netvsc_drv.c 49.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
/*
 * Copyright (c) 2009, Microsoft Corporation.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License along with
14
 * this program; if not, see <http://www.gnu.org/licenses/>.
15 16
 *
 * Authors:
17
 *   Haiyang Zhang <haiyangz@microsoft.com>
18 19
 *   Hank Janssen  <hjanssen@microsoft.com>
 */
20 21
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

22
#include <linux/init.h>
23
#include <linux/atomic.h>
24 25 26 27 28 29 30 31 32
#include <linux/module.h>
#include <linux/highmem.h>
#include <linux/device.h>
#include <linux/io.h>
#include <linux/delay.h>
#include <linux/netdevice.h>
#include <linux/inetdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
33
#include <linux/if_vlan.h>
34
#include <linux/in.h>
35
#include <linux/slab.h>
S
stephen hemminger 已提交
36
#include <linux/rtnetlink.h>
37
#include <linux/netpoll.h>
S
stephen hemminger 已提交
38

39 40 41 42
#include <net/arp.h>
#include <net/route.h>
#include <net/sock.h>
#include <net/pkt_sched.h>
43 44
#include <net/checksum.h>
#include <net/ip6_checksum.h>
45

46
#include "hyperv_net.h"
47

48
#define RING_SIZE_MIN 64
49
#define LINKCHANGE_INT (2 * HZ)
50

51
static int ring_size = 128;
S
Stephen Hemminger 已提交
52 53
module_param(ring_size, int, S_IRUGO);
MODULE_PARM_DESC(ring_size, "Ring buffer size (# of pages)");
54

55 56 57 58 59 60 61 62 63
static const u32 default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE |
				NETIF_MSG_LINK | NETIF_MSG_IFUP |
				NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR |
				NETIF_MSG_TX_ERR;

static int debug = -1;
module_param(debug, int, S_IRUGO);
MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");

64
static void netvsc_set_multicast_list(struct net_device *net)
65
{
66
	struct net_device_context *net_device_ctx = netdev_priv(net);
67
	struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
68

69
	rndis_filter_update(nvdev);
70 71 72 73
}

static int netvsc_open(struct net_device *net)
{
74
	struct net_device_context *ndev_ctx = netdev_priv(net);
75
	struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
76
	struct netvsc_device *nvdev = rtnl_dereference(ndev_ctx->nvdev);
77
	struct rndis_device *rdev;
78
	int ret = 0;
79

80 81
	netif_carrier_off(net);

82
	/* Open up the device */
83
	ret = rndis_filter_open(nvdev);
84 85 86
	if (ret != 0) {
		netdev_err(net, "unable to open device (ret %d).\n", ret);
		return ret;
87 88
	}

89
	netif_tx_wake_all_queues(net);
90

91
	rdev = nvdev->extension;
92 93

	if (!rdev->link_state)
94 95
		netif_carrier_on(net);

96 97 98 99 100 101 102 103 104 105 106 107
	if (vf_netdev) {
		/* Setting synthetic device up transparently sets
		 * slave as up. If open fails, then slave will be
		 * still be offline (and not used).
		 */
		ret = dev_open(vf_netdev);
		if (ret)
			netdev_warn(net,
				    "unable to open slave: %s: %d\n",
				    vf_netdev->name, ret);
	}
	return 0;
108 109 110 111 112
}

static int netvsc_close(struct net_device *net)
{
	struct net_device_context *net_device_ctx = netdev_priv(net);
113 114
	struct net_device *vf_netdev
		= rtnl_dereference(net_device_ctx->vf_netdev);
115
	struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
116
	int ret;
117
	u32 aread, i, msec = 10, retry = 0, retry_max = 20;
118
	struct vmbus_channel *chn;
119

120
	netif_tx_disable(net);
121

122
	ret = rndis_filter_close(nvdev);
123
	if (ret != 0) {
124
		netdev_err(net, "unable to close device (ret %d).\n", ret);
125 126 127 128 129 130 131
		return ret;
	}

	/* Ensure pending bytes in ring are read */
	while (true) {
		aread = 0;
		for (i = 0; i < nvdev->num_chn; i++) {
132
			chn = nvdev->chan_table[i].channel;
133 134 135
			if (!chn)
				continue;

136
			aread = hv_get_bytes_to_read(&chn->inbound);
137 138 139
			if (aread)
				break;

140
			aread = hv_get_bytes_to_read(&chn->outbound);
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
			if (aread)
				break;
		}

		retry++;
		if (retry > retry_max || aread == 0)
			break;

		msleep(msec);

		if (msec < 1000)
			msec *= 2;
	}

	if (aread) {
		netdev_err(net, "Ring buffer not empty after closing rndis\n");
		ret = -ETIMEDOUT;
	}
159

160 161 162
	if (vf_netdev)
		dev_close(vf_netdev);

163 164 165
	return ret;
}

166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
static void *init_ppi_data(struct rndis_message *msg, u32 ppi_size,
				int pkt_type)
{
	struct rndis_packet *rndis_pkt;
	struct rndis_per_packet_info *ppi;

	rndis_pkt = &msg->msg.pkt;
	rndis_pkt->data_offset += ppi_size;

	ppi = (struct rndis_per_packet_info *)((void *)rndis_pkt +
		rndis_pkt->per_pkt_info_offset + rndis_pkt->per_pkt_info_len);

	ppi->size = ppi_size;
	ppi->type = pkt_type;
	ppi->ppi_offset = sizeof(struct rndis_per_packet_info);

	rndis_pkt->per_pkt_info_len += ppi_size;

	return ppi;
}

187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
/* Azure hosts don't support non-TCP port numbers in hashing yet. We compute
 * hash for non-TCP traffic with only IP numbers.
 */
static inline u32 netvsc_get_hash(struct sk_buff *skb, struct sock *sk)
{
	struct flow_keys flow;
	u32 hash;
	static u32 hashrnd __read_mostly;

	net_get_random_once(&hashrnd, sizeof(hashrnd));

	if (!skb_flow_dissect_flow_keys(skb, &flow, 0))
		return 0;

	if (flow.basic.ip_proto == IPPROTO_TCP) {
		return skb_get_hash(skb);
	} else {
		if (flow.basic.n_proto == htons(ETH_P_IP))
			hash = jhash2((u32 *)&flow.addrs.v4addrs, 2, hashrnd);
		else if (flow.basic.n_proto == htons(ETH_P_IPV6))
			hash = jhash2((u32 *)&flow.addrs.v6addrs, 8, hashrnd);
		else
			hash = 0;

		skb_set_hash(skb, hash, PKT_HASH_TYPE_L3);
	}

	return hash;
}

217 218 219 220 221 222 223
static inline int netvsc_get_tx_queue(struct net_device *ndev,
				      struct sk_buff *skb, int old_idx)
{
	const struct net_device_context *ndc = netdev_priv(ndev);
	struct sock *sk = skb->sk;
	int q_idx;

224
	q_idx = ndc->tx_send_table[netvsc_get_hash(skb, sk) &
225 226 227 228 229 230 231 232 233 234
				   (VRSS_SEND_TAB_SIZE - 1)];

	/* If queue index changed record the new value */
	if (q_idx != old_idx &&
	    sk && sk_fullsock(sk) && rcu_access_pointer(sk->sk_dst_cache))
		sk_tx_queue_set(sk, q_idx);

	return q_idx;
}

235 236 237 238 239 240 241 242 243 244 245
/*
 * Select queue for transmit.
 *
 * If a valid queue has already been assigned, then use that.
 * Otherwise compute tx queue based on hash and the send table.
 *
 * This is basically similar to default (__netdev_pick_tx) with the added step
 * of using the host send_table when no other queue has been assigned.
 *
 * TODO support XPS - but get_xps_queue not exported
 */
246
static u16 netvsc_pick_tx(struct net_device *ndev, struct sk_buff *skb)
247
{
248 249
	int q_idx = sk_tx_queue_get(skb->sk);

250
	if (q_idx < 0 || skb->ooo_okay || q_idx >= ndev->real_num_tx_queues) {
251 252 253 254 255 256 257
		/* If forwarding a packet, we use the recorded queue when
		 * available for better cache locality.
		 */
		if (skb_rx_queue_recorded(skb))
			q_idx = skb_get_rx_queue(skb);
		else
			q_idx = netvsc_get_tx_queue(ndev, skb, q_idx);
258
	}
259 260 261 262

	return q_idx;
}

263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
static u16 netvsc_select_queue(struct net_device *ndev, struct sk_buff *skb,
			       void *accel_priv,
			       select_queue_fallback_t fallback)
{
	struct net_device_context *ndc = netdev_priv(ndev);
	struct net_device *vf_netdev;
	u16 txq;

	rcu_read_lock();
	vf_netdev = rcu_dereference(ndc->vf_netdev);
	if (vf_netdev) {
		txq = skb_rx_queue_recorded(skb) ? skb_get_rx_queue(skb) : 0;
		qdisc_skb_cb(skb)->slave_dev_queue_mapping = skb->queue_mapping;
	} else {
		txq = netvsc_pick_tx(ndev, skb);
	}
	rcu_read_unlock();

	while (unlikely(txq >= ndev->real_num_tx_queues))
		txq -= ndev->real_num_tx_queues;

	return txq;
}

287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
static u32 fill_pg_buf(struct page *page, u32 offset, u32 len,
			struct hv_page_buffer *pb)
{
	int j = 0;

	/* Deal with compund pages by ignoring unused part
	 * of the page.
	 */
	page += (offset >> PAGE_SHIFT);
	offset &= ~PAGE_MASK;

	while (len > 0) {
		unsigned long bytes;

		bytes = PAGE_SIZE - offset;
		if (bytes > len)
			bytes = len;
		pb[j].pfn = page_to_pfn(page);
		pb[j].offset = offset;
		pb[j].len = bytes;

		offset += bytes;
		len -= bytes;

		if (offset == PAGE_SIZE && len) {
			page++;
			offset = 0;
			j++;
		}
	}

	return j + 1;
}

321
static u32 init_page_array(void *hdr, u32 len, struct sk_buff *skb,
322
			   struct hv_netvsc_packet *packet,
323
			   struct hv_page_buffer *pb)
324 325 326 327 328 329 330
{
	u32 slots_used = 0;
	char *data = skb->data;
	int frags = skb_shinfo(skb)->nr_frags;
	int i;

	/* The packet is laid out thus:
331
	 * 1. hdr: RNDIS header and PPI
332 333 334 335 336 337 338 339
	 * 2. skb linear data
	 * 3. skb fragment data
	 */
	if (hdr != NULL)
		slots_used += fill_pg_buf(virt_to_page(hdr),
					offset_in_page(hdr),
					len, &pb[slots_used]);

340 341 342
	packet->rmsg_size = len;
	packet->rmsg_pgcnt = slots_used;

343 344 345 346 347 348 349 350 351 352 353
	slots_used += fill_pg_buf(virt_to_page(data),
				offset_in_page(data),
				skb_headlen(skb), &pb[slots_used]);

	for (i = 0; i < frags; i++) {
		skb_frag_t *frag = skb_shinfo(skb)->frags + i;

		slots_used += fill_pg_buf(skb_frag_page(frag),
					frag->page_offset,
					skb_frag_size(frag), &pb[slots_used]);
	}
354
	return slots_used;
355 356
}

357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
static int count_skb_frag_slots(struct sk_buff *skb)
{
	int i, frags = skb_shinfo(skb)->nr_frags;
	int pages = 0;

	for (i = 0; i < frags; i++) {
		skb_frag_t *frag = skb_shinfo(skb)->frags + i;
		unsigned long size = skb_frag_size(frag);
		unsigned long offset = frag->page_offset;

		/* Skip unused frames from start of page */
		offset &= ~PAGE_MASK;
		pages += PFN_UP(offset + size);
	}
	return pages;
}

static int netvsc_get_slots(struct sk_buff *skb)
375
{
376 377 378 379 380 381 382 383 384
	char *data = skb->data;
	unsigned int offset = offset_in_page(data);
	unsigned int len = skb_headlen(skb);
	int slots;
	int frag_slots;

	slots = DIV_ROUND_UP(offset + len, PAGE_SIZE);
	frag_slots = count_skb_frag_slots(skb);
	return slots + frag_slots;
385 386
}

387
static u32 net_checksum_info(struct sk_buff *skb)
388
{
389 390
	if (skb->protocol == htons(ETH_P_IP)) {
		struct iphdr *ip = ip_hdr(skb);
391

392 393 394 395
		if (ip->protocol == IPPROTO_TCP)
			return TRANSPORT_INFO_IPV4_TCP;
		else if (ip->protocol == IPPROTO_UDP)
			return TRANSPORT_INFO_IPV4_UDP;
396
	} else {
397 398 399 400
		struct ipv6hdr *ip6 = ipv6_hdr(skb);

		if (ip6->nexthdr == IPPROTO_TCP)
			return TRANSPORT_INFO_IPV6_TCP;
401
		else if (ip6->nexthdr == IPPROTO_UDP)
402
			return TRANSPORT_INFO_IPV6_UDP;
403 404
	}

405
	return TRANSPORT_INFO_NOT_IP;
406 407
}

408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434
/* Send skb on the slave VF device. */
static int netvsc_vf_xmit(struct net_device *net, struct net_device *vf_netdev,
			  struct sk_buff *skb)
{
	struct net_device_context *ndev_ctx = netdev_priv(net);
	unsigned int len = skb->len;
	int rc;

	skb->dev = vf_netdev;
	skb->queue_mapping = qdisc_skb_cb(skb)->slave_dev_queue_mapping;

	rc = dev_queue_xmit(skb);
	if (likely(rc == NET_XMIT_SUCCESS || rc == NET_XMIT_CN)) {
		struct netvsc_vf_pcpu_stats *pcpu_stats
			= this_cpu_ptr(ndev_ctx->vf_stats);

		u64_stats_update_begin(&pcpu_stats->syncp);
		pcpu_stats->tx_packets++;
		pcpu_stats->tx_bytes += len;
		u64_stats_update_end(&pcpu_stats->syncp);
	} else {
		this_cpu_inc(ndev_ctx->vf_stats->tx_dropped);
	}

	return rc;
}

435
static int netvsc_start_xmit(struct sk_buff *skb, struct net_device *net)
436 437
{
	struct net_device_context *net_device_ctx = netdev_priv(net);
438
	struct hv_netvsc_packet *packet = NULL;
439
	int ret;
440 441 442
	unsigned int num_data_pgs;
	struct rndis_message *rndis_msg;
	struct rndis_packet *rndis_pkt;
443
	struct net_device *vf_netdev;
444 445
	u32 rndis_msg_size;
	struct rndis_per_packet_info *ppi;
446
	u32 hash;
447
	struct hv_page_buffer pb[MAX_PAGE_BUFFER_COUNT];
448

449 450 451 452 453 454 455 456
	/* if VF is present and up then redirect packets
	 * already called with rcu_read_lock_bh
	 */
	vf_netdev = rcu_dereference_bh(net_device_ctx->vf_netdev);
	if (vf_netdev && netif_running(vf_netdev) &&
	    !netpoll_tx_running(net))
		return netvsc_vf_xmit(net, vf_netdev, skb);

457 458
	/* We will atmost need two pages to describe the rndis
	 * header. We can only transmit MAX_PAGE_BUFFER_COUNT number
459 460
	 * of pages in a single packet. If skb is scattered around
	 * more pages we try linearizing it.
461
	 */
462 463 464

	num_data_pgs = netvsc_get_slots(skb) + 2;

465
	if (unlikely(num_data_pgs > MAX_PAGE_BUFFER_COUNT)) {
466 467 468 469
		++net_device_ctx->eth_stats.tx_scattered;

		if (skb_linearize(skb))
			goto no_memory;
470

471
		num_data_pgs = netvsc_get_slots(skb) + 2;
472
		if (num_data_pgs > MAX_PAGE_BUFFER_COUNT) {
473
			++net_device_ctx->eth_stats.tx_too_big;
474 475
			goto drop;
		}
476
	}
477

478 479 480 481 482 483
	/*
	 * Place the rndis header in the skb head room and
	 * the skb->cb will be used for hv_netvsc_packet
	 * structure.
	 */
	ret = skb_cow_head(skb, RNDIS_AND_PPI_SIZE);
484 485 486
	if (ret)
		goto no_memory;

487 488 489 490
	/* Use the skb control buffer for building up the packet */
	BUILD_BUG_ON(sizeof(struct hv_netvsc_packet) >
			FIELD_SIZEOF(struct sk_buff, cb));
	packet = (struct hv_netvsc_packet *)skb->cb;
491

492 493
	packet->q_idx = skb_get_queue_mapping(skb);

494
	packet->total_data_buflen = skb->len;
495 496
	packet->total_bytes = skb->len;
	packet->total_packets = 1;
497

498
	rndis_msg = (struct rndis_message *)skb->head;
499

500
	memset(rndis_msg, 0, RNDIS_AND_PPI_SIZE);
501

502 503 504 505 506 507 508 509 510 511
	/* Add the rndis header */
	rndis_msg->ndis_msg_type = RNDIS_MSG_PACKET;
	rndis_msg->msg_len = packet->total_data_buflen;
	rndis_pkt = &rndis_msg->msg.pkt;
	rndis_pkt->data_offset = sizeof(struct rndis_packet);
	rndis_pkt->data_len = packet->total_data_buflen;
	rndis_pkt->per_pkt_info_offset = sizeof(struct rndis_packet);

	rndis_msg_size = RNDIS_MESSAGE_SIZE(struct rndis_packet);

512 513 514 515 516 517 518 519
	hash = skb_get_hash_raw(skb);
	if (hash != 0 && net->real_num_tx_queues > 1) {
		rndis_msg_size += NDIS_HASH_PPI_SIZE;
		ppi = init_ppi_data(rndis_msg, NDIS_HASH_PPI_SIZE,
				    NBL_HASH_VALUE);
		*(u32 *)((void *)ppi + ppi->ppi_offset) = hash;
	}

520
	if (skb_vlan_tag_present(skb)) {
521 522 523 524 525 526 527
		struct ndis_pkt_8021q_info *vlan;

		rndis_msg_size += NDIS_VLAN_PPI_SIZE;
		ppi = init_ppi_data(rndis_msg, NDIS_VLAN_PPI_SIZE,
					IEEE_8021Q_INFO);
		vlan = (struct ndis_pkt_8021q_info *)((void *)ppi +
						ppi->ppi_offset);
528 529
		vlan->vlanid = skb->vlan_tci & VLAN_VID_MASK;
		vlan->pri = (skb->vlan_tci & VLAN_PRIO_MASK) >>
530 531 532
				VLAN_PRIO_SHIFT;
	}

533
	if (skb_is_gso(skb)) {
534 535 536 537 538 539 540 541 542 543
		struct ndis_tcp_lso_info *lso_info;

		rndis_msg_size += NDIS_LSO_PPI_SIZE;
		ppi = init_ppi_data(rndis_msg, NDIS_LSO_PPI_SIZE,
				    TCP_LARGESEND_PKTINFO);

		lso_info = (struct ndis_tcp_lso_info *)((void *)ppi +
							ppi->ppi_offset);

		lso_info->lso_v2_transmit.type = NDIS_TCP_LARGE_SEND_OFFLOAD_V2_TYPE;
544
		if (skb->protocol == htons(ETH_P_IP)) {
545 546 547 548 549 550 551 552 553 554 555 556 557 558 559
			lso_info->lso_v2_transmit.ip_version =
				NDIS_TCP_LARGE_SEND_OFFLOAD_IPV4;
			ip_hdr(skb)->tot_len = 0;
			ip_hdr(skb)->check = 0;
			tcp_hdr(skb)->check =
				~csum_tcpudp_magic(ip_hdr(skb)->saddr,
						   ip_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
		} else {
			lso_info->lso_v2_transmit.ip_version =
				NDIS_TCP_LARGE_SEND_OFFLOAD_IPV6;
			ipv6_hdr(skb)->payload_len = 0;
			tcp_hdr(skb)->check =
				~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
						 &ipv6_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
		}
560
		lso_info->lso_v2_transmit.tcp_header_offset = skb_transport_offset(skb);
561
		lso_info->lso_v2_transmit.mss = skb_shinfo(skb)->gso_size;
562
	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
563 564 565
		if (net_checksum_info(skb) & net_device_ctx->tx_checksum_mask) {
			struct ndis_tcp_ip_checksum_info *csum_info;

566 567 568 569 570 571 572
			rndis_msg_size += NDIS_CSUM_PPI_SIZE;
			ppi = init_ppi_data(rndis_msg, NDIS_CSUM_PPI_SIZE,
					    TCPIP_CHKSUM_PKTINFO);

			csum_info = (struct ndis_tcp_ip_checksum_info *)((void *)ppi +
									 ppi->ppi_offset);

573 574 575
			csum_info->transmit.tcp_header_offset = skb_transport_offset(skb);

			if (skb->protocol == htons(ETH_P_IP)) {
576
				csum_info->transmit.is_ipv4 = 1;
577 578 579 580 581 582

				if (ip_hdr(skb)->protocol == IPPROTO_TCP)
					csum_info->transmit.tcp_checksum = 1;
				else
					csum_info->transmit.udp_checksum = 1;
			} else {
583 584
				csum_info->transmit.is_ipv6 = 1;

585 586 587 588 589
				if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
					csum_info->transmit.tcp_checksum = 1;
				else
					csum_info->transmit.udp_checksum = 1;
			}
590
		} else {
591
			/* Can't do offload of this type of checksum */
592 593 594
			if (skb_checksum_help(skb))
				goto drop;
		}
595 596
	}

597 598
	/* Start filling in the page buffers with the rndis hdr */
	rndis_msg->msg_len += rndis_msg_size;
599
	packet->total_data_buflen = rndis_msg->msg_len;
600
	packet->page_buf_cnt = init_page_array(rndis_msg, rndis_msg_size,
601
					       skb, packet, pb);
602

603 604
	/* timestamp packet in software */
	skb_tx_timestamp(skb);
605

606
	ret = netvsc_send(net_device_ctx, packet, rndis_msg, pb, skb);
607
	if (likely(ret == 0))
608
		return NETDEV_TX_OK;
609 610 611

	if (ret == -EAGAIN) {
		++net_device_ctx->eth_stats.tx_busy;
612
		return NETDEV_TX_BUSY;
613 614 615 616
	}

	if (ret == -ENOSPC)
		++net_device_ctx->eth_stats.tx_no_space;
617 618 619 620

drop:
	dev_kfree_skb_any(skb);
	net->stats.tx_dropped++;
621

622
	return NETDEV_TX_OK;
623 624 625 626

no_memory:
	++net_device_ctx->eth_stats.tx_no_memory;
	goto drop;
627
}
628
/*
629 630
 * netvsc_linkstatus_callback - Link up/down notification
 */
631
void netvsc_linkstatus_callback(struct hv_device *device_obj,
632
				struct rndis_message *resp)
633
{
634
	struct rndis_indicate_status *indicate = &resp->msg.indicate_status;
635
	struct net_device *net;
636
	struct net_device_context *ndev_ctx;
637 638
	struct netvsc_reconfig *event;
	unsigned long flags;
639

640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657
	net = hv_get_drvdata(device_obj);

	if (!net)
		return;

	ndev_ctx = netdev_priv(net);

	/* Update the physical link speed when changing to another vSwitch */
	if (indicate->status == RNDIS_STATUS_LINK_SPEED_CHANGE) {
		u32 speed;

		speed = *(u32 *)((void *)indicate + indicate->
				 status_buf_offset) / 10000;
		ndev_ctx->speed = speed;
		return;
	}

	/* Handle these link change statuses below */
658 659 660
	if (indicate->status != RNDIS_STATUS_NETWORK_CHANGE &&
	    indicate->status != RNDIS_STATUS_MEDIA_CONNECT &&
	    indicate->status != RNDIS_STATUS_MEDIA_DISCONNECT)
661
		return;
662

663
	if (net->reg_state != NETREG_REGISTERED)
664 665
		return;

666 667 668 669 670 671 672 673 674 675
	event = kzalloc(sizeof(*event), GFP_ATOMIC);
	if (!event)
		return;
	event->event = indicate->status;

	spin_lock_irqsave(&ndev_ctx->lock, flags);
	list_add_tail(&event->list, &ndev_ctx->reconfig_events);
	spin_unlock_irqrestore(&ndev_ctx->lock, flags);

	schedule_delayed_work(&ndev_ctx->dwork, 0);
676 677
}

678
static struct sk_buff *netvsc_alloc_recv_skb(struct net_device *net,
679
					     struct napi_struct *napi,
680 681 682
					     const struct ndis_tcp_ip_checksum_info *csum_info,
					     const struct ndis_pkt_8021q_info *vlan,
					     void *data, u32 buflen)
683 684 685
{
	struct sk_buff *skb;

686
	skb = napi_alloc_skb(napi, buflen);
687 688
	if (!skb)
		return skb;
689

690 691 692 693
	/*
	 * Copy to skb. This copy is needed here since the memory pointed by
	 * hv_netvsc_packet cannot be deallocated
	 */
694
	skb_put_data(skb, data, buflen);
695 696

	skb->protocol = eth_type_trans(skb, net);
697 698 699 700 701 702 703 704 705 706 707

	/* skb is already created with CHECKSUM_NONE */
	skb_checksum_none_assert(skb);

	/*
	 * In Linux, the IP checksum is always checked.
	 * Do L4 checksum offload if enabled and present.
	 */
	if (csum_info && (net->features & NETIF_F_RXCSUM)) {
		if (csum_info->receive.tcp_checksum_succeeded ||
		    csum_info->receive.udp_checksum_succeeded)
708 709 710
			skb->ip_summed = CHECKSUM_UNNECESSARY;
	}

711 712 713
	if (vlan) {
		u16 vlan_tci = vlan->vlanid | (vlan->pri << VLAN_PRIO_SHIFT);

714
		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
715
				       vlan_tci);
716
	}
717

718 719 720 721 722 723 724
	return skb;
}

/*
 * netvsc_recv_callback -  Callback when we receive a packet from the
 * "wire" on the specified device.
 */
725 726 727 728 729
int netvsc_recv_callback(struct net_device *net,
			 struct vmbus_channel *channel,
			 void  *data, u32 len,
			 const struct ndis_tcp_ip_checksum_info *csum_info,
			 const struct ndis_pkt_8021q_info *vlan)
730
{
731
	struct net_device_context *net_device_ctx = netdev_priv(net);
732
	struct netvsc_device *net_device;
S
stephen hemminger 已提交
733
	u16 q_idx = channel->offermsg.offer.sub_channel_index;
734
	struct netvsc_channel *nvchan;
735 736 737
	struct sk_buff *skb;
	struct netvsc_stats *rx_stats;

738
	if (net->reg_state != NETREG_REGISTERED)
739 740
		return NVSP_STAT_FAIL;

741
	rcu_read_lock();
742 743 744 745 746
	net_device = rcu_dereference(net_device_ctx->nvdev);
	if (unlikely(!net_device))
		goto drop;

	nvchan = &net_device->chan_table[q_idx];
747 748

	/* Allocate a skb - TODO direct I/O to pages? */
749 750
	skb = netvsc_alloc_recv_skb(net, &nvchan->napi,
				    csum_info, vlan, data, len);
751
	if (unlikely(!skb)) {
752
drop:
753
		++net->stats.rx_dropped;
754
		rcu_read_unlock();
755 756
		return NVSP_STAT_FAIL;
	}
757

758
	skb_record_rx_queue(skb, q_idx);
759 760 761 762 763 764

	/*
	 * Even if injecting the packet, record the statistics
	 * on the synthetic device because modifying the VF device
	 * statistics will not work correctly.
	 */
S
stephen hemminger 已提交
765
	rx_stats = &nvchan->rx_stats;
766
	u64_stats_update_begin(&rx_stats->syncp);
767
	rx_stats->packets++;
768
	rx_stats->bytes += len;
769 770 771 772 773

	if (skb->pkt_type == PACKET_BROADCAST)
		++rx_stats->broadcast;
	else if (skb->pkt_type == PACKET_MULTICAST)
		++rx_stats->multicast;
774
	u64_stats_update_end(&rx_stats->syncp);
775

S
stephen hemminger 已提交
776
	napi_gro_receive(&nvchan->napi, skb);
777
	rcu_read_unlock();
778 779 780 781

	return 0;
}

782 783 784
static void netvsc_get_drvinfo(struct net_device *net,
			       struct ethtool_drvinfo *info)
{
785 786
	strlcpy(info->driver, KBUILD_MODNAME, sizeof(info->driver));
	strlcpy(info->fw_version, "N/A", sizeof(info->fw_version));
787 788
}

789 790 791 792
static void netvsc_get_channels(struct net_device *net,
				struct ethtool_channels *channel)
{
	struct net_device_context *net_device_ctx = netdev_priv(net);
793
	struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
794 795 796 797 798 799 800

	if (nvdev) {
		channel->max_combined	= nvdev->max_chn;
		channel->combined_count = nvdev->num_chn;
	}
}

801 802 803 804 805
static int netvsc_set_channels(struct net_device *net,
			       struct ethtool_channels *channels)
{
	struct net_device_context *net_device_ctx = netdev_priv(net);
	struct hv_device *dev = net_device_ctx->device_ctx;
806
	struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
807 808
	unsigned int orig, count = channels->combined_count;
	struct netvsc_device_info device_info;
809
	bool was_opened;
810
	int ret = 0;
811 812 813 814 815 816

	/* We do not support separate count for rx, tx, or other */
	if (count == 0 ||
	    channels->rx_count || channels->tx_count || channels->other_count)
		return -EINVAL;

817
	if (count > net->num_tx_queues || count > VRSS_CHANNEL_MAX)
818
		return -EINVAL;
819

820
	if (!nvdev || nvdev->destroy)
821 822
		return -ENODEV;

823
	if (nvdev->nvsp_version < NVSP_PROTOCOL_VERSION_5)
824 825
		return -EINVAL;

826
	if (count > nvdev->max_chn)
827 828
		return -EINVAL;

829
	orig = nvdev->num_chn;
830 831 832
	was_opened = rndis_filter_opened(nvdev);
	if (was_opened)
		rndis_filter_close(nvdev);
833

834
	rndis_filter_device_remove(dev, nvdev);
835

836 837 838 839 840 841 842 843 844
	memset(&device_info, 0, sizeof(device_info));
	device_info.num_chn = count;
	device_info.ring_size = ring_size;

	nvdev = rndis_filter_device_add(dev, &device_info);
	if (!IS_ERR(nvdev)) {
		netif_set_real_num_tx_queues(net, nvdev->num_chn);
		netif_set_real_num_rx_queues(net, nvdev->num_chn);
	} else {
845
		ret = PTR_ERR(nvdev);
846 847 848
		device_info.num_chn = orig;
		rndis_filter_device_add(dev, &device_info);
	}
849

850 851
	if (was_opened)
		rndis_filter_open(nvdev);
852

853
	/* We may have missed link change notifications */
854
	net_device_ctx->last_reconfig = 0;
855
	schedule_delayed_work(&net_device_ctx->dwork, 0);
856 857 858 859

	return ret;
}

860 861
static bool
netvsc_validate_ethtool_ss_cmd(const struct ethtool_link_ksettings *cmd)
862
{
863 864
	struct ethtool_link_ksettings diff1 = *cmd;
	struct ethtool_link_ksettings diff2 = {};
865

866 867
	diff1.base.speed = 0;
	diff1.base.duplex = 0;
868
	/* advertising and cmd are usually set */
869 870
	ethtool_link_ksettings_zero_link_mode(&diff1, advertising);
	diff1.base.cmd = 0;
871
	/* We set port to PORT_OTHER */
872
	diff2.base.port = PORT_OTHER;
873 874 875 876 877 878 879 880 881

	return !memcmp(&diff1, &diff2, sizeof(diff1));
}

static void netvsc_init_settings(struct net_device *dev)
{
	struct net_device_context *ndc = netdev_priv(dev);

	ndc->speed = SPEED_UNKNOWN;
882
	ndc->duplex = DUPLEX_FULL;
883 884
}

885 886
static int netvsc_get_link_ksettings(struct net_device *dev,
				     struct ethtool_link_ksettings *cmd)
887 888 889
{
	struct net_device_context *ndc = netdev_priv(dev);

890 891 892
	cmd->base.speed = ndc->speed;
	cmd->base.duplex = ndc->duplex;
	cmd->base.port = PORT_OTHER;
893 894 895 896

	return 0;
}

897 898
static int netvsc_set_link_ksettings(struct net_device *dev,
				     const struct ethtool_link_ksettings *cmd)
899 900 901 902
{
	struct net_device_context *ndc = netdev_priv(dev);
	u32 speed;

903
	speed = cmd->base.speed;
904
	if (!ethtool_validate_speed(speed) ||
905
	    !ethtool_validate_duplex(cmd->base.duplex) ||
906 907 908 909
	    !netvsc_validate_ethtool_ss_cmd(cmd))
		return -EINVAL;

	ndc->speed = speed;
910
	ndc->duplex = cmd->base.duplex;
911 912 913 914

	return 0;
}

915 916 917
static int netvsc_change_mtu(struct net_device *ndev, int mtu)
{
	struct net_device_context *ndevctx = netdev_priv(ndev);
918
	struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev);
919
	struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
920
	struct hv_device *hdev = ndevctx->device_ctx;
921
	int orig_mtu = ndev->mtu;
922
	struct netvsc_device_info device_info;
923
	bool was_opened;
924
	int ret = 0;
925

926
	if (!nvdev || nvdev->destroy)
927 928
		return -ENODEV;

929 930 931 932 933 934 935
	/* Change MTU of underlying VF netdev first. */
	if (vf_netdev) {
		ret = dev_set_mtu(vf_netdev, mtu);
		if (ret)
			return ret;
	}

936 937 938 939
	netif_device_detach(ndev);
	was_opened = rndis_filter_opened(nvdev);
	if (was_opened)
		rndis_filter_close(nvdev);
940

941 942 943 944
	memset(&device_info, 0, sizeof(device_info));
	device_info.ring_size = ring_size;
	device_info.num_chn = nvdev->num_chn;

945
	rndis_filter_device_remove(hdev, nvdev);
946 947 948

	ndev->mtu = mtu;

949 950 951 952 953 954 955
	nvdev = rndis_filter_device_add(hdev, &device_info);
	if (IS_ERR(nvdev)) {
		ret = PTR_ERR(nvdev);

		/* Attempt rollback to original MTU */
		ndev->mtu = orig_mtu;
		rndis_filter_device_add(hdev, &device_info);
956 957 958

		if (vf_netdev)
			dev_set_mtu(vf_netdev, orig_mtu);
959
	}
960

961 962 963 964
	if (was_opened)
		rndis_filter_open(nvdev);

	netif_device_attach(ndev);
965

966 967 968
	/* We may have missed link change notifications */
	schedule_delayed_work(&ndevctx->dwork, 0);

969
	return ret;
970 971
}

972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001
static void netvsc_get_vf_stats(struct net_device *net,
				struct netvsc_vf_pcpu_stats *tot)
{
	struct net_device_context *ndev_ctx = netdev_priv(net);
	int i;

	memset(tot, 0, sizeof(*tot));

	for_each_possible_cpu(i) {
		const struct netvsc_vf_pcpu_stats *stats
			= per_cpu_ptr(ndev_ctx->vf_stats, i);
		u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
		unsigned int start;

		do {
			start = u64_stats_fetch_begin_irq(&stats->syncp);
			rx_packets = stats->rx_packets;
			tx_packets = stats->tx_packets;
			rx_bytes = stats->rx_bytes;
			tx_bytes = stats->tx_bytes;
		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));

		tot->rx_packets += rx_packets;
		tot->tx_packets += tx_packets;
		tot->rx_bytes   += rx_bytes;
		tot->tx_bytes   += tx_bytes;
		tot->tx_dropped += stats->tx_dropped;
	}
}

1002 1003
static void netvsc_get_stats64(struct net_device *net,
			       struct rtnl_link_stats64 *t)
1004 1005
{
	struct net_device_context *ndev_ctx = netdev_priv(net);
1006
	struct netvsc_device *nvdev = rcu_dereference_rtnl(ndev_ctx->nvdev);
1007 1008
	struct netvsc_vf_pcpu_stats vf_tot;
		int i;
1009 1010 1011 1012

	if (!nvdev)
		return;

1013 1014 1015 1016 1017 1018 1019 1020 1021
	netdev_stats_to_stats64(t, &net->stats);

	netvsc_get_vf_stats(net, &vf_tot);
	t->rx_packets += vf_tot.rx_packets;
	t->tx_packets += vf_tot.tx_packets;
	t->rx_bytes   += vf_tot.rx_bytes;
	t->tx_bytes   += vf_tot.tx_bytes;
	t->tx_dropped += vf_tot.tx_dropped;

1022 1023 1024 1025
	for (i = 0; i < nvdev->num_chn; i++) {
		const struct netvsc_channel *nvchan = &nvdev->chan_table[i];
		const struct netvsc_stats *stats;
		u64 packets, bytes, multicast;
1026 1027
		unsigned int start;

1028
		stats = &nvchan->tx_stats;
1029
		do {
1030 1031 1032 1033 1034 1035 1036
			start = u64_stats_fetch_begin_irq(&stats->syncp);
			packets = stats->packets;
			bytes = stats->bytes;
		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));

		t->tx_bytes	+= bytes;
		t->tx_packets	+= packets;
1037

1038
		stats = &nvchan->rx_stats;
1039
		do {
1040 1041 1042 1043 1044 1045 1046 1047 1048
			start = u64_stats_fetch_begin_irq(&stats->syncp);
			packets = stats->packets;
			bytes = stats->bytes;
			multicast = stats->multicast + stats->broadcast;
		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));

		t->rx_bytes	+= bytes;
		t->rx_packets	+= packets;
		t->multicast	+= multicast;
1049 1050
	}
}
1051 1052 1053

static int netvsc_set_mac_addr(struct net_device *ndev, void *p)
{
1054 1055
	struct net_device_context *ndc = netdev_priv(ndev);
	struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1056
	struct sockaddr *addr = p;
1057
	char save_adr[ETH_ALEN];
1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
	unsigned char save_aatype;
	int err;

	memcpy(save_adr, ndev->dev_addr, ETH_ALEN);
	save_aatype = ndev->addr_assign_type;

	err = eth_mac_addr(ndev, p);
	if (err != 0)
		return err;

1068 1069 1070 1071
	if (!nvdev)
		return -ENODEV;

	err = rndis_filter_set_device_mac(nvdev, addr->sa_data);
1072 1073 1074 1075 1076 1077 1078 1079 1080
	if (err != 0) {
		/* roll back to saved MAC */
		memcpy(ndev->dev_addr, save_adr, ETH_ALEN);
		ndev->addr_assign_type = save_aatype;
	}

	return err;
}

1081 1082 1083 1084 1085 1086 1087 1088 1089
static const struct {
	char name[ETH_GSTRING_LEN];
	u16 offset;
} netvsc_stats[] = {
	{ "tx_scattered", offsetof(struct netvsc_ethtool_stats, tx_scattered) },
	{ "tx_no_memory",  offsetof(struct netvsc_ethtool_stats, tx_no_memory) },
	{ "tx_no_space",  offsetof(struct netvsc_ethtool_stats, tx_no_space) },
	{ "tx_too_big",	  offsetof(struct netvsc_ethtool_stats, tx_too_big) },
	{ "tx_busy",	  offsetof(struct netvsc_ethtool_stats, tx_busy) },
1090 1091 1092 1093 1094 1095
}, vf_stats[] = {
	{ "vf_rx_packets", offsetof(struct netvsc_vf_pcpu_stats, rx_packets) },
	{ "vf_rx_bytes",   offsetof(struct netvsc_vf_pcpu_stats, rx_bytes) },
	{ "vf_tx_packets", offsetof(struct netvsc_vf_pcpu_stats, tx_packets) },
	{ "vf_tx_bytes",   offsetof(struct netvsc_vf_pcpu_stats, tx_bytes) },
	{ "vf_tx_dropped", offsetof(struct netvsc_vf_pcpu_stats, tx_dropped) },
1096 1097
};

1098
#define NETVSC_GLOBAL_STATS_LEN	ARRAY_SIZE(netvsc_stats)
1099
#define NETVSC_VF_STATS_LEN	ARRAY_SIZE(vf_stats)
1100 1101 1102 1103

/* 4 statistics per queue (rx/tx packets/bytes) */
#define NETVSC_QUEUE_STATS_LEN(dev) ((dev)->num_chn * 4)

1104 1105
static int netvsc_get_sset_count(struct net_device *dev, int string_set)
{
1106
	struct net_device_context *ndc = netdev_priv(dev);
1107
	struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1108 1109 1110

	if (!nvdev)
		return -ENODEV;
1111

1112 1113
	switch (string_set) {
	case ETH_SS_STATS:
1114 1115 1116
		return NETVSC_GLOBAL_STATS_LEN
			+ NETVSC_VF_STATS_LEN
			+ NETVSC_QUEUE_STATS_LEN(nvdev);
1117 1118 1119 1120 1121 1122 1123 1124 1125
	default:
		return -EINVAL;
	}
}

static void netvsc_get_ethtool_stats(struct net_device *dev,
				     struct ethtool_stats *stats, u64 *data)
{
	struct net_device_context *ndc = netdev_priv(dev);
1126
	struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1127
	const void *nds = &ndc->eth_stats;
1128
	const struct netvsc_stats *qstats;
1129
	struct netvsc_vf_pcpu_stats sum;
1130 1131 1132
	unsigned int start;
	u64 packets, bytes;
	int i, j;
1133

1134 1135 1136
	if (!nvdev)
		return;

1137
	for (i = 0; i < NETVSC_GLOBAL_STATS_LEN; i++)
1138
		data[i] = *(unsigned long *)(nds + netvsc_stats[i].offset);
1139

1140 1141 1142 1143
	netvsc_get_vf_stats(dev, &sum);
	for (j = 0; j < NETVSC_VF_STATS_LEN; j++)
		data[i++] = *(u64 *)((void *)&sum + vf_stats[j].offset);

1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163
	for (j = 0; j < nvdev->num_chn; j++) {
		qstats = &nvdev->chan_table[j].tx_stats;

		do {
			start = u64_stats_fetch_begin_irq(&qstats->syncp);
			packets = qstats->packets;
			bytes = qstats->bytes;
		} while (u64_stats_fetch_retry_irq(&qstats->syncp, start));
		data[i++] = packets;
		data[i++] = bytes;

		qstats = &nvdev->chan_table[j].rx_stats;
		do {
			start = u64_stats_fetch_begin_irq(&qstats->syncp);
			packets = qstats->packets;
			bytes = qstats->bytes;
		} while (u64_stats_fetch_retry_irq(&qstats->syncp, start));
		data[i++] = packets;
		data[i++] = bytes;
	}
1164 1165 1166 1167
}

static void netvsc_get_strings(struct net_device *dev, u32 stringset, u8 *data)
{
1168
	struct net_device_context *ndc = netdev_priv(dev);
1169
	struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1170
	u8 *p = data;
1171 1172
	int i;

1173 1174 1175
	if (!nvdev)
		return;

1176 1177
	switch (stringset) {
	case ETH_SS_STATS:
1178 1179 1180 1181 1182 1183 1184 1185 1186
		for (i = 0; i < ARRAY_SIZE(netvsc_stats); i++) {
			memcpy(p, netvsc_stats[i].name, ETH_GSTRING_LEN);
			p += ETH_GSTRING_LEN;
		}

		for (i = 0; i < ARRAY_SIZE(vf_stats); i++) {
			memcpy(p, vf_stats[i].name, ETH_GSTRING_LEN);
			p += ETH_GSTRING_LEN;
		}
1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198

		for (i = 0; i < nvdev->num_chn; i++) {
			sprintf(p, "tx_queue_%u_packets", i);
			p += ETH_GSTRING_LEN;
			sprintf(p, "tx_queue_%u_bytes", i);
			p += ETH_GSTRING_LEN;
			sprintf(p, "rx_queue_%u_packets", i);
			p += ETH_GSTRING_LEN;
			sprintf(p, "rx_queue_%u_bytes", i);
			p += ETH_GSTRING_LEN;
		}

1199 1200 1201 1202
		break;
	}
}

1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226
static int
netvsc_get_rss_hash_opts(struct netvsc_device *nvdev,
			 struct ethtool_rxnfc *info)
{
	info->data = RXH_IP_SRC | RXH_IP_DST;

	switch (info->flow_type) {
	case TCP_V4_FLOW:
	case TCP_V6_FLOW:
		info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
		/* fallthrough */
	case UDP_V4_FLOW:
	case UDP_V6_FLOW:
	case IPV4_FLOW:
	case IPV6_FLOW:
		break;
	default:
		info->data = 0;
		break;
	}

	return 0;
}

1227 1228 1229 1230 1231
static int
netvsc_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info,
		 u32 *rules)
{
	struct net_device_context *ndc = netdev_priv(dev);
1232
	struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1233 1234 1235

	if (!nvdev)
		return -ENODEV;
1236 1237 1238 1239 1240

	switch (info->cmd) {
	case ETHTOOL_GRXRINGS:
		info->data = nvdev->num_chn;
		return 0;
1241 1242 1243

	case ETHTOOL_GRXFH:
		return netvsc_get_rss_hash_opts(nvdev, info);
1244 1245 1246 1247
	}
	return -EOPNOTSUPP;
}

R
Richard Weinberger 已提交
1248
#ifdef CONFIG_NET_POLL_CONTROLLER
S
stephen hemminger 已提交
1249
static void netvsc_poll_controller(struct net_device *dev)
R
Richard Weinberger 已提交
1250
{
S
stephen hemminger 已提交
1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264
	struct net_device_context *ndc = netdev_priv(dev);
	struct netvsc_device *ndev;
	int i;

	rcu_read_lock();
	ndev = rcu_dereference(ndc->nvdev);
	if (ndev) {
		for (i = 0; i < ndev->num_chn; i++) {
			struct netvsc_channel *nvchan = &ndev->chan_table[i];

			napi_schedule(&nvchan->napi);
		}
	}
	rcu_read_unlock();
R
Richard Weinberger 已提交
1265 1266
}
#endif
1267

1268 1269 1270 1271 1272 1273 1274
static u32 netvsc_get_rxfh_key_size(struct net_device *dev)
{
	return NETVSC_HASH_KEYLEN;
}

static u32 netvsc_rss_indir_size(struct net_device *dev)
{
1275
	return ITAB_NUM;
1276 1277 1278 1279 1280 1281
}

static int netvsc_get_rxfh(struct net_device *dev, u32 *indir, u8 *key,
			   u8 *hfunc)
{
	struct net_device_context *ndc = netdev_priv(dev);
1282
	struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1283
	struct rndis_device *rndis_dev;
1284
	int i;
1285

1286 1287 1288
	if (!ndev)
		return -ENODEV;

1289 1290 1291
	if (hfunc)
		*hfunc = ETH_RSS_HASH_TOP;	/* Toeplitz */

1292
	rndis_dev = ndev->extension;
1293 1294 1295 1296 1297
	if (indir) {
		for (i = 0; i < ITAB_NUM; i++)
			indir[i] = rndis_dev->ind_table[i];
	}

1298 1299 1300 1301 1302 1303 1304 1305 1306 1307
	if (key)
		memcpy(key, rndis_dev->rss_key, NETVSC_HASH_KEYLEN);

	return 0;
}

static int netvsc_set_rxfh(struct net_device *dev, const u32 *indir,
			   const u8 *key, const u8 hfunc)
{
	struct net_device_context *ndc = netdev_priv(dev);
1308
	struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1309
	struct rndis_device *rndis_dev;
1310
	int i;
1311

1312 1313 1314
	if (!ndev)
		return -ENODEV;

1315 1316 1317
	if (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP)
		return -EOPNOTSUPP;

1318
	rndis_dev = ndev->extension;
1319 1320
	if (indir) {
		for (i = 0; i < ITAB_NUM; i++)
1321
			if (indir[i] >= VRSS_CHANNEL_MAX)
1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333
				return -EINVAL;

		for (i = 0; i < ITAB_NUM; i++)
			rndis_dev->ind_table[i] = indir[i];
	}

	if (!key) {
		if (!indir)
			return 0;

		key = rndis_dev->rss_key;
	}
1334 1335 1336 1337

	return rndis_filter_set_rss_param(rndis_dev, key, ndev->num_chn);
}

1338 1339 1340
static const struct ethtool_ops ethtool_ops = {
	.get_drvinfo	= netvsc_get_drvinfo,
	.get_link	= ethtool_op_get_link,
1341 1342 1343
	.get_ethtool_stats = netvsc_get_ethtool_stats,
	.get_sset_count = netvsc_get_sset_count,
	.get_strings	= netvsc_get_strings,
1344
	.get_channels   = netvsc_get_channels,
1345
	.set_channels   = netvsc_set_channels,
1346
	.get_ts_info	= ethtool_op_get_ts_info,
1347
	.get_rxnfc	= netvsc_get_rxnfc,
1348 1349 1350 1351
	.get_rxfh_key_size = netvsc_get_rxfh_key_size,
	.get_rxfh_indir_size = netvsc_rss_indir_size,
	.get_rxfh	= netvsc_get_rxfh,
	.set_rxfh	= netvsc_set_rxfh,
1352 1353
	.get_link_ksettings = netvsc_get_link_ksettings,
	.set_link_ksettings = netvsc_set_link_ksettings,
1354 1355
};

1356 1357 1358 1359
static const struct net_device_ops device_ops = {
	.ndo_open =			netvsc_open,
	.ndo_stop =			netvsc_close,
	.ndo_start_xmit =		netvsc_start_xmit,
1360
	.ndo_set_rx_mode =		netvsc_set_multicast_list,
1361
	.ndo_change_mtu =		netvsc_change_mtu,
1362
	.ndo_validate_addr =		eth_validate_addr,
1363
	.ndo_set_mac_address =		netvsc_set_mac_addr,
1364
	.ndo_select_queue =		netvsc_select_queue,
1365
	.ndo_get_stats64 =		netvsc_get_stats64,
R
Richard Weinberger 已提交
1366 1367 1368
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller =		netvsc_poll_controller,
#endif
1369 1370
};

1371
/*
1372 1373 1374
 * Handle link status changes. For RNDIS_STATUS_NETWORK_CHANGE emulate link
 * down/up sequence. In case of RNDIS_STATUS_MEDIA_CONNECT when carrier is
 * present send GARP packet to network peers with netif_notify_peers().
1375
 */
1376
static void netvsc_link_change(struct work_struct *w)
1377
{
1378 1379 1380 1381
	struct net_device_context *ndev_ctx =
		container_of(w, struct net_device_context, dwork.work);
	struct hv_device *device_obj = ndev_ctx->device_ctx;
	struct net_device *net = hv_get_drvdata(device_obj);
1382
	struct netvsc_device *net_device;
1383
	struct rndis_device *rdev;
1384 1385 1386
	struct netvsc_reconfig *event = NULL;
	bool notify = false, reschedule = false;
	unsigned long flags, next_reconfig, delay;
1387

1388
	rtnl_lock();
1389 1390
	net_device = rtnl_dereference(ndev_ctx->nvdev);
	if (!net_device)
1391 1392
		goto out_unlock;

1393 1394
	rdev = net_device->extension;

1395 1396 1397 1398 1399 1400 1401 1402 1403
	next_reconfig = ndev_ctx->last_reconfig + LINKCHANGE_INT;
	if (time_is_after_jiffies(next_reconfig)) {
		/* link_watch only sends one notification with current state
		 * per second, avoid doing reconfig more frequently. Handle
		 * wrap around.
		 */
		delay = next_reconfig - jiffies;
		delay = delay < LINKCHANGE_INT ? delay : LINKCHANGE_INT;
		schedule_delayed_work(&ndev_ctx->dwork, delay);
1404
		goto out_unlock;
1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417
	}
	ndev_ctx->last_reconfig = jiffies;

	spin_lock_irqsave(&ndev_ctx->lock, flags);
	if (!list_empty(&ndev_ctx->reconfig_events)) {
		event = list_first_entry(&ndev_ctx->reconfig_events,
					 struct netvsc_reconfig, list);
		list_del(&event->list);
		reschedule = !list_empty(&ndev_ctx->reconfig_events);
	}
	spin_unlock_irqrestore(&ndev_ctx->lock, flags);

	if (!event)
1418
		goto out_unlock;
1419 1420 1421 1422 1423 1424 1425 1426

	switch (event->event) {
		/* Only the following events are possible due to the check in
		 * netvsc_linkstatus_callback()
		 */
	case RNDIS_STATUS_MEDIA_CONNECT:
		if (rdev->link_state) {
			rdev->link_state = false;
1427
			netif_carrier_on(net);
1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449
			netif_tx_wake_all_queues(net);
		} else {
			notify = true;
		}
		kfree(event);
		break;
	case RNDIS_STATUS_MEDIA_DISCONNECT:
		if (!rdev->link_state) {
			rdev->link_state = true;
			netif_carrier_off(net);
			netif_tx_stop_all_queues(net);
		}
		kfree(event);
		break;
	case RNDIS_STATUS_NETWORK_CHANGE:
		/* Only makes sense if carrier is present */
		if (!rdev->link_state) {
			rdev->link_state = true;
			netif_carrier_off(net);
			netif_tx_stop_all_queues(net);
			event->event = RNDIS_STATUS_MEDIA_CONNECT;
			spin_lock_irqsave(&ndev_ctx->lock, flags);
1450
			list_add(&event->list, &ndev_ctx->reconfig_events);
1451 1452
			spin_unlock_irqrestore(&ndev_ctx->lock, flags);
			reschedule = true;
1453
		}
1454
		break;
1455 1456 1457 1458 1459 1460
	}

	rtnl_unlock();

	if (notify)
		netdev_notify_peers(net);
1461 1462 1463 1464 1465 1466

	/* link_watch only sends one notification with current state per
	 * second, handle next reconfig event in 2 seconds.
	 */
	if (reschedule)
		schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
1467 1468 1469 1470 1471

	return;

out_unlock:
	rtnl_unlock();
1472 1473
}

1474
static struct net_device *get_netvsc_bymac(const u8 *mac)
1475
{
1476
	struct net_device *dev;
1477

1478
	ASSERT_RTNL();
1479 1480

	for_each_netdev(&init_net, dev) {
1481 1482 1483 1484 1485 1486 1487 1488 1489 1490
		if (dev->netdev_ops != &device_ops)
			continue;	/* not a netvsc device */

		if (ether_addr_equal(mac, dev->perm_addr))
			return dev;
	}

	return NULL;
}

1491
static struct net_device *get_netvsc_byref(struct net_device *vf_netdev)
1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
{
	struct net_device *dev;

	ASSERT_RTNL();

	for_each_netdev(&init_net, dev) {
		struct net_device_context *net_device_ctx;

		if (dev->netdev_ops != &device_ops)
			continue;	/* not a netvsc device */

		net_device_ctx = netdev_priv(dev);
1504
		if (!rtnl_dereference(net_device_ctx->nvdev))
1505 1506
			continue;	/* device is removed */

1507
		if (rtnl_dereference(net_device_ctx->vf_netdev) == vf_netdev)
1508
			return dev;	/* a match */
1509 1510
	}

1511
	return NULL;
1512 1513
}

1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603
/* Called when VF is injecting data into network stack.
 * Change the associated network device from VF to netvsc.
 * note: already called with rcu_read_lock
 */
static rx_handler_result_t netvsc_vf_handle_frame(struct sk_buff **pskb)
{
	struct sk_buff *skb = *pskb;
	struct net_device *ndev = rcu_dereference(skb->dev->rx_handler_data);
	struct net_device_context *ndev_ctx = netdev_priv(ndev);
	struct netvsc_vf_pcpu_stats *pcpu_stats
		 = this_cpu_ptr(ndev_ctx->vf_stats);

	skb->dev = ndev;

	u64_stats_update_begin(&pcpu_stats->syncp);
	pcpu_stats->rx_packets++;
	pcpu_stats->rx_bytes += skb->len;
	u64_stats_update_end(&pcpu_stats->syncp);

	return RX_HANDLER_ANOTHER;
}

static int netvsc_vf_join(struct net_device *vf_netdev,
			  struct net_device *ndev)
{
	struct net_device_context *ndev_ctx = netdev_priv(ndev);
	int ret;

	ret = netdev_rx_handler_register(vf_netdev,
					 netvsc_vf_handle_frame, ndev);
	if (ret != 0) {
		netdev_err(vf_netdev,
			   "can not register netvsc VF receive handler (err = %d)\n",
			   ret);
		goto rx_handler_failed;
	}

	ret = netdev_upper_dev_link(vf_netdev, ndev);
	if (ret != 0) {
		netdev_err(vf_netdev,
			   "can not set master device %s (err = %d)\n",
			   ndev->name, ret);
		goto upper_link_failed;
	}

	/* set slave flag before open to prevent IPv6 addrconf */
	vf_netdev->flags |= IFF_SLAVE;

	schedule_work(&ndev_ctx->vf_takeover);

	netdev_info(vf_netdev, "joined to %s\n", ndev->name);
	return 0;

upper_link_failed:
	netdev_rx_handler_unregister(vf_netdev);
rx_handler_failed:
	return ret;
}

static void __netvsc_vf_setup(struct net_device *ndev,
			      struct net_device *vf_netdev)
{
	int ret;

	call_netdevice_notifiers(NETDEV_JOIN, vf_netdev);

	/* Align MTU of VF with master */
	ret = dev_set_mtu(vf_netdev, ndev->mtu);
	if (ret)
		netdev_warn(vf_netdev,
			    "unable to change mtu to %u\n", ndev->mtu);

	if (netif_running(ndev)) {
		ret = dev_open(vf_netdev);
		if (ret)
			netdev_warn(vf_netdev,
				    "unable to open: %d\n", ret);
	}
}

/* Setup VF as slave of the synthetic device.
 * Runs in workqueue to avoid recursion in netlink callbacks.
 */
static void netvsc_vf_setup(struct work_struct *w)
{
	struct net_device_context *ndev_ctx
		= container_of(w, struct net_device_context, vf_takeover);
	struct net_device *ndev = hv_get_drvdata(ndev_ctx->device_ctx);
	struct net_device *vf_netdev;

1604 1605 1606 1607 1608
	if (!rtnl_trylock()) {
		schedule_work(w);
		return;
	}

1609 1610 1611 1612 1613 1614 1615
	vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
	if (vf_netdev)
		__netvsc_vf_setup(ndev, vf_netdev);

	rtnl_unlock();
}

1616 1617
static int netvsc_register_vf(struct net_device *vf_netdev)
{
1618 1619
	struct net_device *ndev;
	struct net_device_context *net_device_ctx;
1620 1621
	struct netvsc_device *netvsc_dev;

1622 1623 1624
	if (vf_netdev->addr_len != ETH_ALEN)
		return NOTIFY_DONE;

1625 1626 1627 1628 1629
	/*
	 * We will use the MAC address to locate the synthetic interface to
	 * associate with the VF interface. If we don't find a matching
	 * synthetic interface, move on.
	 */
1630
	ndev = get_netvsc_bymac(vf_netdev->perm_addr);
1631 1632 1633 1634
	if (!ndev)
		return NOTIFY_DONE;

	net_device_ctx = netdev_priv(ndev);
1635
	netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
1636
	if (!netvsc_dev || rtnl_dereference(net_device_ctx->vf_netdev))
1637 1638
		return NOTIFY_DONE;

1639 1640 1641
	if (netvsc_vf_join(vf_netdev, ndev) != 0)
		return NOTIFY_DONE;

1642
	netdev_info(ndev, "VF registering: %s\n", vf_netdev->name);
1643 1644

	/* Prevent this module from being unloaded while VF is registered */
1645
	try_module_get(THIS_MODULE);
1646 1647

	dev_hold(vf_netdev);
1648
	rcu_assign_pointer(net_device_ctx->vf_netdev, vf_netdev);
1649 1650 1651
	return NOTIFY_OK;
}

1652 1653
/* Change datapath */
static void netvsc_vf_update(struct work_struct *w)
1654
{
1655 1656 1657
	struct net_device_context *ndev_ctx
		= container_of(w, struct net_device_context, vf_notify);
	struct net_device *ndev = hv_get_drvdata(ndev_ctx->device_ctx);
1658
	struct netvsc_device *netvsc_dev;
1659 1660
	struct net_device *vf_netdev;
	bool vf_is_up;
1661

1662 1663 1664 1665 1666
	if (!rtnl_trylock()) {
		schedule_work(w);
		return;
	}

1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689
	vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
	if (!vf_netdev)
		goto unlock;

	netvsc_dev = rtnl_dereference(ndev_ctx->nvdev);
	if (!netvsc_dev)
		goto unlock;

	vf_is_up = netif_running(vf_netdev);
	if (vf_is_up != ndev_ctx->datapath) {
		if (vf_is_up) {
			netdev_info(ndev, "VF up: %s\n", vf_netdev->name);
			rndis_filter_open(netvsc_dev);
			netvsc_switch_datapath(ndev, true);
			netdev_info(ndev, "Data path switched to VF: %s\n",
				    vf_netdev->name);
		} else {
			netdev_info(ndev, "VF down: %s\n", vf_netdev->name);
			netvsc_switch_datapath(ndev, false);
			rndis_filter_close(netvsc_dev);
			netdev_info(ndev, "Data path switched from VF: %s\n",
				    vf_netdev->name);
		}
1690

1691 1692 1693 1694 1695
		/* Now notify peers through VF device. */
		call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, ndev);
	}
unlock:
	rtnl_unlock();
1696 1697
}

1698
static int netvsc_vf_notify(struct net_device *vf_netdev)
1699 1700
{
	struct net_device_context *net_device_ctx;
1701
	struct net_device *ndev;
1702

1703
	ndev = get_netvsc_byref(vf_netdev);
1704 1705 1706 1707
	if (!ndev)
		return NOTIFY_DONE;

	net_device_ctx = netdev_priv(ndev);
1708
	schedule_work(&net_device_ctx->vf_notify);
1709 1710 1711 1712 1713 1714

	return NOTIFY_OK;
}

static int netvsc_unregister_vf(struct net_device *vf_netdev)
{
1715 1716
	struct net_device *ndev;
	struct net_device_context *net_device_ctx;
1717

1718
	ndev = get_netvsc_byref(vf_netdev);
1719 1720 1721 1722
	if (!ndev)
		return NOTIFY_DONE;

	net_device_ctx = netdev_priv(ndev);
1723 1724
	cancel_work_sync(&net_device_ctx->vf_takeover);
	cancel_work_sync(&net_device_ctx->vf_notify);
1725

1726
	netdev_info(ndev, "VF unregistering: %s\n", vf_netdev->name);
1727

1728
	netdev_upper_dev_unlink(vf_netdev, ndev);
1729
	RCU_INIT_POINTER(net_device_ctx->vf_netdev, NULL);
1730
	dev_put(vf_netdev);
1731 1732 1733 1734
	module_put(THIS_MODULE);
	return NOTIFY_OK;
}

1735 1736
static int netvsc_probe(struct hv_device *dev,
			const struct hv_vmbus_device_id *dev_id)
1737 1738 1739 1740
{
	struct net_device *net = NULL;
	struct net_device_context *net_device_ctx;
	struct netvsc_device_info device_info;
1741
	struct netvsc_device *nvdev;
1742
	int ret = -ENOMEM;
1743

1744
	net = alloc_etherdev_mq(sizeof(struct net_device_context),
1745
				VRSS_CHANNEL_MAX);
1746
	if (!net)
1747
		goto no_net;
1748

1749 1750
	netif_carrier_off(net);

1751 1752
	netvsc_init_settings(net);

1753
	net_device_ctx = netdev_priv(net);
1754
	net_device_ctx->device_ctx = dev;
1755 1756 1757 1758 1759
	net_device_ctx->msg_enable = netif_msg_init(debug, default_msg);
	if (netif_msg_probe(net_device_ctx))
		netdev_dbg(net, "netvsc msg_enable: %d\n",
			   net_device_ctx->msg_enable);

1760
	hv_set_drvdata(dev, net);
1761

1762
	INIT_DELAYED_WORK(&net_device_ctx->dwork, netvsc_link_change);
1763

1764 1765
	spin_lock_init(&net_device_ctx->lock);
	INIT_LIST_HEAD(&net_device_ctx->reconfig_events);
1766 1767 1768 1769 1770 1771 1772
	INIT_WORK(&net_device_ctx->vf_takeover, netvsc_vf_setup);
	INIT_WORK(&net_device_ctx->vf_notify, netvsc_vf_update);

	net_device_ctx->vf_stats
		= netdev_alloc_pcpu_stats(struct netvsc_vf_pcpu_stats);
	if (!net_device_ctx->vf_stats)
		goto no_stats;
1773

1774
	net->netdev_ops = &device_ops;
1775
	net->ethtool_ops = &ethtool_ops;
1776
	SET_NETDEV_DEV(net, &dev->device);
1777

1778 1779 1780
	/* We always need headroom for rndis header */
	net->needed_headroom = RNDIS_AND_PPI_SIZE;

1781
	/* Notify the netvsc driver of the new device */
1782
	memset(&device_info, 0, sizeof(device_info));
1783
	device_info.ring_size = ring_size;
1784
	device_info.num_chn = VRSS_CHANNEL_DEFAULT;
1785 1786 1787 1788

	nvdev = rndis_filter_device_add(dev, &device_info);
	if (IS_ERR(nvdev)) {
		ret = PTR_ERR(nvdev);
1789
		netdev_err(net, "unable to add netvsc device (ret %d)\n", ret);
1790
		goto rndis_failed;
1791
	}
1792

1793 1794
	memcpy(net->dev_addr, device_info.mac_adr, ETH_ALEN);

1795 1796 1797 1798 1799 1800
	/* hw_features computed in rndis_filter_device_add */
	net->features = net->hw_features |
		NETIF_F_HIGHDMA | NETIF_F_SG |
		NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
	net->vlan_features = net->features;

1801 1802 1803
	netif_set_real_num_tx_queues(net, nvdev->num_chn);
	netif_set_real_num_rx_queues(net, nvdev->num_chn);

1804 1805
	netdev_lockdep_set_classes(net);

1806 1807 1808 1809 1810 1811 1812
	/* MTU range: 68 - 1500 or 65521 */
	net->min_mtu = NETVSC_MTU_MIN;
	if (nvdev->nvsp_version >= NVSP_PROTOCOL_VERSION_2)
		net->max_mtu = NETVSC_MTU - ETH_HLEN;
	else
		net->max_mtu = ETH_DATA_LEN;

1813 1814 1815
	ret = register_netdev(net);
	if (ret != 0) {
		pr_err("Unable to register netdev.\n");
1816
		goto register_failed;
1817 1818
	}

1819
	return ret;
1820 1821 1822 1823 1824 1825 1826 1827 1828 1829

register_failed:
	rndis_filter_device_remove(dev, nvdev);
rndis_failed:
	free_percpu(net_device_ctx->vf_stats);
no_stats:
	hv_set_drvdata(dev, NULL);
	free_netdev(net);
no_net:
	return ret;
1830 1831
}

1832
static int netvsc_remove(struct hv_device *dev)
1833
{
1834
	struct net_device *net;
1835
	struct net_device_context *ndev_ctx;
1836

1837
	net = hv_get_drvdata(dev);
1838 1839

	if (net == NULL) {
1840
		dev_err(&dev->device, "No net device to remove\n");
1841 1842 1843
		return 0;
	}

1844
	ndev_ctx = netdev_priv(net);
1845

1846
	netif_device_detach(net);
1847

1848 1849
	cancel_delayed_work_sync(&ndev_ctx->dwork);

1850 1851
	/*
	 * Call to the vsc driver to let it know that the device is being
1852
	 * removed. Also blocks mtu and channel changes.
1853
	 */
1854
	rtnl_lock();
1855 1856
	rndis_filter_device_remove(dev,
				   rtnl_dereference(ndev_ctx->nvdev));
1857 1858 1859
	rtnl_unlock();

	unregister_netdev(net);
1860

1861 1862
	hv_set_drvdata(dev, NULL);

1863
	free_percpu(ndev_ctx->vf_stats);
1864
	free_netdev(net);
1865
	return 0;
1866 1867
}

1868
static const struct hv_vmbus_device_id id_table[] = {
1869
	/* Network guid */
1870
	{ HV_NIC_GUID, },
1871
	{ },
1872 1873 1874 1875
};

MODULE_DEVICE_TABLE(vmbus, id_table);

1876
/* The one and only one */
1877
static struct  hv_driver netvsc_drv = {
1878
	.name = KBUILD_MODNAME,
1879
	.id_table = id_table,
1880 1881
	.probe = netvsc_probe,
	.remove = netvsc_remove,
1882
};
1883

1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894
/*
 * On Hyper-V, every VF interface is matched with a corresponding
 * synthetic interface. The synthetic interface is presented first
 * to the guest. When the corresponding VF instance is registered,
 * we will take care of switching the data path.
 */
static int netvsc_netdev_event(struct notifier_block *this,
			       unsigned long event, void *ptr)
{
	struct net_device *event_dev = netdev_notifier_info_to_dev(ptr);

1895 1896 1897 1898 1899 1900 1901 1902
	/* Skip our own events */
	if (event_dev->netdev_ops == &device_ops)
		return NOTIFY_DONE;

	/* Avoid non-Ethernet type devices */
	if (event_dev->type != ARPHRD_ETHER)
		return NOTIFY_DONE;

1903
	/* Avoid Vlan dev with same MAC registering as VF */
1904
	if (is_vlan_dev(event_dev))
1905 1906 1907
		return NOTIFY_DONE;

	/* Avoid Bonding master dev with same MAC registering as VF */
1908 1909
	if ((event_dev->priv_flags & IFF_BONDING) &&
	    (event_dev->flags & IFF_MASTER))
1910 1911
		return NOTIFY_DONE;

1912 1913 1914 1915 1916 1917 1918
	switch (event) {
	case NETDEV_REGISTER:
		return netvsc_register_vf(event_dev);
	case NETDEV_UNREGISTER:
		return netvsc_unregister_vf(event_dev);
	case NETDEV_UP:
	case NETDEV_DOWN:
1919
		return netvsc_vf_notify(event_dev);
1920 1921 1922 1923 1924 1925 1926 1927 1928
	default:
		return NOTIFY_DONE;
	}
}

static struct notifier_block netvsc_netdev_notifier = {
	.notifier_call = netvsc_netdev_event,
};

1929
static void __exit netvsc_drv_exit(void)
1930
{
1931
	unregister_netdevice_notifier(&netvsc_netdev_notifier);
1932
	vmbus_driver_unregister(&netvsc_drv);
1933 1934
}

1935
static int __init netvsc_drv_init(void)
1936
{
1937 1938
	int ret;

1939 1940 1941 1942 1943
	if (ring_size < RING_SIZE_MIN) {
		ring_size = RING_SIZE_MIN;
		pr_info("Increased ring_size to %d (min allowed)\n",
			ring_size);
	}
1944 1945 1946 1947 1948 1949 1950
	ret = vmbus_driver_register(&netvsc_drv);

	if (ret)
		return ret;

	register_netdevice_notifier(&netvsc_netdev_notifier);
	return 0;
1951 1952
}

1953
MODULE_LICENSE("GPL");
1954
MODULE_DESCRIPTION("Microsoft Hyper-V network driver");
1955

1956
module_init(netvsc_drv_init);
1957
module_exit(netvsc_drv_exit);