netvsc_drv.c 49.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
/*
 * Copyright (c) 2009, Microsoft Corporation.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License along with
14
 * this program; if not, see <http://www.gnu.org/licenses/>.
15 16
 *
 * Authors:
17
 *   Haiyang Zhang <haiyangz@microsoft.com>
18 19
 *   Hank Janssen  <hjanssen@microsoft.com>
 */
20 21
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

22
#include <linux/init.h>
23
#include <linux/atomic.h>
24 25 26 27 28 29 30 31 32
#include <linux/module.h>
#include <linux/highmem.h>
#include <linux/device.h>
#include <linux/io.h>
#include <linux/delay.h>
#include <linux/netdevice.h>
#include <linux/inetdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
33
#include <linux/if_vlan.h>
34
#include <linux/in.h>
35
#include <linux/slab.h>
S
stephen hemminger 已提交
36
#include <linux/rtnetlink.h>
37
#include <linux/netpoll.h>
S
stephen hemminger 已提交
38

39 40 41 42
#include <net/arp.h>
#include <net/route.h>
#include <net/sock.h>
#include <net/pkt_sched.h>
43 44
#include <net/checksum.h>
#include <net/ip6_checksum.h>
45

46
#include "hyperv_net.h"
47

48
#define RING_SIZE_MIN 64
49
#define LINKCHANGE_INT (2 * HZ)
50
#define VF_TAKEOVER_INT (HZ / 10)
51

52
static int ring_size = 128;
S
Stephen Hemminger 已提交
53 54
module_param(ring_size, int, S_IRUGO);
MODULE_PARM_DESC(ring_size, "Ring buffer size (# of pages)");
55

56 57 58 59 60 61 62 63 64
static const u32 default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE |
				NETIF_MSG_LINK | NETIF_MSG_IFUP |
				NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR |
				NETIF_MSG_TX_ERR;

static int debug = -1;
module_param(debug, int, S_IRUGO);
MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");

65
static void netvsc_set_multicast_list(struct net_device *net)
66
{
67
	struct net_device_context *net_device_ctx = netdev_priv(net);
68
	struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
69

70
	rndis_filter_update(nvdev);
71 72 73 74
}

static int netvsc_open(struct net_device *net)
{
75
	struct net_device_context *ndev_ctx = netdev_priv(net);
76
	struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
77
	struct netvsc_device *nvdev = rtnl_dereference(ndev_ctx->nvdev);
78
	struct rndis_device *rdev;
79
	int ret = 0;
80

81 82
	netif_carrier_off(net);

83
	/* Open up the device */
84
	ret = rndis_filter_open(nvdev);
85 86 87
	if (ret != 0) {
		netdev_err(net, "unable to open device (ret %d).\n", ret);
		return ret;
88 89
	}

90
	netif_tx_wake_all_queues(net);
91

92
	rdev = nvdev->extension;
93 94

	if (!rdev->link_state)
95 96
		netif_carrier_on(net);

97 98 99 100 101 102 103 104 105 106 107 108
	if (vf_netdev) {
		/* Setting synthetic device up transparently sets
		 * slave as up. If open fails, then slave will be
		 * still be offline (and not used).
		 */
		ret = dev_open(vf_netdev);
		if (ret)
			netdev_warn(net,
				    "unable to open slave: %s: %d\n",
				    vf_netdev->name, ret);
	}
	return 0;
109 110 111 112 113
}

static int netvsc_close(struct net_device *net)
{
	struct net_device_context *net_device_ctx = netdev_priv(net);
114 115
	struct net_device *vf_netdev
		= rtnl_dereference(net_device_ctx->vf_netdev);
116
	struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
117
	int ret;
118
	u32 aread, i, msec = 10, retry = 0, retry_max = 20;
119
	struct vmbus_channel *chn;
120

121
	netif_tx_disable(net);
122

123
	ret = rndis_filter_close(nvdev);
124
	if (ret != 0) {
125
		netdev_err(net, "unable to close device (ret %d).\n", ret);
126 127 128 129 130 131 132
		return ret;
	}

	/* Ensure pending bytes in ring are read */
	while (true) {
		aread = 0;
		for (i = 0; i < nvdev->num_chn; i++) {
133
			chn = nvdev->chan_table[i].channel;
134 135 136
			if (!chn)
				continue;

137
			aread = hv_get_bytes_to_read(&chn->inbound);
138 139 140
			if (aread)
				break;

141
			aread = hv_get_bytes_to_read(&chn->outbound);
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
			if (aread)
				break;
		}

		retry++;
		if (retry > retry_max || aread == 0)
			break;

		msleep(msec);

		if (msec < 1000)
			msec *= 2;
	}

	if (aread) {
		netdev_err(net, "Ring buffer not empty after closing rndis\n");
		ret = -ETIMEDOUT;
	}
160

161 162 163
	if (vf_netdev)
		dev_close(vf_netdev);

164 165 166
	return ret;
}

167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
static void *init_ppi_data(struct rndis_message *msg, u32 ppi_size,
				int pkt_type)
{
	struct rndis_packet *rndis_pkt;
	struct rndis_per_packet_info *ppi;

	rndis_pkt = &msg->msg.pkt;
	rndis_pkt->data_offset += ppi_size;

	ppi = (struct rndis_per_packet_info *)((void *)rndis_pkt +
		rndis_pkt->per_pkt_info_offset + rndis_pkt->per_pkt_info_len);

	ppi->size = ppi_size;
	ppi->type = pkt_type;
	ppi->ppi_offset = sizeof(struct rndis_per_packet_info);

	rndis_pkt->per_pkt_info_len += ppi_size;

	return ppi;
}

188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
/* Azure hosts don't support non-TCP port numbers in hashing yet. We compute
 * hash for non-TCP traffic with only IP numbers.
 */
static inline u32 netvsc_get_hash(struct sk_buff *skb, struct sock *sk)
{
	struct flow_keys flow;
	u32 hash;
	static u32 hashrnd __read_mostly;

	net_get_random_once(&hashrnd, sizeof(hashrnd));

	if (!skb_flow_dissect_flow_keys(skb, &flow, 0))
		return 0;

	if (flow.basic.ip_proto == IPPROTO_TCP) {
		return skb_get_hash(skb);
	} else {
		if (flow.basic.n_proto == htons(ETH_P_IP))
			hash = jhash2((u32 *)&flow.addrs.v4addrs, 2, hashrnd);
		else if (flow.basic.n_proto == htons(ETH_P_IPV6))
			hash = jhash2((u32 *)&flow.addrs.v6addrs, 8, hashrnd);
		else
			hash = 0;

		skb_set_hash(skb, hash, PKT_HASH_TYPE_L3);
	}

	return hash;
}

218 219 220 221 222 223 224
static inline int netvsc_get_tx_queue(struct net_device *ndev,
				      struct sk_buff *skb, int old_idx)
{
	const struct net_device_context *ndc = netdev_priv(ndev);
	struct sock *sk = skb->sk;
	int q_idx;

225
	q_idx = ndc->tx_send_table[netvsc_get_hash(skb, sk) &
226 227 228 229 230 231 232 233 234 235
				   (VRSS_SEND_TAB_SIZE - 1)];

	/* If queue index changed record the new value */
	if (q_idx != old_idx &&
	    sk && sk_fullsock(sk) && rcu_access_pointer(sk->sk_dst_cache))
		sk_tx_queue_set(sk, q_idx);

	return q_idx;
}

236 237 238 239 240 241 242 243 244 245 246
/*
 * Select queue for transmit.
 *
 * If a valid queue has already been assigned, then use that.
 * Otherwise compute tx queue based on hash and the send table.
 *
 * This is basically similar to default (__netdev_pick_tx) with the added step
 * of using the host send_table when no other queue has been assigned.
 *
 * TODO support XPS - but get_xps_queue not exported
 */
247
static u16 netvsc_pick_tx(struct net_device *ndev, struct sk_buff *skb)
248
{
249 250
	int q_idx = sk_tx_queue_get(skb->sk);

251
	if (q_idx < 0 || skb->ooo_okay || q_idx >= ndev->real_num_tx_queues) {
252 253 254 255 256 257 258
		/* If forwarding a packet, we use the recorded queue when
		 * available for better cache locality.
		 */
		if (skb_rx_queue_recorded(skb))
			q_idx = skb_get_rx_queue(skb);
		else
			q_idx = netvsc_get_tx_queue(ndev, skb, q_idx);
259
	}
260 261 262 263

	return q_idx;
}

264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
static u16 netvsc_select_queue(struct net_device *ndev, struct sk_buff *skb,
			       void *accel_priv,
			       select_queue_fallback_t fallback)
{
	struct net_device_context *ndc = netdev_priv(ndev);
	struct net_device *vf_netdev;
	u16 txq;

	rcu_read_lock();
	vf_netdev = rcu_dereference(ndc->vf_netdev);
	if (vf_netdev) {
		txq = skb_rx_queue_recorded(skb) ? skb_get_rx_queue(skb) : 0;
		qdisc_skb_cb(skb)->slave_dev_queue_mapping = skb->queue_mapping;
	} else {
		txq = netvsc_pick_tx(ndev, skb);
	}
	rcu_read_unlock();

	while (unlikely(txq >= ndev->real_num_tx_queues))
		txq -= ndev->real_num_tx_queues;

	return txq;
}

288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
static u32 fill_pg_buf(struct page *page, u32 offset, u32 len,
			struct hv_page_buffer *pb)
{
	int j = 0;

	/* Deal with compund pages by ignoring unused part
	 * of the page.
	 */
	page += (offset >> PAGE_SHIFT);
	offset &= ~PAGE_MASK;

	while (len > 0) {
		unsigned long bytes;

		bytes = PAGE_SIZE - offset;
		if (bytes > len)
			bytes = len;
		pb[j].pfn = page_to_pfn(page);
		pb[j].offset = offset;
		pb[j].len = bytes;

		offset += bytes;
		len -= bytes;

		if (offset == PAGE_SIZE && len) {
			page++;
			offset = 0;
			j++;
		}
	}

	return j + 1;
}

322
static u32 init_page_array(void *hdr, u32 len, struct sk_buff *skb,
323
			   struct hv_netvsc_packet *packet,
324
			   struct hv_page_buffer *pb)
325 326 327 328 329 330 331
{
	u32 slots_used = 0;
	char *data = skb->data;
	int frags = skb_shinfo(skb)->nr_frags;
	int i;

	/* The packet is laid out thus:
332
	 * 1. hdr: RNDIS header and PPI
333 334 335 336 337 338 339 340
	 * 2. skb linear data
	 * 3. skb fragment data
	 */
	if (hdr != NULL)
		slots_used += fill_pg_buf(virt_to_page(hdr),
					offset_in_page(hdr),
					len, &pb[slots_used]);

341 342 343
	packet->rmsg_size = len;
	packet->rmsg_pgcnt = slots_used;

344 345 346 347 348 349 350 351 352 353 354
	slots_used += fill_pg_buf(virt_to_page(data),
				offset_in_page(data),
				skb_headlen(skb), &pb[slots_used]);

	for (i = 0; i < frags; i++) {
		skb_frag_t *frag = skb_shinfo(skb)->frags + i;

		slots_used += fill_pg_buf(skb_frag_page(frag),
					frag->page_offset,
					skb_frag_size(frag), &pb[slots_used]);
	}
355
	return slots_used;
356 357
}

358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
static int count_skb_frag_slots(struct sk_buff *skb)
{
	int i, frags = skb_shinfo(skb)->nr_frags;
	int pages = 0;

	for (i = 0; i < frags; i++) {
		skb_frag_t *frag = skb_shinfo(skb)->frags + i;
		unsigned long size = skb_frag_size(frag);
		unsigned long offset = frag->page_offset;

		/* Skip unused frames from start of page */
		offset &= ~PAGE_MASK;
		pages += PFN_UP(offset + size);
	}
	return pages;
}

static int netvsc_get_slots(struct sk_buff *skb)
376
{
377 378 379 380 381 382 383 384 385
	char *data = skb->data;
	unsigned int offset = offset_in_page(data);
	unsigned int len = skb_headlen(skb);
	int slots;
	int frag_slots;

	slots = DIV_ROUND_UP(offset + len, PAGE_SIZE);
	frag_slots = count_skb_frag_slots(skb);
	return slots + frag_slots;
386 387
}

388
static u32 net_checksum_info(struct sk_buff *skb)
389
{
390 391
	if (skb->protocol == htons(ETH_P_IP)) {
		struct iphdr *ip = ip_hdr(skb);
392

393 394 395 396
		if (ip->protocol == IPPROTO_TCP)
			return TRANSPORT_INFO_IPV4_TCP;
		else if (ip->protocol == IPPROTO_UDP)
			return TRANSPORT_INFO_IPV4_UDP;
397
	} else {
398 399 400 401
		struct ipv6hdr *ip6 = ipv6_hdr(skb);

		if (ip6->nexthdr == IPPROTO_TCP)
			return TRANSPORT_INFO_IPV6_TCP;
402
		else if (ip6->nexthdr == IPPROTO_UDP)
403
			return TRANSPORT_INFO_IPV6_UDP;
404 405
	}

406
	return TRANSPORT_INFO_NOT_IP;
407 408
}

409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
/* Send skb on the slave VF device. */
static int netvsc_vf_xmit(struct net_device *net, struct net_device *vf_netdev,
			  struct sk_buff *skb)
{
	struct net_device_context *ndev_ctx = netdev_priv(net);
	unsigned int len = skb->len;
	int rc;

	skb->dev = vf_netdev;
	skb->queue_mapping = qdisc_skb_cb(skb)->slave_dev_queue_mapping;

	rc = dev_queue_xmit(skb);
	if (likely(rc == NET_XMIT_SUCCESS || rc == NET_XMIT_CN)) {
		struct netvsc_vf_pcpu_stats *pcpu_stats
			= this_cpu_ptr(ndev_ctx->vf_stats);

		u64_stats_update_begin(&pcpu_stats->syncp);
		pcpu_stats->tx_packets++;
		pcpu_stats->tx_bytes += len;
		u64_stats_update_end(&pcpu_stats->syncp);
	} else {
		this_cpu_inc(ndev_ctx->vf_stats->tx_dropped);
	}

	return rc;
}

436
static int netvsc_start_xmit(struct sk_buff *skb, struct net_device *net)
437 438
{
	struct net_device_context *net_device_ctx = netdev_priv(net);
439
	struct hv_netvsc_packet *packet = NULL;
440
	int ret;
441 442 443
	unsigned int num_data_pgs;
	struct rndis_message *rndis_msg;
	struct rndis_packet *rndis_pkt;
444
	struct net_device *vf_netdev;
445 446
	u32 rndis_msg_size;
	struct rndis_per_packet_info *ppi;
447
	u32 hash;
448
	struct hv_page_buffer pb[MAX_PAGE_BUFFER_COUNT];
449

450 451 452 453 454 455 456 457
	/* if VF is present and up then redirect packets
	 * already called with rcu_read_lock_bh
	 */
	vf_netdev = rcu_dereference_bh(net_device_ctx->vf_netdev);
	if (vf_netdev && netif_running(vf_netdev) &&
	    !netpoll_tx_running(net))
		return netvsc_vf_xmit(net, vf_netdev, skb);

458 459
	/* We will atmost need two pages to describe the rndis
	 * header. We can only transmit MAX_PAGE_BUFFER_COUNT number
460 461
	 * of pages in a single packet. If skb is scattered around
	 * more pages we try linearizing it.
462
	 */
463 464 465

	num_data_pgs = netvsc_get_slots(skb) + 2;

466
	if (unlikely(num_data_pgs > MAX_PAGE_BUFFER_COUNT)) {
467 468 469 470
		++net_device_ctx->eth_stats.tx_scattered;

		if (skb_linearize(skb))
			goto no_memory;
471

472
		num_data_pgs = netvsc_get_slots(skb) + 2;
473
		if (num_data_pgs > MAX_PAGE_BUFFER_COUNT) {
474
			++net_device_ctx->eth_stats.tx_too_big;
475 476
			goto drop;
		}
477
	}
478

479 480 481 482 483 484
	/*
	 * Place the rndis header in the skb head room and
	 * the skb->cb will be used for hv_netvsc_packet
	 * structure.
	 */
	ret = skb_cow_head(skb, RNDIS_AND_PPI_SIZE);
485 486 487
	if (ret)
		goto no_memory;

488 489 490 491
	/* Use the skb control buffer for building up the packet */
	BUILD_BUG_ON(sizeof(struct hv_netvsc_packet) >
			FIELD_SIZEOF(struct sk_buff, cb));
	packet = (struct hv_netvsc_packet *)skb->cb;
492

493 494
	packet->q_idx = skb_get_queue_mapping(skb);

495
	packet->total_data_buflen = skb->len;
496 497
	packet->total_bytes = skb->len;
	packet->total_packets = 1;
498

499
	rndis_msg = (struct rndis_message *)skb->head;
500

501
	memset(rndis_msg, 0, RNDIS_AND_PPI_SIZE);
502

503 504 505 506 507 508 509 510 511 512
	/* Add the rndis header */
	rndis_msg->ndis_msg_type = RNDIS_MSG_PACKET;
	rndis_msg->msg_len = packet->total_data_buflen;
	rndis_pkt = &rndis_msg->msg.pkt;
	rndis_pkt->data_offset = sizeof(struct rndis_packet);
	rndis_pkt->data_len = packet->total_data_buflen;
	rndis_pkt->per_pkt_info_offset = sizeof(struct rndis_packet);

	rndis_msg_size = RNDIS_MESSAGE_SIZE(struct rndis_packet);

513 514 515 516 517 518 519 520
	hash = skb_get_hash_raw(skb);
	if (hash != 0 && net->real_num_tx_queues > 1) {
		rndis_msg_size += NDIS_HASH_PPI_SIZE;
		ppi = init_ppi_data(rndis_msg, NDIS_HASH_PPI_SIZE,
				    NBL_HASH_VALUE);
		*(u32 *)((void *)ppi + ppi->ppi_offset) = hash;
	}

521
	if (skb_vlan_tag_present(skb)) {
522 523 524 525 526 527 528
		struct ndis_pkt_8021q_info *vlan;

		rndis_msg_size += NDIS_VLAN_PPI_SIZE;
		ppi = init_ppi_data(rndis_msg, NDIS_VLAN_PPI_SIZE,
					IEEE_8021Q_INFO);
		vlan = (struct ndis_pkt_8021q_info *)((void *)ppi +
						ppi->ppi_offset);
529 530
		vlan->vlanid = skb->vlan_tci & VLAN_VID_MASK;
		vlan->pri = (skb->vlan_tci & VLAN_PRIO_MASK) >>
531 532 533
				VLAN_PRIO_SHIFT;
	}

534
	if (skb_is_gso(skb)) {
535 536 537 538 539 540 541 542 543 544
		struct ndis_tcp_lso_info *lso_info;

		rndis_msg_size += NDIS_LSO_PPI_SIZE;
		ppi = init_ppi_data(rndis_msg, NDIS_LSO_PPI_SIZE,
				    TCP_LARGESEND_PKTINFO);

		lso_info = (struct ndis_tcp_lso_info *)((void *)ppi +
							ppi->ppi_offset);

		lso_info->lso_v2_transmit.type = NDIS_TCP_LARGE_SEND_OFFLOAD_V2_TYPE;
545
		if (skb->protocol == htons(ETH_P_IP)) {
546 547 548 549 550 551 552 553 554 555 556 557 558 559 560
			lso_info->lso_v2_transmit.ip_version =
				NDIS_TCP_LARGE_SEND_OFFLOAD_IPV4;
			ip_hdr(skb)->tot_len = 0;
			ip_hdr(skb)->check = 0;
			tcp_hdr(skb)->check =
				~csum_tcpudp_magic(ip_hdr(skb)->saddr,
						   ip_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
		} else {
			lso_info->lso_v2_transmit.ip_version =
				NDIS_TCP_LARGE_SEND_OFFLOAD_IPV6;
			ipv6_hdr(skb)->payload_len = 0;
			tcp_hdr(skb)->check =
				~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
						 &ipv6_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
		}
561
		lso_info->lso_v2_transmit.tcp_header_offset = skb_transport_offset(skb);
562
		lso_info->lso_v2_transmit.mss = skb_shinfo(skb)->gso_size;
563
	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
564 565 566
		if (net_checksum_info(skb) & net_device_ctx->tx_checksum_mask) {
			struct ndis_tcp_ip_checksum_info *csum_info;

567 568 569 570 571 572 573
			rndis_msg_size += NDIS_CSUM_PPI_SIZE;
			ppi = init_ppi_data(rndis_msg, NDIS_CSUM_PPI_SIZE,
					    TCPIP_CHKSUM_PKTINFO);

			csum_info = (struct ndis_tcp_ip_checksum_info *)((void *)ppi +
									 ppi->ppi_offset);

574 575 576
			csum_info->transmit.tcp_header_offset = skb_transport_offset(skb);

			if (skb->protocol == htons(ETH_P_IP)) {
577
				csum_info->transmit.is_ipv4 = 1;
578 579 580 581 582 583

				if (ip_hdr(skb)->protocol == IPPROTO_TCP)
					csum_info->transmit.tcp_checksum = 1;
				else
					csum_info->transmit.udp_checksum = 1;
			} else {
584 585
				csum_info->transmit.is_ipv6 = 1;

586 587 588 589 590
				if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
					csum_info->transmit.tcp_checksum = 1;
				else
					csum_info->transmit.udp_checksum = 1;
			}
591
		} else {
592
			/* Can't do offload of this type of checksum */
593 594 595
			if (skb_checksum_help(skb))
				goto drop;
		}
596 597
	}

598 599
	/* Start filling in the page buffers with the rndis hdr */
	rndis_msg->msg_len += rndis_msg_size;
600
	packet->total_data_buflen = rndis_msg->msg_len;
601
	packet->page_buf_cnt = init_page_array(rndis_msg, rndis_msg_size,
602
					       skb, packet, pb);
603

604 605
	/* timestamp packet in software */
	skb_tx_timestamp(skb);
606

607
	ret = netvsc_send(net_device_ctx, packet, rndis_msg, pb, skb);
608
	if (likely(ret == 0))
609
		return NETDEV_TX_OK;
610 611 612

	if (ret == -EAGAIN) {
		++net_device_ctx->eth_stats.tx_busy;
613
		return NETDEV_TX_BUSY;
614 615 616 617
	}

	if (ret == -ENOSPC)
		++net_device_ctx->eth_stats.tx_no_space;
618 619 620 621

drop:
	dev_kfree_skb_any(skb);
	net->stats.tx_dropped++;
622

623
	return NETDEV_TX_OK;
624 625 626 627

no_memory:
	++net_device_ctx->eth_stats.tx_no_memory;
	goto drop;
628
}
629
/*
630 631
 * netvsc_linkstatus_callback - Link up/down notification
 */
632
void netvsc_linkstatus_callback(struct hv_device *device_obj,
633
				struct rndis_message *resp)
634
{
635
	struct rndis_indicate_status *indicate = &resp->msg.indicate_status;
636
	struct net_device *net;
637
	struct net_device_context *ndev_ctx;
638 639
	struct netvsc_reconfig *event;
	unsigned long flags;
640

641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658
	net = hv_get_drvdata(device_obj);

	if (!net)
		return;

	ndev_ctx = netdev_priv(net);

	/* Update the physical link speed when changing to another vSwitch */
	if (indicate->status == RNDIS_STATUS_LINK_SPEED_CHANGE) {
		u32 speed;

		speed = *(u32 *)((void *)indicate + indicate->
				 status_buf_offset) / 10000;
		ndev_ctx->speed = speed;
		return;
	}

	/* Handle these link change statuses below */
659 660 661
	if (indicate->status != RNDIS_STATUS_NETWORK_CHANGE &&
	    indicate->status != RNDIS_STATUS_MEDIA_CONNECT &&
	    indicate->status != RNDIS_STATUS_MEDIA_DISCONNECT)
662
		return;
663

664
	if (net->reg_state != NETREG_REGISTERED)
665 666
		return;

667 668 669 670 671 672 673 674 675 676
	event = kzalloc(sizeof(*event), GFP_ATOMIC);
	if (!event)
		return;
	event->event = indicate->status;

	spin_lock_irqsave(&ndev_ctx->lock, flags);
	list_add_tail(&event->list, &ndev_ctx->reconfig_events);
	spin_unlock_irqrestore(&ndev_ctx->lock, flags);

	schedule_delayed_work(&ndev_ctx->dwork, 0);
677 678
}

679
static struct sk_buff *netvsc_alloc_recv_skb(struct net_device *net,
680
					     struct napi_struct *napi,
681 682 683
					     const struct ndis_tcp_ip_checksum_info *csum_info,
					     const struct ndis_pkt_8021q_info *vlan,
					     void *data, u32 buflen)
684 685 686
{
	struct sk_buff *skb;

687
	skb = napi_alloc_skb(napi, buflen);
688 689
	if (!skb)
		return skb;
690

691 692 693 694
	/*
	 * Copy to skb. This copy is needed here since the memory pointed by
	 * hv_netvsc_packet cannot be deallocated
	 */
695
	skb_put_data(skb, data, buflen);
696 697

	skb->protocol = eth_type_trans(skb, net);
698 699 700 701 702 703 704 705 706 707 708

	/* skb is already created with CHECKSUM_NONE */
	skb_checksum_none_assert(skb);

	/*
	 * In Linux, the IP checksum is always checked.
	 * Do L4 checksum offload if enabled and present.
	 */
	if (csum_info && (net->features & NETIF_F_RXCSUM)) {
		if (csum_info->receive.tcp_checksum_succeeded ||
		    csum_info->receive.udp_checksum_succeeded)
709 710 711
			skb->ip_summed = CHECKSUM_UNNECESSARY;
	}

712 713 714
	if (vlan) {
		u16 vlan_tci = vlan->vlanid | (vlan->pri << VLAN_PRIO_SHIFT);

715
		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
716
				       vlan_tci);
717
	}
718

719 720 721 722 723 724 725
	return skb;
}

/*
 * netvsc_recv_callback -  Callback when we receive a packet from the
 * "wire" on the specified device.
 */
726 727 728 729 730
int netvsc_recv_callback(struct net_device *net,
			 struct vmbus_channel *channel,
			 void  *data, u32 len,
			 const struct ndis_tcp_ip_checksum_info *csum_info,
			 const struct ndis_pkt_8021q_info *vlan)
731
{
732
	struct net_device_context *net_device_ctx = netdev_priv(net);
733
	struct netvsc_device *net_device;
S
stephen hemminger 已提交
734
	u16 q_idx = channel->offermsg.offer.sub_channel_index;
735
	struct netvsc_channel *nvchan;
736 737 738
	struct sk_buff *skb;
	struct netvsc_stats *rx_stats;

739
	if (net->reg_state != NETREG_REGISTERED)
740 741
		return NVSP_STAT_FAIL;

742
	rcu_read_lock();
743 744 745 746 747
	net_device = rcu_dereference(net_device_ctx->nvdev);
	if (unlikely(!net_device))
		goto drop;

	nvchan = &net_device->chan_table[q_idx];
748 749

	/* Allocate a skb - TODO direct I/O to pages? */
750 751
	skb = netvsc_alloc_recv_skb(net, &nvchan->napi,
				    csum_info, vlan, data, len);
752
	if (unlikely(!skb)) {
753
drop:
754
		++net->stats.rx_dropped;
755
		rcu_read_unlock();
756 757
		return NVSP_STAT_FAIL;
	}
758

759
	skb_record_rx_queue(skb, q_idx);
760 761 762 763 764 765

	/*
	 * Even if injecting the packet, record the statistics
	 * on the synthetic device because modifying the VF device
	 * statistics will not work correctly.
	 */
S
stephen hemminger 已提交
766
	rx_stats = &nvchan->rx_stats;
767
	u64_stats_update_begin(&rx_stats->syncp);
768
	rx_stats->packets++;
769
	rx_stats->bytes += len;
770 771 772 773 774

	if (skb->pkt_type == PACKET_BROADCAST)
		++rx_stats->broadcast;
	else if (skb->pkt_type == PACKET_MULTICAST)
		++rx_stats->multicast;
775
	u64_stats_update_end(&rx_stats->syncp);
776

S
stephen hemminger 已提交
777
	napi_gro_receive(&nvchan->napi, skb);
778
	rcu_read_unlock();
779 780 781 782

	return 0;
}

783 784 785
static void netvsc_get_drvinfo(struct net_device *net,
			       struct ethtool_drvinfo *info)
{
786 787
	strlcpy(info->driver, KBUILD_MODNAME, sizeof(info->driver));
	strlcpy(info->fw_version, "N/A", sizeof(info->fw_version));
788 789
}

790 791 792 793
static void netvsc_get_channels(struct net_device *net,
				struct ethtool_channels *channel)
{
	struct net_device_context *net_device_ctx = netdev_priv(net);
794
	struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
795 796 797 798 799 800 801

	if (nvdev) {
		channel->max_combined	= nvdev->max_chn;
		channel->combined_count = nvdev->num_chn;
	}
}

802 803 804 805 806
static int netvsc_set_channels(struct net_device *net,
			       struct ethtool_channels *channels)
{
	struct net_device_context *net_device_ctx = netdev_priv(net);
	struct hv_device *dev = net_device_ctx->device_ctx;
807
	struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
808 809
	unsigned int orig, count = channels->combined_count;
	struct netvsc_device_info device_info;
810
	bool was_opened;
811
	int ret = 0;
812 813 814 815 816 817

	/* We do not support separate count for rx, tx, or other */
	if (count == 0 ||
	    channels->rx_count || channels->tx_count || channels->other_count)
		return -EINVAL;

818
	if (count > net->num_tx_queues || count > VRSS_CHANNEL_MAX)
819
		return -EINVAL;
820

821
	if (!nvdev || nvdev->destroy)
822 823
		return -ENODEV;

824
	if (nvdev->nvsp_version < NVSP_PROTOCOL_VERSION_5)
825 826
		return -EINVAL;

827
	if (count > nvdev->max_chn)
828 829
		return -EINVAL;

830
	orig = nvdev->num_chn;
831 832 833
	was_opened = rndis_filter_opened(nvdev);
	if (was_opened)
		rndis_filter_close(nvdev);
834

835
	rndis_filter_device_remove(dev, nvdev);
836

837 838 839 840 841 842 843 844 845
	memset(&device_info, 0, sizeof(device_info));
	device_info.num_chn = count;
	device_info.ring_size = ring_size;

	nvdev = rndis_filter_device_add(dev, &device_info);
	if (!IS_ERR(nvdev)) {
		netif_set_real_num_tx_queues(net, nvdev->num_chn);
		netif_set_real_num_rx_queues(net, nvdev->num_chn);
	} else {
846
		ret = PTR_ERR(nvdev);
847
		device_info.num_chn = orig;
848 849 850 851 852 853 854
		nvdev = rndis_filter_device_add(dev, &device_info);

		if (IS_ERR(nvdev)) {
			netdev_err(net, "restoring channel setting failed: %ld\n",
				   PTR_ERR(nvdev));
			return ret;
		}
855
	}
856

857 858
	if (was_opened)
		rndis_filter_open(nvdev);
859

860
	/* We may have missed link change notifications */
861
	net_device_ctx->last_reconfig = 0;
862
	schedule_delayed_work(&net_device_ctx->dwork, 0);
863 864 865 866

	return ret;
}

867 868
static bool
netvsc_validate_ethtool_ss_cmd(const struct ethtool_link_ksettings *cmd)
869
{
870 871
	struct ethtool_link_ksettings diff1 = *cmd;
	struct ethtool_link_ksettings diff2 = {};
872

873 874
	diff1.base.speed = 0;
	diff1.base.duplex = 0;
875
	/* advertising and cmd are usually set */
876 877
	ethtool_link_ksettings_zero_link_mode(&diff1, advertising);
	diff1.base.cmd = 0;
878
	/* We set port to PORT_OTHER */
879
	diff2.base.port = PORT_OTHER;
880 881 882 883 884 885 886 887 888

	return !memcmp(&diff1, &diff2, sizeof(diff1));
}

static void netvsc_init_settings(struct net_device *dev)
{
	struct net_device_context *ndc = netdev_priv(dev);

	ndc->speed = SPEED_UNKNOWN;
889
	ndc->duplex = DUPLEX_FULL;
890 891
}

892 893
static int netvsc_get_link_ksettings(struct net_device *dev,
				     struct ethtool_link_ksettings *cmd)
894 895 896
{
	struct net_device_context *ndc = netdev_priv(dev);

897 898 899
	cmd->base.speed = ndc->speed;
	cmd->base.duplex = ndc->duplex;
	cmd->base.port = PORT_OTHER;
900 901 902 903

	return 0;
}

904 905
static int netvsc_set_link_ksettings(struct net_device *dev,
				     const struct ethtool_link_ksettings *cmd)
906 907 908 909
{
	struct net_device_context *ndc = netdev_priv(dev);
	u32 speed;

910
	speed = cmd->base.speed;
911
	if (!ethtool_validate_speed(speed) ||
912
	    !ethtool_validate_duplex(cmd->base.duplex) ||
913 914 915 916
	    !netvsc_validate_ethtool_ss_cmd(cmd))
		return -EINVAL;

	ndc->speed = speed;
917
	ndc->duplex = cmd->base.duplex;
918 919 920 921

	return 0;
}

922 923 924
static int netvsc_change_mtu(struct net_device *ndev, int mtu)
{
	struct net_device_context *ndevctx = netdev_priv(ndev);
925
	struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev);
926
	struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
927
	struct hv_device *hdev = ndevctx->device_ctx;
928
	int orig_mtu = ndev->mtu;
929
	struct netvsc_device_info device_info;
930
	bool was_opened;
931
	int ret = 0;
932

933
	if (!nvdev || nvdev->destroy)
934 935
		return -ENODEV;

936 937 938 939 940 941 942
	/* Change MTU of underlying VF netdev first. */
	if (vf_netdev) {
		ret = dev_set_mtu(vf_netdev, mtu);
		if (ret)
			return ret;
	}

943 944 945 946
	netif_device_detach(ndev);
	was_opened = rndis_filter_opened(nvdev);
	if (was_opened)
		rndis_filter_close(nvdev);
947

948 949 950 951
	memset(&device_info, 0, sizeof(device_info));
	device_info.ring_size = ring_size;
	device_info.num_chn = nvdev->num_chn;

952
	rndis_filter_device_remove(hdev, nvdev);
953 954 955

	ndev->mtu = mtu;

956 957 958 959 960 961
	nvdev = rndis_filter_device_add(hdev, &device_info);
	if (IS_ERR(nvdev)) {
		ret = PTR_ERR(nvdev);

		/* Attempt rollback to original MTU */
		ndev->mtu = orig_mtu;
962
		nvdev = rndis_filter_device_add(hdev, &device_info);
963 964 965

		if (vf_netdev)
			dev_set_mtu(vf_netdev, orig_mtu);
966 967 968 969 970 971

		if (IS_ERR(nvdev)) {
			netdev_err(ndev, "restoring mtu failed: %ld\n",
				   PTR_ERR(nvdev));
			return ret;
		}
972
	}
973

974 975 976 977
	if (was_opened)
		rndis_filter_open(nvdev);

	netif_device_attach(ndev);
978

979 980 981
	/* We may have missed link change notifications */
	schedule_delayed_work(&ndevctx->dwork, 0);

982
	return ret;
983 984
}

985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
static void netvsc_get_vf_stats(struct net_device *net,
				struct netvsc_vf_pcpu_stats *tot)
{
	struct net_device_context *ndev_ctx = netdev_priv(net);
	int i;

	memset(tot, 0, sizeof(*tot));

	for_each_possible_cpu(i) {
		const struct netvsc_vf_pcpu_stats *stats
			= per_cpu_ptr(ndev_ctx->vf_stats, i);
		u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
		unsigned int start;

		do {
			start = u64_stats_fetch_begin_irq(&stats->syncp);
			rx_packets = stats->rx_packets;
			tx_packets = stats->tx_packets;
			rx_bytes = stats->rx_bytes;
			tx_bytes = stats->tx_bytes;
		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));

		tot->rx_packets += rx_packets;
		tot->tx_packets += tx_packets;
		tot->rx_bytes   += rx_bytes;
		tot->tx_bytes   += tx_bytes;
		tot->tx_dropped += stats->tx_dropped;
	}
}

1015 1016
static void netvsc_get_stats64(struct net_device *net,
			       struct rtnl_link_stats64 *t)
1017 1018
{
	struct net_device_context *ndev_ctx = netdev_priv(net);
1019
	struct netvsc_device *nvdev = rcu_dereference_rtnl(ndev_ctx->nvdev);
1020 1021
	struct netvsc_vf_pcpu_stats vf_tot;
		int i;
1022 1023 1024 1025

	if (!nvdev)
		return;

1026 1027 1028 1029 1030 1031 1032 1033 1034
	netdev_stats_to_stats64(t, &net->stats);

	netvsc_get_vf_stats(net, &vf_tot);
	t->rx_packets += vf_tot.rx_packets;
	t->tx_packets += vf_tot.tx_packets;
	t->rx_bytes   += vf_tot.rx_bytes;
	t->tx_bytes   += vf_tot.tx_bytes;
	t->tx_dropped += vf_tot.tx_dropped;

1035 1036 1037 1038
	for (i = 0; i < nvdev->num_chn; i++) {
		const struct netvsc_channel *nvchan = &nvdev->chan_table[i];
		const struct netvsc_stats *stats;
		u64 packets, bytes, multicast;
1039 1040
		unsigned int start;

1041
		stats = &nvchan->tx_stats;
1042
		do {
1043 1044 1045 1046 1047 1048 1049
			start = u64_stats_fetch_begin_irq(&stats->syncp);
			packets = stats->packets;
			bytes = stats->bytes;
		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));

		t->tx_bytes	+= bytes;
		t->tx_packets	+= packets;
1050

1051
		stats = &nvchan->rx_stats;
1052
		do {
1053 1054 1055 1056 1057 1058 1059 1060 1061
			start = u64_stats_fetch_begin_irq(&stats->syncp);
			packets = stats->packets;
			bytes = stats->bytes;
			multicast = stats->multicast + stats->broadcast;
		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));

		t->rx_bytes	+= bytes;
		t->rx_packets	+= packets;
		t->multicast	+= multicast;
1062 1063
	}
}
1064 1065 1066

static int netvsc_set_mac_addr(struct net_device *ndev, void *p)
{
1067
	struct net_device_context *ndc = netdev_priv(ndev);
1068
	struct net_device *vf_netdev = rtnl_dereference(ndc->vf_netdev);
1069
	struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1070 1071 1072
	struct sockaddr *addr = p;
	int err;

1073 1074
	err = eth_prepare_mac_addr_change(ndev, p);
	if (err)
1075 1076
		return err;

1077 1078 1079
	if (!nvdev)
		return -ENODEV;

1080 1081 1082 1083 1084 1085
	if (vf_netdev) {
		err = dev_set_mac_address(vf_netdev, addr);
		if (err)
			return err;
	}

1086
	err = rndis_filter_set_device_mac(nvdev, addr->sa_data);
1087 1088 1089 1090 1091 1092
	if (!err) {
		eth_commit_mac_addr_change(ndev, p);
	} else if (vf_netdev) {
		/* rollback change on VF */
		memcpy(addr->sa_data, ndev->dev_addr, ETH_ALEN);
		dev_set_mac_address(vf_netdev, addr);
1093 1094 1095 1096 1097
	}

	return err;
}

1098 1099 1100 1101 1102 1103 1104 1105 1106
static const struct {
	char name[ETH_GSTRING_LEN];
	u16 offset;
} netvsc_stats[] = {
	{ "tx_scattered", offsetof(struct netvsc_ethtool_stats, tx_scattered) },
	{ "tx_no_memory",  offsetof(struct netvsc_ethtool_stats, tx_no_memory) },
	{ "tx_no_space",  offsetof(struct netvsc_ethtool_stats, tx_no_space) },
	{ "tx_too_big",	  offsetof(struct netvsc_ethtool_stats, tx_too_big) },
	{ "tx_busy",	  offsetof(struct netvsc_ethtool_stats, tx_busy) },
1107 1108 1109 1110 1111 1112
}, vf_stats[] = {
	{ "vf_rx_packets", offsetof(struct netvsc_vf_pcpu_stats, rx_packets) },
	{ "vf_rx_bytes",   offsetof(struct netvsc_vf_pcpu_stats, rx_bytes) },
	{ "vf_tx_packets", offsetof(struct netvsc_vf_pcpu_stats, tx_packets) },
	{ "vf_tx_bytes",   offsetof(struct netvsc_vf_pcpu_stats, tx_bytes) },
	{ "vf_tx_dropped", offsetof(struct netvsc_vf_pcpu_stats, tx_dropped) },
1113 1114
};

1115
#define NETVSC_GLOBAL_STATS_LEN	ARRAY_SIZE(netvsc_stats)
1116
#define NETVSC_VF_STATS_LEN	ARRAY_SIZE(vf_stats)
1117 1118 1119 1120

/* 4 statistics per queue (rx/tx packets/bytes) */
#define NETVSC_QUEUE_STATS_LEN(dev) ((dev)->num_chn * 4)

1121 1122
static int netvsc_get_sset_count(struct net_device *dev, int string_set)
{
1123
	struct net_device_context *ndc = netdev_priv(dev);
1124
	struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1125 1126 1127

	if (!nvdev)
		return -ENODEV;
1128

1129 1130
	switch (string_set) {
	case ETH_SS_STATS:
1131 1132 1133
		return NETVSC_GLOBAL_STATS_LEN
			+ NETVSC_VF_STATS_LEN
			+ NETVSC_QUEUE_STATS_LEN(nvdev);
1134 1135 1136 1137 1138 1139 1140 1141 1142
	default:
		return -EINVAL;
	}
}

static void netvsc_get_ethtool_stats(struct net_device *dev,
				     struct ethtool_stats *stats, u64 *data)
{
	struct net_device_context *ndc = netdev_priv(dev);
1143
	struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1144
	const void *nds = &ndc->eth_stats;
1145
	const struct netvsc_stats *qstats;
1146
	struct netvsc_vf_pcpu_stats sum;
1147 1148 1149
	unsigned int start;
	u64 packets, bytes;
	int i, j;
1150

1151 1152 1153
	if (!nvdev)
		return;

1154
	for (i = 0; i < NETVSC_GLOBAL_STATS_LEN; i++)
1155
		data[i] = *(unsigned long *)(nds + netvsc_stats[i].offset);
1156

1157 1158 1159 1160
	netvsc_get_vf_stats(dev, &sum);
	for (j = 0; j < NETVSC_VF_STATS_LEN; j++)
		data[i++] = *(u64 *)((void *)&sum + vf_stats[j].offset);

1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
	for (j = 0; j < nvdev->num_chn; j++) {
		qstats = &nvdev->chan_table[j].tx_stats;

		do {
			start = u64_stats_fetch_begin_irq(&qstats->syncp);
			packets = qstats->packets;
			bytes = qstats->bytes;
		} while (u64_stats_fetch_retry_irq(&qstats->syncp, start));
		data[i++] = packets;
		data[i++] = bytes;

		qstats = &nvdev->chan_table[j].rx_stats;
		do {
			start = u64_stats_fetch_begin_irq(&qstats->syncp);
			packets = qstats->packets;
			bytes = qstats->bytes;
		} while (u64_stats_fetch_retry_irq(&qstats->syncp, start));
		data[i++] = packets;
		data[i++] = bytes;
	}
1181 1182 1183 1184
}

static void netvsc_get_strings(struct net_device *dev, u32 stringset, u8 *data)
{
1185
	struct net_device_context *ndc = netdev_priv(dev);
1186
	struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1187
	u8 *p = data;
1188 1189
	int i;

1190 1191 1192
	if (!nvdev)
		return;

1193 1194
	switch (stringset) {
	case ETH_SS_STATS:
1195 1196 1197 1198 1199 1200 1201 1202 1203
		for (i = 0; i < ARRAY_SIZE(netvsc_stats); i++) {
			memcpy(p, netvsc_stats[i].name, ETH_GSTRING_LEN);
			p += ETH_GSTRING_LEN;
		}

		for (i = 0; i < ARRAY_SIZE(vf_stats); i++) {
			memcpy(p, vf_stats[i].name, ETH_GSTRING_LEN);
			p += ETH_GSTRING_LEN;
		}
1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215

		for (i = 0; i < nvdev->num_chn; i++) {
			sprintf(p, "tx_queue_%u_packets", i);
			p += ETH_GSTRING_LEN;
			sprintf(p, "tx_queue_%u_bytes", i);
			p += ETH_GSTRING_LEN;
			sprintf(p, "rx_queue_%u_packets", i);
			p += ETH_GSTRING_LEN;
			sprintf(p, "rx_queue_%u_bytes", i);
			p += ETH_GSTRING_LEN;
		}

1216 1217 1218 1219
		break;
	}
}

1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243
static int
netvsc_get_rss_hash_opts(struct netvsc_device *nvdev,
			 struct ethtool_rxnfc *info)
{
	info->data = RXH_IP_SRC | RXH_IP_DST;

	switch (info->flow_type) {
	case TCP_V4_FLOW:
	case TCP_V6_FLOW:
		info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
		/* fallthrough */
	case UDP_V4_FLOW:
	case UDP_V6_FLOW:
	case IPV4_FLOW:
	case IPV6_FLOW:
		break;
	default:
		info->data = 0;
		break;
	}

	return 0;
}

1244 1245 1246 1247 1248
static int
netvsc_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info,
		 u32 *rules)
{
	struct net_device_context *ndc = netdev_priv(dev);
1249
	struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1250 1251 1252

	if (!nvdev)
		return -ENODEV;
1253 1254 1255 1256 1257

	switch (info->cmd) {
	case ETHTOOL_GRXRINGS:
		info->data = nvdev->num_chn;
		return 0;
1258 1259 1260

	case ETHTOOL_GRXFH:
		return netvsc_get_rss_hash_opts(nvdev, info);
1261 1262 1263 1264
	}
	return -EOPNOTSUPP;
}

R
Richard Weinberger 已提交
1265
#ifdef CONFIG_NET_POLL_CONTROLLER
S
stephen hemminger 已提交
1266
static void netvsc_poll_controller(struct net_device *dev)
R
Richard Weinberger 已提交
1267
{
S
stephen hemminger 已提交
1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
	struct net_device_context *ndc = netdev_priv(dev);
	struct netvsc_device *ndev;
	int i;

	rcu_read_lock();
	ndev = rcu_dereference(ndc->nvdev);
	if (ndev) {
		for (i = 0; i < ndev->num_chn; i++) {
			struct netvsc_channel *nvchan = &ndev->chan_table[i];

			napi_schedule(&nvchan->napi);
		}
	}
	rcu_read_unlock();
R
Richard Weinberger 已提交
1282 1283
}
#endif
1284

1285 1286 1287 1288 1289 1290 1291
static u32 netvsc_get_rxfh_key_size(struct net_device *dev)
{
	return NETVSC_HASH_KEYLEN;
}

static u32 netvsc_rss_indir_size(struct net_device *dev)
{
1292
	return ITAB_NUM;
1293 1294 1295 1296 1297 1298
}

static int netvsc_get_rxfh(struct net_device *dev, u32 *indir, u8 *key,
			   u8 *hfunc)
{
	struct net_device_context *ndc = netdev_priv(dev);
1299
	struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1300
	struct rndis_device *rndis_dev;
1301
	int i;
1302

1303 1304 1305
	if (!ndev)
		return -ENODEV;

1306 1307 1308
	if (hfunc)
		*hfunc = ETH_RSS_HASH_TOP;	/* Toeplitz */

1309
	rndis_dev = ndev->extension;
1310 1311 1312 1313 1314
	if (indir) {
		for (i = 0; i < ITAB_NUM; i++)
			indir[i] = rndis_dev->ind_table[i];
	}

1315 1316 1317 1318 1319 1320 1321 1322 1323 1324
	if (key)
		memcpy(key, rndis_dev->rss_key, NETVSC_HASH_KEYLEN);

	return 0;
}

static int netvsc_set_rxfh(struct net_device *dev, const u32 *indir,
			   const u8 *key, const u8 hfunc)
{
	struct net_device_context *ndc = netdev_priv(dev);
1325
	struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1326
	struct rndis_device *rndis_dev;
1327
	int i;
1328

1329 1330 1331
	if (!ndev)
		return -ENODEV;

1332 1333 1334
	if (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP)
		return -EOPNOTSUPP;

1335
	rndis_dev = ndev->extension;
1336 1337
	if (indir) {
		for (i = 0; i < ITAB_NUM; i++)
1338
			if (indir[i] >= VRSS_CHANNEL_MAX)
1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350
				return -EINVAL;

		for (i = 0; i < ITAB_NUM; i++)
			rndis_dev->ind_table[i] = indir[i];
	}

	if (!key) {
		if (!indir)
			return 0;

		key = rndis_dev->rss_key;
	}
1351 1352 1353 1354

	return rndis_filter_set_rss_param(rndis_dev, key, ndev->num_chn);
}

1355 1356 1357
static const struct ethtool_ops ethtool_ops = {
	.get_drvinfo	= netvsc_get_drvinfo,
	.get_link	= ethtool_op_get_link,
1358 1359 1360
	.get_ethtool_stats = netvsc_get_ethtool_stats,
	.get_sset_count = netvsc_get_sset_count,
	.get_strings	= netvsc_get_strings,
1361
	.get_channels   = netvsc_get_channels,
1362
	.set_channels   = netvsc_set_channels,
1363
	.get_ts_info	= ethtool_op_get_ts_info,
1364
	.get_rxnfc	= netvsc_get_rxnfc,
1365 1366 1367 1368
	.get_rxfh_key_size = netvsc_get_rxfh_key_size,
	.get_rxfh_indir_size = netvsc_rss_indir_size,
	.get_rxfh	= netvsc_get_rxfh,
	.set_rxfh	= netvsc_set_rxfh,
1369 1370
	.get_link_ksettings = netvsc_get_link_ksettings,
	.set_link_ksettings = netvsc_set_link_ksettings,
1371 1372
};

1373 1374 1375 1376
static const struct net_device_ops device_ops = {
	.ndo_open =			netvsc_open,
	.ndo_stop =			netvsc_close,
	.ndo_start_xmit =		netvsc_start_xmit,
1377
	.ndo_set_rx_mode =		netvsc_set_multicast_list,
1378
	.ndo_change_mtu =		netvsc_change_mtu,
1379
	.ndo_validate_addr =		eth_validate_addr,
1380
	.ndo_set_mac_address =		netvsc_set_mac_addr,
1381
	.ndo_select_queue =		netvsc_select_queue,
1382
	.ndo_get_stats64 =		netvsc_get_stats64,
R
Richard Weinberger 已提交
1383 1384 1385
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller =		netvsc_poll_controller,
#endif
1386 1387
};

1388
/*
1389 1390 1391
 * Handle link status changes. For RNDIS_STATUS_NETWORK_CHANGE emulate link
 * down/up sequence. In case of RNDIS_STATUS_MEDIA_CONNECT when carrier is
 * present send GARP packet to network peers with netif_notify_peers().
1392
 */
1393
static void netvsc_link_change(struct work_struct *w)
1394
{
1395 1396 1397 1398
	struct net_device_context *ndev_ctx =
		container_of(w, struct net_device_context, dwork.work);
	struct hv_device *device_obj = ndev_ctx->device_ctx;
	struct net_device *net = hv_get_drvdata(device_obj);
1399
	struct netvsc_device *net_device;
1400
	struct rndis_device *rdev;
1401 1402 1403
	struct netvsc_reconfig *event = NULL;
	bool notify = false, reschedule = false;
	unsigned long flags, next_reconfig, delay;
1404

1405
	rtnl_lock();
1406 1407
	net_device = rtnl_dereference(ndev_ctx->nvdev);
	if (!net_device)
1408 1409
		goto out_unlock;

1410 1411
	rdev = net_device->extension;

1412 1413 1414 1415 1416 1417 1418 1419 1420
	next_reconfig = ndev_ctx->last_reconfig + LINKCHANGE_INT;
	if (time_is_after_jiffies(next_reconfig)) {
		/* link_watch only sends one notification with current state
		 * per second, avoid doing reconfig more frequently. Handle
		 * wrap around.
		 */
		delay = next_reconfig - jiffies;
		delay = delay < LINKCHANGE_INT ? delay : LINKCHANGE_INT;
		schedule_delayed_work(&ndev_ctx->dwork, delay);
1421
		goto out_unlock;
1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434
	}
	ndev_ctx->last_reconfig = jiffies;

	spin_lock_irqsave(&ndev_ctx->lock, flags);
	if (!list_empty(&ndev_ctx->reconfig_events)) {
		event = list_first_entry(&ndev_ctx->reconfig_events,
					 struct netvsc_reconfig, list);
		list_del(&event->list);
		reschedule = !list_empty(&ndev_ctx->reconfig_events);
	}
	spin_unlock_irqrestore(&ndev_ctx->lock, flags);

	if (!event)
1435
		goto out_unlock;
1436 1437 1438 1439 1440 1441 1442 1443

	switch (event->event) {
		/* Only the following events are possible due to the check in
		 * netvsc_linkstatus_callback()
		 */
	case RNDIS_STATUS_MEDIA_CONNECT:
		if (rdev->link_state) {
			rdev->link_state = false;
1444
			netif_carrier_on(net);
1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466
			netif_tx_wake_all_queues(net);
		} else {
			notify = true;
		}
		kfree(event);
		break;
	case RNDIS_STATUS_MEDIA_DISCONNECT:
		if (!rdev->link_state) {
			rdev->link_state = true;
			netif_carrier_off(net);
			netif_tx_stop_all_queues(net);
		}
		kfree(event);
		break;
	case RNDIS_STATUS_NETWORK_CHANGE:
		/* Only makes sense if carrier is present */
		if (!rdev->link_state) {
			rdev->link_state = true;
			netif_carrier_off(net);
			netif_tx_stop_all_queues(net);
			event->event = RNDIS_STATUS_MEDIA_CONNECT;
			spin_lock_irqsave(&ndev_ctx->lock, flags);
1467
			list_add(&event->list, &ndev_ctx->reconfig_events);
1468 1469
			spin_unlock_irqrestore(&ndev_ctx->lock, flags);
			reschedule = true;
1470
		}
1471
		break;
1472 1473 1474 1475 1476 1477
	}

	rtnl_unlock();

	if (notify)
		netdev_notify_peers(net);
1478 1479 1480 1481 1482 1483

	/* link_watch only sends one notification with current state per
	 * second, handle next reconfig event in 2 seconds.
	 */
	if (reschedule)
		schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
1484 1485 1486 1487 1488

	return;

out_unlock:
	rtnl_unlock();
1489 1490
}

1491
static struct net_device *get_netvsc_bymac(const u8 *mac)
1492
{
1493
	struct net_device *dev;
1494

1495
	ASSERT_RTNL();
1496 1497

	for_each_netdev(&init_net, dev) {
1498 1499 1500 1501 1502 1503 1504 1505 1506 1507
		if (dev->netdev_ops != &device_ops)
			continue;	/* not a netvsc device */

		if (ether_addr_equal(mac, dev->perm_addr))
			return dev;
	}

	return NULL;
}

1508
static struct net_device *get_netvsc_byref(struct net_device *vf_netdev)
1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520
{
	struct net_device *dev;

	ASSERT_RTNL();

	for_each_netdev(&init_net, dev) {
		struct net_device_context *net_device_ctx;

		if (dev->netdev_ops != &device_ops)
			continue;	/* not a netvsc device */

		net_device_ctx = netdev_priv(dev);
1521
		if (!rtnl_dereference(net_device_ctx->nvdev))
1522 1523
			continue;	/* device is removed */

1524
		if (rtnl_dereference(net_device_ctx->vf_netdev) == vf_netdev)
1525
			return dev;	/* a match */
1526 1527
	}

1528
	return NULL;
1529 1530
}

1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578
/* Called when VF is injecting data into network stack.
 * Change the associated network device from VF to netvsc.
 * note: already called with rcu_read_lock
 */
static rx_handler_result_t netvsc_vf_handle_frame(struct sk_buff **pskb)
{
	struct sk_buff *skb = *pskb;
	struct net_device *ndev = rcu_dereference(skb->dev->rx_handler_data);
	struct net_device_context *ndev_ctx = netdev_priv(ndev);
	struct netvsc_vf_pcpu_stats *pcpu_stats
		 = this_cpu_ptr(ndev_ctx->vf_stats);

	skb->dev = ndev;

	u64_stats_update_begin(&pcpu_stats->syncp);
	pcpu_stats->rx_packets++;
	pcpu_stats->rx_bytes += skb->len;
	u64_stats_update_end(&pcpu_stats->syncp);

	return RX_HANDLER_ANOTHER;
}

static int netvsc_vf_join(struct net_device *vf_netdev,
			  struct net_device *ndev)
{
	struct net_device_context *ndev_ctx = netdev_priv(ndev);
	int ret;

	ret = netdev_rx_handler_register(vf_netdev,
					 netvsc_vf_handle_frame, ndev);
	if (ret != 0) {
		netdev_err(vf_netdev,
			   "can not register netvsc VF receive handler (err = %d)\n",
			   ret);
		goto rx_handler_failed;
	}

	ret = netdev_upper_dev_link(vf_netdev, ndev);
	if (ret != 0) {
		netdev_err(vf_netdev,
			   "can not set master device %s (err = %d)\n",
			   ndev->name, ret);
		goto upper_link_failed;
	}

	/* set slave flag before open to prevent IPv6 addrconf */
	vf_netdev->flags |= IFF_SLAVE;

1579 1580 1581
	schedule_delayed_work(&ndev_ctx->vf_takeover, VF_TAKEOVER_INT);

	call_netdevice_notifiers(NETDEV_JOIN, vf_netdev);
1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616

	netdev_info(vf_netdev, "joined to %s\n", ndev->name);
	return 0;

upper_link_failed:
	netdev_rx_handler_unregister(vf_netdev);
rx_handler_failed:
	return ret;
}

static void __netvsc_vf_setup(struct net_device *ndev,
			      struct net_device *vf_netdev)
{
	int ret;

	/* Align MTU of VF with master */
	ret = dev_set_mtu(vf_netdev, ndev->mtu);
	if (ret)
		netdev_warn(vf_netdev,
			    "unable to change mtu to %u\n", ndev->mtu);

	if (netif_running(ndev)) {
		ret = dev_open(vf_netdev);
		if (ret)
			netdev_warn(vf_netdev,
				    "unable to open: %d\n", ret);
	}
}

/* Setup VF as slave of the synthetic device.
 * Runs in workqueue to avoid recursion in netlink callbacks.
 */
static void netvsc_vf_setup(struct work_struct *w)
{
	struct net_device_context *ndev_ctx
1617
		= container_of(w, struct net_device_context, vf_takeover.work);
1618 1619 1620
	struct net_device *ndev = hv_get_drvdata(ndev_ctx->device_ctx);
	struct net_device *vf_netdev;

1621
	if (!rtnl_trylock()) {
1622
		schedule_delayed_work(&ndev_ctx->vf_takeover, 0);
1623 1624 1625
		return;
	}

1626 1627 1628 1629 1630 1631 1632
	vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
	if (vf_netdev)
		__netvsc_vf_setup(ndev, vf_netdev);

	rtnl_unlock();
}

1633 1634
static int netvsc_register_vf(struct net_device *vf_netdev)
{
1635 1636
	struct net_device *ndev;
	struct net_device_context *net_device_ctx;
1637 1638
	struct netvsc_device *netvsc_dev;

1639 1640 1641
	if (vf_netdev->addr_len != ETH_ALEN)
		return NOTIFY_DONE;

1642 1643 1644 1645 1646
	/*
	 * We will use the MAC address to locate the synthetic interface to
	 * associate with the VF interface. If we don't find a matching
	 * synthetic interface, move on.
	 */
1647
	ndev = get_netvsc_bymac(vf_netdev->perm_addr);
1648 1649 1650 1651
	if (!ndev)
		return NOTIFY_DONE;

	net_device_ctx = netdev_priv(ndev);
1652
	netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
1653
	if (!netvsc_dev || rtnl_dereference(net_device_ctx->vf_netdev))
1654 1655
		return NOTIFY_DONE;

1656 1657 1658
	if (netvsc_vf_join(vf_netdev, ndev) != 0)
		return NOTIFY_DONE;

1659
	netdev_info(ndev, "VF registering: %s\n", vf_netdev->name);
1660 1661

	/* Prevent this module from being unloaded while VF is registered */
1662
	try_module_get(THIS_MODULE);
1663 1664

	dev_hold(vf_netdev);
1665
	rcu_assign_pointer(net_device_ctx->vf_netdev, vf_netdev);
1666 1667 1668
	return NOTIFY_OK;
}

1669
static int netvsc_vf_up(struct net_device *vf_netdev)
1670
{
1671
	struct net_device_context *net_device_ctx;
1672
	struct netvsc_device *netvsc_dev;
1673
	struct net_device *ndev;
1674

1675 1676 1677
	ndev = get_netvsc_byref(vf_netdev);
	if (!ndev)
		return NOTIFY_DONE;
1678

1679 1680
	net_device_ctx = netdev_priv(ndev);
	netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
1681
	if (!netvsc_dev)
1682
		return NOTIFY_DONE;
1683

1684 1685 1686 1687 1688 1689 1690 1691
	/* Bump refcount when datapath is acvive - Why? */
	rndis_filter_open(netvsc_dev);

	/* notify the host to switch the data path. */
	netvsc_switch_datapath(ndev, true);
	netdev_info(ndev, "Data path switched to VF: %s\n", vf_netdev->name);

	return NOTIFY_OK;
1692 1693
}

1694
static int netvsc_vf_down(struct net_device *vf_netdev)
1695 1696
{
	struct net_device_context *net_device_ctx;
1697
	struct netvsc_device *netvsc_dev;
1698
	struct net_device *ndev;
1699

1700
	ndev = get_netvsc_byref(vf_netdev);
1701 1702 1703 1704
	if (!ndev)
		return NOTIFY_DONE;

	net_device_ctx = netdev_priv(ndev);
1705 1706 1707 1708 1709 1710 1711
	netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
	if (!netvsc_dev)
		return NOTIFY_DONE;

	netvsc_switch_datapath(ndev, false);
	netdev_info(ndev, "Data path switched from VF: %s\n", vf_netdev->name);
	rndis_filter_close(netvsc_dev);
1712 1713 1714 1715 1716 1717

	return NOTIFY_OK;
}

static int netvsc_unregister_vf(struct net_device *vf_netdev)
{
1718 1719
	struct net_device *ndev;
	struct net_device_context *net_device_ctx;
1720

1721
	ndev = get_netvsc_byref(vf_netdev);
1722 1723 1724 1725
	if (!ndev)
		return NOTIFY_DONE;

	net_device_ctx = netdev_priv(ndev);
1726
	cancel_delayed_work_sync(&net_device_ctx->vf_takeover);
1727

1728
	netdev_info(ndev, "VF unregistering: %s\n", vf_netdev->name);
1729

1730
	netdev_upper_dev_unlink(vf_netdev, ndev);
1731
	RCU_INIT_POINTER(net_device_ctx->vf_netdev, NULL);
1732
	dev_put(vf_netdev);
1733 1734 1735 1736
	module_put(THIS_MODULE);
	return NOTIFY_OK;
}

1737 1738
static int netvsc_probe(struct hv_device *dev,
			const struct hv_vmbus_device_id *dev_id)
1739 1740 1741 1742
{
	struct net_device *net = NULL;
	struct net_device_context *net_device_ctx;
	struct netvsc_device_info device_info;
1743
	struct netvsc_device *nvdev;
1744
	int ret = -ENOMEM;
1745

1746
	net = alloc_etherdev_mq(sizeof(struct net_device_context),
1747
				VRSS_CHANNEL_MAX);
1748
	if (!net)
1749
		goto no_net;
1750

1751 1752
	netif_carrier_off(net);

1753 1754
	netvsc_init_settings(net);

1755
	net_device_ctx = netdev_priv(net);
1756
	net_device_ctx->device_ctx = dev;
1757 1758 1759 1760 1761
	net_device_ctx->msg_enable = netif_msg_init(debug, default_msg);
	if (netif_msg_probe(net_device_ctx))
		netdev_dbg(net, "netvsc msg_enable: %d\n",
			   net_device_ctx->msg_enable);

1762
	hv_set_drvdata(dev, net);
1763

1764
	INIT_DELAYED_WORK(&net_device_ctx->dwork, netvsc_link_change);
1765

1766 1767
	spin_lock_init(&net_device_ctx->lock);
	INIT_LIST_HEAD(&net_device_ctx->reconfig_events);
1768
	INIT_DELAYED_WORK(&net_device_ctx->vf_takeover, netvsc_vf_setup);
1769 1770 1771 1772 1773

	net_device_ctx->vf_stats
		= netdev_alloc_pcpu_stats(struct netvsc_vf_pcpu_stats);
	if (!net_device_ctx->vf_stats)
		goto no_stats;
1774

1775
	net->netdev_ops = &device_ops;
1776
	net->ethtool_ops = &ethtool_ops;
1777
	SET_NETDEV_DEV(net, &dev->device);
1778

1779 1780 1781
	/* We always need headroom for rndis header */
	net->needed_headroom = RNDIS_AND_PPI_SIZE;

1782
	/* Notify the netvsc driver of the new device */
1783
	memset(&device_info, 0, sizeof(device_info));
1784
	device_info.ring_size = ring_size;
1785
	device_info.num_chn = VRSS_CHANNEL_DEFAULT;
1786 1787 1788 1789

	nvdev = rndis_filter_device_add(dev, &device_info);
	if (IS_ERR(nvdev)) {
		ret = PTR_ERR(nvdev);
1790
		netdev_err(net, "unable to add netvsc device (ret %d)\n", ret);
1791
		goto rndis_failed;
1792
	}
1793

1794 1795
	memcpy(net->dev_addr, device_info.mac_adr, ETH_ALEN);

1796 1797 1798 1799 1800 1801
	/* hw_features computed in rndis_filter_device_add */
	net->features = net->hw_features |
		NETIF_F_HIGHDMA | NETIF_F_SG |
		NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
	net->vlan_features = net->features;

1802 1803 1804
	netif_set_real_num_tx_queues(net, nvdev->num_chn);
	netif_set_real_num_rx_queues(net, nvdev->num_chn);

1805 1806
	netdev_lockdep_set_classes(net);

1807 1808 1809 1810 1811 1812 1813
	/* MTU range: 68 - 1500 or 65521 */
	net->min_mtu = NETVSC_MTU_MIN;
	if (nvdev->nvsp_version >= NVSP_PROTOCOL_VERSION_2)
		net->max_mtu = NETVSC_MTU - ETH_HLEN;
	else
		net->max_mtu = ETH_DATA_LEN;

1814 1815 1816
	ret = register_netdev(net);
	if (ret != 0) {
		pr_err("Unable to register netdev.\n");
1817
		goto register_failed;
1818 1819
	}

1820
	return ret;
1821 1822 1823 1824 1825 1826 1827 1828 1829 1830

register_failed:
	rndis_filter_device_remove(dev, nvdev);
rndis_failed:
	free_percpu(net_device_ctx->vf_stats);
no_stats:
	hv_set_drvdata(dev, NULL);
	free_netdev(net);
no_net:
	return ret;
1831 1832
}

1833
static int netvsc_remove(struct hv_device *dev)
1834
{
1835
	struct net_device *net;
1836
	struct net_device_context *ndev_ctx;
1837

1838
	net = hv_get_drvdata(dev);
1839 1840

	if (net == NULL) {
1841
		dev_err(&dev->device, "No net device to remove\n");
1842 1843 1844
		return 0;
	}

1845
	ndev_ctx = netdev_priv(net);
1846

1847
	netif_device_detach(net);
1848

1849 1850
	cancel_delayed_work_sync(&ndev_ctx->dwork);

1851 1852
	/*
	 * Call to the vsc driver to let it know that the device is being
1853
	 * removed. Also blocks mtu and channel changes.
1854
	 */
1855
	rtnl_lock();
1856 1857
	rndis_filter_device_remove(dev,
				   rtnl_dereference(ndev_ctx->nvdev));
1858 1859 1860
	rtnl_unlock();

	unregister_netdev(net);
1861

1862 1863
	hv_set_drvdata(dev, NULL);

1864
	free_percpu(ndev_ctx->vf_stats);
1865
	free_netdev(net);
1866
	return 0;
1867 1868
}

1869
static const struct hv_vmbus_device_id id_table[] = {
1870
	/* Network guid */
1871
	{ HV_NIC_GUID, },
1872
	{ },
1873 1874 1875 1876
};

MODULE_DEVICE_TABLE(vmbus, id_table);

1877
/* The one and only one */
1878
static struct  hv_driver netvsc_drv = {
1879
	.name = KBUILD_MODNAME,
1880
	.id_table = id_table,
1881 1882
	.probe = netvsc_probe,
	.remove = netvsc_remove,
1883
};
1884

1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895
/*
 * On Hyper-V, every VF interface is matched with a corresponding
 * synthetic interface. The synthetic interface is presented first
 * to the guest. When the corresponding VF instance is registered,
 * we will take care of switching the data path.
 */
static int netvsc_netdev_event(struct notifier_block *this,
			       unsigned long event, void *ptr)
{
	struct net_device *event_dev = netdev_notifier_info_to_dev(ptr);

1896 1897 1898 1899 1900 1901 1902 1903
	/* Skip our own events */
	if (event_dev->netdev_ops == &device_ops)
		return NOTIFY_DONE;

	/* Avoid non-Ethernet type devices */
	if (event_dev->type != ARPHRD_ETHER)
		return NOTIFY_DONE;

1904
	/* Avoid Vlan dev with same MAC registering as VF */
1905
	if (is_vlan_dev(event_dev))
1906 1907 1908
		return NOTIFY_DONE;

	/* Avoid Bonding master dev with same MAC registering as VF */
1909 1910
	if ((event_dev->priv_flags & IFF_BONDING) &&
	    (event_dev->flags & IFF_MASTER))
1911 1912
		return NOTIFY_DONE;

1913 1914 1915 1916 1917 1918
	switch (event) {
	case NETDEV_REGISTER:
		return netvsc_register_vf(event_dev);
	case NETDEV_UNREGISTER:
		return netvsc_unregister_vf(event_dev);
	case NETDEV_UP:
1919
		return netvsc_vf_up(event_dev);
1920
	case NETDEV_DOWN:
1921
		return netvsc_vf_down(event_dev);
1922 1923 1924 1925 1926 1927 1928 1929 1930
	default:
		return NOTIFY_DONE;
	}
}

static struct notifier_block netvsc_netdev_notifier = {
	.notifier_call = netvsc_netdev_event,
};

1931
static void __exit netvsc_drv_exit(void)
1932
{
1933
	unregister_netdevice_notifier(&netvsc_netdev_notifier);
1934
	vmbus_driver_unregister(&netvsc_drv);
1935 1936
}

1937
static int __init netvsc_drv_init(void)
1938
{
1939 1940
	int ret;

1941 1942 1943 1944 1945
	if (ring_size < RING_SIZE_MIN) {
		ring_size = RING_SIZE_MIN;
		pr_info("Increased ring_size to %d (min allowed)\n",
			ring_size);
	}
1946 1947 1948 1949 1950 1951 1952
	ret = vmbus_driver_register(&netvsc_drv);

	if (ret)
		return ret;

	register_netdevice_notifier(&netvsc_netdev_notifier);
	return 0;
1953 1954
}

1955
MODULE_LICENSE("GPL");
1956
MODULE_DESCRIPTION("Microsoft Hyper-V network driver");
1957

1958
module_init(netvsc_drv_init);
1959
module_exit(netvsc_drv_exit);