netvsc_drv.c 42.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
/*
 * Copyright (c) 2009, Microsoft Corporation.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License along with
14
 * this program; if not, see <http://www.gnu.org/licenses/>.
15 16
 *
 * Authors:
17
 *   Haiyang Zhang <haiyangz@microsoft.com>
18 19
 *   Hank Janssen  <hjanssen@microsoft.com>
 */
20 21
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

22
#include <linux/init.h>
23
#include <linux/atomic.h>
24 25 26 27 28 29 30 31 32
#include <linux/module.h>
#include <linux/highmem.h>
#include <linux/device.h>
#include <linux/io.h>
#include <linux/delay.h>
#include <linux/netdevice.h>
#include <linux/inetdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
33
#include <linux/if_vlan.h>
34
#include <linux/in.h>
35
#include <linux/slab.h>
36 37 38 39
#include <net/arp.h>
#include <net/route.h>
#include <net/sock.h>
#include <net/pkt_sched.h>
40 41
#include <net/checksum.h>
#include <net/ip6_checksum.h>
42

43
#include "hyperv_net.h"
44

45
#define RING_SIZE_MIN 64
46
#define LINKCHANGE_INT (2 * HZ)
47

48
static int ring_size = 128;
S
Stephen Hemminger 已提交
49 50
module_param(ring_size, int, S_IRUGO);
MODULE_PARM_DESC(ring_size, "Ring buffer size (# of pages)");
51

52 53 54 55 56 57 58 59 60
static const u32 default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE |
				NETIF_MSG_LINK | NETIF_MSG_IFUP |
				NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR |
				NETIF_MSG_TX_ERR;

static int debug = -1;
module_param(debug, int, S_IRUGO);
MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");

61
static void netvsc_set_multicast_list(struct net_device *net)
62
{
63
	struct net_device_context *net_device_ctx = netdev_priv(net);
64
	struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
65

66
	rndis_filter_update(nvdev);
67 68 69 70
}

static int netvsc_open(struct net_device *net)
{
71
	struct net_device_context *ndev_ctx = netdev_priv(net);
72
	struct netvsc_device *nvdev = rtnl_dereference(ndev_ctx->nvdev);
73
	struct rndis_device *rdev;
74
	int ret = 0;
75

76 77
	netif_carrier_off(net);

78
	/* Open up the device */
79
	ret = rndis_filter_open(nvdev);
80 81 82
	if (ret != 0) {
		netdev_err(net, "unable to open device (ret %d).\n", ret);
		return ret;
83 84
	}

85
	netif_tx_wake_all_queues(net);
86

87
	rdev = nvdev->extension;
88
	if (!rdev->link_state && !ndev_ctx->datapath)
89 90
		netif_carrier_on(net);

91 92 93 94 95 96
	return ret;
}

static int netvsc_close(struct net_device *net)
{
	struct net_device_context *net_device_ctx = netdev_priv(net);
97
	struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
98
	int ret;
99
	u32 aread, i, msec = 10, retry = 0, retry_max = 20;
100
	struct vmbus_channel *chn;
101

102
	netif_tx_disable(net);
103

104
	ret = rndis_filter_close(nvdev);
105
	if (ret != 0) {
106
		netdev_err(net, "unable to close device (ret %d).\n", ret);
107 108 109 110 111 112 113
		return ret;
	}

	/* Ensure pending bytes in ring are read */
	while (true) {
		aread = 0;
		for (i = 0; i < nvdev->num_chn; i++) {
114
			chn = nvdev->chan_table[i].channel;
115 116 117
			if (!chn)
				continue;

118
			aread = hv_get_bytes_to_read(&chn->inbound);
119 120 121
			if (aread)
				break;

122
			aread = hv_get_bytes_to_read(&chn->outbound);
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
			if (aread)
				break;
		}

		retry++;
		if (retry > retry_max || aread == 0)
			break;

		msleep(msec);

		if (msec < 1000)
			msec *= 2;
	}

	if (aread) {
		netdev_err(net, "Ring buffer not empty after closing rndis\n");
		ret = -ETIMEDOUT;
	}
141 142 143 144

	return ret;
}

145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
static void *init_ppi_data(struct rndis_message *msg, u32 ppi_size,
				int pkt_type)
{
	struct rndis_packet *rndis_pkt;
	struct rndis_per_packet_info *ppi;

	rndis_pkt = &msg->msg.pkt;
	rndis_pkt->data_offset += ppi_size;

	ppi = (struct rndis_per_packet_info *)((void *)rndis_pkt +
		rndis_pkt->per_pkt_info_offset + rndis_pkt->per_pkt_info_len);

	ppi->size = ppi_size;
	ppi->type = pkt_type;
	ppi->ppi_offset = sizeof(struct rndis_per_packet_info);

	rndis_pkt->per_pkt_info_len += ppi_size;

	return ppi;
}

166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
/* Azure hosts don't support non-TCP port numbers in hashing yet. We compute
 * hash for non-TCP traffic with only IP numbers.
 */
static inline u32 netvsc_get_hash(struct sk_buff *skb, struct sock *sk)
{
	struct flow_keys flow;
	u32 hash;
	static u32 hashrnd __read_mostly;

	net_get_random_once(&hashrnd, sizeof(hashrnd));

	if (!skb_flow_dissect_flow_keys(skb, &flow, 0))
		return 0;

	if (flow.basic.ip_proto == IPPROTO_TCP) {
		return skb_get_hash(skb);
	} else {
		if (flow.basic.n_proto == htons(ETH_P_IP))
			hash = jhash2((u32 *)&flow.addrs.v4addrs, 2, hashrnd);
		else if (flow.basic.n_proto == htons(ETH_P_IPV6))
			hash = jhash2((u32 *)&flow.addrs.v6addrs, 8, hashrnd);
		else
			hash = 0;

		skb_set_hash(skb, hash, PKT_HASH_TYPE_L3);
	}

	return hash;
}

196 197 198 199 200 201 202
static inline int netvsc_get_tx_queue(struct net_device *ndev,
				      struct sk_buff *skb, int old_idx)
{
	const struct net_device_context *ndc = netdev_priv(ndev);
	struct sock *sk = skb->sk;
	int q_idx;

203
	q_idx = ndc->tx_send_table[netvsc_get_hash(skb, sk) &
204 205 206 207 208 209 210 211 212 213
				   (VRSS_SEND_TAB_SIZE - 1)];

	/* If queue index changed record the new value */
	if (q_idx != old_idx &&
	    sk && sk_fullsock(sk) && rcu_access_pointer(sk->sk_dst_cache))
		sk_tx_queue_set(sk, q_idx);

	return q_idx;
}

214 215 216 217 218 219 220 221 222 223 224
/*
 * Select queue for transmit.
 *
 * If a valid queue has already been assigned, then use that.
 * Otherwise compute tx queue based on hash and the send table.
 *
 * This is basically similar to default (__netdev_pick_tx) with the added step
 * of using the host send_table when no other queue has been assigned.
 *
 * TODO support XPS - but get_xps_queue not exported
 */
225 226 227
static u16 netvsc_select_queue(struct net_device *ndev, struct sk_buff *skb,
			void *accel_priv, select_queue_fallback_t fallback)
{
228
	unsigned int num_tx_queues = ndev->real_num_tx_queues;
229 230 231 232 233 234 235 236 237 238
	int q_idx = sk_tx_queue_get(skb->sk);

	if (q_idx < 0 || skb->ooo_okay) {
		/* If forwarding a packet, we use the recorded queue when
		 * available for better cache locality.
		 */
		if (skb_rx_queue_recorded(skb))
			q_idx = skb_get_rx_queue(skb);
		else
			q_idx = netvsc_get_tx_queue(ndev, skb, q_idx);
239
	}
240

241 242 243
	while (unlikely(q_idx >= num_tx_queues))
		q_idx -= num_tx_queues;

244 245 246
	return q_idx;
}

247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
static u32 fill_pg_buf(struct page *page, u32 offset, u32 len,
			struct hv_page_buffer *pb)
{
	int j = 0;

	/* Deal with compund pages by ignoring unused part
	 * of the page.
	 */
	page += (offset >> PAGE_SHIFT);
	offset &= ~PAGE_MASK;

	while (len > 0) {
		unsigned long bytes;

		bytes = PAGE_SIZE - offset;
		if (bytes > len)
			bytes = len;
		pb[j].pfn = page_to_pfn(page);
		pb[j].offset = offset;
		pb[j].len = bytes;

		offset += bytes;
		len -= bytes;

		if (offset == PAGE_SIZE && len) {
			page++;
			offset = 0;
			j++;
		}
	}

	return j + 1;
}

281
static u32 init_page_array(void *hdr, u32 len, struct sk_buff *skb,
282 283
			   struct hv_netvsc_packet *packet,
			   struct hv_page_buffer **page_buf)
284
{
285
	struct hv_page_buffer *pb = *page_buf;
286 287 288 289 290 291
	u32 slots_used = 0;
	char *data = skb->data;
	int frags = skb_shinfo(skb)->nr_frags;
	int i;

	/* The packet is laid out thus:
292
	 * 1. hdr: RNDIS header and PPI
293 294 295 296 297 298 299 300
	 * 2. skb linear data
	 * 3. skb fragment data
	 */
	if (hdr != NULL)
		slots_used += fill_pg_buf(virt_to_page(hdr),
					offset_in_page(hdr),
					len, &pb[slots_used]);

301 302 303
	packet->rmsg_size = len;
	packet->rmsg_pgcnt = slots_used;

304 305 306 307 308 309 310 311 312 313 314
	slots_used += fill_pg_buf(virt_to_page(data),
				offset_in_page(data),
				skb_headlen(skb), &pb[slots_used]);

	for (i = 0; i < frags; i++) {
		skb_frag_t *frag = skb_shinfo(skb)->frags + i;

		slots_used += fill_pg_buf(skb_frag_page(frag),
					frag->page_offset,
					skb_frag_size(frag), &pb[slots_used]);
	}
315
	return slots_used;
316 317
}

318 319 320 321
/* Estimate number of page buffers neede to transmit
 * Need at most 2 for RNDIS header plus skb body and fragments.
 */
static unsigned int netvsc_get_slots(const struct sk_buff *skb)
322
{
323 324 325
	return PFN_UP(offset_in_page(skb->data) + skb_headlen(skb))
		+ skb_shinfo(skb)->nr_frags
		+ 2;
326 327
}

328
static u32 net_checksum_info(struct sk_buff *skb)
329
{
330 331
	if (skb->protocol == htons(ETH_P_IP)) {
		struct iphdr *ip = ip_hdr(skb);
332

333 334 335 336
		if (ip->protocol == IPPROTO_TCP)
			return TRANSPORT_INFO_IPV4_TCP;
		else if (ip->protocol == IPPROTO_UDP)
			return TRANSPORT_INFO_IPV4_UDP;
337
	} else {
338 339 340 341
		struct ipv6hdr *ip6 = ipv6_hdr(skb);

		if (ip6->nexthdr == IPPROTO_TCP)
			return TRANSPORT_INFO_IPV6_TCP;
342
		else if (ipv6_hdr(skb)->nexthdr == IPPROTO_UDP)
343
			return TRANSPORT_INFO_IPV6_UDP;
344 345
	}

346
	return TRANSPORT_INFO_NOT_IP;
347 348
}

349
static int netvsc_start_xmit(struct sk_buff *skb, struct net_device *net)
350 351
{
	struct net_device_context *net_device_ctx = netdev_priv(net);
352
	struct hv_netvsc_packet *packet = NULL;
353
	int ret;
354 355 356 357 358
	unsigned int num_data_pgs;
	struct rndis_message *rndis_msg;
	struct rndis_packet *rndis_pkt;
	u32 rndis_msg_size;
	struct rndis_per_packet_info *ppi;
359
	u32 hash;
360
	struct hv_page_buffer page_buf[MAX_PAGE_BUFFER_COUNT];
361
	struct hv_page_buffer *pb = page_buf;
362

363
	/* We can only transmit MAX_PAGE_BUFFER_COUNT number
364 365
	 * of pages in a single packet. If skb is scattered around
	 * more pages we try linearizing it.
366
	 */
367
	num_data_pgs = netvsc_get_slots(skb);
368
	if (unlikely(num_data_pgs > MAX_PAGE_BUFFER_COUNT)) {
369 370 371 372
		++net_device_ctx->eth_stats.tx_scattered;

		if (skb_linearize(skb))
			goto no_memory;
373

374
		num_data_pgs = netvsc_get_slots(skb);
375
		if (num_data_pgs > MAX_PAGE_BUFFER_COUNT) {
376
			++net_device_ctx->eth_stats.tx_too_big;
377 378
			goto drop;
		}
379
	}
380

381 382 383 384 385 386
	/*
	 * Place the rndis header in the skb head room and
	 * the skb->cb will be used for hv_netvsc_packet
	 * structure.
	 */
	ret = skb_cow_head(skb, RNDIS_AND_PPI_SIZE);
387 388 389
	if (ret)
		goto no_memory;

390 391 392 393
	/* Use the skb control buffer for building up the packet */
	BUILD_BUG_ON(sizeof(struct hv_netvsc_packet) >
			FIELD_SIZEOF(struct sk_buff, cb));
	packet = (struct hv_netvsc_packet *)skb->cb;
394

395 396
	packet->q_idx = skb_get_queue_mapping(skb);

397
	packet->total_data_buflen = skb->len;
398 399
	packet->total_bytes = skb->len;
	packet->total_packets = 1;
400

401
	rndis_msg = (struct rndis_message *)skb->head;
402

403
	memset(rndis_msg, 0, RNDIS_AND_PPI_SIZE);
404

405 406 407 408 409 410 411 412 413 414
	/* Add the rndis header */
	rndis_msg->ndis_msg_type = RNDIS_MSG_PACKET;
	rndis_msg->msg_len = packet->total_data_buflen;
	rndis_pkt = &rndis_msg->msg.pkt;
	rndis_pkt->data_offset = sizeof(struct rndis_packet);
	rndis_pkt->data_len = packet->total_data_buflen;
	rndis_pkt->per_pkt_info_offset = sizeof(struct rndis_packet);

	rndis_msg_size = RNDIS_MESSAGE_SIZE(struct rndis_packet);

415 416 417 418 419 420 421 422
	hash = skb_get_hash_raw(skb);
	if (hash != 0 && net->real_num_tx_queues > 1) {
		rndis_msg_size += NDIS_HASH_PPI_SIZE;
		ppi = init_ppi_data(rndis_msg, NDIS_HASH_PPI_SIZE,
				    NBL_HASH_VALUE);
		*(u32 *)((void *)ppi + ppi->ppi_offset) = hash;
	}

423
	if (skb_vlan_tag_present(skb)) {
424 425 426 427 428 429 430
		struct ndis_pkt_8021q_info *vlan;

		rndis_msg_size += NDIS_VLAN_PPI_SIZE;
		ppi = init_ppi_data(rndis_msg, NDIS_VLAN_PPI_SIZE,
					IEEE_8021Q_INFO);
		vlan = (struct ndis_pkt_8021q_info *)((void *)ppi +
						ppi->ppi_offset);
431 432
		vlan->vlanid = skb->vlan_tci & VLAN_VID_MASK;
		vlan->pri = (skb->vlan_tci & VLAN_PRIO_MASK) >>
433 434 435
				VLAN_PRIO_SHIFT;
	}

436
	if (skb_is_gso(skb)) {
437 438 439 440 441 442 443 444 445 446
		struct ndis_tcp_lso_info *lso_info;

		rndis_msg_size += NDIS_LSO_PPI_SIZE;
		ppi = init_ppi_data(rndis_msg, NDIS_LSO_PPI_SIZE,
				    TCP_LARGESEND_PKTINFO);

		lso_info = (struct ndis_tcp_lso_info *)((void *)ppi +
							ppi->ppi_offset);

		lso_info->lso_v2_transmit.type = NDIS_TCP_LARGE_SEND_OFFLOAD_V2_TYPE;
447
		if (skb->protocol == htons(ETH_P_IP)) {
448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
			lso_info->lso_v2_transmit.ip_version =
				NDIS_TCP_LARGE_SEND_OFFLOAD_IPV4;
			ip_hdr(skb)->tot_len = 0;
			ip_hdr(skb)->check = 0;
			tcp_hdr(skb)->check =
				~csum_tcpudp_magic(ip_hdr(skb)->saddr,
						   ip_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
		} else {
			lso_info->lso_v2_transmit.ip_version =
				NDIS_TCP_LARGE_SEND_OFFLOAD_IPV6;
			ipv6_hdr(skb)->payload_len = 0;
			tcp_hdr(skb)->check =
				~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
						 &ipv6_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
		}
463
		lso_info->lso_v2_transmit.tcp_header_offset = skb_transport_offset(skb);
464
		lso_info->lso_v2_transmit.mss = skb_shinfo(skb)->gso_size;
465
	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
466 467 468
		if (net_checksum_info(skb) & net_device_ctx->tx_checksum_mask) {
			struct ndis_tcp_ip_checksum_info *csum_info;

469 470 471 472 473 474 475
			rndis_msg_size += NDIS_CSUM_PPI_SIZE;
			ppi = init_ppi_data(rndis_msg, NDIS_CSUM_PPI_SIZE,
					    TCPIP_CHKSUM_PKTINFO);

			csum_info = (struct ndis_tcp_ip_checksum_info *)((void *)ppi +
									 ppi->ppi_offset);

476 477 478
			csum_info->transmit.tcp_header_offset = skb_transport_offset(skb);

			if (skb->protocol == htons(ETH_P_IP)) {
479
				csum_info->transmit.is_ipv4 = 1;
480 481 482 483 484 485

				if (ip_hdr(skb)->protocol == IPPROTO_TCP)
					csum_info->transmit.tcp_checksum = 1;
				else
					csum_info->transmit.udp_checksum = 1;
			} else {
486 487
				csum_info->transmit.is_ipv6 = 1;

488 489 490 491 492
				if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
					csum_info->transmit.tcp_checksum = 1;
				else
					csum_info->transmit.udp_checksum = 1;
			}
493
		} else {
494
			/* Can't do offload of this type of checksum */
495 496 497
			if (skb_checksum_help(skb))
				goto drop;
		}
498 499
	}

500 501
	/* Start filling in the page buffers with the rndis hdr */
	rndis_msg->msg_len += rndis_msg_size;
502
	packet->total_data_buflen = rndis_msg->msg_len;
503
	packet->page_buf_cnt = init_page_array(rndis_msg, rndis_msg_size,
504
					       skb, packet, &pb);
505

506 507
	/* timestamp packet in software */
	skb_tx_timestamp(skb);
508 509

	ret = netvsc_send(net_device_ctx, packet, rndis_msg, &pb, skb);
510
	if (likely(ret == 0))
511
		return NETDEV_TX_OK;
512 513 514

	if (ret == -EAGAIN) {
		++net_device_ctx->eth_stats.tx_busy;
515
		return NETDEV_TX_BUSY;
516 517 518 519
	}

	if (ret == -ENOSPC)
		++net_device_ctx->eth_stats.tx_no_space;
520 521 522 523

drop:
	dev_kfree_skb_any(skb);
	net->stats.tx_dropped++;
524

525
	return NETDEV_TX_OK;
526 527 528 529

no_memory:
	++net_device_ctx->eth_stats.tx_no_memory;
	goto drop;
530
}
531
/*
532 533
 * netvsc_linkstatus_callback - Link up/down notification
 */
534
void netvsc_linkstatus_callback(struct hv_device *device_obj,
535
				struct rndis_message *resp)
536
{
537
	struct rndis_indicate_status *indicate = &resp->msg.indicate_status;
538
	struct net_device *net;
539
	struct net_device_context *ndev_ctx;
540 541
	struct netvsc_reconfig *event;
	unsigned long flags;
542

543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560
	net = hv_get_drvdata(device_obj);

	if (!net)
		return;

	ndev_ctx = netdev_priv(net);

	/* Update the physical link speed when changing to another vSwitch */
	if (indicate->status == RNDIS_STATUS_LINK_SPEED_CHANGE) {
		u32 speed;

		speed = *(u32 *)((void *)indicate + indicate->
				 status_buf_offset) / 10000;
		ndev_ctx->speed = speed;
		return;
	}

	/* Handle these link change statuses below */
561 562 563
	if (indicate->status != RNDIS_STATUS_NETWORK_CHANGE &&
	    indicate->status != RNDIS_STATUS_MEDIA_CONNECT &&
	    indicate->status != RNDIS_STATUS_MEDIA_DISCONNECT)
564
		return;
565

566
	if (net->reg_state != NETREG_REGISTERED)
567 568
		return;

569 570 571 572 573 574 575 576 577 578
	event = kzalloc(sizeof(*event), GFP_ATOMIC);
	if (!event)
		return;
	event->event = indicate->status;

	spin_lock_irqsave(&ndev_ctx->lock, flags);
	list_add_tail(&event->list, &ndev_ctx->reconfig_events);
	spin_unlock_irqrestore(&ndev_ctx->lock, flags);

	schedule_delayed_work(&ndev_ctx->dwork, 0);
579 580
}

581
static struct sk_buff *netvsc_alloc_recv_skb(struct net_device *net,
582
					     struct napi_struct *napi,
583 584 585
					     const struct ndis_tcp_ip_checksum_info *csum_info,
					     const struct ndis_pkt_8021q_info *vlan,
					     void *data, u32 buflen)
586 587 588
{
	struct sk_buff *skb;

589
	skb = napi_alloc_skb(napi, buflen);
590 591
	if (!skb)
		return skb;
592

593 594 595 596
	/*
	 * Copy to skb. This copy is needed here since the memory pointed by
	 * hv_netvsc_packet cannot be deallocated
	 */
597
	skb_put_data(skb, data, buflen);
598 599

	skb->protocol = eth_type_trans(skb, net);
600 601 602 603 604 605 606 607 608 609 610

	/* skb is already created with CHECKSUM_NONE */
	skb_checksum_none_assert(skb);

	/*
	 * In Linux, the IP checksum is always checked.
	 * Do L4 checksum offload if enabled and present.
	 */
	if (csum_info && (net->features & NETIF_F_RXCSUM)) {
		if (csum_info->receive.tcp_checksum_succeeded ||
		    csum_info->receive.udp_checksum_succeeded)
611 612 613
			skb->ip_summed = CHECKSUM_UNNECESSARY;
	}

614 615 616
	if (vlan) {
		u16 vlan_tci = vlan->vlanid | (vlan->pri << VLAN_PRIO_SHIFT);

617
		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
618
				       vlan_tci);
619
	}
620

621 622 623 624 625 626 627
	return skb;
}

/*
 * netvsc_recv_callback -  Callback when we receive a packet from the
 * "wire" on the specified device.
 */
628 629 630 631 632
int netvsc_recv_callback(struct net_device *net,
			 struct vmbus_channel *channel,
			 void  *data, u32 len,
			 const struct ndis_tcp_ip_checksum_info *csum_info,
			 const struct ndis_pkt_8021q_info *vlan)
633
{
634
	struct net_device_context *net_device_ctx = netdev_priv(net);
635
	struct netvsc_device *net_device;
S
stephen hemminger 已提交
636
	u16 q_idx = channel->offermsg.offer.sub_channel_index;
637
	struct netvsc_channel *nvchan;
638
	struct net_device *vf_netdev;
639 640 641
	struct sk_buff *skb;
	struct netvsc_stats *rx_stats;

642
	if (net->reg_state != NETREG_REGISTERED)
643 644
		return NVSP_STAT_FAIL;

645 646 647 648 649 650 651
	/*
	 * If necessary, inject this packet into the VF interface.
	 * On Hyper-V, multicast and brodcast packets are only delivered
	 * to the synthetic interface (after subjecting these to
	 * policy filters on the host). Deliver these via the VF
	 * interface in the guest.
	 */
652
	rcu_read_lock();
653 654 655 656 657
	net_device = rcu_dereference(net_device_ctx->nvdev);
	if (unlikely(!net_device))
		goto drop;

	nvchan = &net_device->chan_table[q_idx];
658
	vf_netdev = rcu_dereference(net_device_ctx->vf_netdev);
659 660
	if (vf_netdev && (vf_netdev->flags & IFF_UP))
		net = vf_netdev;
661 662

	/* Allocate a skb - TODO direct I/O to pages? */
663 664
	skb = netvsc_alloc_recv_skb(net, &nvchan->napi,
				    csum_info, vlan, data, len);
665
	if (unlikely(!skb)) {
666
drop:
667
		++net->stats.rx_dropped;
668
		rcu_read_unlock();
669 670
		return NVSP_STAT_FAIL;
	}
671

672
	if (net != vf_netdev)
673
		skb_record_rx_queue(skb, q_idx);
674 675 676 677 678 679

	/*
	 * Even if injecting the packet, record the statistics
	 * on the synthetic device because modifying the VF device
	 * statistics will not work correctly.
	 */
S
stephen hemminger 已提交
680
	rx_stats = &nvchan->rx_stats;
681
	u64_stats_update_begin(&rx_stats->syncp);
682
	rx_stats->packets++;
683
	rx_stats->bytes += len;
684 685 686 687 688

	if (skb->pkt_type == PACKET_BROADCAST)
		++rx_stats->broadcast;
	else if (skb->pkt_type == PACKET_MULTICAST)
		++rx_stats->multicast;
689
	u64_stats_update_end(&rx_stats->syncp);
690

S
stephen hemminger 已提交
691
	napi_gro_receive(&nvchan->napi, skb);
692
	rcu_read_unlock();
693 694 695 696

	return 0;
}

697 698 699
static void netvsc_get_drvinfo(struct net_device *net,
			       struct ethtool_drvinfo *info)
{
700 701
	strlcpy(info->driver, KBUILD_MODNAME, sizeof(info->driver));
	strlcpy(info->fw_version, "N/A", sizeof(info->fw_version));
702 703
}

704 705 706 707
static void netvsc_get_channels(struct net_device *net,
				struct ethtool_channels *channel)
{
	struct net_device_context *net_device_ctx = netdev_priv(net);
708
	struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
709 710 711 712 713 714 715

	if (nvdev) {
		channel->max_combined	= nvdev->max_chn;
		channel->combined_count = nvdev->num_chn;
	}
}

716 717 718 719
static int netvsc_set_queues(struct net_device *net, struct hv_device *dev,
			     u32 num_chn)
{
	struct netvsc_device_info device_info;
720
	struct netvsc_device *net_device;
721 722 723 724 725 726 727 728 729 730 731 732
	int ret;

	memset(&device_info, 0, sizeof(device_info));
	device_info.num_chn = num_chn;
	device_info.ring_size = ring_size;
	device_info.max_num_vrss_chns = num_chn;

	ret = netif_set_real_num_tx_queues(net, num_chn);
	if (ret)
		return ret;

	ret = netif_set_real_num_rx_queues(net, num_chn);
733 734
	if (ret)
		return ret;
735

736
	net_device = rndis_filter_device_add(dev, &device_info);
737
	return PTR_ERR_OR_ZERO(net_device);
738 739
}

740 741 742 743 744
static int netvsc_set_channels(struct net_device *net,
			       struct ethtool_channels *channels)
{
	struct net_device_context *net_device_ctx = netdev_priv(net);
	struct hv_device *dev = net_device_ctx->device_ctx;
745
	struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
746
	unsigned int count = channels->combined_count;
747
	bool was_opened;
748 749 750 751 752 753 754
	int ret;

	/* We do not support separate count for rx, tx, or other */
	if (count == 0 ||
	    channels->rx_count || channels->tx_count || channels->other_count)
		return -EINVAL;

755
	if (count > net->num_tx_queues || count > VRSS_CHANNEL_MAX)
756
		return -EINVAL;
757

758
	if (!nvdev || nvdev->destroy)
759 760
		return -ENODEV;

761
	if (nvdev->nvsp_version < NVSP_PROTOCOL_VERSION_5)
762 763
		return -EINVAL;

764
	if (count > nvdev->max_chn)
765 766
		return -EINVAL;

767 768 769
	was_opened = rndis_filter_opened(nvdev);
	if (was_opened)
		rndis_filter_close(nvdev);
770

771
	rndis_filter_device_remove(dev, nvdev);
772

773 774 775 776 777
	ret = netvsc_set_queues(net, dev, count);
	if (ret == 0)
		nvdev->num_chn = count;
	else
		netvsc_set_queues(net, dev, nvdev->num_chn);
778

779 780 781
	nvdev = rtnl_dereference(net_device_ctx->nvdev);
	if (was_opened)
		rndis_filter_open(nvdev);
782

783
	/* We may have missed link change notifications */
784
	net_device_ctx->last_reconfig = 0;
785
	schedule_delayed_work(&net_device_ctx->dwork, 0);
786 787 788 789

	return ret;
}

790 791
static bool
netvsc_validate_ethtool_ss_cmd(const struct ethtool_link_ksettings *cmd)
792
{
793 794
	struct ethtool_link_ksettings diff1 = *cmd;
	struct ethtool_link_ksettings diff2 = {};
795

796 797
	diff1.base.speed = 0;
	diff1.base.duplex = 0;
798
	/* advertising and cmd are usually set */
799 800
	ethtool_link_ksettings_zero_link_mode(&diff1, advertising);
	diff1.base.cmd = 0;
801
	/* We set port to PORT_OTHER */
802
	diff2.base.port = PORT_OTHER;
803 804 805 806 807 808 809 810 811

	return !memcmp(&diff1, &diff2, sizeof(diff1));
}

static void netvsc_init_settings(struct net_device *dev)
{
	struct net_device_context *ndc = netdev_priv(dev);

	ndc->speed = SPEED_UNKNOWN;
812
	ndc->duplex = DUPLEX_FULL;
813 814
}

815 816
static int netvsc_get_link_ksettings(struct net_device *dev,
				     struct ethtool_link_ksettings *cmd)
817 818 819
{
	struct net_device_context *ndc = netdev_priv(dev);

820 821 822
	cmd->base.speed = ndc->speed;
	cmd->base.duplex = ndc->duplex;
	cmd->base.port = PORT_OTHER;
823 824 825 826

	return 0;
}

827 828
static int netvsc_set_link_ksettings(struct net_device *dev,
				     const struct ethtool_link_ksettings *cmd)
829 830 831 832
{
	struct net_device_context *ndc = netdev_priv(dev);
	u32 speed;

833
	speed = cmd->base.speed;
834
	if (!ethtool_validate_speed(speed) ||
835
	    !ethtool_validate_duplex(cmd->base.duplex) ||
836 837 838 839
	    !netvsc_validate_ethtool_ss_cmd(cmd))
		return -EINVAL;

	ndc->speed = speed;
840
	ndc->duplex = cmd->base.duplex;
841 842 843 844

	return 0;
}

845 846 847
static int netvsc_change_mtu(struct net_device *ndev, int mtu)
{
	struct net_device_context *ndevctx = netdev_priv(ndev);
848
	struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
849
	struct hv_device *hdev = ndevctx->device_ctx;
850
	int orig_mtu = ndev->mtu;
851
	struct netvsc_device_info device_info;
852
	bool was_opened;
853
	int ret = 0;
854

855
	if (!nvdev || nvdev->destroy)
856 857
		return -ENODEV;

858 859 860 861
	netif_device_detach(ndev);
	was_opened = rndis_filter_opened(nvdev);
	if (was_opened)
		rndis_filter_close(nvdev);
862

863 864 865 866 867
	memset(&device_info, 0, sizeof(device_info));
	device_info.ring_size = ring_size;
	device_info.num_chn = nvdev->num_chn;
	device_info.max_num_vrss_chns = nvdev->num_chn;

868
	rndis_filter_device_remove(hdev, nvdev);
869 870 871

	ndev->mtu = mtu;

872 873 874 875 876 877 878 879
	nvdev = rndis_filter_device_add(hdev, &device_info);
	if (IS_ERR(nvdev)) {
		ret = PTR_ERR(nvdev);

		/* Attempt rollback to original MTU */
		ndev->mtu = orig_mtu;
		rndis_filter_device_add(hdev, &device_info);
	}
880

881 882 883 884
	if (was_opened)
		rndis_filter_open(nvdev);

	netif_device_attach(ndev);
885

886 887 888
	/* We may have missed link change notifications */
	schedule_delayed_work(&ndevctx->dwork, 0);

889
	return ret;
890 891
}

892 893
static void netvsc_get_stats64(struct net_device *net,
			       struct rtnl_link_stats64 *t)
894 895
{
	struct net_device_context *ndev_ctx = netdev_priv(net);
896
	struct netvsc_device *nvdev = rcu_dereference_rtnl(ndev_ctx->nvdev);
897 898 899 900 901 902 903 904 905
	int i;

	if (!nvdev)
		return;

	for (i = 0; i < nvdev->num_chn; i++) {
		const struct netvsc_channel *nvchan = &nvdev->chan_table[i];
		const struct netvsc_stats *stats;
		u64 packets, bytes, multicast;
906 907
		unsigned int start;

908
		stats = &nvchan->tx_stats;
909
		do {
910 911 912 913 914 915 916
			start = u64_stats_fetch_begin_irq(&stats->syncp);
			packets = stats->packets;
			bytes = stats->bytes;
		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));

		t->tx_bytes	+= bytes;
		t->tx_packets	+= packets;
917

918
		stats = &nvchan->rx_stats;
919
		do {
920 921 922 923 924 925 926 927 928
			start = u64_stats_fetch_begin_irq(&stats->syncp);
			packets = stats->packets;
			bytes = stats->bytes;
			multicast = stats->multicast + stats->broadcast;
		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));

		t->rx_bytes	+= bytes;
		t->rx_packets	+= packets;
		t->multicast	+= multicast;
929 930 931
	}

	t->tx_dropped	= net->stats.tx_dropped;
S
Simon Xiao 已提交
932
	t->tx_errors	= net->stats.tx_errors;
933 934 935 936

	t->rx_dropped	= net->stats.rx_dropped;
	t->rx_errors	= net->stats.rx_errors;
}
937 938 939 940

static int netvsc_set_mac_addr(struct net_device *ndev, void *p)
{
	struct sockaddr *addr = p;
941
	char save_adr[ETH_ALEN];
942 943 944 945 946 947 948 949 950 951
	unsigned char save_aatype;
	int err;

	memcpy(save_adr, ndev->dev_addr, ETH_ALEN);
	save_aatype = ndev->addr_assign_type;

	err = eth_mac_addr(ndev, p);
	if (err != 0)
		return err;

952
	err = rndis_filter_set_device_mac(ndev, addr->sa_data);
953 954 955 956 957 958 959 960 961
	if (err != 0) {
		/* roll back to saved MAC */
		memcpy(ndev->dev_addr, save_adr, ETH_ALEN);
		ndev->addr_assign_type = save_aatype;
	}

	return err;
}

962 963 964 965 966 967 968 969 970 971 972
static const struct {
	char name[ETH_GSTRING_LEN];
	u16 offset;
} netvsc_stats[] = {
	{ "tx_scattered", offsetof(struct netvsc_ethtool_stats, tx_scattered) },
	{ "tx_no_memory",  offsetof(struct netvsc_ethtool_stats, tx_no_memory) },
	{ "tx_no_space",  offsetof(struct netvsc_ethtool_stats, tx_no_space) },
	{ "tx_too_big",	  offsetof(struct netvsc_ethtool_stats, tx_too_big) },
	{ "tx_busy",	  offsetof(struct netvsc_ethtool_stats, tx_busy) },
};

973 974 975 976 977
#define NETVSC_GLOBAL_STATS_LEN	ARRAY_SIZE(netvsc_stats)

/* 4 statistics per queue (rx/tx packets/bytes) */
#define NETVSC_QUEUE_STATS_LEN(dev) ((dev)->num_chn * 4)

978 979
static int netvsc_get_sset_count(struct net_device *dev, int string_set)
{
980
	struct net_device_context *ndc = netdev_priv(dev);
981
	struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
982 983 984

	if (!nvdev)
		return -ENODEV;
985

986 987
	switch (string_set) {
	case ETH_SS_STATS:
988
		return NETVSC_GLOBAL_STATS_LEN + NETVSC_QUEUE_STATS_LEN(nvdev);
989 990 991 992 993 994 995 996 997
	default:
		return -EINVAL;
	}
}

static void netvsc_get_ethtool_stats(struct net_device *dev,
				     struct ethtool_stats *stats, u64 *data)
{
	struct net_device_context *ndc = netdev_priv(dev);
998
	struct netvsc_device *nvdev = rcu_dereference(ndc->nvdev);
999
	const void *nds = &ndc->eth_stats;
1000 1001 1002 1003
	const struct netvsc_stats *qstats;
	unsigned int start;
	u64 packets, bytes;
	int i, j;
1004

1005 1006 1007
	if (!nvdev)
		return;

1008
	for (i = 0; i < NETVSC_GLOBAL_STATS_LEN; i++)
1009
		data[i] = *(unsigned long *)(nds + netvsc_stats[i].offset);
1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030

	for (j = 0; j < nvdev->num_chn; j++) {
		qstats = &nvdev->chan_table[j].tx_stats;

		do {
			start = u64_stats_fetch_begin_irq(&qstats->syncp);
			packets = qstats->packets;
			bytes = qstats->bytes;
		} while (u64_stats_fetch_retry_irq(&qstats->syncp, start));
		data[i++] = packets;
		data[i++] = bytes;

		qstats = &nvdev->chan_table[j].rx_stats;
		do {
			start = u64_stats_fetch_begin_irq(&qstats->syncp);
			packets = qstats->packets;
			bytes = qstats->bytes;
		} while (u64_stats_fetch_retry_irq(&qstats->syncp, start));
		data[i++] = packets;
		data[i++] = bytes;
	}
1031 1032 1033 1034
}

static void netvsc_get_strings(struct net_device *dev, u32 stringset, u8 *data)
{
1035
	struct net_device_context *ndc = netdev_priv(dev);
1036
	struct netvsc_device *nvdev = rcu_dereference(ndc->nvdev);
1037
	u8 *p = data;
1038 1039
	int i;

1040 1041 1042
	if (!nvdev)
		return;

1043 1044 1045
	switch (stringset) {
	case ETH_SS_STATS:
		for (i = 0; i < ARRAY_SIZE(netvsc_stats); i++)
1046
			memcpy(p + i * ETH_GSTRING_LEN,
1047
			       netvsc_stats[i].name, ETH_GSTRING_LEN);
1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060

		p += i * ETH_GSTRING_LEN;
		for (i = 0; i < nvdev->num_chn; i++) {
			sprintf(p, "tx_queue_%u_packets", i);
			p += ETH_GSTRING_LEN;
			sprintf(p, "tx_queue_%u_bytes", i);
			p += ETH_GSTRING_LEN;
			sprintf(p, "rx_queue_%u_packets", i);
			p += ETH_GSTRING_LEN;
			sprintf(p, "rx_queue_%u_bytes", i);
			p += ETH_GSTRING_LEN;
		}

1061 1062 1063 1064
		break;
	}
}

1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
static int
netvsc_get_rss_hash_opts(struct netvsc_device *nvdev,
			 struct ethtool_rxnfc *info)
{
	info->data = RXH_IP_SRC | RXH_IP_DST;

	switch (info->flow_type) {
	case TCP_V4_FLOW:
	case TCP_V6_FLOW:
		info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
		/* fallthrough */
	case UDP_V4_FLOW:
	case UDP_V6_FLOW:
	case IPV4_FLOW:
	case IPV6_FLOW:
		break;
	default:
		info->data = 0;
		break;
	}

	return 0;
}

1089 1090 1091 1092 1093
static int
netvsc_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info,
		 u32 *rules)
{
	struct net_device_context *ndc = netdev_priv(dev);
1094 1095 1096 1097
	struct netvsc_device *nvdev = rcu_dereference(ndc->nvdev);

	if (!nvdev)
		return -ENODEV;
1098 1099 1100 1101 1102

	switch (info->cmd) {
	case ETHTOOL_GRXRINGS:
		info->data = nvdev->num_chn;
		return 0;
1103 1104 1105

	case ETHTOOL_GRXFH:
		return netvsc_get_rss_hash_opts(nvdev, info);
1106 1107 1108 1109
	}
	return -EOPNOTSUPP;
}

R
Richard Weinberger 已提交
1110
#ifdef CONFIG_NET_POLL_CONTROLLER
S
stephen hemminger 已提交
1111
static void netvsc_poll_controller(struct net_device *dev)
R
Richard Weinberger 已提交
1112
{
S
stephen hemminger 已提交
1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126
	struct net_device_context *ndc = netdev_priv(dev);
	struct netvsc_device *ndev;
	int i;

	rcu_read_lock();
	ndev = rcu_dereference(ndc->nvdev);
	if (ndev) {
		for (i = 0; i < ndev->num_chn; i++) {
			struct netvsc_channel *nvchan = &ndev->chan_table[i];

			napi_schedule(&nvchan->napi);
		}
	}
	rcu_read_unlock();
R
Richard Weinberger 已提交
1127 1128
}
#endif
1129

1130 1131 1132 1133 1134 1135 1136
static u32 netvsc_get_rxfh_key_size(struct net_device *dev)
{
	return NETVSC_HASH_KEYLEN;
}

static u32 netvsc_rss_indir_size(struct net_device *dev)
{
1137
	return ITAB_NUM;
1138 1139 1140 1141 1142 1143
}

static int netvsc_get_rxfh(struct net_device *dev, u32 *indir, u8 *key,
			   u8 *hfunc)
{
	struct net_device_context *ndc = netdev_priv(dev);
1144
	struct netvsc_device *ndev = rcu_dereference(ndc->nvdev);
1145
	struct rndis_device *rndis_dev;
1146
	int i;
1147

1148 1149 1150
	if (!ndev)
		return -ENODEV;

1151 1152 1153
	if (hfunc)
		*hfunc = ETH_RSS_HASH_TOP;	/* Toeplitz */

1154
	rndis_dev = ndev->extension;
1155 1156 1157 1158 1159
	if (indir) {
		for (i = 0; i < ITAB_NUM; i++)
			indir[i] = rndis_dev->ind_table[i];
	}

1160 1161 1162 1163 1164 1165 1166 1167 1168 1169
	if (key)
		memcpy(key, rndis_dev->rss_key, NETVSC_HASH_KEYLEN);

	return 0;
}

static int netvsc_set_rxfh(struct net_device *dev, const u32 *indir,
			   const u8 *key, const u8 hfunc)
{
	struct net_device_context *ndc = netdev_priv(dev);
1170
	struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1171
	struct rndis_device *rndis_dev;
1172
	int i;
1173

1174 1175 1176
	if (!ndev)
		return -ENODEV;

1177 1178 1179
	if (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP)
		return -EOPNOTSUPP;

1180
	rndis_dev = ndev->extension;
1181 1182
	if (indir) {
		for (i = 0; i < ITAB_NUM; i++)
1183
			if (indir[i] >= VRSS_CHANNEL_MAX)
1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195
				return -EINVAL;

		for (i = 0; i < ITAB_NUM; i++)
			rndis_dev->ind_table[i] = indir[i];
	}

	if (!key) {
		if (!indir)
			return 0;

		key = rndis_dev->rss_key;
	}
1196 1197 1198 1199

	return rndis_filter_set_rss_param(rndis_dev, key, ndev->num_chn);
}

1200 1201 1202
static const struct ethtool_ops ethtool_ops = {
	.get_drvinfo	= netvsc_get_drvinfo,
	.get_link	= ethtool_op_get_link,
1203 1204 1205
	.get_ethtool_stats = netvsc_get_ethtool_stats,
	.get_sset_count = netvsc_get_sset_count,
	.get_strings	= netvsc_get_strings,
1206
	.get_channels   = netvsc_get_channels,
1207
	.set_channels   = netvsc_set_channels,
1208
	.get_ts_info	= ethtool_op_get_ts_info,
1209
	.get_rxnfc	= netvsc_get_rxnfc,
1210 1211 1212 1213
	.get_rxfh_key_size = netvsc_get_rxfh_key_size,
	.get_rxfh_indir_size = netvsc_rss_indir_size,
	.get_rxfh	= netvsc_get_rxfh,
	.set_rxfh	= netvsc_set_rxfh,
1214 1215
	.get_link_ksettings = netvsc_get_link_ksettings,
	.set_link_ksettings = netvsc_set_link_ksettings,
1216 1217
};

1218 1219 1220 1221
static const struct net_device_ops device_ops = {
	.ndo_open =			netvsc_open,
	.ndo_stop =			netvsc_close,
	.ndo_start_xmit =		netvsc_start_xmit,
1222
	.ndo_set_rx_mode =		netvsc_set_multicast_list,
1223
	.ndo_change_mtu =		netvsc_change_mtu,
1224
	.ndo_validate_addr =		eth_validate_addr,
1225
	.ndo_set_mac_address =		netvsc_set_mac_addr,
1226
	.ndo_select_queue =		netvsc_select_queue,
1227
	.ndo_get_stats64 =		netvsc_get_stats64,
R
Richard Weinberger 已提交
1228 1229 1230
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller =		netvsc_poll_controller,
#endif
1231 1232
};

1233
/*
1234 1235 1236
 * Handle link status changes. For RNDIS_STATUS_NETWORK_CHANGE emulate link
 * down/up sequence. In case of RNDIS_STATUS_MEDIA_CONNECT when carrier is
 * present send GARP packet to network peers with netif_notify_peers().
1237
 */
1238
static void netvsc_link_change(struct work_struct *w)
1239
{
1240 1241 1242 1243
	struct net_device_context *ndev_ctx =
		container_of(w, struct net_device_context, dwork.work);
	struct hv_device *device_obj = ndev_ctx->device_ctx;
	struct net_device *net = hv_get_drvdata(device_obj);
1244
	struct netvsc_device *net_device;
1245
	struct rndis_device *rdev;
1246 1247 1248
	struct netvsc_reconfig *event = NULL;
	bool notify = false, reschedule = false;
	unsigned long flags, next_reconfig, delay;
1249

1250
	rtnl_lock();
1251 1252
	net_device = rtnl_dereference(ndev_ctx->nvdev);
	if (!net_device)
1253 1254
		goto out_unlock;

1255 1256
	rdev = net_device->extension;

1257 1258 1259 1260 1261 1262 1263 1264 1265
	next_reconfig = ndev_ctx->last_reconfig + LINKCHANGE_INT;
	if (time_is_after_jiffies(next_reconfig)) {
		/* link_watch only sends one notification with current state
		 * per second, avoid doing reconfig more frequently. Handle
		 * wrap around.
		 */
		delay = next_reconfig - jiffies;
		delay = delay < LINKCHANGE_INT ? delay : LINKCHANGE_INT;
		schedule_delayed_work(&ndev_ctx->dwork, delay);
1266
		goto out_unlock;
1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279
	}
	ndev_ctx->last_reconfig = jiffies;

	spin_lock_irqsave(&ndev_ctx->lock, flags);
	if (!list_empty(&ndev_ctx->reconfig_events)) {
		event = list_first_entry(&ndev_ctx->reconfig_events,
					 struct netvsc_reconfig, list);
		list_del(&event->list);
		reschedule = !list_empty(&ndev_ctx->reconfig_events);
	}
	spin_unlock_irqrestore(&ndev_ctx->lock, flags);

	if (!event)
1280
		goto out_unlock;
1281 1282 1283 1284 1285 1286 1287 1288

	switch (event->event) {
		/* Only the following events are possible due to the check in
		 * netvsc_linkstatus_callback()
		 */
	case RNDIS_STATUS_MEDIA_CONNECT:
		if (rdev->link_state) {
			rdev->link_state = false;
1289 1290
			if (!ndev_ctx->datapath)
				netif_carrier_on(net);
1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312
			netif_tx_wake_all_queues(net);
		} else {
			notify = true;
		}
		kfree(event);
		break;
	case RNDIS_STATUS_MEDIA_DISCONNECT:
		if (!rdev->link_state) {
			rdev->link_state = true;
			netif_carrier_off(net);
			netif_tx_stop_all_queues(net);
		}
		kfree(event);
		break;
	case RNDIS_STATUS_NETWORK_CHANGE:
		/* Only makes sense if carrier is present */
		if (!rdev->link_state) {
			rdev->link_state = true;
			netif_carrier_off(net);
			netif_tx_stop_all_queues(net);
			event->event = RNDIS_STATUS_MEDIA_CONNECT;
			spin_lock_irqsave(&ndev_ctx->lock, flags);
1313
			list_add(&event->list, &ndev_ctx->reconfig_events);
1314 1315
			spin_unlock_irqrestore(&ndev_ctx->lock, flags);
			reschedule = true;
1316
		}
1317
		break;
1318 1319 1320 1321 1322 1323
	}

	rtnl_unlock();

	if (notify)
		netdev_notify_peers(net);
1324 1325 1326 1327 1328 1329

	/* link_watch only sends one notification with current state per
	 * second, handle next reconfig event in 2 seconds.
	 */
	if (reschedule)
		schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
1330 1331 1332 1333 1334

	return;

out_unlock:
	rtnl_unlock();
1335 1336
}

1337
static struct net_device *get_netvsc_bymac(const u8 *mac)
1338
{
1339
	struct net_device *dev;
1340

1341
	ASSERT_RTNL();
1342 1343

	for_each_netdev(&init_net, dev) {
1344 1345 1346 1347 1348 1349 1350 1351 1352 1353
		if (dev->netdev_ops != &device_ops)
			continue;	/* not a netvsc device */

		if (ether_addr_equal(mac, dev->perm_addr))
			return dev;
	}

	return NULL;
}

1354
static struct net_device *get_netvsc_byref(struct net_device *vf_netdev)
1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366
{
	struct net_device *dev;

	ASSERT_RTNL();

	for_each_netdev(&init_net, dev) {
		struct net_device_context *net_device_ctx;

		if (dev->netdev_ops != &device_ops)
			continue;	/* not a netvsc device */

		net_device_ctx = netdev_priv(dev);
1367
		if (!rtnl_dereference(net_device_ctx->nvdev))
1368 1369
			continue;	/* device is removed */

1370
		if (rtnl_dereference(net_device_ctx->vf_netdev) == vf_netdev)
1371
			return dev;	/* a match */
1372 1373
	}

1374
	return NULL;
1375 1376 1377 1378
}

static int netvsc_register_vf(struct net_device *vf_netdev)
{
1379 1380
	struct net_device *ndev;
	struct net_device_context *net_device_ctx;
1381 1382
	struct netvsc_device *netvsc_dev;

1383 1384 1385
	if (vf_netdev->addr_len != ETH_ALEN)
		return NOTIFY_DONE;

1386 1387 1388 1389 1390
	/*
	 * We will use the MAC address to locate the synthetic interface to
	 * associate with the VF interface. If we don't find a matching
	 * synthetic interface, move on.
	 */
1391
	ndev = get_netvsc_bymac(vf_netdev->perm_addr);
1392 1393 1394 1395
	if (!ndev)
		return NOTIFY_DONE;

	net_device_ctx = netdev_priv(ndev);
1396
	netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
1397
	if (!netvsc_dev || rtnl_dereference(net_device_ctx->vf_netdev))
1398 1399
		return NOTIFY_DONE;

1400
	netdev_info(ndev, "VF registering: %s\n", vf_netdev->name);
1401 1402 1403 1404
	/*
	 * Take a reference on the module.
	 */
	try_module_get(THIS_MODULE);
1405 1406

	dev_hold(vf_netdev);
1407
	rcu_assign_pointer(net_device_ctx->vf_netdev, vf_netdev);
1408 1409 1410 1411 1412
	return NOTIFY_OK;
}

static int netvsc_vf_up(struct net_device *vf_netdev)
{
1413
	struct net_device *ndev;
1414 1415 1416
	struct netvsc_device *netvsc_dev;
	struct net_device_context *net_device_ctx;

1417
	ndev = get_netvsc_byref(vf_netdev);
1418 1419 1420 1421
	if (!ndev)
		return NOTIFY_DONE;

	net_device_ctx = netdev_priv(ndev);
1422
	netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
1423

1424
	netdev_info(ndev, "VF up: %s\n", vf_netdev->name);
1425 1426 1427 1428

	/*
	 * Open the device before switching data path.
	 */
1429
	rndis_filter_open(netvsc_dev);
1430 1431 1432 1433

	/*
	 * notify the host to switch the data path.
	 */
1434 1435
	netvsc_switch_datapath(ndev, true);
	netdev_info(ndev, "Data path switched to VF: %s\n", vf_netdev->name);
1436

1437
	netif_carrier_off(ndev);
1438

1439 1440
	/* Now notify peers through VF device. */
	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, vf_netdev);
1441 1442 1443 1444 1445 1446

	return NOTIFY_OK;
}

static int netvsc_vf_down(struct net_device *vf_netdev)
{
1447
	struct net_device *ndev;
1448 1449 1450
	struct netvsc_device *netvsc_dev;
	struct net_device_context *net_device_ctx;

1451
	ndev = get_netvsc_byref(vf_netdev);
1452 1453 1454 1455
	if (!ndev)
		return NOTIFY_DONE;

	net_device_ctx = netdev_priv(ndev);
1456
	netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
1457

1458 1459 1460
	netdev_info(ndev, "VF down: %s\n", vf_netdev->name);
	netvsc_switch_datapath(ndev, false);
	netdev_info(ndev, "Data path switched from VF: %s\n", vf_netdev->name);
1461
	rndis_filter_close(netvsc_dev);
1462
	netif_carrier_on(ndev);
1463 1464 1465

	/* Now notify peers through netvsc device. */
	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, ndev);
1466 1467 1468 1469 1470 1471

	return NOTIFY_OK;
}

static int netvsc_unregister_vf(struct net_device *vf_netdev)
{
1472 1473
	struct net_device *ndev;
	struct net_device_context *net_device_ctx;
1474

1475
	ndev = get_netvsc_byref(vf_netdev);
1476 1477 1478 1479
	if (!ndev)
		return NOTIFY_DONE;

	net_device_ctx = netdev_priv(ndev);
1480

1481
	netdev_info(ndev, "VF unregistering: %s\n", vf_netdev->name);
1482 1483

	RCU_INIT_POINTER(net_device_ctx->vf_netdev, NULL);
1484
	dev_put(vf_netdev);
1485 1486 1487 1488
	module_put(THIS_MODULE);
	return NOTIFY_OK;
}

1489 1490
static int netvsc_probe(struct hv_device *dev,
			const struct hv_vmbus_device_id *dev_id)
1491 1492 1493 1494
{
	struct net_device *net = NULL;
	struct net_device_context *net_device_ctx;
	struct netvsc_device_info device_info;
1495
	struct netvsc_device *nvdev;
1496 1497
	int ret;

1498
	net = alloc_etherdev_mq(sizeof(struct net_device_context),
1499
				VRSS_CHANNEL_MAX);
1500
	if (!net)
1501
		return -ENOMEM;
1502

1503 1504
	netif_carrier_off(net);

1505 1506
	netvsc_init_settings(net);

1507
	net_device_ctx = netdev_priv(net);
1508
	net_device_ctx->device_ctx = dev;
1509 1510 1511 1512 1513
	net_device_ctx->msg_enable = netif_msg_init(debug, default_msg);
	if (netif_msg_probe(net_device_ctx))
		netdev_dbg(net, "netvsc msg_enable: %d\n",
			   net_device_ctx->msg_enable);

1514
	hv_set_drvdata(dev, net);
1515

1516
	INIT_DELAYED_WORK(&net_device_ctx->dwork, netvsc_link_change);
1517

1518 1519 1520
	spin_lock_init(&net_device_ctx->lock);
	INIT_LIST_HEAD(&net_device_ctx->reconfig_events);

1521
	net->netdev_ops = &device_ops;
1522
	net->ethtool_ops = &ethtool_ops;
1523
	SET_NETDEV_DEV(net, &dev->device);
1524

1525 1526 1527
	/* We always need headroom for rndis header */
	net->needed_headroom = RNDIS_AND_PPI_SIZE;

1528
	/* Notify the netvsc driver of the new device */
1529
	memset(&device_info, 0, sizeof(device_info));
1530
	device_info.ring_size = ring_size;
1531
	device_info.num_chn = VRSS_CHANNEL_DEFAULT;
1532 1533 1534 1535

	nvdev = rndis_filter_device_add(dev, &device_info);
	if (IS_ERR(nvdev)) {
		ret = PTR_ERR(nvdev);
1536
		netdev_err(net, "unable to add netvsc device (ret %d)\n", ret);
1537
		free_netdev(net);
1538
		hv_set_drvdata(dev, NULL);
1539
		return ret;
1540
	}
1541 1542
	memcpy(net->dev_addr, device_info.mac_adr, ETH_ALEN);

1543 1544 1545 1546 1547 1548
	/* hw_features computed in rndis_filter_device_add */
	net->features = net->hw_features |
		NETIF_F_HIGHDMA | NETIF_F_SG |
		NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
	net->vlan_features = net->features;

1549 1550 1551
	netif_set_real_num_tx_queues(net, nvdev->num_chn);
	netif_set_real_num_rx_queues(net, nvdev->num_chn);

1552 1553
	netdev_lockdep_set_classes(net);

1554 1555 1556 1557 1558 1559 1560
	/* MTU range: 68 - 1500 or 65521 */
	net->min_mtu = NETVSC_MTU_MIN;
	if (nvdev->nvsp_version >= NVSP_PROTOCOL_VERSION_2)
		net->max_mtu = NETVSC_MTU - ETH_HLEN;
	else
		net->max_mtu = ETH_DATA_LEN;

1561 1562 1563
	ret = register_netdev(net);
	if (ret != 0) {
		pr_err("Unable to register netdev.\n");
1564
		rndis_filter_device_remove(dev, nvdev);
1565
		free_netdev(net);
1566 1567
	}

1568 1569 1570
	return ret;
}

1571
static int netvsc_remove(struct hv_device *dev)
1572
{
1573
	struct net_device *net;
1574
	struct net_device_context *ndev_ctx;
1575

1576
	net = hv_get_drvdata(dev);
1577 1578

	if (net == NULL) {
1579
		dev_err(&dev->device, "No net device to remove\n");
1580 1581 1582
		return 0;
	}

1583
	ndev_ctx = netdev_priv(net);
1584

1585
	netif_device_detach(net);
1586

1587 1588
	cancel_delayed_work_sync(&ndev_ctx->dwork);

1589 1590
	/*
	 * Call to the vsc driver to let it know that the device is being
1591
	 * removed. Also blocks mtu and channel changes.
1592
	 */
1593
	rtnl_lock();
1594 1595
	rndis_filter_device_remove(dev,
				   rtnl_dereference(ndev_ctx->nvdev));
1596 1597 1598
	rtnl_unlock();

	unregister_netdev(net);
1599

1600 1601
	hv_set_drvdata(dev, NULL);

1602
	free_netdev(net);
1603
	return 0;
1604 1605
}

1606
static const struct hv_vmbus_device_id id_table[] = {
1607
	/* Network guid */
1608
	{ HV_NIC_GUID, },
1609
	{ },
1610 1611 1612 1613
};

MODULE_DEVICE_TABLE(vmbus, id_table);

1614
/* The one and only one */
1615
static struct  hv_driver netvsc_drv = {
1616
	.name = KBUILD_MODNAME,
1617
	.id_table = id_table,
1618 1619
	.probe = netvsc_probe,
	.remove = netvsc_remove,
1620
};
1621

1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632
/*
 * On Hyper-V, every VF interface is matched with a corresponding
 * synthetic interface. The synthetic interface is presented first
 * to the guest. When the corresponding VF instance is registered,
 * we will take care of switching the data path.
 */
static int netvsc_netdev_event(struct notifier_block *this,
			       unsigned long event, void *ptr)
{
	struct net_device *event_dev = netdev_notifier_info_to_dev(ptr);

1633 1634 1635 1636 1637 1638 1639 1640
	/* Skip our own events */
	if (event_dev->netdev_ops == &device_ops)
		return NOTIFY_DONE;

	/* Avoid non-Ethernet type devices */
	if (event_dev->type != ARPHRD_ETHER)
		return NOTIFY_DONE;

1641
	/* Avoid Vlan dev with same MAC registering as VF */
1642
	if (is_vlan_dev(event_dev))
1643 1644 1645
		return NOTIFY_DONE;

	/* Avoid Bonding master dev with same MAC registering as VF */
1646 1647
	if ((event_dev->priv_flags & IFF_BONDING) &&
	    (event_dev->flags & IFF_MASTER))
1648 1649
		return NOTIFY_DONE;

1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667
	switch (event) {
	case NETDEV_REGISTER:
		return netvsc_register_vf(event_dev);
	case NETDEV_UNREGISTER:
		return netvsc_unregister_vf(event_dev);
	case NETDEV_UP:
		return netvsc_vf_up(event_dev);
	case NETDEV_DOWN:
		return netvsc_vf_down(event_dev);
	default:
		return NOTIFY_DONE;
	}
}

static struct notifier_block netvsc_netdev_notifier = {
	.notifier_call = netvsc_netdev_event,
};

1668
static void __exit netvsc_drv_exit(void)
1669
{
1670
	unregister_netdevice_notifier(&netvsc_netdev_notifier);
1671
	vmbus_driver_unregister(&netvsc_drv);
1672 1673
}

1674
static int __init netvsc_drv_init(void)
1675
{
1676 1677
	int ret;

1678 1679 1680 1681 1682
	if (ring_size < RING_SIZE_MIN) {
		ring_size = RING_SIZE_MIN;
		pr_info("Increased ring_size to %d (min allowed)\n",
			ring_size);
	}
1683 1684 1685 1686 1687 1688 1689
	ret = vmbus_driver_register(&netvsc_drv);

	if (ret)
		return ret;

	register_netdevice_notifier(&netvsc_netdev_notifier);
	return 0;
1690 1691
}

1692
MODULE_LICENSE("GPL");
1693
MODULE_DESCRIPTION("Microsoft Hyper-V network driver");
1694

1695
module_init(netvsc_drv_init);
1696
module_exit(netvsc_drv_exit);