_empty(&edge->list[UPPER]));
725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757
		exist = edge->node[UPPER];
		/*
		 * add the upper level block to pending list if we need
		 * check its backrefs
		 */
		if (!exist->checked)
			list_add_tail(&edge->list[UPPER], &list);
	} else {
		exist = NULL;
	}

	while (1) {
		cond_resched();
		eb = path1->nodes[0];

		if (ptr >= end) {
			if (path1->slots[0] >= btrfs_header_nritems(eb)) {
				ret = btrfs_next_leaf(rc->extent_root, path1);
				if (ret < 0) {
					err = ret;
					goto out;
				}
				if (ret > 0)
					break;
				eb = path1->nodes[0];
			}

			btrfs_item_key_to_cpu(eb, &key, path1->slots[0]);
			if (key.objectid != cur->bytenr) {
				WARN_ON(exist);
				break;
			}

758 759
			if (key.type == BTRFS_EXTENT_ITEM_KEY ||
			    key.type == BTRFS_METADATA_ITEM_KEY) {
760 761 762 763 764 765 766 767 768 769
				ret = find_inline_backref(eb, path1->slots[0],
							  &ptr, &end);
				if (ret)
					goto next;
			}
		}

		if (ptr < end) {
			/* update key for inline back ref */
			struct btrfs_extent_inline_ref *iref;
770
			int type;
771
			iref = (struct btrfs_extent_inline_ref *)ptr;
772 773 774
			type = btrfs_get_extent_inline_ref_type(eb, iref,
							BTRFS_REF_TYPE_BLOCK);
			if (type == BTRFS_REF_TYPE_INVALID) {
775
				err = -EUCLEAN;
776 777 778
				goto out;
			}
			key.type = type;
779
			key.offset = btrfs_extent_inline_ref_offset(eb, iref);
780

781 782 783 784
			WARN_ON(key.type != BTRFS_TREE_BLOCK_REF_KEY &&
				key.type != BTRFS_SHARED_BLOCK_REF_KEY);
		}

785 786 787 788
		/*
		 * Parent node found and matches current inline ref, no need to
		 * rebuild this node for this inline ref.
		 */
789 790 791 792 793 794 795 796 797
		if (exist &&
		    ((key.type == BTRFS_TREE_BLOCK_REF_KEY &&
		      exist->owner == key.offset) ||
		     (key.type == BTRFS_SHARED_BLOCK_REF_KEY &&
		      exist->bytenr == key.offset))) {
			exist = NULL;
			goto next;
		}

798
		/* SHARED_BLOCK_REF means key.offset is the parent bytenr */
799 800 801
		if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) {
			if (key.objectid == key.offset) {
				/*
802 803
				 * Only root blocks of reloc trees use backref
				 * pointing to itself.
804 805
				 */
				root = find_reloc_root(rc, cur->bytenr);
806
				ASSERT(root);
807 808 809 810
				cur->root = root;
				break;
			}

811
			edge = alloc_backref_edge(cache);
812 813 814 815 816 817
			if (!edge) {
				err = -ENOMEM;
				goto out;
			}
			rb_node = tree_search(&cache->rb_root, key.offset);
			if (!rb_node) {
818
				upper = alloc_backref_node(cache);
819
				if (!upper) {
820
					free_backref_edge(cache, edge);
821 822 823 824 825 826 827 828 829 830 831 832 833
					err = -ENOMEM;
					goto out;
				}
				upper->bytenr = key.offset;
				upper->level = cur->level + 1;
				/*
				 *  backrefs for the upper level block isn't
				 *  cached, add the block to pending list
				 */
				list_add_tail(&edge->list[UPPER], &list);
			} else {
				upper = rb_entry(rb_node, struct backref_node,
						 rb_node);
834
				ASSERT(upper->checked);
835 836
				INIT_LIST_HEAD(&edge->list[UPPER]);
			}
837
			list_add_tail(&edge->list[LOWER], &cur->upper);
838
			edge->node[LOWER] = cur;
839
			edge->node[UPPER] = upper;
840 841

			goto next;
842
		} else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) {
843 844 845 846 847
			err = -EINVAL;
			btrfs_print_v0_err(rc->extent_root->fs_info);
			btrfs_handle_fs_error(rc->extent_root->fs_info, err,
					      NULL);
			goto out;
848 849 850 851
		} else if (key.type != BTRFS_TREE_BLOCK_REF_KEY) {
			goto next;
		}

852 853 854 855 856
		/*
		 * key.type == BTRFS_TREE_BLOCK_REF_KEY, inline ref offset
		 * means the root objectid. We need to search the tree to get
		 * its parent bytenr.
		 */
857 858 859 860 861 862
		root = read_fs_root(rc->extent_root->fs_info, key.offset);
		if (IS_ERR(root)) {
			err = PTR_ERR(root);
			goto out;
		}

863
		if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
864 865
			cur->cowonly = 1;

866 867
		if (btrfs_root_level(&root->root_item) == cur->level) {
			/* tree root */
868
			ASSERT(btrfs_root_bytenr(&root->root_item) ==
869
			       cur->bytenr);
870 871 872 873
			if (should_ignore_root(root))
				list_add(&cur->list, &useless);
			else
				cur->root = root;
874 875 876 877 878
			break;
		}

		level = cur->level + 1;

879
		/* Search the tree to find parent blocks referring the block. */
880 881 882 883 884 885 886 887 888
		path2->search_commit_root = 1;
		path2->skip_locking = 1;
		path2->lowest_level = level;
		ret = btrfs_search_slot(NULL, root, node_key, path2, 0, 0);
		path2->lowest_level = 0;
		if (ret < 0) {
			err = ret;
			goto out;
		}
889 890
		if (ret > 0 && path2->slots[level] > 0)
			path2->slots[level]--;
891 892

		eb = path2->nodes[level];
893 894 895 896
		if (btrfs_node_blockptr(eb, path2->slots[level]) !=
		    cur->bytenr) {
			btrfs_err(root->fs_info,
	"couldn't find block (%llu) (level %d) in tree (%llu) with key (%llu %u %llu)",
897 898
				  cur->bytenr, level - 1,
				  root->root_key.objectid,
899 900 901 902 903
				  node_key->objectid, node_key->type,
				  node_key->offset);
			err = -ENOENT;
			goto out;
		}
904
		lower = cur;
905
		need_check = true;
906 907

		/* Add all nodes and edges in the path */
908 909
		for (; level < BTRFS_MAX_LEVEL; level++) {
			if (!path2->nodes[level]) {
910
				ASSERT(btrfs_root_bytenr(&root->root_item) ==
911
				       lower->bytenr);
912 913 914 915
				if (should_ignore_root(root))
					list_add(&lower->list, &useless);
				else
					lower->root = root;
916 917 918
				break;
			}

919
			edge = alloc_backref_edge(cache);
920 921 922 923 924 925 926 927
			if (!edge) {
				err = -ENOMEM;
				goto out;
			}

			eb = path2->nodes[level];
			rb_node = tree_search(&cache->rb_root, eb->start);
			if (!rb_node) {
928
				upper = alloc_backref_node(cache);
929
				if (!upper) {
930
					free_backref_edge(cache, edge);
931 932 933 934 935 936
					err = -ENOMEM;
					goto out;
				}
				upper->bytenr = eb->start;
				upper->owner = btrfs_header_owner(eb);
				upper->level = lower->level + 1;
937 938
				if (!test_bit(BTRFS_ROOT_REF_COWS,
					      &root->state))
939
					upper->cowonly = 1;
940 941 942 943 944 945 946 947 948 949 950 951

				/*
				 * if we know the block isn't shared
				 * we can void checking its backrefs.
				 */
				if (btrfs_block_can_be_shared(root, eb))
					upper->checked = 0;
				else
					upper->checked = 1;

				/*
				 * add the block to pending list if we
952 953 954
				 * need check its backrefs, we only do this once
				 * while walking up a tree as we will catch
				 * anything else later on.
955
				 */
956 957
				if (!upper->checked && need_check) {
					need_check = false;
958 959
					list_add_tail(&edge->list[UPPER],
						      &list);
960 961 962
				} else {
					if (upper->checked)
						need_check = true;
963
					INIT_LIST_HEAD(&edge->list[UPPER]);
964
				}
965 966 967
			} else {
				upper = rb_entry(rb_node, struct backref_node,
						 rb_node);
968
				ASSERT(upper->checked);
969
				INIT_LIST_HEAD(&edge->list[UPPER]);
970 971
				if (!upper->owner)
					upper->owner = btrfs_header_owner(eb);
972 973 974
			}
			list_add_tail(&edge->list[LOWER], &lower->upper);
			edge->node[LOWER] = lower;
975
			edge->node[UPPER] = upper;
976 977 978 979 980 981

			if (rb_node)
				break;
			lower = upper;
			upper = NULL;
		}
982
		btrfs_release_path(path2);
983 984 985 986 987 988 989 990 991 992 993 994
next:
		if (ptr < end) {
			ptr += btrfs_extent_inline_ref_size(key.type);
			if (ptr >= end) {
				WARN_ON(ptr > end);
				ptr = 0;
				end = 0;
			}
		}
		if (ptr >= end)
			path1->slots[0]++;
	}
995
	btrfs_release_path(path1);
996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011

	cur->checked = 1;
	WARN_ON(exist);

	/* the pending list isn't empty, take the first block to process */
	if (!list_empty(&list)) {
		edge = list_entry(list.next, struct backref_edge, list[UPPER]);
		list_del_init(&edge->list[UPPER]);
		cur = edge->node[UPPER];
		goto again;
	}

	/*
	 * everything goes well, connect backref nodes and insert backref nodes
	 * into the cache.
	 */
1012
	ASSERT(node->checked);
1013 1014 1015 1016
	cowonly = node->cowonly;
	if (!cowonly) {
		rb_node = tree_insert(&cache->rb_root, node->bytenr,
				      &node->rb_node);
1017 1018
		if (rb_node)
			backref_tree_panic(rb_node, -EEXIST, node->bytenr);
1019 1020
		list_add_tail(&node->lower, &cache->leaves);
	}
1021 1022 1023 1024 1025 1026 1027 1028

	list_for_each_entry(edge, &node->upper, list[LOWER])
		list_add_tail(&edge->list[UPPER], &list);

	while (!list_empty(&list)) {
		edge = list_entry(list.next, struct backref_edge, list[UPPER]);
		list_del_init(&edge->list[UPPER]);
		upper = edge->node[UPPER];
1029 1030 1031 1032 1033 1034 1035 1036
		if (upper->detached) {
			list_del(&edge->list[LOWER]);
			lower = edge->node[LOWER];
			free_backref_edge(cache, edge);
			if (list_empty(&lower->upper))
				list_add(&lower->list, &useless);
			continue;
		}
1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047

		if (!RB_EMPTY_NODE(&upper->rb_node)) {
			if (upper->lowest) {
				list_del_init(&upper->lower);
				upper->lowest = 0;
			}

			list_add_tail(&edge->list[UPPER], &upper->lower);
			continue;
		}

1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062
		if (!upper->checked) {
			/*
			 * Still want to blow up for developers since this is a
			 * logic bug.
			 */
			ASSERT(0);
			err = -EINVAL;
			goto out;
		}
		if (cowonly != upper->cowonly) {
			ASSERT(0);
			err = -EINVAL;
			goto out;
		}

1063 1064 1065
		if (!cowonly) {
			rb_node = tree_insert(&cache->rb_root, upper->bytenr,
					      &upper->rb_node);
1066 1067 1068
			if (rb_node)
				backref_tree_panic(rb_node, -EEXIST,
						   upper->bytenr);
1069
		}
1070 1071 1072 1073 1074 1075

		list_add_tail(&edge->list[UPPER], &upper->lower);

		list_for_each_entry(edge, &upper->upper, list[LOWER])
			list_add_tail(&edge->list[UPPER], &list);
	}
1076 1077 1078 1079 1080 1081 1082 1083 1084
	/*
	 * process useless backref nodes. backref nodes for tree leaves
	 * are deleted from the cache. backref nodes for upper level
	 * tree blocks are left in the cache to avoid unnecessary backref
	 * lookup.
	 */
	while (!list_empty(&useless)) {
		upper = list_entry(useless.next, struct backref_node, list);
		list_del_init(&upper->list);
1085
		ASSERT(list_empty(&upper->upper));
1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111
		if (upper == node)
			node = NULL;
		if (upper->lowest) {
			list_del_init(&upper->lower);
			upper->lowest = 0;
		}
		while (!list_empty(&upper->lower)) {
			edge = list_entry(upper->lower.next,
					  struct backref_edge, list[UPPER]);
			list_del(&edge->list[UPPER]);
			list_del(&edge->list[LOWER]);
			lower = edge->node[LOWER];
			free_backref_edge(cache, edge);

			if (list_empty(&lower->upper))
				list_add(&lower->list, &useless);
		}
		__mark_block_processed(rc, upper);
		if (upper->level > 0) {
			list_add(&upper->list, &cache->detached);
			upper->detached = 1;
		} else {
			rb_erase(&upper->rb_node, &cache->rb_root);
			free_backref_node(cache, upper);
		}
	}
1112 1113 1114 1115
out:
	btrfs_free_path(path1);
	btrfs_free_path(path2);
	if (err) {
1116 1117
		while (!list_empty(&useless)) {
			lower = list_entry(useless.next,
1118 1119
					   struct backref_node, list);
			list_del_init(&lower->list);
1120
		}
1121 1122 1123 1124
		while (!list_empty(&list)) {
			edge = list_first_entry(&list, struct backref_edge,
						list[UPPER]);
			list_del(&edge->list[UPPER]);
1125
			list_del(&edge->list[LOWER]);
1126
			lower = edge->node[LOWER];
1127
			upper = edge->node[UPPER];
1128
			free_backref_edge(cache, edge);
1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140

			/*
			 * Lower is no longer linked to any upper backref nodes
			 * and isn't in the cache, we can free it ourselves.
			 */
			if (list_empty(&lower->upper) &&
			    RB_EMPTY_NODE(&lower->rb_node))
				list_add(&lower->list, &useless);

			if (!RB_EMPTY_NODE(&upper->rb_node))
				continue;

1141
			/* Add this guy's upper edges to the list to process */
1142 1143 1144 1145 1146 1147 1148 1149 1150 1151
			list_for_each_entry(edge, &upper->upper, list[LOWER])
				list_add_tail(&edge->list[UPPER], &list);
			if (list_empty(&upper->upper))
				list_add(&upper->list, &useless);
		}

		while (!list_empty(&useless)) {
			lower = list_entry(useless.next,
					   struct backref_node, list);
			list_del_init(&lower->list);
L
Liu Bo 已提交
1152 1153
			if (lower == node)
				node = NULL;
1154
			free_backref_node(cache, lower);
1155
		}
L
Liu Bo 已提交
1156 1157

		free_backref_node(cache, node);
1158 1159
		return ERR_PTR(err);
	}
1160
	ASSERT(!node || !node->detached);
1161 1162 1163
	return node;
}

1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213
/*
 * helper to add backref node for the newly created snapshot.
 * the backref node is created by cloning backref node that
 * corresponds to root of source tree
 */
static int clone_backref_node(struct btrfs_trans_handle *trans,
			      struct reloc_control *rc,
			      struct btrfs_root *src,
			      struct btrfs_root *dest)
{
	struct btrfs_root *reloc_root = src->reloc_root;
	struct backref_cache *cache = &rc->backref_cache;
	struct backref_node *node = NULL;
	struct backref_node *new_node;
	struct backref_edge *edge;
	struct backref_edge *new_edge;
	struct rb_node *rb_node;

	if (cache->last_trans > 0)
		update_backref_cache(trans, cache);

	rb_node = tree_search(&cache->rb_root, src->commit_root->start);
	if (rb_node) {
		node = rb_entry(rb_node, struct backref_node, rb_node);
		if (node->detached)
			node = NULL;
		else
			BUG_ON(node->new_bytenr != reloc_root->node->start);
	}

	if (!node) {
		rb_node = tree_search(&cache->rb_root,
				      reloc_root->commit_root->start);
		if (rb_node) {
			node = rb_entry(rb_node, struct backref_node,
					rb_node);
			BUG_ON(node->detached);
		}
	}

	if (!node)
		return 0;

	new_node = alloc_backref_node(cache);
	if (!new_node)
		return -ENOMEM;

	new_node->bytenr = dest->node->start;
	new_node->level = node->level;
	new_node->lowest = node->lowest;
Y
Yan, Zheng 已提交
1214
	new_node->checked = 1;
1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227
	new_node->root = dest;

	if (!node->lowest) {
		list_for_each_entry(edge, &node->lower, list[UPPER]) {
			new_edge = alloc_backref_edge(cache);
			if (!new_edge)
				goto fail;

			new_edge->node[UPPER] = new_node;
			new_edge->node[LOWER] = edge->node[LOWER];
			list_add_tail(&new_edge->list[UPPER],
				      &new_node->lower);
		}
M
Miao Xie 已提交
1228 1229
	} else {
		list_add_tail(&new_node->lower, &cache->leaves);
1230 1231 1232 1233
	}

	rb_node = tree_insert(&cache->rb_root, new_node->bytenr,
			      &new_node->rb_node);
1234 1235
	if (rb_node)
		backref_tree_panic(rb_node, -EEXIST, new_node->bytenr);
1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254

	if (!new_node->lowest) {
		list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) {
			list_add_tail(&new_edge->list[LOWER],
				      &new_edge->node[LOWER]->upper);
		}
	}
	return 0;
fail:
	while (!list_empty(&new_node->lower)) {
		new_edge = list_entry(new_node->lower.next,
				      struct backref_edge, list[UPPER]);
		list_del(&new_edge->list[UPPER]);
		free_backref_edge(cache, new_edge);
	}
	free_backref_node(cache, new_node);
	return -ENOMEM;
}

1255 1256 1257
/*
 * helper to add 'address of tree root -> reloc tree' mapping
 */
1258
static int __must_check __add_reloc_root(struct btrfs_root *root)
1259
{
1260
	struct btrfs_fs_info *fs_info = root->fs_info;
1261 1262
	struct rb_node *rb_node;
	struct mapping_node *node;
1263
	struct reloc_control *rc = fs_info->reloc_ctl;
1264 1265

	node = kmalloc(sizeof(*node), GFP_NOFS);
1266 1267
	if (!node)
		return -ENOMEM;
1268 1269 1270 1271 1272 1273 1274 1275

	node->bytenr = root->node->start;
	node->data = root;

	spin_lock(&rc->reloc_root_tree.lock);
	rb_node = tree_insert(&rc->reloc_root_tree.rb_root,
			      node->bytenr, &node->rb_node);
	spin_unlock(&rc->reloc_root_tree.lock);
1276
	if (rb_node) {
1277
		btrfs_panic(fs_info, -EEXIST,
J
Jeff Mahoney 已提交
1278 1279
			    "Duplicate root found for start=%llu while inserting into relocation tree",
			    node->bytenr);
1280
	}
1281 1282 1283 1284 1285 1286

	list_add_tail(&root->root_list, &rc->reloc_roots);
	return 0;
}

/*
1287
 * helper to delete the 'address of tree root -> reloc tree'
1288 1289
 * mapping
 */
1290
static void __del_reloc_root(struct btrfs_root *root)
1291
{
1292
	struct btrfs_fs_info *fs_info = root->fs_info;
1293 1294
	struct rb_node *rb_node;
	struct mapping_node *node = NULL;
1295
	struct reloc_control *rc = fs_info->reloc_ctl;
1296

1297
	if (rc && root->node) {
1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308
		spin_lock(&rc->reloc_root_tree.lock);
		rb_node = tree_search(&rc->reloc_root_tree.rb_root,
				      root->node->start);
		if (rb_node) {
			node = rb_entry(rb_node, struct mapping_node, rb_node);
			rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
		}
		spin_unlock(&rc->reloc_root_tree.lock);
		if (!node)
			return;
		BUG_ON((struct btrfs_root *)node->data != root);
1309 1310
	}

1311
	spin_lock(&fs_info->trans_lock);
1312
	list_del_init(&root->root_list);
1313
	spin_unlock(&fs_info->trans_lock);
1314 1315 1316 1317 1318 1319 1320 1321 1322
	kfree(node);
}

/*
 * helper to update the 'address of tree root -> reloc tree'
 * mapping
 */
static int __update_reloc_root(struct btrfs_root *root, u64 new_bytenr)
{
1323
	struct btrfs_fs_info *fs_info = root->fs_info;
1324 1325
	struct rb_node *rb_node;
	struct mapping_node *node = NULL;
1326
	struct reloc_control *rc = fs_info->reloc_ctl;
1327 1328 1329 1330 1331 1332 1333

	spin_lock(&rc->reloc_root_tree.lock);
	rb_node = tree_search(&rc->reloc_root_tree.rb_root,
			      root->node->start);
	if (rb_node) {
		node = rb_entry(rb_node, struct mapping_node, rb_node);
		rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
1334
	}
1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347
	spin_unlock(&rc->reloc_root_tree.lock);

	if (!node)
		return 0;
	BUG_ON((struct btrfs_root *)node->data != root);

	spin_lock(&rc->reloc_root_tree.lock);
	node->bytenr = new_bytenr;
	rb_node = tree_insert(&rc->reloc_root_tree.rb_root,
			      node->bytenr, &node->rb_node);
	spin_unlock(&rc->reloc_root_tree.lock);
	if (rb_node)
		backref_tree_panic(rb_node, -EEXIST, node->bytenr);
1348 1349 1350
	return 0;
}

1351 1352
static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans,
					struct btrfs_root *root, u64 objectid)
1353
{
1354
	struct btrfs_fs_info *fs_info = root->fs_info;
1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365
	struct btrfs_root *reloc_root;
	struct extent_buffer *eb;
	struct btrfs_root_item *root_item;
	struct btrfs_key root_key;
	int ret;

	root_item = kmalloc(sizeof(*root_item), GFP_NOFS);
	BUG_ON(!root_item);

	root_key.objectid = BTRFS_TREE_RELOC_OBJECTID;
	root_key.type = BTRFS_ROOT_ITEM_KEY;
1366
	root_key.offset = objectid;
1367

1368
	if (root->root_key.objectid == objectid) {
1369 1370
		u64 commit_root_gen;

1371 1372 1373 1374
		/* called by btrfs_init_reloc_root */
		ret = btrfs_copy_root(trans, root, root->commit_root, &eb,
				      BTRFS_TREE_RELOC_OBJECTID);
		BUG_ON(ret);
1375 1376 1377 1378 1379 1380 1381 1382 1383 1384
		/*
		 * Set the last_snapshot field to the generation of the commit
		 * root - like this ctree.c:btrfs_block_can_be_shared() behaves
		 * correctly (returns true) when the relocation root is created
		 * either inside the critical section of a transaction commit
		 * (through transaction.c:qgroup_account_snapshot()) and when
		 * it's created before the transaction commit is started.
		 */
		commit_root_gen = btrfs_header_generation(root->commit_root);
		btrfs_set_root_last_snapshot(&root->root_item, commit_root_gen);
1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396
	} else {
		/*
		 * called by btrfs_reloc_post_snapshot_hook.
		 * the source tree is a reloc tree, all tree blocks
		 * modified after it was created have RELOC flag
		 * set in their headers. so it's OK to not update
		 * the 'last_snapshot'.
		 */
		ret = btrfs_copy_root(trans, root, root->node, &eb,
				      BTRFS_TREE_RELOC_OBJECTID);
		BUG_ON(ret);
	}
1397 1398 1399 1400 1401

	memcpy(root_item, &root->root_item, sizeof(*root_item));
	btrfs_set_root_bytenr(root_item, eb->start);
	btrfs_set_root_level(root_item, btrfs_header_level(eb));
	btrfs_set_root_generation(root_item, trans->transid);
1402 1403 1404 1405 1406 1407 1408

	if (root->root_key.objectid == objectid) {
		btrfs_set_root_refs(root_item, 0);
		memset(&root_item->drop_progress, 0,
		       sizeof(struct btrfs_disk_key));
		root_item->drop_level = 0;
	}
1409 1410 1411 1412

	btrfs_tree_unlock(eb);
	free_extent_buffer(eb);

1413
	ret = btrfs_insert_root(trans, fs_info->tree_root,
1414 1415 1416 1417
				&root_key, root_item);
	BUG_ON(ret);
	kfree(root_item);

1418
	reloc_root = btrfs_read_fs_root(fs_info->tree_root, &root_key);
1419 1420
	BUG_ON(IS_ERR(reloc_root));
	reloc_root->last_trans = trans->transid;
1421 1422 1423 1424 1425 1426 1427 1428 1429 1430
	return reloc_root;
}

/*
 * create reloc tree for a given fs tree. reloc tree is just a
 * snapshot of the fs tree with special root objectid.
 */
int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
			  struct btrfs_root *root)
{
1431
	struct btrfs_fs_info *fs_info = root->fs_info;
1432
	struct btrfs_root *reloc_root;
1433
	struct reloc_control *rc = fs_info->reloc_ctl;
1434
	struct btrfs_block_rsv *rsv;
1435
	int clear_rsv = 0;
1436
	int ret;
1437

1438 1439 1440 1441 1442 1443 1444
	/*
	 * The subvolume has reloc tree but the swap is finished, no need to
	 * create/update the dead reloc tree
	 */
	if (test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state))
		return 0;

1445 1446 1447 1448 1449 1450 1451 1452 1453 1454
	if (root->reloc_root) {
		reloc_root = root->reloc_root;
		reloc_root->last_trans = trans->transid;
		return 0;
	}

	if (!rc || !rc->create_reloc_tree ||
	    root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
		return 0;

1455 1456
	if (!trans->reloc_reserved) {
		rsv = trans->block_rsv;
1457 1458 1459 1460 1461
		trans->block_rsv = rc->block_rsv;
		clear_rsv = 1;
	}
	reloc_root = create_reloc_root(trans, root, root->root_key.objectid);
	if (clear_rsv)
1462
		trans->block_rsv = rsv;
1463

1464 1465
	ret = __add_reloc_root(reloc_root);
	BUG_ON(ret < 0);
1466 1467 1468 1469 1470 1471 1472 1473 1474 1475
	root->reloc_root = reloc_root;
	return 0;
}

/*
 * update root item of reloc tree
 */
int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
			    struct btrfs_root *root)
{
1476
	struct btrfs_fs_info *fs_info = root->fs_info;
1477 1478 1479 1480
	struct btrfs_root *reloc_root;
	struct btrfs_root_item *root_item;
	int ret;

1481 1482
	if (test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state) ||
	    !root->reloc_root)
C
Chris Mason 已提交
1483
		goto out;
1484 1485 1486 1487

	reloc_root = root->reloc_root;
	root_item = &reloc_root->root_item;

1488
	/* root->reloc_root will stay until current relocation finished */
1489
	if (fs_info->reloc_ctl->merge_reloc_tree &&
1490
	    btrfs_root_refs(root_item) == 0) {
1491
		set_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state);
1492
		__del_reloc_root(reloc_root);
1493 1494 1495 1496 1497 1498 1499 1500
	}

	if (reloc_root->commit_root != reloc_root->node) {
		btrfs_set_root_node(root_item, reloc_root->node);
		free_extent_buffer(reloc_root->commit_root);
		reloc_root->commit_root = btrfs_root_node(reloc_root);
	}

1501
	ret = btrfs_update_root(trans, fs_info->tree_root,
1502 1503
				&reloc_root->root_key, root_item);
	BUG_ON(ret);
C
Chris Mason 已提交
1504 1505

out:
1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527
	return 0;
}

/*
 * helper to find first cached inode with inode number >= objectid
 * in a subvolume
 */
static struct inode *find_next_inode(struct btrfs_root *root, u64 objectid)
{
	struct rb_node *node;
	struct rb_node *prev;
	struct btrfs_inode *entry;
	struct inode *inode;

	spin_lock(&root->inode_lock);
again:
	node = root->inode_tree.rb_node;
	prev = NULL;
	while (node) {
		prev = node;
		entry = rb_entry(node, struct btrfs_inode, rb_node);

1528
		if (objectid < btrfs_ino(entry))
1529
			node = node->rb_left;
1530
		else if (objectid > btrfs_ino(entry))
1531 1532 1533 1534 1535 1536 1537
			node = node->rb_right;
		else
			break;
	}
	if (!node) {
		while (prev) {
			entry = rb_entry(prev, struct btrfs_inode, rb_node);
1538
			if (objectid <= btrfs_ino(entry)) {
1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552
				node = prev;
				break;
			}
			prev = rb_next(prev);
		}
	}
	while (node) {
		entry = rb_entry(node, struct btrfs_inode, rb_node);
		inode = igrab(&entry->vfs_inode);
		if (inode) {
			spin_unlock(&root->inode_lock);
			return inode;
		}

1553
		objectid = btrfs_ino(entry) + 1;
1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588
		if (cond_resched_lock(&root->inode_lock))
			goto again;

		node = rb_next(node);
	}
	spin_unlock(&root->inode_lock);
	return NULL;
}

static int in_block_group(u64 bytenr,
			  struct btrfs_block_group_cache *block_group)
{
	if (bytenr >= block_group->key.objectid &&
	    bytenr < block_group->key.objectid + block_group->key.offset)
		return 1;
	return 0;
}

/*
 * get new location of data
 */
static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr,
			    u64 bytenr, u64 num_bytes)
{
	struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
	struct btrfs_path *path;
	struct btrfs_file_extent_item *fi;
	struct extent_buffer *leaf;
	int ret;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	bytenr -= BTRFS_I(reloc_inode)->index_cnt;
1589 1590
	ret = btrfs_lookup_file_extent(NULL, root, path,
			btrfs_ino(BTRFS_I(reloc_inode)), bytenr, 0);
1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607
	if (ret < 0)
		goto out;
	if (ret > 0) {
		ret = -ENOENT;
		goto out;
	}

	leaf = path->nodes[0];
	fi = btrfs_item_ptr(leaf, path->slots[0],
			    struct btrfs_file_extent_item);

	BUG_ON(btrfs_file_extent_offset(leaf, fi) ||
	       btrfs_file_extent_compression(leaf, fi) ||
	       btrfs_file_extent_encryption(leaf, fi) ||
	       btrfs_file_extent_other_encoding(leaf, fi));

	if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) {
1608
		ret = -EINVAL;
1609 1610 1611
		goto out;
	}

1612
	*new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1613 1614 1615 1616 1617 1618 1619 1620 1621 1622
	ret = 0;
out:
	btrfs_free_path(path);
	return ret;
}

/*
 * update file extent items in the tree leaf to point to
 * the new locations.
 */
1623 1624 1625 1626 1627
static noinline_for_stack
int replace_file_extents(struct btrfs_trans_handle *trans,
			 struct reloc_control *rc,
			 struct btrfs_root *root,
			 struct extent_buffer *leaf)
1628
{
1629
	struct btrfs_fs_info *fs_info = root->fs_info;
1630 1631 1632 1633 1634
	struct btrfs_key key;
	struct btrfs_file_extent_item *fi;
	struct inode *inode = NULL;
	u64 parent;
	u64 bytenr;
1635
	u64 new_bytenr = 0;
1636 1637 1638 1639
	u64 num_bytes;
	u64 end;
	u32 nritems;
	u32 i;
1640
	int ret = 0;
1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654
	int first = 1;
	int dirty = 0;

	if (rc->stage != UPDATE_DATA_PTRS)
		return 0;

	/* reloc trees always use full backref */
	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
		parent = leaf->start;
	else
		parent = 0;

	nritems = btrfs_header_nritems(leaf);
	for (i = 0; i < nritems; i++) {
1655 1656
		struct btrfs_ref ref = { 0 };

1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679
		cond_resched();
		btrfs_item_key_to_cpu(leaf, &key, i);
		if (key.type != BTRFS_EXTENT_DATA_KEY)
			continue;
		fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
		if (btrfs_file_extent_type(leaf, fi) ==
		    BTRFS_FILE_EXTENT_INLINE)
			continue;
		bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
		num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
		if (bytenr == 0)
			continue;
		if (!in_block_group(bytenr, rc->block_group))
			continue;

		/*
		 * if we are modifying block in fs tree, wait for readpage
		 * to complete and drop the extent cache
		 */
		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
			if (first) {
				inode = find_next_inode(root, key.objectid);
				first = 0;
1680
			} else if (inode && btrfs_ino(BTRFS_I(inode)) < key.objectid) {
1681
				btrfs_add_delayed_iput(inode);
1682 1683
				inode = find_next_inode(root, key.objectid);
			}
1684
			if (inode && btrfs_ino(BTRFS_I(inode)) == key.objectid) {
1685 1686 1687
				end = key.offset +
				      btrfs_file_extent_num_bytes(leaf, fi);
				WARN_ON(!IS_ALIGNED(key.offset,
1688 1689
						    fs_info->sectorsize));
				WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
1690 1691
				end--;
				ret = try_lock_extent(&BTRFS_I(inode)->io_tree,
1692
						      key.offset, end);
1693 1694 1695
				if (!ret)
					continue;

1696 1697
				btrfs_drop_extent_cache(BTRFS_I(inode),
						key.offset,	end, 1);
1698
				unlock_extent(&BTRFS_I(inode)->io_tree,
1699
					      key.offset, end);
1700 1701 1702 1703 1704
			}
		}

		ret = get_new_location(rc->data_inode, &new_bytenr,
				       bytenr, num_bytes);
1705 1706 1707 1708 1709 1710
		if (ret) {
			/*
			 * Don't have to abort since we've not changed anything
			 * in the file extent yet.
			 */
			break;
1711
		}
1712 1713 1714 1715 1716

		btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr);
		dirty = 1;

		key.offset -= btrfs_file_extent_offset(leaf, fi);
1717 1718 1719 1720 1721 1722
		btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new_bytenr,
				       num_bytes, parent);
		ref.real_root = root->root_key.objectid;
		btrfs_init_data_ref(&ref, btrfs_header_owner(leaf),
				    key.objectid, key.offset);
		ret = btrfs_inc_extent_ref(trans, &ref);
1723
		if (ret) {
1724
			btrfs_abort_transaction(trans, ret);
1725 1726
			break;
		}
1727

1728 1729 1730 1731 1732 1733
		btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
				       num_bytes, parent);
		ref.real_root = root->root_key.objectid;
		btrfs_init_data_ref(&ref, btrfs_header_owner(leaf),
				    key.objectid, key.offset);
		ret = btrfs_free_extent(trans, &ref);
1734
		if (ret) {
1735
			btrfs_abort_transaction(trans, ret);
1736 1737
			break;
		}
1738 1739 1740
	}
	if (dirty)
		btrfs_mark_buffer_dirty(leaf);
1741 1742
	if (inode)
		btrfs_add_delayed_iput(inode);
1743
	return ret;
1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765
}

static noinline_for_stack
int memcmp_node_keys(struct extent_buffer *eb, int slot,
		     struct btrfs_path *path, int level)
{
	struct btrfs_disk_key key1;
	struct btrfs_disk_key key2;
	btrfs_node_key(eb, &key1, slot);
	btrfs_node_key(path->nodes[level], &key2, path->slots[level]);
	return memcmp(&key1, &key2, sizeof(key1));
}

/*
 * try to replace tree blocks in fs tree with the new blocks
 * in reloc tree. tree blocks haven't been modified since the
 * reloc tree was create can be replaced.
 *
 * if a block was replaced, level of the block + 1 is returned.
 * if no block got replaced, 0 is returned. if there are other
 * errors, a negative error number is returned.
 */
1766
static noinline_for_stack
1767
int replace_path(struct btrfs_trans_handle *trans, struct reloc_control *rc,
1768 1769 1770
		 struct btrfs_root *dest, struct btrfs_root *src,
		 struct btrfs_path *path, struct btrfs_key *next_key,
		 int lowest_level, int max_level)
1771
{
1772
	struct btrfs_fs_info *fs_info = dest->fs_info;
1773 1774
	struct extent_buffer *eb;
	struct extent_buffer *parent;
1775
	struct btrfs_ref ref = { 0 };
1776 1777 1778 1779 1780 1781 1782
	struct btrfs_key key;
	u64 old_bytenr;
	u64 new_bytenr;
	u64 old_ptr_gen;
	u64 new_ptr_gen;
	u64 last_snapshot;
	u32 blocksize;
1783
	int cow = 0;
1784 1785 1786 1787 1788 1789 1790 1791
	int level;
	int ret;
	int slot;

	BUG_ON(src->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
	BUG_ON(dest->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID);

	last_snapshot = btrfs_root_last_snapshot(&src->root_item);
1792
again:
1793 1794 1795 1796
	slot = path->slots[lowest_level];
	btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot);

	eb = btrfs_lock_root_node(dest);
1797
	btrfs_set_lock_blocking_write(eb);
1798 1799 1800 1801 1802 1803 1804 1805
	level = btrfs_header_level(eb);

	if (level < lowest_level) {
		btrfs_tree_unlock(eb);
		free_extent_buffer(eb);
		return 0;
	}

1806 1807 1808 1809
	if (cow) {
		ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb);
		BUG_ON(ret);
	}
1810
	btrfs_set_lock_blocking_write(eb);
1811 1812 1813 1814 1815 1816 1817 1818 1819

	if (next_key) {
		next_key->objectid = (u64)-1;
		next_key->type = (u8)-1;
		next_key->offset = (u64)-1;
	}

	parent = eb;
	while (1) {
1820 1821
		struct btrfs_key first_key;

1822 1823 1824 1825
		level = btrfs_header_level(parent);
		BUG_ON(level < lowest_level);

		ret = btrfs_bin_search(parent, &key, level, &slot);
1826 1827
		if (ret < 0)
			break;
1828 1829 1830 1831 1832 1833 1834
		if (ret && slot > 0)
			slot--;

		if (next_key && slot + 1 < btrfs_header_nritems(parent))
			btrfs_node_key_to_cpu(parent, next_key, slot + 1);

		old_bytenr = btrfs_node_blockptr(parent, slot);
1835
		blocksize = fs_info->nodesize;
1836
		old_ptr_gen = btrfs_node_ptr_generation(parent, slot);
1837
		btrfs_node_key_to_cpu(parent, &first_key, slot);
1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849

		if (level <= max_level) {
			eb = path->nodes[level];
			new_bytenr = btrfs_node_blockptr(eb,
							path->slots[level]);
			new_ptr_gen = btrfs_node_ptr_generation(eb,
							path->slots[level]);
		} else {
			new_bytenr = 0;
			new_ptr_gen = 0;
		}

1850
		if (WARN_ON(new_bytenr > 0 && new_bytenr == old_bytenr)) {
1851 1852 1853 1854 1855 1856
			ret = level;
			break;
		}

		if (new_bytenr == 0 || old_ptr_gen > last_snapshot ||
		    memcmp_node_keys(parent, slot, path, level)) {
1857
			if (level <= lowest_level) {
1858 1859 1860 1861
				ret = 0;
				break;
			}

1862 1863
			eb = read_tree_block(fs_info, old_bytenr, old_ptr_gen,
					     level - 1, &first_key);
1864 1865
			if (IS_ERR(eb)) {
				ret = PTR_ERR(eb);
1866
				break;
1867 1868
			} else if (!extent_buffer_uptodate(eb)) {
				ret = -EIO;
1869
				free_extent_buffer(eb);
1870
				break;
1871
			}
1872
			btrfs_tree_lock(eb);
1873 1874 1875 1876
			if (cow) {
				ret = btrfs_cow_block(trans, dest, eb, parent,
						      slot, &eb);
				BUG_ON(ret);
1877
			}
1878
			btrfs_set_lock_blocking_write(eb);
1879 1880 1881 1882 1883 1884 1885 1886

			btrfs_tree_unlock(parent);
			free_extent_buffer(parent);

			parent = eb;
			continue;
		}

1887 1888 1889 1890 1891 1892 1893
		if (!cow) {
			btrfs_tree_unlock(parent);
			free_extent_buffer(parent);
			cow = 1;
			goto again;
		}

1894 1895
		btrfs_node_key_to_cpu(path->nodes[level], &key,
				      path->slots[level]);
1896
		btrfs_release_path(path);
1897 1898 1899 1900 1901 1902

		path->lowest_level = level;
		ret = btrfs_search_slot(trans, src, &key, path, 0, 1);
		path->lowest_level = 0;
		BUG_ON(ret);

1903 1904 1905 1906 1907 1908 1909 1910
		/*
		 * Info qgroup to trace both subtrees.
		 *
		 * We must trace both trees.
		 * 1) Tree reloc subtree
		 *    If not traced, we will leak data numbers
		 * 2) Fs subtree
		 *    If not traced, we will double count old data
1911 1912 1913 1914 1915
		 *
		 * We don't scan the subtree right now, but only record
		 * the swapped tree blocks.
		 * The real subtree rescan is delayed until we have new
		 * CoW on the subtree root node before transaction commit.
1916
		 */
1917 1918 1919 1920 1921 1922
		ret = btrfs_qgroup_add_swapped_blocks(trans, dest,
				rc->block_group, parent, slot,
				path->nodes[level], path->slots[level],
				last_snapshot);
		if (ret < 0)
			break;
1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935
		/*
		 * swap blocks in fs tree and reloc tree.
		 */
		btrfs_set_node_blockptr(parent, slot, new_bytenr);
		btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen);
		btrfs_mark_buffer_dirty(parent);

		btrfs_set_node_blockptr(path->nodes[level],
					path->slots[level], old_bytenr);
		btrfs_set_node_ptr_generation(path->nodes[level],
					      path->slots[level], old_ptr_gen);
		btrfs_mark_buffer_dirty(path->nodes[level]);

1936 1937 1938 1939 1940
		btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, old_bytenr,
				       blocksize, path->nodes[level]->start);
		ref.skip_qgroup = true;
		btrfs_init_tree_ref(&ref, level - 1, src->root_key.objectid);
		ret = btrfs_inc_extent_ref(trans, &ref);
1941
		BUG_ON(ret);
1942 1943 1944 1945 1946
		btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new_bytenr,
				       blocksize, 0);
		ref.skip_qgroup = true;
		btrfs_init_tree_ref(&ref, level - 1, dest->root_key.objectid);
		ret = btrfs_inc_extent_ref(trans, &ref);
1947 1948
		BUG_ON(ret);

1949 1950 1951 1952 1953
		btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, new_bytenr,
				       blocksize, path->nodes[level]->start);
		btrfs_init_tree_ref(&ref, level - 1, src->root_key.objectid);
		ref.skip_qgroup = true;
		ret = btrfs_free_extent(trans, &ref);
1954 1955
		BUG_ON(ret);

1956 1957 1958 1959 1960
		btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, old_bytenr,
				       blocksize, 0);
		btrfs_init_tree_ref(&ref, level - 1, dest->root_key.objectid);
		ref.skip_qgroup = true;
		ret = btrfs_free_extent(trans, &ref);
1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016
		BUG_ON(ret);

		btrfs_unlock_up_safe(path, 0);

		ret = level;
		break;
	}
	btrfs_tree_unlock(parent);
	free_extent_buffer(parent);
	return ret;
}

/*
 * helper to find next relocated block in reloc tree
 */
static noinline_for_stack
int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
		       int *level)
{
	struct extent_buffer *eb;
	int i;
	u64 last_snapshot;
	u32 nritems;

	last_snapshot = btrfs_root_last_snapshot(&root->root_item);

	for (i = 0; i < *level; i++) {
		free_extent_buffer(path->nodes[i]);
		path->nodes[i] = NULL;
	}

	for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) {
		eb = path->nodes[i];
		nritems = btrfs_header_nritems(eb);
		while (path->slots[i] + 1 < nritems) {
			path->slots[i]++;
			if (btrfs_node_ptr_generation(eb, path->slots[i]) <=
			    last_snapshot)
				continue;

			*level = i;
			return 0;
		}
		free_extent_buffer(path->nodes[i]);
		path->nodes[i] = NULL;
	}
	return 1;
}

/*
 * walk down reloc tree to find relocated block of lowest level
 */
static noinline_for_stack
int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
			 int *level)
{
2017
	struct btrfs_fs_info *fs_info = root->fs_info;
2018 2019 2020 2021 2022 2023 2024 2025 2026 2027
	struct extent_buffer *eb = NULL;
	int i;
	u64 bytenr;
	u64 ptr_gen = 0;
	u64 last_snapshot;
	u32 nritems;

	last_snapshot = btrfs_root_last_snapshot(&root->root_item);

	for (i = *level; i > 0; i--) {
2028 2029
		struct btrfs_key first_key;

2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049
		eb = path->nodes[i];
		nritems = btrfs_header_nritems(eb);
		while (path->slots[i] < nritems) {
			ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]);
			if (ptr_gen > last_snapshot)
				break;
			path->slots[i]++;
		}
		if (path->slots[i] >= nritems) {
			if (i == *level)
				break;
			*level = i + 1;
			return 0;
		}
		if (i == 1) {
			*level = i;
			return 0;
		}

		bytenr = btrfs_node_blockptr(eb, path->slots[i]);
2050 2051 2052
		btrfs_node_key_to_cpu(eb, &first_key, path->slots[i]);
		eb = read_tree_block(fs_info, bytenr, ptr_gen, i - 1,
				     &first_key);
2053 2054 2055
		if (IS_ERR(eb)) {
			return PTR_ERR(eb);
		} else if (!extent_buffer_uptodate(eb)) {
2056 2057 2058
			free_extent_buffer(eb);
			return -EIO;
		}
2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073
		BUG_ON(btrfs_header_level(eb) != i - 1);
		path->nodes[i - 1] = eb;
		path->slots[i - 1] = 0;
	}
	return 1;
}

/*
 * invalidate extent cache for file extents whose key in range of
 * [min_key, max_key)
 */
static int invalidate_extent_cache(struct btrfs_root *root,
				   struct btrfs_key *min_key,
				   struct btrfs_key *max_key)
{
2074
	struct btrfs_fs_info *fs_info = root->fs_info;
2075 2076 2077
	struct inode *inode = NULL;
	u64 objectid;
	u64 start, end;
L
Li Zefan 已提交
2078
	u64 ino;
2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090

	objectid = min_key->objectid;
	while (1) {
		cond_resched();
		iput(inode);

		if (objectid > max_key->objectid)
			break;

		inode = find_next_inode(root, objectid);
		if (!inode)
			break;
2091
		ino = btrfs_ino(BTRFS_I(inode));
2092

L
Li Zefan 已提交
2093
		if (ino > max_key->objectid) {
2094 2095 2096 2097
			iput(inode);
			break;
		}

L
Li Zefan 已提交
2098
		objectid = ino + 1;
2099 2100 2101
		if (!S_ISREG(inode->i_mode))
			continue;

L
Li Zefan 已提交
2102
		if (unlikely(min_key->objectid == ino)) {
2103 2104 2105 2106 2107 2108
			if (min_key->type > BTRFS_EXTENT_DATA_KEY)
				continue;
			if (min_key->type < BTRFS_EXTENT_DATA_KEY)
				start = 0;
			else {
				start = min_key->offset;
2109
				WARN_ON(!IS_ALIGNED(start, fs_info->sectorsize));
2110 2111 2112 2113 2114
			}
		} else {
			start = 0;
		}

L
Li Zefan 已提交
2115
		if (unlikely(max_key->objectid == ino)) {
2116 2117 2118 2119 2120 2121 2122 2123
			if (max_key->type < BTRFS_EXTENT_DATA_KEY)
				continue;
			if (max_key->type > BTRFS_EXTENT_DATA_KEY) {
				end = (u64)-1;
			} else {
				if (max_key->offset == 0)
					continue;
				end = max_key->offset;
2124
				WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
2125 2126 2127 2128 2129 2130 2131
				end--;
			}
		} else {
			end = (u64)-1;
		}

		/* the lock_extent waits for readpage to complete */
2132
		lock_extent(&BTRFS_I(inode)->io_tree, start, end);
2133
		btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 1);
2134
		unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156
	}
	return 0;
}

static int find_next_key(struct btrfs_path *path, int level,
			 struct btrfs_key *key)

{
	while (level < BTRFS_MAX_LEVEL) {
		if (!path->nodes[level])
			break;
		if (path->slots[level] + 1 <
		    btrfs_header_nritems(path->nodes[level])) {
			btrfs_node_key_to_cpu(path->nodes[level], key,
					      path->slots[level] + 1);
			return 0;
		}
		level++;
	}
	return 1;
}

2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188
/*
 * Insert current subvolume into reloc_control::dirty_subvol_roots
 */
static void insert_dirty_subvol(struct btrfs_trans_handle *trans,
				struct reloc_control *rc,
				struct btrfs_root *root)
{
	struct btrfs_root *reloc_root = root->reloc_root;
	struct btrfs_root_item *reloc_root_item;

	/* @root must be a subvolume tree root with a valid reloc tree */
	ASSERT(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
	ASSERT(reloc_root);

	reloc_root_item = &reloc_root->root_item;
	memset(&reloc_root_item->drop_progress, 0,
		sizeof(reloc_root_item->drop_progress));
	reloc_root_item->drop_level = 0;
	btrfs_set_root_refs(reloc_root_item, 0);
	btrfs_update_reloc_root(trans, root);

	if (list_empty(&root->reloc_dirty_list)) {
		btrfs_grab_fs_root(root);
		list_add_tail(&root->reloc_dirty_list, &rc->dirty_subvol_roots);
	}
}

static int clean_dirty_subvols(struct reloc_control *rc)
{
	struct btrfs_root *root;
	struct btrfs_root *next;
	int ret = 0;
2189
	int ret2;
2190 2191 2192

	list_for_each_entry_safe(root, next, &rc->dirty_subvol_roots,
				 reloc_dirty_list) {
2193 2194 2195
		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
			/* Merged subvolume, cleanup its reloc root */
			struct btrfs_root *reloc_root = root->reloc_root;
2196

2197 2198 2199
			list_del_init(&root->reloc_dirty_list);
			root->reloc_root = NULL;
			if (reloc_root) {
2200

2201 2202 2203 2204
				ret2 = btrfs_drop_snapshot(reloc_root, NULL, 0, 1);
				if (ret2 < 0 && !ret)
					ret = ret2;
			}
2205
			clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state);
2206 2207 2208 2209
			btrfs_put_fs_root(root);
		} else {
			/* Orphan reloc tree, just clean it up */
			ret2 = btrfs_drop_snapshot(root, NULL, 0, 1);
2210 2211 2212 2213 2214 2215 2216
			if (ret2 < 0 && !ret)
				ret = ret2;
		}
	}
	return ret;
}

2217 2218 2219 2220 2221 2222 2223
/*
 * merge the relocated tree blocks in reloc tree with corresponding
 * fs tree.
 */
static noinline_for_stack int merge_reloc_root(struct reloc_control *rc,
					       struct btrfs_root *root)
{
2224
	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2225 2226
	struct btrfs_key key;
	struct btrfs_key next_key;
2227
	struct btrfs_trans_handle *trans = NULL;
2228 2229 2230
	struct btrfs_root *reloc_root;
	struct btrfs_root_item *root_item;
	struct btrfs_path *path;
2231
	struct extent_buffer *leaf;
2232 2233 2234 2235 2236
	int level;
	int max_level;
	int replaced = 0;
	int ret;
	int err = 0;
2237
	u32 min_reserved;
2238 2239 2240 2241

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;
2242
	path->reada = READA_FORWARD;
2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258

	reloc_root = root->reloc_root;
	root_item = &reloc_root->root_item;

	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
		level = btrfs_root_level(root_item);
		extent_buffer_get(reloc_root->node);
		path->nodes[level] = reloc_root->node;
		path->slots[level] = 0;
	} else {
		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);

		level = root_item->drop_level;
		BUG_ON(level == 0);
		path->lowest_level = level;
		ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0);
2259
		path->lowest_level = 0;
2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271
		if (ret < 0) {
			btrfs_free_path(path);
			return ret;
		}

		btrfs_node_key_to_cpu(path->nodes[level], &next_key,
				      path->slots[level]);
		WARN_ON(memcmp(&key, &next_key, sizeof(key)));

		btrfs_unlock_up_safe(path, 0);
	}

2272
	min_reserved = fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
2273
	memset(&next_key, 0, sizeof(next_key));
2274

2275
	while (1) {
M
Miao Xie 已提交
2276 2277
		ret = btrfs_block_rsv_refill(root, rc->block_rsv, min_reserved,
					     BTRFS_RESERVE_FLUSH_ALL);
2278
		if (ret) {
2279 2280
			err = ret;
			goto out;
2281
		}
2282 2283 2284 2285 2286 2287 2288
		trans = btrfs_start_transaction(root, 0);
		if (IS_ERR(trans)) {
			err = PTR_ERR(trans);
			trans = NULL;
			goto out;
		}
		trans->block_rsv = rc->block_rsv;
2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304

		replaced = 0;
		max_level = level;

		ret = walk_down_reloc_tree(reloc_root, path, &level);
		if (ret < 0) {
			err = ret;
			goto out;
		}
		if (ret > 0)
			break;

		if (!find_next_key(path, level, &key) &&
		    btrfs_comp_cpu_keys(&next_key, &key) >= 0) {
			ret = 0;
		} else {
2305
			ret = replace_path(trans, rc, root, reloc_root, path,
2306
					   &next_key, level, max_level);
2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332
		}
		if (ret < 0) {
			err = ret;
			goto out;
		}

		if (ret > 0) {
			level = ret;
			btrfs_node_key_to_cpu(path->nodes[level], &key,
					      path->slots[level]);
			replaced = 1;
		}

		ret = walk_up_reloc_tree(reloc_root, path, &level);
		if (ret > 0)
			break;

		BUG_ON(level == 0);
		/*
		 * save the merging progress in the drop_progress.
		 * this is OK since root refs == 1 in this case.
		 */
		btrfs_node_key(path->nodes[level], &root_item->drop_progress,
			       path->slots[level]);
		root_item->drop_level = level;

2333
		btrfs_end_transaction_throttle(trans);
2334
		trans = NULL;
2335

2336
		btrfs_btree_balance_dirty(fs_info);
2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354

		if (replaced && rc->stage == UPDATE_DATA_PTRS)
			invalidate_extent_cache(root, &key, &next_key);
	}

	/*
	 * handle the case only one block in the fs tree need to be
	 * relocated and the block is tree root.
	 */
	leaf = btrfs_lock_root_node(root);
	ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf);
	btrfs_tree_unlock(leaf);
	free_extent_buffer(leaf);
	if (ret < 0)
		err = ret;
out:
	btrfs_free_path(path);

2355 2356
	if (err == 0)
		insert_dirty_subvol(trans, rc, root);
2357

2358
	if (trans)
2359
		btrfs_end_transaction_throttle(trans);
2360

2361
	btrfs_btree_balance_dirty(fs_info);
2362 2363 2364 2365 2366 2367 2368

	if (replaced && rc->stage == UPDATE_DATA_PTRS)
		invalidate_extent_cache(root, &key, &next_key);

	return err;
}

2369 2370
static noinline_for_stack
int prepare_to_merge(struct reloc_control *rc, int err)
2371
{
2372
	struct btrfs_root *root = rc->extent_root;
2373
	struct btrfs_fs_info *fs_info = root->fs_info;
2374
	struct btrfs_root *reloc_root;
2375 2376 2377 2378 2379
	struct btrfs_trans_handle *trans;
	LIST_HEAD(reloc_roots);
	u64 num_bytes = 0;
	int ret;

2380 2381
	mutex_lock(&fs_info->reloc_mutex);
	rc->merging_rsv_size += fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
2382
	rc->merging_rsv_size += rc->nodes_relocated * 2;
2383
	mutex_unlock(&fs_info->reloc_mutex);
C
Chris Mason 已提交
2384

2385 2386 2387
again:
	if (!err) {
		num_bytes = rc->merging_rsv_size;
M
Miao Xie 已提交
2388 2389
		ret = btrfs_block_rsv_add(root, rc->block_rsv, num_bytes,
					  BTRFS_RESERVE_FLUSH_ALL);
2390 2391 2392 2393
		if (ret)
			err = ret;
	}

2394
	trans = btrfs_join_transaction(rc->extent_root);
2395 2396
	if (IS_ERR(trans)) {
		if (!err)
2397 2398
			btrfs_block_rsv_release(fs_info, rc->block_rsv,
						num_bytes);
2399 2400
		return PTR_ERR(trans);
	}
2401 2402 2403

	if (!err) {
		if (num_bytes != rc->merging_rsv_size) {
2404
			btrfs_end_transaction(trans);
2405 2406
			btrfs_block_rsv_release(fs_info, rc->block_rsv,
						num_bytes);
2407 2408 2409
			goto again;
		}
	}
2410

2411 2412 2413 2414 2415 2416
	rc->merge_reloc_tree = 1;

	while (!list_empty(&rc->reloc_roots)) {
		reloc_root = list_entry(rc->reloc_roots.next,
					struct btrfs_root, root_list);
		list_del_init(&reloc_root->root_list);
2417

2418
		root = read_fs_root(fs_info, reloc_root->root_key.offset);
2419 2420 2421
		BUG_ON(IS_ERR(root));
		BUG_ON(root->reloc_root != reloc_root);

2422 2423 2424 2425 2426 2427
		/*
		 * set reference count to 1, so btrfs_recover_relocation
		 * knows it should resumes merging
		 */
		if (!err)
			btrfs_set_root_refs(&reloc_root->root_item, 1);
2428 2429
		btrfs_update_reloc_root(trans, root);

2430 2431
		list_add(&reloc_root->root_list, &reloc_roots);
	}
2432

2433
	list_splice(&reloc_roots, &rc->reloc_roots);
2434

2435
	if (!err)
2436
		btrfs_commit_transaction(trans);
2437
	else
2438
		btrfs_end_transaction(trans);
2439
	return err;
2440 2441
}

2442 2443 2444 2445 2446 2447 2448 2449
static noinline_for_stack
void free_reloc_roots(struct list_head *list)
{
	struct btrfs_root *reloc_root;

	while (!list_empty(list)) {
		reloc_root = list_entry(list->next, struct btrfs_root,
					root_list);
2450
		__del_reloc_root(reloc_root);
2451 2452 2453 2454
		free_extent_buffer(reloc_root->node);
		free_extent_buffer(reloc_root->commit_root);
		reloc_root->node = NULL;
		reloc_root->commit_root = NULL;
2455 2456 2457
	}
}

2458
static noinline_for_stack
2459
void merge_reloc_roots(struct reloc_control *rc)
2460
{
2461
	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2462
	struct btrfs_root *root;
2463 2464 2465
	struct btrfs_root *reloc_root;
	LIST_HEAD(reloc_roots);
	int found = 0;
2466
	int ret = 0;
2467 2468
again:
	root = rc->extent_root;
C
Chris Mason 已提交
2469 2470 2471 2472 2473 2474 2475

	/*
	 * this serializes us with btrfs_record_root_in_transaction,
	 * we have to make sure nobody is in the middle of
	 * adding their roots to the list while we are
	 * doing this splice
	 */
2476
	mutex_lock(&fs_info->reloc_mutex);
2477
	list_splice_init(&rc->reloc_roots, &reloc_roots);
2478
	mutex_unlock(&fs_info->reloc_mutex);
2479

2480 2481 2482 2483
	while (!list_empty(&reloc_roots)) {
		found = 1;
		reloc_root = list_entry(reloc_roots.next,
					struct btrfs_root, root_list);
2484

2485
		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
2486
			root = read_fs_root(fs_info,
2487 2488 2489
					    reloc_root->root_key.offset);
			BUG_ON(IS_ERR(root));
			BUG_ON(root->reloc_root != reloc_root);
2490

2491
			ret = merge_reloc_root(rc, root);
2492
			if (ret) {
2493 2494 2495
				if (list_empty(&reloc_root->root_list))
					list_add_tail(&reloc_root->root_list,
						      &reloc_roots);
2496
				goto out;
2497
			}
2498 2499
		} else {
			list_del_init(&reloc_root->root_list);
2500 2501 2502
			/* Don't forget to queue this reloc root for cleanup */
			list_add_tail(&reloc_root->reloc_dirty_list,
				      &rc->dirty_subvol_roots);
2503
		}
2504 2505
	}

2506 2507 2508 2509
	if (found) {
		found = 0;
		goto again;
	}
2510 2511
out:
	if (ret) {
2512
		btrfs_handle_fs_error(fs_info, ret, NULL);
2513 2514
		if (!list_empty(&reloc_roots))
			free_reloc_roots(&reloc_roots);
2515 2516

		/* new reloc root may be added */
2517
		mutex_lock(&fs_info->reloc_mutex);
2518
		list_splice_init(&rc->reloc_roots, &reloc_roots);
2519
		mutex_unlock(&fs_info->reloc_mutex);
2520 2521
		if (!list_empty(&reloc_roots))
			free_reloc_roots(&reloc_roots);
2522 2523
	}

2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540
	BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root));
}

static void free_block_list(struct rb_root *blocks)
{
	struct tree_block *block;
	struct rb_node *rb_node;
	while ((rb_node = rb_first(blocks))) {
		block = rb_entry(rb_node, struct tree_block, rb_node);
		rb_erase(rb_node, blocks);
		kfree(block);
	}
}

static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans,
				      struct btrfs_root *reloc_root)
{
2541
	struct btrfs_fs_info *fs_info = reloc_root->fs_info;
2542 2543 2544 2545 2546
	struct btrfs_root *root;

	if (reloc_root->last_trans == trans->transid)
		return 0;

2547
	root = read_fs_root(fs_info, reloc_root->root_key.offset);
2548 2549 2550 2551 2552 2553
	BUG_ON(IS_ERR(root));
	BUG_ON(root->reloc_root != reloc_root);

	return btrfs_record_root_in_trans(trans, root);
}

2554 2555 2556 2557
static noinline_for_stack
struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans,
				     struct reloc_control *rc,
				     struct backref_node *node,
2558
				     struct backref_edge *edges[])
2559 2560 2561
{
	struct backref_node *next;
	struct btrfs_root *root;
2562 2563
	int index = 0;

2564 2565 2566 2567 2568
	next = node;
	while (1) {
		cond_resched();
		next = walk_up_backref(next, edges, &index);
		root = next->root;
2569
		BUG_ON(!root);
2570
		BUG_ON(!test_bit(BTRFS_ROOT_REF_COWS, &root->state));
2571 2572 2573 2574 2575 2576

		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
			record_reloc_root_in_trans(trans, root);
			break;
		}

2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587
		btrfs_record_root_in_trans(trans, root);
		root = root->reloc_root;

		if (next->new_bytenr != root->node->start) {
			BUG_ON(next->new_bytenr);
			BUG_ON(!list_empty(&next->list));
			next->new_bytenr = root->node->start;
			next->root = root;
			list_add_tail(&next->list,
				      &rc->backref_cache.changed);
			__mark_block_processed(rc, next);
2588 2589 2590
			break;
		}

2591
		WARN_ON(1);
2592 2593 2594 2595 2596
		root = NULL;
		next = walk_down_backref(edges, &index);
		if (!next || next->level <= node->level)
			break;
	}
2597 2598
	if (!root)
		return NULL;
2599

2600 2601 2602 2603 2604 2605 2606
	next = node;
	/* setup backref node path for btrfs_reloc_cow_block */
	while (1) {
		rc->backref_cache.path[next->level] = next;
		if (--index < 0)
			break;
		next = edges[index]->node[UPPER];
2607 2608 2609 2610
	}
	return root;
}

2611 2612 2613 2614 2615 2616
/*
 * select a tree root for relocation. return NULL if the block
 * is reference counted. we should use do_relocation() in this
 * case. return a tree root pointer if the block isn't reference
 * counted. return -ENOENT if the block is root of reloc tree.
 */
2617
static noinline_for_stack
2618
struct btrfs_root *select_one_root(struct backref_node *node)
2619
{
2620 2621 2622
	struct backref_node *next;
	struct btrfs_root *root;
	struct btrfs_root *fs_root = NULL;
2623
	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2624 2625 2626 2627 2628 2629 2630 2631 2632
	int index = 0;

	next = node;
	while (1) {
		cond_resched();
		next = walk_up_backref(next, edges, &index);
		root = next->root;
		BUG_ON(!root);

L
Lucas De Marchi 已提交
2633
		/* no other choice for non-references counted tree */
2634
		if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650
			return root;

		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID)
			fs_root = root;

		if (next != node)
			return NULL;

		next = walk_down_backref(edges, &index);
		if (!next || next->level <= node->level)
			break;
	}

	if (!fs_root)
		return ERR_PTR(-ENOENT);
	return fs_root;
2651 2652 2653
}

static noinline_for_stack
2654 2655
u64 calcu_metadata_size(struct reloc_control *rc,
			struct backref_node *node, int reserve)
2656
{
2657
	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671
	struct backref_node *next = node;
	struct backref_edge *edge;
	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
	u64 num_bytes = 0;
	int index = 0;

	BUG_ON(reserve && node->processed);

	while (next) {
		cond_resched();
		while (1) {
			if (next->processed && (reserve || next != node))
				break;

2672
			num_bytes += fs_info->nodesize;
2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684

			if (list_empty(&next->upper))
				break;

			edge = list_entry(next->upper.next,
					  struct backref_edge, list[LOWER]);
			edges[index++] = edge;
			next = edge->node[UPPER];
		}
		next = walk_down_backref(edges, &index);
	}
	return num_bytes;
2685 2686
}

2687 2688 2689
static int reserve_metadata_space(struct btrfs_trans_handle *trans,
				  struct reloc_control *rc,
				  struct backref_node *node)
2690
{
2691
	struct btrfs_root *root = rc->extent_root;
2692
	struct btrfs_fs_info *fs_info = root->fs_info;
2693 2694
	u64 num_bytes;
	int ret;
2695
	u64 tmp;
2696 2697

	num_bytes = calcu_metadata_size(rc, node, 1) * 2;
2698

2699
	trans->block_rsv = rc->block_rsv;
2700
	rc->reserved_bytes += num_bytes;
2701 2702 2703 2704 2705 2706

	/*
	 * We are under a transaction here so we can only do limited flushing.
	 * If we get an enospc just kick back -EAGAIN so we know to drop the
	 * transaction and try to refill when we can flush all the things.
	 */
2707
	ret = btrfs_block_rsv_refill(root, rc->block_rsv, num_bytes,
2708
				BTRFS_RESERVE_FLUSH_LIMIT);
2709
	if (ret) {
2710
		tmp = fs_info->nodesize * RELOCATION_RESERVED_NODES;
2711 2712 2713 2714 2715 2716
		while (tmp <= rc->reserved_bytes)
			tmp <<= 1;
		/*
		 * only one thread can access block_rsv at this point,
		 * so we don't need hold lock to protect block_rsv.
		 * we expand more reservation size here to allow enough
2717
		 * space for relocation and we will return earlier in
2718 2719
		 * enospc case.
		 */
2720 2721
		rc->block_rsv->size = tmp + fs_info->nodesize *
				      RELOCATION_RESERVED_NODES;
2722
		return -EAGAIN;
2723
	}
2724 2725 2726 2727

	return 0;
}

2728 2729 2730 2731 2732 2733 2734 2735
/*
 * relocate a block tree, and then update pointers in upper level
 * blocks that reference the block to point to the new location.
 *
 * if called by link_to_upper, the block has already been relocated.
 * in that case this function just updates pointers.
 */
static int do_relocation(struct btrfs_trans_handle *trans,
2736
			 struct reloc_control *rc,
2737 2738 2739 2740
			 struct backref_node *node,
			 struct btrfs_key *key,
			 struct btrfs_path *path, int lowest)
{
2741
	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756
	struct backref_node *upper;
	struct backref_edge *edge;
	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
	struct btrfs_root *root;
	struct extent_buffer *eb;
	u32 blocksize;
	u64 bytenr;
	u64 generation;
	int slot;
	int ret;
	int err = 0;

	BUG_ON(lowest && node->eb);

	path->lowest_level = node->level + 1;
2757
	rc->backref_cache.path[node->level] = node;
2758
	list_for_each_entry(edge, &node->upper, list[LOWER]) {
2759
		struct btrfs_key first_key;
2760
		struct btrfs_ref ref = { 0 };
2761

2762 2763 2764
		cond_resched();

		upper = edge->node[UPPER];
2765
		root = select_reloc_root(trans, rc, upper, edges);
2766 2767 2768 2769 2770 2771
		BUG_ON(!root);

		if (upper->eb && !upper->locked) {
			if (!lowest) {
				ret = btrfs_bin_search(upper->eb, key,
						       upper->level, &slot);
2772 2773 2774 2775
				if (ret < 0) {
					err = ret;
					goto next;
				}
2776 2777 2778 2779 2780
				BUG_ON(ret);
				bytenr = btrfs_node_blockptr(upper->eb, slot);
				if (node->eb->start == bytenr)
					goto next;
			}
2781
			drop_node_buffer(upper);
2782
		}
2783 2784 2785

		if (!upper->eb) {
			ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2786 2787 2788 2789 2790 2791 2792
			if (ret) {
				if (ret < 0)
					err = ret;
				else
					err = -ENOENT;

				btrfs_release_path(path);
2793 2794 2795
				break;
			}

2796 2797 2798 2799 2800 2801
			if (!upper->eb) {
				upper->eb = path->nodes[upper->level];
				path->nodes[upper->level] = NULL;
			} else {
				BUG_ON(upper->eb != path->nodes[upper->level]);
			}
2802

2803 2804
			upper->locked = 1;
			path->locks[upper->level] = 0;
2805

2806
			slot = path->slots[upper->level];
2807
			btrfs_release_path(path);
2808 2809 2810
		} else {
			ret = btrfs_bin_search(upper->eb, key, upper->level,
					       &slot);
2811 2812 2813 2814
			if (ret < 0) {
				err = ret;
				goto next;
			}
2815 2816 2817 2818
			BUG_ON(ret);
		}

		bytenr = btrfs_node_blockptr(upper->eb, slot);
2819
		if (lowest) {
L
Liu Bo 已提交
2820 2821 2822 2823 2824 2825 2826 2827
			if (bytenr != node->bytenr) {
				btrfs_err(root->fs_info,
		"lowest leaf/node mismatch: bytenr %llu node->bytenr %llu slot %d upper %llu",
					  bytenr, node->bytenr, slot,
					  upper->eb->start);
				err = -EIO;
				goto next;
			}
2828
		} else {
2829 2830
			if (node->eb->start == bytenr)
				goto next;
2831 2832
		}

2833
		blocksize = root->fs_info->nodesize;
2834
		generation = btrfs_node_ptr_generation(upper->eb, slot);
2835 2836 2837
		btrfs_node_key_to_cpu(upper->eb, &first_key, slot);
		eb = read_tree_block(fs_info, bytenr, generation,
				     upper->level - 1, &first_key);
2838 2839 2840 2841
		if (IS_ERR(eb)) {
			err = PTR_ERR(eb);
			goto next;
		} else if (!extent_buffer_uptodate(eb)) {
2842
			free_extent_buffer(eb);
2843 2844 2845
			err = -EIO;
			goto next;
		}
2846
		btrfs_tree_lock(eb);
2847
		btrfs_set_lock_blocking_write(eb);
2848 2849 2850 2851

		if (!node->eb) {
			ret = btrfs_cow_block(trans, root, eb, upper->eb,
					      slot, &eb);
2852 2853
			btrfs_tree_unlock(eb);
			free_extent_buffer(eb);
2854 2855
			if (ret < 0) {
				err = ret;
2856
				goto next;
2857
			}
2858
			BUG_ON(node->eb != eb);
2859 2860 2861 2862 2863 2864 2865
		} else {
			btrfs_set_node_blockptr(upper->eb, slot,
						node->eb->start);
			btrfs_set_node_ptr_generation(upper->eb, slot,
						      trans->transid);
			btrfs_mark_buffer_dirty(upper->eb);

2866 2867 2868 2869 2870 2871 2872
			btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF,
					       node->eb->start, blocksize,
					       upper->eb->start);
			ref.real_root = root->root_key.objectid;
			btrfs_init_tree_ref(&ref, node->level,
					    btrfs_header_owner(upper->eb));
			ret = btrfs_inc_extent_ref(trans, &ref);
2873 2874 2875 2876 2877
			BUG_ON(ret);

			ret = btrfs_drop_subtree(trans, root, eb, upper->eb);
			BUG_ON(ret);
		}
2878 2879 2880 2881 2882 2883 2884
next:
		if (!upper->pending)
			drop_node_buffer(upper);
		else
			unlock_node_buffer(upper);
		if (err)
			break;
2885
	}
2886 2887 2888 2889 2890 2891 2892

	if (!err && node->pending) {
		drop_node_buffer(node);
		list_move_tail(&node->list, &rc->backref_cache.changed);
		node->pending = 0;
	}

2893
	path->lowest_level = 0;
2894
	BUG_ON(err == -ENOSPC);
2895 2896 2897 2898
	return err;
}

static int link_to_upper(struct btrfs_trans_handle *trans,
2899
			 struct reloc_control *rc,
2900 2901 2902 2903 2904 2905
			 struct backref_node *node,
			 struct btrfs_path *path)
{
	struct btrfs_key key;

	btrfs_node_key_to_cpu(node->eb, &key, 0);
2906
	return do_relocation(trans, rc, node, &key, path, 0);
2907 2908 2909
}

static int finish_pending_nodes(struct btrfs_trans_handle *trans,
2910 2911
				struct reloc_control *rc,
				struct btrfs_path *path, int err)
2912
{
2913 2914
	LIST_HEAD(list);
	struct backref_cache *cache = &rc->backref_cache;
2915 2916 2917 2918 2919 2920 2921
	struct backref_node *node;
	int level;
	int ret;

	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
		while (!list_empty(&cache->pending[level])) {
			node = list_entry(cache->pending[level].next,
2922 2923 2924
					  struct backref_node, list);
			list_move_tail(&node->list, &list);
			BUG_ON(!node->pending);
2925

2926 2927 2928 2929 2930
			if (!err) {
				ret = link_to_upper(trans, rc, node, path);
				if (ret < 0)
					err = ret;
			}
2931
		}
2932
		list_splice_init(&list, &cache->pending[level]);
2933 2934 2935 2936 2937
	}
	return err;
}

static void mark_block_processed(struct reloc_control *rc,
2938 2939 2940
				 u64 bytenr, u32 blocksize)
{
	set_extent_bits(&rc->processed_blocks, bytenr, bytenr + blocksize - 1,
2941
			EXTENT_DIRTY);
2942 2943 2944 2945
}

static void __mark_block_processed(struct reloc_control *rc,
				   struct backref_node *node)
2946 2947 2948 2949
{
	u32 blocksize;
	if (node->level == 0 ||
	    in_block_group(node->bytenr, rc->block_group)) {
2950
		blocksize = rc->extent_root->fs_info->nodesize;
2951
		mark_block_processed(rc, node->bytenr, blocksize);
2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973
	}
	node->processed = 1;
}

/*
 * mark a block and all blocks directly/indirectly reference the block
 * as processed.
 */
static void update_processed_blocks(struct reloc_control *rc,
				    struct backref_node *node)
{
	struct backref_node *next = node;
	struct backref_edge *edge;
	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
	int index = 0;

	while (next) {
		cond_resched();
		while (1) {
			if (next->processed)
				break;

2974
			__mark_block_processed(rc, next);
2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987

			if (list_empty(&next->upper))
				break;

			edge = list_entry(next->upper.next,
					  struct backref_edge, list[LOWER]);
			edges[index++] = edge;
			next = edge->node[UPPER];
		}
		next = walk_down_backref(edges, &index);
	}
}

2988
static int tree_block_processed(u64 bytenr, struct reloc_control *rc)
2989
{
2990
	u32 blocksize = rc->extent_root->fs_info->nodesize;
2991

2992 2993 2994 2995
	if (test_range_bit(&rc->processed_blocks, bytenr,
			   bytenr + blocksize - 1, EXTENT_DIRTY, 1, NULL))
		return 1;
	return 0;
2996 2997
}

2998
static int get_tree_block_key(struct btrfs_fs_info *fs_info,
2999 3000 3001 3002 3003
			      struct tree_block *block)
{
	struct extent_buffer *eb;

	BUG_ON(block->key_ready);
3004 3005
	eb = read_tree_block(fs_info, block->bytenr, block->key.offset,
			     block->level, NULL);
3006 3007 3008
	if (IS_ERR(eb)) {
		return PTR_ERR(eb);
	} else if (!extent_buffer_uptodate(eb)) {
3009 3010 3011
		free_extent_buffer(eb);
		return -EIO;
	}
3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030
	if (block->level == 0)
		btrfs_item_key_to_cpu(eb, &block->key, 0);
	else
		btrfs_node_key_to_cpu(eb, &block->key, 0);
	free_extent_buffer(eb);
	block->key_ready = 1;
	return 0;
}

/*
 * helper function to relocate a tree block
 */
static int relocate_tree_block(struct btrfs_trans_handle *trans,
				struct reloc_control *rc,
				struct backref_node *node,
				struct btrfs_key *key,
				struct btrfs_path *path)
{
	struct btrfs_root *root;
3031 3032 3033 3034
	int ret = 0;

	if (!node)
		return 0;
3035

3036
	BUG_ON(node->processed);
3037
	root = select_one_root(node);
3038
	if (root == ERR_PTR(-ENOENT)) {
3039
		update_processed_blocks(rc, node);
3040
		goto out;
3041 3042
	}

3043
	if (!root || test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
3044 3045
		ret = reserve_metadata_space(trans, rc, node);
		if (ret)
3046 3047 3048
			goto out;
	}

3049
	if (root) {
3050
		if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
3051 3052 3053 3054 3055 3056 3057 3058 3059 3060
			BUG_ON(node->new_bytenr);
			BUG_ON(!list_empty(&node->list));
			btrfs_record_root_in_trans(trans, root);
			root = root->reloc_root;
			node->new_bytenr = root->node->start;
			node->root = root;
			list_add_tail(&node->list, &rc->backref_cache.changed);
		} else {
			path->lowest_level = node->level;
			ret = btrfs_search_slot(trans, root, key, path, 0, 1);
3061
			btrfs_release_path(path);
3062 3063 3064 3065 3066 3067 3068 3069
			if (ret > 0)
				ret = 0;
		}
		if (!ret)
			update_processed_blocks(rc, node);
	} else {
		ret = do_relocation(trans, rc, node, key, path, 1);
	}
3070
out:
3071
	if (ret || node->level == 0 || node->cowonly)
3072
		remove_backref_node(&rc->backref_cache, node);
3073 3074 3075 3076 3077 3078 3079 3080 3081 3082
	return ret;
}

/*
 * relocate a list of blocks
 */
static noinline_for_stack
int relocate_tree_blocks(struct btrfs_trans_handle *trans,
			 struct reloc_control *rc, struct rb_root *blocks)
{
3083
	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3084 3085 3086
	struct backref_node *node;
	struct btrfs_path *path;
	struct tree_block *block;
3087
	struct tree_block *next;
3088 3089 3090 3091
	int ret;
	int err = 0;

	path = btrfs_alloc_path();
3092 3093
	if (!path) {
		err = -ENOMEM;
3094
		goto out_free_blocks;
3095
	}
3096

3097 3098
	/* Kick in readahead for tree blocks with missing keys */
	rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
3099
		if (!block->key_ready)
3100
			readahead_tree_block(fs_info, block->bytenr);
3101 3102
	}

3103 3104
	/* Get first keys */
	rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
3105
		if (!block->key_ready) {
3106
			err = get_tree_block_key(fs_info, block);
3107 3108 3109
			if (err)
				goto out_free_path;
		}
3110 3111
	}

3112 3113
	/* Do tree relocation */
	rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
3114
		node = build_backref_tree(rc, &block->key,
3115 3116 3117 3118 3119 3120 3121 3122 3123
					  block->level, block->bytenr);
		if (IS_ERR(node)) {
			err = PTR_ERR(node);
			goto out;
		}

		ret = relocate_tree_block(trans, rc, node, &block->key,
					  path);
		if (ret < 0) {
3124
			if (ret != -EAGAIN || &block->rb_node == rb_first(blocks))
3125
				err = ret;
3126 3127 3128 3129
			goto out;
		}
	}
out:
3130
	err = finish_pending_nodes(trans, rc, path, err);
3131

3132
out_free_path:
3133
	btrfs_free_path(path);
3134
out_free_blocks:
3135
	free_block_list(blocks);
3136 3137 3138
	return err;
}

3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149
static noinline_for_stack
int prealloc_file_extent_cluster(struct inode *inode,
				 struct file_extent_cluster *cluster)
{
	u64 alloc_hint = 0;
	u64 start;
	u64 end;
	u64 offset = BTRFS_I(inode)->index_cnt;
	u64 num_bytes;
	int nr = 0;
	int ret = 0;
3150 3151
	u64 prealloc_start = cluster->start - offset;
	u64 prealloc_end = cluster->end - offset;
3152
	u64 cur_offset;
3153
	struct extent_changeset *data_reserved = NULL;
3154 3155

	BUG_ON(cluster->start != cluster->boundary[0]);
A
Al Viro 已提交
3156
	inode_lock(inode);
3157

3158
	ret = btrfs_check_data_free_space(inode, &data_reserved, prealloc_start,
3159
					  prealloc_end + 1 - prealloc_start);
3160 3161 3162
	if (ret)
		goto out;

3163
	cur_offset = prealloc_start;
3164 3165 3166 3167 3168 3169 3170
	while (nr < cluster->nr) {
		start = cluster->boundary[nr] - offset;
		if (nr + 1 < cluster->nr)
			end = cluster->boundary[nr + 1] - 1 - offset;
		else
			end = cluster->end - offset;

3171
		lock_extent(&BTRFS_I(inode)->io_tree, start, end);
3172
		num_bytes = end + 1 - start;
3173
		if (cur_offset < start)
3174 3175
			btrfs_free_reserved_data_space(inode, data_reserved,
					cur_offset, start - cur_offset);
3176 3177 3178
		ret = btrfs_prealloc_file_range(inode, 0, start,
						num_bytes, num_bytes,
						end + 1, &alloc_hint);
3179
		cur_offset = end + 1;
3180
		unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
3181 3182 3183 3184
		if (ret)
			break;
		nr++;
	}
3185
	if (cur_offset < prealloc_end)
3186 3187
		btrfs_free_reserved_data_space(inode, data_reserved,
				cur_offset, prealloc_end + 1 - cur_offset);
3188
out:
A
Al Viro 已提交
3189
	inode_unlock(inode);
3190
	extent_changeset_free(data_reserved);
3191 3192 3193
	return ret;
}

3194
static noinline_for_stack
3195 3196 3197
int setup_extent_mapping(struct inode *inode, u64 start, u64 end,
			 u64 block_start)
{
3198
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3199 3200 3201 3202
	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
	struct extent_map *em;
	int ret = 0;

3203
	em = alloc_extent_map();
3204 3205 3206 3207 3208 3209 3210
	if (!em)
		return -ENOMEM;

	em->start = start;
	em->len = end + 1 - start;
	em->block_len = em->len;
	em->block_start = block_start;
3211
	em->bdev = fs_info->fs_devices->latest_bdev;
3212 3213
	set_bit(EXTENT_FLAG_PINNED, &em->flags);

3214
	lock_extent(&BTRFS_I(inode)->io_tree, start, end);
3215 3216
	while (1) {
		write_lock(&em_tree->lock);
J
Josef Bacik 已提交
3217
		ret = add_extent_mapping(em_tree, em, 0);
3218 3219 3220 3221 3222
		write_unlock(&em_tree->lock);
		if (ret != -EEXIST) {
			free_extent_map(em);
			break;
		}
3223
		btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0);
3224
	}
3225
	unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
3226 3227 3228 3229 3230
	return ret;
}

static int relocate_file_extent_cluster(struct inode *inode,
					struct file_extent_cluster *cluster)
3231
{
3232
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3233 3234
	u64 page_start;
	u64 page_end;
3235 3236
	u64 offset = BTRFS_I(inode)->index_cnt;
	unsigned long index;
3237 3238 3239
	unsigned long last_index;
	struct page *page;
	struct file_ra_state *ra;
3240
	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
3241
	int nr = 0;
3242 3243
	int ret = 0;

3244 3245 3246
	if (!cluster->nr)
		return 0;

3247 3248 3249 3250
	ra = kzalloc(sizeof(*ra), GFP_NOFS);
	if (!ra)
		return -ENOMEM;

3251 3252 3253
	ret = prealloc_file_extent_cluster(inode, cluster);
	if (ret)
		goto out;
3254

3255
	file_ra_state_init(ra, inode->i_mapping);
3256

3257 3258
	ret = setup_extent_mapping(inode, cluster->start - offset,
				   cluster->end - offset, cluster->start);
3259
	if (ret)
3260
		goto out;
3261

3262 3263
	index = (cluster->start - offset) >> PAGE_SHIFT;
	last_index = (cluster->end - offset) >> PAGE_SHIFT;
3264
	while (index <= last_index) {
3265 3266
		ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
				PAGE_SIZE);
3267 3268 3269
		if (ret)
			goto out;

3270
		page = find_lock_page(inode->i_mapping, index);
3271
		if (!page) {
3272 3273 3274
			page_cache_sync_readahead(inode->i_mapping,
						  ra, NULL, index,
						  last_index + 1 - index);
3275
			page = find_or_create_page(inode->i_mapping, index,
3276
						   mask);
3277
			if (!page) {
3278
				btrfs_delalloc_release_metadata(BTRFS_I(inode),
3279
							PAGE_SIZE, true);
3280
				ret = -ENOMEM;
3281
				goto out;
3282
			}
3283
		}
3284 3285 3286 3287 3288 3289 3290

		if (PageReadahead(page)) {
			page_cache_async_readahead(inode->i_mapping,
						   ra, NULL, page, index,
						   last_index + 1 - index);
		}

3291 3292 3293 3294 3295
		if (!PageUptodate(page)) {
			btrfs_readpage(NULL, page);
			lock_page(page);
			if (!PageUptodate(page)) {
				unlock_page(page);
3296
				put_page(page);
3297
				btrfs_delalloc_release_metadata(BTRFS_I(inode),
3298
							PAGE_SIZE, true);
J
Josef Bacik 已提交
3299
				btrfs_delalloc_release_extents(BTRFS_I(inode),
3300
							       PAGE_SIZE, true);
3301
				ret = -EIO;
3302
				goto out;
3303 3304 3305
			}
		}

M
Miao Xie 已提交
3306
		page_start = page_offset(page);
3307
		page_end = page_start + PAGE_SIZE - 1;
3308

3309
		lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end);
3310

3311 3312
		set_page_extent_mapped(page);

3313 3314 3315 3316
		if (nr < cluster->nr &&
		    page_start + offset == cluster->boundary[nr]) {
			set_extent_bits(&BTRFS_I(inode)->io_tree,
					page_start, page_end,
3317
					EXTENT_BOUNDARY);
3318 3319
			nr++;
		}
3320

3321
		ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
3322
						NULL);
3323 3324 3325 3326
		if (ret) {
			unlock_page(page);
			put_page(page);
			btrfs_delalloc_release_metadata(BTRFS_I(inode),
3327
							 PAGE_SIZE, true);
3328
			btrfs_delalloc_release_extents(BTRFS_I(inode),
3329
			                               PAGE_SIZE, true);
3330 3331 3332 3333 3334 3335 3336

			clear_extent_bits(&BTRFS_I(inode)->io_tree,
					  page_start, page_end,
					  EXTENT_LOCKED | EXTENT_BOUNDARY);
			goto out;

		}
3337 3338
		set_page_dirty(page);

3339
		unlock_extent(&BTRFS_I(inode)->io_tree,
3340
			      page_start, page_end);
3341
		unlock_page(page);
3342
		put_page(page);
3343 3344

		index++;
3345 3346
		btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE,
					       false);
3347
		balance_dirty_pages_ratelimited(inode->i_mapping);
3348
		btrfs_throttle(fs_info);
3349
	}
3350
	WARN_ON(nr != cluster->nr);
3351
out:
3352 3353 3354 3355 3356
	kfree(ra);
	return ret;
}

static noinline_for_stack
3357 3358
int relocate_data_extent(struct inode *inode, struct btrfs_key *extent_key,
			 struct file_extent_cluster *cluster)
3359
{
3360
	int ret;
3361

3362 3363 3364 3365 3366
	if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) {
		ret = relocate_file_extent_cluster(inode, cluster);
		if (ret)
			return ret;
		cluster->nr = 0;
3367 3368
	}

3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383
	if (!cluster->nr)
		cluster->start = extent_key->objectid;
	else
		BUG_ON(cluster->nr >= MAX_EXTENTS);
	cluster->end = extent_key->objectid + extent_key->offset - 1;
	cluster->boundary[cluster->nr] = extent_key->objectid;
	cluster->nr++;

	if (cluster->nr >= MAX_EXTENTS) {
		ret = relocate_file_extent_cluster(inode, cluster);
		if (ret)
			return ret;
		cluster->nr = 0;
	}
	return 0;
3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401
}

/*
 * helper to add a tree block to the list.
 * the major work is getting the generation and level of the block
 */
static int add_tree_block(struct reloc_control *rc,
			  struct btrfs_key *extent_key,
			  struct btrfs_path *path,
			  struct rb_root *blocks)
{
	struct extent_buffer *eb;
	struct btrfs_extent_item *ei;
	struct btrfs_tree_block_info *bi;
	struct tree_block *block;
	struct rb_node *rb_node;
	u32 item_size;
	int level = -1;
3402
	u64 generation;
3403 3404 3405 3406

	eb =  path->nodes[0];
	item_size = btrfs_item_size_nr(eb, path->slots[0]);

3407 3408
	if (extent_key->type == BTRFS_METADATA_ITEM_KEY ||
	    item_size >= sizeof(*ei) + sizeof(*bi)) {
3409 3410
		ei = btrfs_item_ptr(eb, path->slots[0],
				struct btrfs_extent_item);
3411 3412 3413 3414 3415 3416
		if (extent_key->type == BTRFS_EXTENT_ITEM_KEY) {
			bi = (struct btrfs_tree_block_info *)(ei + 1);
			level = btrfs_tree_block_level(eb, bi);
		} else {
			level = (int)extent_key->offset;
		}
3417
		generation = btrfs_extent_generation(eb, ei);
3418
	} else if (unlikely(item_size == sizeof(struct btrfs_extent_item_v0))) {
3419 3420 3421
		btrfs_print_v0_err(eb->fs_info);
		btrfs_handle_fs_error(eb->fs_info, -EINVAL, NULL);
		return -EINVAL;
3422 3423 3424 3425
	} else {
		BUG();
	}

3426
	btrfs_release_path(path);
3427 3428 3429 3430 3431 3432 3433 3434

	BUG_ON(level == -1);

	block = kmalloc(sizeof(*block), GFP_NOFS);
	if (!block)
		return -ENOMEM;

	block->bytenr = extent_key->objectid;
3435
	block->key.objectid = rc->extent_root->fs_info->nodesize;
3436 3437 3438 3439 3440
	block->key.offset = generation;
	block->level = level;
	block->key_ready = 0;

	rb_node = tree_insert(blocks, block->bytenr, &block->rb_node);
3441 3442
	if (rb_node)
		backref_tree_panic(rb_node, -EEXIST, block->bytenr);
3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453

	return 0;
}

/*
 * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY
 */
static int __add_tree_block(struct reloc_control *rc,
			    u64 bytenr, u32 blocksize,
			    struct rb_root *blocks)
{
3454
	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3455 3456 3457
	struct btrfs_path *path;
	struct btrfs_key key;
	int ret;
3458
	bool skinny = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
3459

3460
	if (tree_block_processed(bytenr, rc))
3461 3462 3463 3464 3465 3466 3467 3468
		return 0;

	if (tree_search(blocks, bytenr))
		return 0;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;
3469
again:
3470
	key.objectid = bytenr;
3471 3472 3473 3474 3475 3476 3477
	if (skinny) {
		key.type = BTRFS_METADATA_ITEM_KEY;
		key.offset = (u64)-1;
	} else {
		key.type = BTRFS_EXTENT_ITEM_KEY;
		key.offset = blocksize;
	}
3478 3479 3480 3481 3482 3483 3484

	path->search_commit_root = 1;
	path->skip_locking = 1;
	ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0);
	if (ret < 0)
		goto out;

3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501
	if (ret > 0 && skinny) {
		if (path->slots[0]) {
			path->slots[0]--;
			btrfs_item_key_to_cpu(path->nodes[0], &key,
					      path->slots[0]);
			if (key.objectid == bytenr &&
			    (key.type == BTRFS_METADATA_ITEM_KEY ||
			     (key.type == BTRFS_EXTENT_ITEM_KEY &&
			      key.offset == blocksize)))
				ret = 0;
		}

		if (ret) {
			skinny = false;
			btrfs_release_path(path);
			goto again;
		}
3502
	}
3503 3504 3505 3506 3507 3508 3509 3510 3511 3512
	if (ret) {
		ASSERT(ret == 1);
		btrfs_print_leaf(path->nodes[0]);
		btrfs_err(fs_info,
	     "tree block extent item (%llu) is not found in extent tree",
		     bytenr);
		WARN_ON(1);
		ret = -EINVAL;
		goto out;
	}
3513

3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532
	ret = add_tree_block(rc, &key, path, blocks);
out:
	btrfs_free_path(path);
	return ret;
}

/*
 * helper to check if the block use full backrefs for pointers in it
 */
static int block_use_full_backref(struct reloc_control *rc,
				  struct extent_buffer *eb)
{
	u64 flags;
	int ret;

	if (btrfs_header_flag(eb, BTRFS_HEADER_FLAG_RELOC) ||
	    btrfs_header_backref_rev(eb) < BTRFS_MIXED_BACKREF_REV)
		return 1;

3533
	ret = btrfs_lookup_extent_info(NULL, rc->extent_root->fs_info,
3534 3535
				       eb->start, btrfs_header_level(eb), 1,
				       NULL, &flags);
3536 3537 3538 3539 3540 3541 3542 3543 3544
	BUG_ON(ret);

	if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)
		ret = 1;
	else
		ret = 0;
	return ret;
}

3545
static int delete_block_group_cache(struct btrfs_fs_info *fs_info,
3546 3547 3548
				    struct btrfs_block_group_cache *block_group,
				    struct inode *inode,
				    u64 ino)
3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562
{
	struct btrfs_key key;
	struct btrfs_root *root = fs_info->tree_root;
	struct btrfs_trans_handle *trans;
	int ret = 0;

	if (inode)
		goto truncate;

	key.objectid = ino;
	key.type = BTRFS_INODE_ITEM_KEY;
	key.offset = 0;

	inode = btrfs_iget(fs_info->sb, &key, root, NULL);
3563
	if (IS_ERR(inode))
3564 3565 3566
		return -ENOENT;

truncate:
3567
	ret = btrfs_check_trunc_cache_free_space(fs_info,
3568 3569 3570 3571
						 &fs_info->global_block_rsv);
	if (ret)
		goto out;

3572
	trans = btrfs_join_transaction(root);
3573
	if (IS_ERR(trans)) {
3574
		ret = PTR_ERR(trans);
3575 3576 3577
		goto out;
	}

3578
	ret = btrfs_truncate_free_space_cache(trans, block_group, inode);
3579

3580
	btrfs_end_transaction(trans);
3581
	btrfs_btree_balance_dirty(fs_info);
3582 3583 3584 3585 3586
out:
	iput(inode);
	return ret;
}

3587 3588 3589 3590 3591 3592 3593 3594 3595 3596
/*
 * helper to add tree blocks for backref of type BTRFS_EXTENT_DATA_REF_KEY
 * this function scans fs tree to find blocks reference the data extent
 */
static int find_data_references(struct reloc_control *rc,
				struct btrfs_key *extent_key,
				struct extent_buffer *leaf,
				struct btrfs_extent_data_ref *ref,
				struct rb_root *blocks)
{
3597
	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618
	struct btrfs_path *path;
	struct tree_block *block;
	struct btrfs_root *root;
	struct btrfs_file_extent_item *fi;
	struct rb_node *rb_node;
	struct btrfs_key key;
	u64 ref_root;
	u64 ref_objectid;
	u64 ref_offset;
	u32 ref_count;
	u32 nritems;
	int err = 0;
	int added = 0;
	int counted;
	int ret;

	ref_root = btrfs_extent_data_ref_root(leaf, ref);
	ref_objectid = btrfs_extent_data_ref_objectid(leaf, ref);
	ref_offset = btrfs_extent_data_ref_offset(leaf, ref);
	ref_count = btrfs_extent_data_ref_count(leaf, ref);

3619 3620 3621 3622 3623
	/*
	 * This is an extent belonging to the free space cache, lets just delete
	 * it and redo the search.
	 */
	if (ref_root == BTRFS_ROOT_TREE_OBJECTID) {
3624
		ret = delete_block_group_cache(fs_info, rc->block_group,
3625 3626 3627 3628 3629 3630 3631 3632 3633
					       NULL, ref_objectid);
		if (ret != -ENOENT)
			return ret;
		ret = 0;
	}

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;
3634
	path->reada = READA_FORWARD;
3635

3636
	root = read_fs_root(fs_info, ref_root);
3637 3638 3639 3640 3641 3642 3643
	if (IS_ERR(root)) {
		err = PTR_ERR(root);
		goto out;
	}

	key.objectid = ref_objectid;
	key.type = BTRFS_EXTENT_DATA_KEY;
3644 3645 3646 3647
	if (ref_offset > ((u64)-1 << 32))
		key.offset = 0;
	else
		key.offset = ref_offset;
3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681

	path->search_commit_root = 1;
	path->skip_locking = 1;
	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
	if (ret < 0) {
		err = ret;
		goto out;
	}

	leaf = path->nodes[0];
	nritems = btrfs_header_nritems(leaf);
	/*
	 * the references in tree blocks that use full backrefs
	 * are not counted in
	 */
	if (block_use_full_backref(rc, leaf))
		counted = 0;
	else
		counted = 1;
	rb_node = tree_search(blocks, leaf->start);
	if (rb_node) {
		if (counted)
			added = 1;
		else
			path->slots[0] = nritems;
	}

	while (ref_count > 0) {
		while (path->slots[0] >= nritems) {
			ret = btrfs_next_leaf(root, path);
			if (ret < 0) {
				err = ret;
				goto out;
			}
3682
			if (WARN_ON(ret > 0))
3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702
				goto out;

			leaf = path->nodes[0];
			nritems = btrfs_header_nritems(leaf);
			added = 0;

			if (block_use_full_backref(rc, leaf))
				counted = 0;
			else
				counted = 1;
			rb_node = tree_search(blocks, leaf->start);
			if (rb_node) {
				if (counted)
					added = 1;
				else
					path->slots[0] = nritems;
			}
		}

		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3703 3704
		if (WARN_ON(key.objectid != ref_objectid ||
		    key.type != BTRFS_EXTENT_DATA_KEY))
3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726
			break;

		fi = btrfs_item_ptr(leaf, path->slots[0],
				    struct btrfs_file_extent_item);

		if (btrfs_file_extent_type(leaf, fi) ==
		    BTRFS_FILE_EXTENT_INLINE)
			goto next;

		if (btrfs_file_extent_disk_bytenr(leaf, fi) !=
		    extent_key->objectid)
			goto next;

		key.offset -= btrfs_file_extent_offset(leaf, fi);
		if (key.offset != ref_offset)
			goto next;

		if (counted)
			ref_count--;
		if (added)
			goto next;

3727
		if (!tree_block_processed(leaf->start, rc)) {
3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738
			block = kmalloc(sizeof(*block), GFP_NOFS);
			if (!block) {
				err = -ENOMEM;
				break;
			}
			block->bytenr = leaf->start;
			btrfs_item_key_to_cpu(leaf, &block->key, 0);
			block->level = 0;
			block->key_ready = 1;
			rb_node = tree_insert(blocks, block->bytenr,
					      &block->rb_node);
3739 3740 3741
			if (rb_node)
				backref_tree_panic(rb_node, -EEXIST,
						   block->bytenr);
3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756
		}
		if (counted)
			added = 1;
		else
			path->slots[0] = nritems;
next:
		path->slots[0]++;

	}
out:
	btrfs_free_path(path);
	return err;
}

/*
L
Liu Bo 已提交
3757
 * helper to find all tree blocks that reference a given data extent
3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770
 */
static noinline_for_stack
int add_data_references(struct reloc_control *rc,
			struct btrfs_key *extent_key,
			struct btrfs_path *path,
			struct rb_root *blocks)
{
	struct btrfs_key key;
	struct extent_buffer *eb;
	struct btrfs_extent_data_ref *dref;
	struct btrfs_extent_inline_ref *iref;
	unsigned long ptr;
	unsigned long end;
3771
	u32 blocksize = rc->extent_root->fs_info->nodesize;
3772
	int ret = 0;
3773 3774 3775 3776 3777
	int err = 0;

	eb = path->nodes[0];
	ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
	end = ptr + btrfs_item_size_nr(eb, path->slots[0]);
3778
	ptr += sizeof(struct btrfs_extent_item);
3779 3780 3781

	while (ptr < end) {
		iref = (struct btrfs_extent_inline_ref *)ptr;
3782 3783
		key.type = btrfs_get_extent_inline_ref_type(eb, iref,
							BTRFS_REF_TYPE_DATA);
3784 3785 3786 3787 3788 3789 3790 3791 3792
		if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
			key.offset = btrfs_extent_inline_ref_offset(eb, iref);
			ret = __add_tree_block(rc, key.offset, blocksize,
					       blocks);
		} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
			ret = find_data_references(rc, extent_key,
						   eb, dref, blocks);
		} else {
3793
			ret = -EUCLEAN;
3794 3795 3796
			btrfs_err(rc->extent_root->fs_info,
		     "extent %llu slot %d has an invalid inline ref type",
			     eb->start, path->slots[0]);
3797
		}
3798 3799 3800 3801
		if (ret) {
			err = ret;
			goto out;
		}
3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831
		ptr += btrfs_extent_inline_ref_size(key.type);
	}
	WARN_ON(ptr > end);

	while (1) {
		cond_resched();
		eb = path->nodes[0];
		if (path->slots[0] >= btrfs_header_nritems(eb)) {
			ret = btrfs_next_leaf(rc->extent_root, path);
			if (ret < 0) {
				err = ret;
				break;
			}
			if (ret > 0)
				break;
			eb = path->nodes[0];
		}

		btrfs_item_key_to_cpu(eb, &key, path->slots[0]);
		if (key.objectid != extent_key->objectid)
			break;

		if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
			ret = __add_tree_block(rc, key.offset, blocksize,
					       blocks);
		} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
			dref = btrfs_item_ptr(eb, path->slots[0],
					      struct btrfs_extent_data_ref);
			ret = find_data_references(rc, extent_key,
						   eb, dref, blocks);
3832
		} else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) {
3833 3834 3835
			btrfs_print_v0_err(eb->fs_info);
			btrfs_handle_fs_error(eb->fs_info, -EINVAL, NULL);
			ret = -EINVAL;
3836 3837 3838 3839 3840 3841 3842 3843 3844
		} else {
			ret = 0;
		}
		if (ret) {
			err = ret;
			break;
		}
		path->slots[0]++;
	}
3845
out:
3846
	btrfs_release_path(path);
3847 3848 3849 3850 3851 3852
	if (err)
		free_block_list(blocks);
	return err;
}

/*
L
Liu Bo 已提交
3853
 * helper to find next unprocessed extent
3854 3855
 */
static noinline_for_stack
3856
int find_next_extent(struct reloc_control *rc, struct btrfs_path *path,
3857
		     struct btrfs_key *extent_key)
3858
{
3859
	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897
	struct btrfs_key key;
	struct extent_buffer *leaf;
	u64 start, end, last;
	int ret;

	last = rc->block_group->key.objectid + rc->block_group->key.offset;
	while (1) {
		cond_resched();
		if (rc->search_start >= last) {
			ret = 1;
			break;
		}

		key.objectid = rc->search_start;
		key.type = BTRFS_EXTENT_ITEM_KEY;
		key.offset = 0;

		path->search_commit_root = 1;
		path->skip_locking = 1;
		ret = btrfs_search_slot(NULL, rc->extent_root, &key, path,
					0, 0);
		if (ret < 0)
			break;
next:
		leaf = path->nodes[0];
		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
			ret = btrfs_next_leaf(rc->extent_root, path);
			if (ret != 0)
				break;
			leaf = path->nodes[0];
		}

		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
		if (key.objectid >= last) {
			ret = 1;
			break;
		}

3898 3899 3900 3901 3902 3903 3904
		if (key.type != BTRFS_EXTENT_ITEM_KEY &&
		    key.type != BTRFS_METADATA_ITEM_KEY) {
			path->slots[0]++;
			goto next;
		}

		if (key.type == BTRFS_EXTENT_ITEM_KEY &&
3905 3906 3907 3908 3909
		    key.objectid + key.offset <= rc->search_start) {
			path->slots[0]++;
			goto next;
		}

3910
		if (key.type == BTRFS_METADATA_ITEM_KEY &&
3911
		    key.objectid + fs_info->nodesize <=
3912 3913 3914 3915 3916
		    rc->search_start) {
			path->slots[0]++;
			goto next;
		}

3917 3918
		ret = find_first_extent_bit(&rc->processed_blocks,
					    key.objectid, &start, &end,
3919
					    EXTENT_DIRTY, NULL);
3920 3921

		if (ret == 0 && start <= key.objectid) {
3922
			btrfs_release_path(path);
3923 3924
			rc->search_start = end + 1;
		} else {
3925 3926 3927 3928
			if (key.type == BTRFS_EXTENT_ITEM_KEY)
				rc->search_start = key.objectid + key.offset;
			else
				rc->search_start = key.objectid +
3929
					fs_info->nodesize;
3930
			memcpy(extent_key, &key, sizeof(key));
3931 3932 3933
			return 0;
		}
	}
3934
	btrfs_release_path(path);
3935 3936 3937 3938 3939 3940
	return ret;
}

static void set_reloc_control(struct reloc_control *rc)
{
	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
C
Chris Mason 已提交
3941 3942

	mutex_lock(&fs_info->reloc_mutex);
3943
	fs_info->reloc_ctl = rc;
C
Chris Mason 已提交
3944
	mutex_unlock(&fs_info->reloc_mutex);
3945 3946 3947 3948 3949
}

static void unset_reloc_control(struct reloc_control *rc)
{
	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
C
Chris Mason 已提交
3950 3951

	mutex_lock(&fs_info->reloc_mutex);
3952
	fs_info->reloc_ctl = NULL;
C
Chris Mason 已提交
3953
	mutex_unlock(&fs_info->reloc_mutex);
3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969
}

static int check_extent_flags(u64 flags)
{
	if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
	    (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
		return 1;
	if (!(flags & BTRFS_EXTENT_FLAG_DATA) &&
	    !(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
		return 1;
	if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
	    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
		return 1;
	return 0;
}

3970 3971 3972 3973
static noinline_for_stack
int prepare_to_relocate(struct reloc_control *rc)
{
	struct btrfs_trans_handle *trans;
3974
	int ret;
3975

3976
	rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root->fs_info,
3977
					      BTRFS_BLOCK_RSV_TEMP);
3978 3979 3980 3981 3982 3983 3984 3985
	if (!rc->block_rsv)
		return -ENOMEM;

	memset(&rc->cluster, 0, sizeof(rc->cluster));
	rc->search_start = rc->block_group->key.objectid;
	rc->extents_found = 0;
	rc->nodes_relocated = 0;
	rc->merging_rsv_size = 0;
3986
	rc->reserved_bytes = 0;
3987
	rc->block_rsv->size = rc->extent_root->fs_info->nodesize *
3988
			      RELOCATION_RESERVED_NODES;
3989 3990 3991 3992 3993
	ret = btrfs_block_rsv_refill(rc->extent_root,
				     rc->block_rsv, rc->block_rsv->size,
				     BTRFS_RESERVE_FLUSH_ALL);
	if (ret)
		return ret;
3994 3995 3996 3997

	rc->create_reloc_tree = 1;
	set_reloc_control(rc);

3998
	trans = btrfs_join_transaction(rc->extent_root);
3999 4000 4001 4002 4003 4004 4005 4006 4007
	if (IS_ERR(trans)) {
		unset_reloc_control(rc);
		/*
		 * extent tree is not a ref_cow tree and has no reloc_root to
		 * cleanup.  And callers are responsible to free the above
		 * block rsv.
		 */
		return PTR_ERR(trans);
	}
4008
	btrfs_commit_transaction(trans);
4009 4010
	return 0;
}
4011

4012 4013
static noinline_for_stack int relocate_block_group(struct reloc_control *rc)
{
4014
	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
4015 4016 4017 4018 4019 4020 4021 4022 4023
	struct rb_root blocks = RB_ROOT;
	struct btrfs_key key;
	struct btrfs_trans_handle *trans = NULL;
	struct btrfs_path *path;
	struct btrfs_extent_item *ei;
	u64 flags;
	u32 item_size;
	int ret;
	int err = 0;
4024
	int progress = 0;
4025 4026

	path = btrfs_alloc_path();
4027
	if (!path)
4028
		return -ENOMEM;
4029
	path->reada = READA_FORWARD;
4030

4031 4032 4033 4034 4035
	ret = prepare_to_relocate(rc);
	if (ret) {
		err = ret;
		goto out_free;
	}
4036 4037

	while (1) {
4038 4039 4040 4041 4042 4043 4044 4045
		rc->reserved_bytes = 0;
		ret = btrfs_block_rsv_refill(rc->extent_root,
					rc->block_rsv, rc->block_rsv->size,
					BTRFS_RESERVE_FLUSH_ALL);
		if (ret) {
			err = ret;
			break;
		}
4046
		progress++;
4047
		trans = btrfs_start_transaction(rc->extent_root, 0);
4048 4049 4050 4051 4052
		if (IS_ERR(trans)) {
			err = PTR_ERR(trans);
			trans = NULL;
			break;
		}
4053
restart:
4054
		if (update_backref_cache(trans, &rc->backref_cache)) {
4055
			btrfs_end_transaction(trans);
4056
			trans = NULL;
4057 4058 4059
			continue;
		}

4060
		ret = find_next_extent(rc, path, &key);
4061 4062 4063 4064 4065 4066 4067 4068 4069
		if (ret < 0)
			err = ret;
		if (ret != 0)
			break;

		rc->extents_found++;

		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
				    struct btrfs_extent_item);
4070
		item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
4071 4072 4073 4074
		if (item_size >= sizeof(*ei)) {
			flags = btrfs_extent_flags(path->nodes[0], ei);
			ret = check_extent_flags(flags);
			BUG_ON(ret);
4075
		} else if (unlikely(item_size == sizeof(struct btrfs_extent_item_v0))) {
4076 4077 4078 4079
			err = -EINVAL;
			btrfs_print_v0_err(trans->fs_info);
			btrfs_abort_transaction(trans, err);
			break;
4080 4081 4082 4083 4084 4085 4086
		} else {
			BUG();
		}

		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
			ret = add_tree_block(rc, &key, path, &blocks);
		} else if (rc->stage == UPDATE_DATA_PTRS &&
4087
			   (flags & BTRFS_EXTENT_FLAG_DATA)) {
4088 4089
			ret = add_data_references(rc, &key, path, &blocks);
		} else {
4090
			btrfs_release_path(path);
4091 4092 4093
			ret = 0;
		}
		if (ret < 0) {
4094
			err = ret;
4095 4096 4097 4098 4099 4100
			break;
		}

		if (!RB_EMPTY_ROOT(&blocks)) {
			ret = relocate_tree_blocks(trans, rc, &blocks);
			if (ret < 0) {
4101 4102 4103 4104 4105 4106
				/*
				 * if we fail to relocate tree blocks, force to update
				 * backref cache when committing transaction.
				 */
				rc->backref_cache.last_trans = trans->transid - 1;

4107 4108 4109 4110 4111 4112 4113 4114 4115
				if (ret != -EAGAIN) {
					err = ret;
					break;
				}
				rc->extents_found--;
				rc->search_start = key.objectid;
			}
		}

4116
		btrfs_end_transaction_throttle(trans);
4117
		btrfs_btree_balance_dirty(fs_info);
4118 4119 4120 4121 4122
		trans = NULL;

		if (rc->stage == MOVE_DATA_EXTENTS &&
		    (flags & BTRFS_EXTENT_FLAG_DATA)) {
			rc->found_file_extent = 1;
4123
			ret = relocate_data_extent(rc->data_inode,
4124
						   &key, &rc->cluster);
4125 4126 4127 4128 4129 4130
			if (ret < 0) {
				err = ret;
				break;
			}
		}
	}
4131
	if (trans && progress && err == -ENOSPC) {
4132
		ret = btrfs_force_chunk_alloc(trans, rc->block_group->flags);
4133
		if (ret == 1) {
4134 4135 4136 4137 4138
			err = 0;
			progress = 0;
			goto restart;
		}
	}
4139

4140
	btrfs_release_path(path);
4141
	clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY);
4142 4143

	if (trans) {
4144
		btrfs_end_transaction_throttle(trans);
4145
		btrfs_btree_balance_dirty(fs_info);
4146 4147
	}

4148
	if (!err) {
4149 4150
		ret = relocate_file_extent_cluster(rc->data_inode,
						   &rc->cluster);
4151 4152 4153 4154
		if (ret < 0)
			err = ret;
	}

4155 4156
	rc->create_reloc_tree = 0;
	set_reloc_control(rc);
4157

4158
	backref_cache_cleanup(&rc->backref_cache);
4159
	btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1);
4160

4161
	err = prepare_to_merge(rc, err);
4162 4163 4164

	merge_reloc_roots(rc);

4165
	rc->merge_reloc_tree = 0;
4166
	unset_reloc_control(rc);
4167
	btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1);
4168 4169

	/* get rid of pinned extents */
4170
	trans = btrfs_join_transaction(rc->extent_root);
4171
	if (IS_ERR(trans)) {
4172
		err = PTR_ERR(trans);
4173 4174
		goto out_free;
	}
4175
	btrfs_commit_transaction(trans);
4176 4177 4178
	ret = clean_dirty_subvols(rc);
	if (ret < 0 && !err)
		err = ret;
4179
out_free:
4180
	btrfs_free_block_rsv(fs_info, rc->block_rsv);
4181
	btrfs_free_path(path);
4182 4183 4184 4185
	return err;
}

static int __insert_orphan_inode(struct btrfs_trans_handle *trans,
4186
				 struct btrfs_root *root, u64 objectid)
4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202
{
	struct btrfs_path *path;
	struct btrfs_inode_item *item;
	struct extent_buffer *leaf;
	int ret;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	ret = btrfs_insert_empty_inode(trans, root, path, objectid);
	if (ret)
		goto out;

	leaf = path->nodes[0];
	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item);
4203
	memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
4204
	btrfs_set_inode_generation(leaf, item, 1);
4205
	btrfs_set_inode_size(leaf, item, 0);
4206
	btrfs_set_inode_mode(leaf, item, S_IFREG | 0600);
4207 4208
	btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS |
					  BTRFS_INODE_PREALLOC);
4209 4210 4211 4212 4213 4214 4215 4216 4217 4218
	btrfs_mark_buffer_dirty(leaf);
out:
	btrfs_free_path(path);
	return ret;
}

/*
 * helper to create inode for data relocation.
 * the inode is in data relocation tree and its link count is 0
 */
4219 4220 4221
static noinline_for_stack
struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info,
				 struct btrfs_block_group_cache *group)
4222 4223 4224 4225 4226
{
	struct inode *inode = NULL;
	struct btrfs_trans_handle *trans;
	struct btrfs_root *root;
	struct btrfs_key key;
4227
	u64 objectid;
4228 4229 4230 4231 4232 4233
	int err = 0;

	root = read_fs_root(fs_info, BTRFS_DATA_RELOC_TREE_OBJECTID);
	if (IS_ERR(root))
		return ERR_CAST(root);

4234
	trans = btrfs_start_transaction(root, 6);
4235 4236
	if (IS_ERR(trans))
		return ERR_CAST(trans);
4237

4238
	err = btrfs_find_free_objectid(root, &objectid);
4239 4240 4241
	if (err)
		goto out;

4242
	err = __insert_orphan_inode(trans, root, objectid);
4243 4244 4245 4246 4247
	BUG_ON(err);

	key.objectid = objectid;
	key.type = BTRFS_INODE_ITEM_KEY;
	key.offset = 0;
4248
	inode = btrfs_iget(fs_info->sb, &key, root, NULL);
4249
	BUG_ON(IS_ERR(inode));
4250 4251
	BTRFS_I(inode)->index_cnt = group->key.objectid;

4252
	err = btrfs_orphan_add(trans, BTRFS_I(inode));
4253
out:
4254
	btrfs_end_transaction(trans);
4255
	btrfs_btree_balance_dirty(fs_info);
4256 4257 4258 4259 4260 4261 4262 4263
	if (err) {
		if (inode)
			iput(inode);
		inode = ERR_PTR(err);
	}
	return inode;
}

4264
static struct reloc_control *alloc_reloc_control(struct btrfs_fs_info *fs_info)
4265 4266 4267 4268 4269 4270 4271 4272
{
	struct reloc_control *rc;

	rc = kzalloc(sizeof(*rc), GFP_NOFS);
	if (!rc)
		return NULL;

	INIT_LIST_HEAD(&rc->reloc_roots);
4273
	INIT_LIST_HEAD(&rc->dirty_subvol_roots);
4274 4275
	backref_cache_init(&rc->backref_cache);
	mapping_tree_init(&rc->reloc_root_tree);
4276 4277
	extent_io_tree_init(fs_info, &rc->processed_blocks,
			    IO_TREE_RELOC_BLOCKS, NULL);
4278 4279 4280
	return rc;
}

4281 4282 4283 4284 4285 4286
/*
 * Print the block group being relocated
 */
static void describe_relocation(struct btrfs_fs_info *fs_info,
				struct btrfs_block_group_cache *block_group)
{
4287
	char buf[128] = {'\0'};
4288

4289
	btrfs_describe_block_groups(block_group->flags, buf, sizeof(buf));
4290 4291 4292

	btrfs_info(fs_info,
		   "relocating block group %llu flags %s",
4293
		   block_group->key.objectid, buf);
4294 4295
}

4296 4297 4298
/*
 * function to relocate all extents in a block group.
 */
4299
int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start)
4300
{
4301
	struct btrfs_block_group_cache *bg;
4302
	struct btrfs_root *extent_root = fs_info->extent_root;
4303
	struct reloc_control *rc;
4304 4305
	struct inode *inode;
	struct btrfs_path *path;
4306
	int ret;
4307
	int rw = 0;
4308 4309
	int err = 0;

4310 4311 4312 4313 4314 4315 4316 4317 4318
	bg = btrfs_lookup_block_group(fs_info, group_start);
	if (!bg)
		return -ENOENT;

	if (btrfs_pinned_by_swapfile(fs_info, bg)) {
		btrfs_put_block_group(bg);
		return -ETXTBSY;
	}

4319
	rc = alloc_reloc_control(fs_info);
4320 4321
	if (!rc) {
		btrfs_put_block_group(bg);
4322
		return -ENOMEM;
4323
	}
4324

4325
	rc->extent_root = extent_root;
4326
	rc->block_group = bg;
4327

4328
	ret = btrfs_inc_block_group_ro(rc->block_group);
4329 4330 4331
	if (ret) {
		err = ret;
		goto out;
4332
	}
4333
	rw = 1;
4334

4335 4336 4337 4338 4339 4340
	path = btrfs_alloc_path();
	if (!path) {
		err = -ENOMEM;
		goto out;
	}

4341
	inode = lookup_free_space_inode(rc->block_group, path);
4342 4343 4344
	btrfs_free_path(path);

	if (!IS_ERR(inode))
4345
		ret = delete_block_group_cache(fs_info, rc->block_group, inode, 0);
4346 4347 4348 4349 4350 4351 4352 4353
	else
		ret = PTR_ERR(inode);

	if (ret && ret != -ENOENT) {
		err = ret;
		goto out;
	}

4354 4355 4356 4357 4358 4359 4360
	rc->data_inode = create_reloc_inode(fs_info, rc->block_group);
	if (IS_ERR(rc->data_inode)) {
		err = PTR_ERR(rc->data_inode);
		rc->data_inode = NULL;
		goto out;
	}

4361
	describe_relocation(fs_info, rc->block_group);
4362

4363
	btrfs_wait_block_group_reservations(rc->block_group);
4364
	btrfs_wait_nocow_writers(rc->block_group);
4365
	btrfs_wait_ordered_roots(fs_info, U64_MAX,
4366 4367
				 rc->block_group->key.objectid,
				 rc->block_group->key.offset);
4368 4369

	while (1) {
4370
		mutex_lock(&fs_info->cleaner_mutex);
4371
		ret = relocate_block_group(rc);
4372
		mutex_unlock(&fs_info->cleaner_mutex);
4373
		if (ret < 0)
4374 4375
			err = ret;

4376 4377 4378 4379 4380 4381 4382 4383 4384
		/*
		 * We may have gotten ENOSPC after we already dirtied some
		 * extents.  If writeout happens while we're relocating a
		 * different block group we could end up hitting the
		 * BUG_ON(rc->stage == UPDATE_DATA_PTRS) in
		 * btrfs_reloc_cow_block.  Make sure we write everything out
		 * properly so we don't trip over this problem, and then break
		 * out of the loop if we hit an error.
		 */
4385
		if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) {
4386 4387
			ret = btrfs_wait_ordered_range(rc->data_inode, 0,
						       (u64)-1);
4388
			if (ret)
4389
				err = ret;
4390 4391 4392 4393
			invalidate_mapping_pages(rc->data_inode->i_mapping,
						 0, -1);
			rc->stage = UPDATE_DATA_PTRS;
		}
4394 4395 4396 4397 4398 4399 4400 4401 4402

		if (err < 0)
			goto out;

		if (rc->extents_found == 0)
			break;

		btrfs_info(fs_info, "found %llu extents", rc->extents_found);

4403 4404 4405 4406 4407 4408
	}

	WARN_ON(rc->block_group->pinned > 0);
	WARN_ON(rc->block_group->reserved > 0);
	WARN_ON(btrfs_block_group_used(&rc->block_group->item) > 0);
out:
4409
	if (err && rw)
4410
		btrfs_dec_block_group_ro(rc->block_group);
4411 4412 4413 4414 4415 4416
	iput(rc->data_inode);
	btrfs_put_block_group(rc->block_group);
	kfree(rc);
	return err;
}

4417 4418
static noinline_for_stack int mark_garbage_root(struct btrfs_root *root)
{
4419
	struct btrfs_fs_info *fs_info = root->fs_info;
4420
	struct btrfs_trans_handle *trans;
4421
	int ret, err;
4422

4423
	trans = btrfs_start_transaction(fs_info->tree_root, 0);
4424 4425
	if (IS_ERR(trans))
		return PTR_ERR(trans);
4426 4427 4428 4429 4430

	memset(&root->root_item.drop_progress, 0,
		sizeof(root->root_item.drop_progress));
	root->root_item.drop_level = 0;
	btrfs_set_root_refs(&root->root_item, 0);
4431
	ret = btrfs_update_root(trans, fs_info->tree_root,
4432 4433
				&root->root_key, &root->root_item);

4434
	err = btrfs_end_transaction(trans);
4435 4436 4437
	if (err)
		return err;
	return ret;
4438 4439
}

4440 4441 4442 4443 4444 4445 4446 4447
/*
 * recover relocation interrupted by system crash.
 *
 * this function resumes merging reloc trees with corresponding fs trees.
 * this is important for keeping the sharing of tree blocks
 */
int btrfs_recover_relocation(struct btrfs_root *root)
{
4448
	struct btrfs_fs_info *fs_info = root->fs_info;
4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462
	LIST_HEAD(reloc_roots);
	struct btrfs_key key;
	struct btrfs_root *fs_root;
	struct btrfs_root *reloc_root;
	struct btrfs_path *path;
	struct extent_buffer *leaf;
	struct reloc_control *rc = NULL;
	struct btrfs_trans_handle *trans;
	int ret;
	int err = 0;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;
4463
	path->reada = READA_BACK;
4464 4465 4466 4467 4468 4469

	key.objectid = BTRFS_TREE_RELOC_OBJECTID;
	key.type = BTRFS_ROOT_ITEM_KEY;
	key.offset = (u64)-1;

	while (1) {
4470
		ret = btrfs_search_slot(NULL, fs_info->tree_root, &key,
4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482
					path, 0, 0);
		if (ret < 0) {
			err = ret;
			goto out;
		}
		if (ret > 0) {
			if (path->slots[0] == 0)
				break;
			path->slots[0]--;
		}
		leaf = path->nodes[0];
		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4483
		btrfs_release_path(path);
4484 4485 4486 4487 4488

		if (key.objectid != BTRFS_TREE_RELOC_OBJECTID ||
		    key.type != BTRFS_ROOT_ITEM_KEY)
			break;

4489
		reloc_root = btrfs_read_fs_root(root, &key);
4490 4491 4492 4493 4494 4495 4496 4497
		if (IS_ERR(reloc_root)) {
			err = PTR_ERR(reloc_root);
			goto out;
		}

		list_add(&reloc_root->root_list, &reloc_roots);

		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
4498
			fs_root = read_fs_root(fs_info,
4499 4500
					       reloc_root->root_key.offset);
			if (IS_ERR(fs_root)) {
4501 4502 4503 4504 4505
				ret = PTR_ERR(fs_root);
				if (ret != -ENOENT) {
					err = ret;
					goto out;
				}
4506 4507 4508 4509 4510
				ret = mark_garbage_root(reloc_root);
				if (ret < 0) {
					err = ret;
					goto out;
				}
4511 4512 4513 4514 4515 4516 4517 4518
			}
		}

		if (key.offset == 0)
			break;

		key.offset--;
	}
4519
	btrfs_release_path(path);
4520 4521 4522 4523

	if (list_empty(&reloc_roots))
		goto out;

4524
	rc = alloc_reloc_control(fs_info);
4525 4526 4527 4528 4529
	if (!rc) {
		err = -ENOMEM;
		goto out;
	}

4530
	rc->extent_root = fs_info->extent_root;
4531 4532 4533

	set_reloc_control(rc);

4534
	trans = btrfs_join_transaction(rc->extent_root);
4535 4536 4537 4538 4539
	if (IS_ERR(trans)) {
		unset_reloc_control(rc);
		err = PTR_ERR(trans);
		goto out_free;
	}
4540 4541 4542

	rc->merge_reloc_tree = 1;

4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553
	while (!list_empty(&reloc_roots)) {
		reloc_root = list_entry(reloc_roots.next,
					struct btrfs_root, root_list);
		list_del(&reloc_root->root_list);

		if (btrfs_root_refs(&reloc_root->root_item) == 0) {
			list_add_tail(&reloc_root->root_list,
				      &rc->reloc_roots);
			continue;
		}

4554
		fs_root = read_fs_root(fs_info, reloc_root->root_key.offset);
4555 4556 4557 4558
		if (IS_ERR(fs_root)) {
			err = PTR_ERR(fs_root);
			goto out_free;
		}
4559

4560
		err = __add_reloc_root(reloc_root);
4561
		BUG_ON(err < 0); /* -ENOMEM or logic error */
4562 4563 4564
		fs_root->reloc_root = reloc_root;
	}

4565
	err = btrfs_commit_transaction(trans);
4566 4567
	if (err)
		goto out_free;
4568 4569 4570 4571 4572

	merge_reloc_roots(rc);

	unset_reloc_control(rc);

4573
	trans = btrfs_join_transaction(rc->extent_root);
4574
	if (IS_ERR(trans)) {
4575
		err = PTR_ERR(trans);
4576 4577
		goto out_free;
	}
4578
	err = btrfs_commit_transaction(trans);
4579 4580 4581 4582

	ret = clean_dirty_subvols(rc);
	if (ret < 0 && !err)
		err = ret;
4583
out_free:
4584
	kfree(rc);
4585
out:
4586 4587 4588
	if (!list_empty(&reloc_roots))
		free_reloc_roots(&reloc_roots);

4589 4590 4591 4592
	btrfs_free_path(path);

	if (err == 0) {
		/* cleanup orphan inode in data relocation tree */
4593
		fs_root = read_fs_root(fs_info, BTRFS_DATA_RELOC_TREE_OBJECTID);
4594 4595
		if (IS_ERR(fs_root))
			err = PTR_ERR(fs_root);
4596
		else
4597
			err = btrfs_orphan_cleanup(fs_root);
4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609
	}
	return err;
}

/*
 * helper to add ordered checksum for data relocation.
 *
 * cloning checksum properly handles the nodatasum extents.
 * it also saves CPU time to re-calculate the checksum.
 */
int btrfs_reloc_clone_csums(struct inode *inode, u64 file_pos, u64 len)
{
4610
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4611 4612 4613 4614
	struct btrfs_ordered_sum *sums;
	struct btrfs_ordered_extent *ordered;
	int ret;
	u64 disk_bytenr;
4615
	u64 new_bytenr;
4616 4617 4618 4619 4620 4621
	LIST_HEAD(list);

	ordered = btrfs_lookup_ordered_extent(inode, file_pos);
	BUG_ON(ordered->file_offset != file_pos || ordered->len != len);

	disk_bytenr = file_pos + BTRFS_I(inode)->index_cnt;
4622
	ret = btrfs_lookup_csums_range(fs_info->csum_root, disk_bytenr,
A
Arne Jansen 已提交
4623
				       disk_bytenr + len - 1, &list, 0);
4624 4625
	if (ret)
		goto out;
4626 4627 4628 4629 4630

	while (!list_empty(&list)) {
		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
		list_del_init(&sums->list);

4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644
		/*
		 * We need to offset the new_bytenr based on where the csum is.
		 * We need to do this because we will read in entire prealloc
		 * extents but we may have written to say the middle of the
		 * prealloc extent, so we need to make sure the csum goes with
		 * the right disk offset.
		 *
		 * We can do this because the data reloc inode refers strictly
		 * to the on disk bytes, so we don't have to worry about
		 * disk_len vs real len like with real inodes since it's all
		 * disk length.
		 */
		new_bytenr = ordered->start + (sums->bytenr - disk_bytenr);
		sums->bytenr = new_bytenr;
4645

4646
		btrfs_add_ordered_sum(ordered, sums);
4647
	}
4648
out:
4649
	btrfs_put_ordered_extent(ordered);
4650
	return ret;
4651
}
4652

4653 4654 4655
int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
			  struct btrfs_root *root, struct extent_buffer *buf,
			  struct extent_buffer *cow)
4656
{
4657
	struct btrfs_fs_info *fs_info = root->fs_info;
4658 4659 4660 4661
	struct reloc_control *rc;
	struct backref_node *node;
	int first_cow = 0;
	int level;
4662
	int ret = 0;
4663

4664
	rc = fs_info->reloc_ctl;
4665
	if (!rc)
4666
		return 0;
4667 4668 4669 4670

	BUG_ON(rc->stage == UPDATE_DATA_PTRS &&
	       root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID);

4671 4672 4673 4674 4675
	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
		if (buf == root->node)
			__update_reloc_root(root, cow->start);
	}

4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706
	level = btrfs_header_level(buf);
	if (btrfs_header_generation(buf) <=
	    btrfs_root_last_snapshot(&root->root_item))
		first_cow = 1;

	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID &&
	    rc->create_reloc_tree) {
		WARN_ON(!first_cow && level == 0);

		node = rc->backref_cache.path[level];
		BUG_ON(node->bytenr != buf->start &&
		       node->new_bytenr != buf->start);

		drop_node_buffer(node);
		extent_buffer_get(cow);
		node->eb = cow;
		node->new_bytenr = cow->start;

		if (!node->pending) {
			list_move_tail(&node->list,
				       &rc->backref_cache.pending[level]);
			node->pending = 1;
		}

		if (first_cow)
			__mark_block_processed(rc, node);

		if (first_cow && level > 0)
			rc->nodes_relocated += buf->len;
	}

4707
	if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS)
4708
		ret = replace_file_extents(trans, rc, root, cow);
4709
	return ret;
4710 4711 4712 4713
}

/*
 * called before creating snapshot. it calculates metadata reservation
4714
 * required for relocating tree blocks in the snapshot
4715
 */
4716
void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending,
4717 4718
			      u64 *bytes_to_reserve)
{
4719 4720
	struct btrfs_root *root = pending->root;
	struct reloc_control *rc = root->fs_info->reloc_ctl;
4721

4722
	if (!root->reloc_root || !rc)
4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746
		return;

	if (!rc->merge_reloc_tree)
		return;

	root = root->reloc_root;
	BUG_ON(btrfs_root_refs(&root->root_item) == 0);
	/*
	 * relocation is in the stage of merging trees. the space
	 * used by merging a reloc tree is twice the size of
	 * relocated tree nodes in the worst case. half for cowing
	 * the reloc tree, half for cowing the fs tree. the space
	 * used by cowing the reloc tree will be freed after the
	 * tree is dropped. if we create snapshot, cowing the fs
	 * tree may use more space than it frees. so we need
	 * reserve extra space.
	 */
	*bytes_to_reserve += rc->nodes_relocated;
}

/*
 * called after snapshot is created. migrate block reservation
 * and create reloc root for the newly created snapshot
 */
4747
int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
4748 4749 4750 4751 4752
			       struct btrfs_pending_snapshot *pending)
{
	struct btrfs_root *root = pending->root;
	struct btrfs_root *reloc_root;
	struct btrfs_root *new_root;
4753
	struct reloc_control *rc = root->fs_info->reloc_ctl;
4754 4755
	int ret;

4756
	if (!root->reloc_root || !rc)
4757
		return 0;
4758 4759 4760 4761 4762 4763 4764

	rc = root->fs_info->reloc_ctl;
	rc->merging_rsv_size += rc->nodes_relocated;

	if (rc->merge_reloc_tree) {
		ret = btrfs_block_rsv_migrate(&pending->block_rsv,
					      rc->block_rsv,
4765
					      rc->nodes_relocated, true);
4766 4767
		if (ret)
			return ret;
4768 4769 4770 4771 4772
	}

	new_root = pending->snap;
	reloc_root = create_reloc_root(trans, root->reloc_root,
				       new_root->root_key.objectid);
4773 4774
	if (IS_ERR(reloc_root))
		return PTR_ERR(reloc_root);
4775

4776 4777
	ret = __add_reloc_root(reloc_root);
	BUG_ON(ret < 0);
4778 4779
	new_root->reloc_root = reloc_root;

4780
	if (rc->create_reloc_tree)
4781
		ret = clone_backref_node(trans, rc, root, reloc_root);
4782
	return ret;
4783
}