sata_mv.c 58.7 KB
Newer Older
1 2 3
/*
 * sata_mv.c - Marvell SATA support
 *
4
 * Copyright 2005: EMC Corporation, all rights reserved.
5
 * Copyright 2005 Red Hat, Inc.  All rights reserved.
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
 *
 * Please ALWAYS copy linux-ide@vger.kernel.org on emails.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; version 2 of the License.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 */

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/init.h>
#include <linux/blkdev.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/sched.h>
#include <linux/dma-mapping.h>
33
#include <linux/device.h>
34
#include <scsi/scsi_host.h>
35
#include <scsi/scsi_cmnd.h>
36 37 38 39
#include <linux/libata.h>
#include <asm/io.h>

#define DRV_NAME	"sata_mv"
40
#define DRV_VERSION	"0.5"
41 42 43 44 45 46 47 48 49 50 51 52 53

enum {
	/* BAR's are enumerated in terms of pci_resource_start() terms */
	MV_PRIMARY_BAR		= 0,	/* offset 0x10: memory space */
	MV_IO_BAR		= 2,	/* offset 0x18: IO space */
	MV_MISC_BAR		= 3,	/* offset 0x1c: FLASH, NVRAM, SRAM */

	MV_MAJOR_REG_AREA_SZ	= 0x10000,	/* 64KB */
	MV_MINOR_REG_AREA_SZ	= 0x2000,	/* 8KB */

	MV_PCI_REG_BASE		= 0,
	MV_IRQ_COAL_REG_BASE	= 0x18000,	/* 6xxx part only */
	MV_SATAHC0_REG_BASE	= 0x20000,
54
	MV_FLASH_CTL		= 0x1046c,
55 56
	MV_GPIO_PORT_CTL	= 0x104f0,
	MV_RESET_CFG		= 0x180d8,
57 58 59 60 61 62

	MV_PCI_REG_SZ		= MV_MAJOR_REG_AREA_SZ,
	MV_SATAHC_REG_SZ	= MV_MAJOR_REG_AREA_SZ,
	MV_SATAHC_ARBTR_REG_SZ	= MV_MINOR_REG_AREA_SZ,		/* arbiter */
	MV_PORT_REG_SZ		= MV_MINOR_REG_AREA_SZ,

63
	MV_USE_Q_DEPTH		= ATA_DEF_QUEUE,
64

65 66 67 68 69 70 71 72 73 74 75 76 77 78
	MV_MAX_Q_DEPTH		= 32,
	MV_MAX_Q_DEPTH_MASK	= MV_MAX_Q_DEPTH - 1,

	/* CRQB needs alignment on a 1KB boundary. Size == 1KB
	 * CRPB needs alignment on a 256B boundary. Size == 256B
	 * SG count of 176 leads to MV_PORT_PRIV_DMA_SZ == 4KB
	 * ePRD (SG) entries need alignment on a 16B boundary. Size == 16B
	 */
	MV_CRQB_Q_SZ		= (32 * MV_MAX_Q_DEPTH),
	MV_CRPB_Q_SZ		= (8 * MV_MAX_Q_DEPTH),
	MV_MAX_SG_CT		= 176,
	MV_SG_TBL_SZ		= (16 * MV_MAX_SG_CT),
	MV_PORT_PRIV_DMA_SZ	= (MV_CRQB_Q_SZ + MV_CRPB_Q_SZ + MV_SG_TBL_SZ),

79 80 81
	MV_PORTS_PER_HC		= 4,
	/* == (port / MV_PORTS_PER_HC) to determine HC from 0-7 port */
	MV_PORT_HC_SHIFT	= 2,
82
	/* == (port % MV_PORTS_PER_HC) to determine hard port from 0-7 port */
83 84 85 86 87
	MV_PORT_MASK		= 3,

	/* Host Flags */
	MV_FLAG_DUAL_HC		= (1 << 30),  /* two SATA Host Controllers */
	MV_FLAG_IRQ_COALESCE	= (1 << 29),  /* IRQ coalescing capability */
88
	MV_COMMON_FLAGS		= (ATA_FLAG_SATA | ATA_FLAG_NO_LEGACY |
89 90
				   ATA_FLAG_SATA_RESET | ATA_FLAG_MMIO |
				   ATA_FLAG_NO_ATAPI),
91
	MV_6XXX_FLAGS		= MV_FLAG_IRQ_COALESCE,
92

93 94 95 96 97 98 99 100 101 102
	CRQB_FLAG_READ		= (1 << 0),
	CRQB_TAG_SHIFT		= 1,
	CRQB_CMD_ADDR_SHIFT	= 8,
	CRQB_CMD_CS		= (0x2 << 11),
	CRQB_CMD_LAST		= (1 << 15),

	CRPB_FLAG_STATUS_SHIFT	= 8,

	EPRD_FLAG_END_OF_TBL	= (1 << 31),

103 104
	/* PCI interface registers */

105 106
	PCI_COMMAND_OFS		= 0xc00,

107 108 109 110 111
	PCI_MAIN_CMD_STS_OFS	= 0xd30,
	STOP_PCI_MASTER		= (1 << 2),
	PCI_MASTER_EMPTY	= (1 << 3),
	GLOB_SFT_RST		= (1 << 4),

112 113 114 115 116 117 118 119 120 121 122 123 124
	MV_PCI_MODE		= 0xd00,
	MV_PCI_EXP_ROM_BAR_CTL	= 0xd2c,
	MV_PCI_DISC_TIMER	= 0xd04,
	MV_PCI_MSI_TRIGGER	= 0xc38,
	MV_PCI_SERR_MASK	= 0xc28,
	MV_PCI_XBAR_TMOUT	= 0x1d04,
	MV_PCI_ERR_LOW_ADDRESS	= 0x1d40,
	MV_PCI_ERR_HIGH_ADDRESS	= 0x1d44,
	MV_PCI_ERR_ATTRIBUTE	= 0x1d48,
	MV_PCI_ERR_COMMAND	= 0x1d50,

	PCI_IRQ_CAUSE_OFS		= 0x1d58,
	PCI_IRQ_MASK_OFS		= 0x1d5c,
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
	PCI_UNMASK_ALL_IRQS	= 0x7fffff,	/* bits 22-0 */

	HC_MAIN_IRQ_CAUSE_OFS	= 0x1d60,
	HC_MAIN_IRQ_MASK_OFS	= 0x1d64,
	PORT0_ERR		= (1 << 0),	/* shift by port # */
	PORT0_DONE		= (1 << 1),	/* shift by port # */
	HC0_IRQ_PEND		= 0x1ff,	/* bits 0-8 = HC0's ports */
	HC_SHIFT		= 9,		/* bits 9-17 = HC1's ports */
	PCI_ERR			= (1 << 18),
	TRAN_LO_DONE		= (1 << 19),	/* 6xxx: IRQ coalescing */
	TRAN_HI_DONE		= (1 << 20),	/* 6xxx: IRQ coalescing */
	PORTS_0_7_COAL_DONE	= (1 << 21),	/* 6xxx: IRQ coalescing */
	GPIO_INT		= (1 << 22),
	SELF_INT		= (1 << 23),
	TWSI_INT		= (1 << 24),
	HC_MAIN_RSVD		= (0x7f << 25),	/* bits 31-25 */
141
	HC_MAIN_MASKED_IRQS	= (TRAN_LO_DONE | TRAN_HI_DONE |
142 143 144 145 146 147 148
				   PORTS_0_7_COAL_DONE | GPIO_INT | TWSI_INT |
				   HC_MAIN_RSVD),

	/* SATAHC registers */
	HC_CFG_OFS		= 0,

	HC_IRQ_CAUSE_OFS	= 0x14,
149
	CRPB_DMA_DONE		= (1 << 0),	/* shift by port # */
150 151 152 153
	HC_IRQ_COAL		= (1 << 4),	/* IRQ coalescing */
	DEV_IRQ			= (1 << 8),	/* shift by port # */

	/* Shadow block registers */
154 155
	SHD_BLK_OFS		= 0x100,
	SHD_CTL_AST_OFS		= 0x20,		/* ofs from SHD_BLK_OFS */
156 157 158 159

	/* SATA registers */
	SATA_STATUS_OFS		= 0x300,  /* ctrl, err regs follow status */
	SATA_ACTIVE_OFS		= 0x350,
160
	PHY_MODE3		= 0x310,
161 162
	PHY_MODE4		= 0x314,
	PHY_MODE2		= 0x330,
163 164 165
	MV5_PHY_MODE		= 0x74,
	MV5_LT_MODE		= 0x30,
	MV5_PHY_CTL		= 0x0C,
166 167 168
	SATA_INTERFACE_CTL	= 0x050,

	MV_M2_PREAMP_MASK	= 0x7e0,
169 170 171

	/* Port registers */
	EDMA_CFG_OFS		= 0,
172 173 174 175 176
	EDMA_CFG_Q_DEPTH	= 0,			/* queueing disabled */
	EDMA_CFG_NCQ		= (1 << 5),
	EDMA_CFG_NCQ_GO_ON_ERR	= (1 << 14),		/* continue on error */
	EDMA_CFG_RD_BRST_EXT	= (1 << 11),		/* read burst 512B */
	EDMA_CFG_WR_BUFF_LEN	= (1 << 13),		/* write buffer 512B */
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197

	EDMA_ERR_IRQ_CAUSE_OFS	= 0x8,
	EDMA_ERR_IRQ_MASK_OFS	= 0xc,
	EDMA_ERR_D_PAR		= (1 << 0),
	EDMA_ERR_PRD_PAR	= (1 << 1),
	EDMA_ERR_DEV		= (1 << 2),
	EDMA_ERR_DEV_DCON	= (1 << 3),
	EDMA_ERR_DEV_CON	= (1 << 4),
	EDMA_ERR_SERR		= (1 << 5),
	EDMA_ERR_SELF_DIS	= (1 << 7),
	EDMA_ERR_BIST_ASYNC	= (1 << 8),
	EDMA_ERR_CRBQ_PAR	= (1 << 9),
	EDMA_ERR_CRPB_PAR	= (1 << 10),
	EDMA_ERR_INTRL_PAR	= (1 << 11),
	EDMA_ERR_IORDY		= (1 << 12),
	EDMA_ERR_LNK_CTRL_RX	= (0xf << 13),
	EDMA_ERR_LNK_CTRL_RX_2	= (1 << 15),
	EDMA_ERR_LNK_DATA_RX	= (0xf << 17),
	EDMA_ERR_LNK_CTRL_TX	= (0x1f << 21),
	EDMA_ERR_LNK_DATA_TX	= (0x1f << 26),
	EDMA_ERR_TRANS_PROTO	= (1 << 31),
198
	EDMA_ERR_FATAL		= (EDMA_ERR_D_PAR | EDMA_ERR_PRD_PAR |
199 200
				   EDMA_ERR_DEV_DCON | EDMA_ERR_CRBQ_PAR |
				   EDMA_ERR_CRPB_PAR | EDMA_ERR_INTRL_PAR |
201
				   EDMA_ERR_IORDY | EDMA_ERR_LNK_CTRL_RX_2 |
202
				   EDMA_ERR_LNK_DATA_RX |
203
				   EDMA_ERR_LNK_DATA_TX |
204 205
				   EDMA_ERR_TRANS_PROTO),

206 207 208 209 210 211 212 213 214 215 216
	EDMA_REQ_Q_BASE_HI_OFS	= 0x10,
	EDMA_REQ_Q_IN_PTR_OFS	= 0x14,		/* also contains BASE_LO */

	EDMA_REQ_Q_OUT_PTR_OFS	= 0x18,
	EDMA_REQ_Q_PTR_SHIFT	= 5,

	EDMA_RSP_Q_BASE_HI_OFS	= 0x1c,
	EDMA_RSP_Q_IN_PTR_OFS	= 0x20,
	EDMA_RSP_Q_OUT_PTR_OFS	= 0x24,		/* also contains BASE_LO */
	EDMA_RSP_Q_PTR_SHIFT	= 3,

217 218 219 220 221
	EDMA_CMD_OFS		= 0x28,
	EDMA_EN			= (1 << 0),
	EDMA_DS			= (1 << 1),
	ATA_RST			= (1 << 2),

222
	EDMA_IORDY_TMOUT	= 0x34,
223 224
	EDMA_ARB_CFG		= 0x38,

225 226
	/* Host private flags (hp_flags) */
	MV_HP_FLAG_MSI		= (1 << 0),
227 228 229 230 231
	MV_HP_ERRATA_50XXB0	= (1 << 1),
	MV_HP_ERRATA_50XXB2	= (1 << 2),
	MV_HP_ERRATA_60X1B2	= (1 << 3),
	MV_HP_ERRATA_60X1C0	= (1 << 4),
	MV_HP_50XX		= (1 << 5),
232

233 234 235
	/* Port private flags (pp_flags) */
	MV_PP_FLAG_EDMA_EN	= (1 << 0),
	MV_PP_FLAG_EDMA_DS_ACT	= (1 << 1),
236 237
};

238
#define IS_50XX(hpriv) ((hpriv)->hp_flags & MV_HP_50XX)
239 240
#define IS_60XX(hpriv) (((hpriv)->hp_flags & MV_HP_50XX) == 0)

J
Jeff Garzik 已提交
241 242 243 244 245 246 247 248 249 250 251
enum {
	/* Our DMA boundary is determined by an ePRD being unable to handle
	 * anything larger than 64KB
	 */
	MV_DMA_BOUNDARY		= 0xffffU,

	EDMA_REQ_Q_BASE_LO_MASK	= 0xfffffc00U,

	EDMA_RSP_Q_BASE_LO_MASK	= 0xffffff00U,
};

252 253 254 255 256 257 258 259
enum chip_type {
	chip_504x,
	chip_508x,
	chip_5080,
	chip_604x,
	chip_608x,
};

260 261 262 263 264 265 266
/* Command ReQuest Block: 32B */
struct mv_crqb {
	u32			sg_addr;
	u32			sg_addr_hi;
	u16			ctrl_flags;
	u16			ata_cmd[11];
};
267

268 269 270 271 272
/* Command ResPonse Block: 8B */
struct mv_crpb {
	u16			id;
	u16			flags;
	u32			tmstmp;
273 274
};

275 276 277 278 279 280 281
/* EDMA Physical Region Descriptor (ePRD); A.K.A. SG */
struct mv_sg {
	u32			addr;
	u32			flags_size;
	u32			addr_hi;
	u32			reserved;
};
282

283 284 285 286 287 288 289 290 291 292 293 294 295
struct mv_port_priv {
	struct mv_crqb		*crqb;
	dma_addr_t		crqb_dma;
	struct mv_crpb		*crpb;
	dma_addr_t		crpb_dma;
	struct mv_sg		*sg_tbl;
	dma_addr_t		sg_tbl_dma;

	unsigned		req_producer;		/* cp of req_in_ptr */
	unsigned		rsp_consumer;		/* cp of rsp_out_ptr */
	u32			pp_flags;
};

296 297 298 299 300
struct mv_port_signal {
	u32			amps;
	u32			pre;
};

301 302
struct mv_host_priv;
struct mv_hw_ops {
303 304
	void (*phy_errata)(struct mv_host_priv *hpriv, void __iomem *mmio,
			   unsigned int port);
305 306 307
	void (*enable_leds)(struct mv_host_priv *hpriv, void __iomem *mmio);
	void (*read_preamp)(struct mv_host_priv *hpriv, int idx,
			   void __iomem *mmio);
308 309
	int (*reset_hc)(struct mv_host_priv *hpriv, void __iomem *mmio,
			unsigned int n_hc);
310 311
	void (*reset_flash)(struct mv_host_priv *hpriv, void __iomem *mmio);
	void (*reset_bus)(struct pci_dev *pdev, void __iomem *mmio);
312 313
};

314 315
struct mv_host_priv {
	u32			hp_flags;
316
	struct mv_port_signal	signal[8];
317
	const struct mv_hw_ops	*ops;
318 319 320 321 322
};

static void mv_irq_clear(struct ata_port *ap);
static u32 mv_scr_read(struct ata_port *ap, unsigned int sc_reg_in);
static void mv_scr_write(struct ata_port *ap, unsigned int sc_reg_in, u32 val);
323 324
static u32 mv5_scr_read(struct ata_port *ap, unsigned int sc_reg_in);
static void mv5_scr_write(struct ata_port *ap, unsigned int sc_reg_in, u32 val);
325
static void mv_phy_reset(struct ata_port *ap);
326
static void __mv_phy_reset(struct ata_port *ap, int can_sleep);
327 328 329 330 331
static void mv_host_stop(struct ata_host_set *host_set);
static int mv_port_start(struct ata_port *ap);
static void mv_port_stop(struct ata_port *ap);
static void mv_qc_prep(struct ata_queued_cmd *qc);
static int mv_qc_issue(struct ata_queued_cmd *qc);
332 333
static irqreturn_t mv_interrupt(int irq, void *dev_instance,
				struct pt_regs *regs);
334
static void mv_eng_timeout(struct ata_port *ap);
335 336
static int mv_init_one(struct pci_dev *pdev, const struct pci_device_id *ent);

337 338
static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
			   unsigned int port);
339 340 341
static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
			   void __iomem *mmio);
342 343
static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
			unsigned int n_hc);
344 345
static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
static void mv5_reset_bus(struct pci_dev *pdev, void __iomem *mmio);
346

347 348
static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
			   unsigned int port);
349 350 351
static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
			   void __iomem *mmio);
352 353
static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
			unsigned int n_hc);
354 355
static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
static void mv_reset_pci_bus(struct pci_dev *pdev, void __iomem *mmio);
356 357 358
static void mv_channel_reset(struct mv_host_priv *hpriv, void __iomem *mmio,
			     unsigned int port_no);
static void mv_stop_and_reset(struct ata_port *ap);
359

360
static struct scsi_host_template mv_sht = {
361 362 363 364 365
	.module			= THIS_MODULE,
	.name			= DRV_NAME,
	.ioctl			= ata_scsi_ioctl,
	.queuecommand		= ata_scsi_queuecmd,
	.eh_strategy_handler	= ata_scsi_error,
366
	.can_queue		= MV_USE_Q_DEPTH,
367
	.this_id		= ATA_SHT_THIS_ID,
368
	.sg_tablesize		= MV_MAX_SG_CT / 2,
369 370 371
	.max_sectors		= ATA_MAX_SECTORS,
	.cmd_per_lun		= ATA_SHT_CMD_PER_LUN,
	.emulated		= ATA_SHT_EMULATED,
372
	.use_clustering		= ATA_SHT_USE_CLUSTERING,
373 374 375 376 377 378
	.proc_name		= DRV_NAME,
	.dma_boundary		= MV_DMA_BOUNDARY,
	.slave_configure	= ata_scsi_slave_config,
	.bios_param		= ata_std_bios_param,
};

379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406
static const struct ata_port_operations mv5_ops = {
	.port_disable		= ata_port_disable,

	.tf_load		= ata_tf_load,
	.tf_read		= ata_tf_read,
	.check_status		= ata_check_status,
	.exec_command		= ata_exec_command,
	.dev_select		= ata_std_dev_select,

	.phy_reset		= mv_phy_reset,

	.qc_prep		= mv_qc_prep,
	.qc_issue		= mv_qc_issue,

	.eng_timeout		= mv_eng_timeout,

	.irq_handler		= mv_interrupt,
	.irq_clear		= mv_irq_clear,

	.scr_read		= mv5_scr_read,
	.scr_write		= mv5_scr_write,

	.port_start		= mv_port_start,
	.port_stop		= mv_port_stop,
	.host_stop		= mv_host_stop,
};

static const struct ata_port_operations mv6_ops = {
407 408 409 410 411 412 413 414 415 416
	.port_disable		= ata_port_disable,

	.tf_load		= ata_tf_load,
	.tf_read		= ata_tf_read,
	.check_status		= ata_check_status,
	.exec_command		= ata_exec_command,
	.dev_select		= ata_std_dev_select,

	.phy_reset		= mv_phy_reset,

417 418
	.qc_prep		= mv_qc_prep,
	.qc_issue		= mv_qc_issue,
419

420
	.eng_timeout		= mv_eng_timeout,
421 422 423 424 425 426 427

	.irq_handler		= mv_interrupt,
	.irq_clear		= mv_irq_clear,

	.scr_read		= mv_scr_read,
	.scr_write		= mv_scr_write,

428 429 430
	.port_start		= mv_port_start,
	.port_stop		= mv_port_stop,
	.host_stop		= mv_host_stop,
431 432
};

433
static const struct ata_port_info mv_port_info[] = {
434 435
	{  /* chip_504x */
		.sht		= &mv_sht,
436 437
		.host_flags	= MV_COMMON_FLAGS,
		.pio_mask	= 0x1f,	/* pio0-4 */
438 439
		.udma_mask	= 0x7f,	/* udma0-6 */
		.port_ops	= &mv5_ops,
440 441 442
	},
	{  /* chip_508x */
		.sht		= &mv_sht,
443 444
		.host_flags	= (MV_COMMON_FLAGS | MV_FLAG_DUAL_HC),
		.pio_mask	= 0x1f,	/* pio0-4 */
445 446
		.udma_mask	= 0x7f,	/* udma0-6 */
		.port_ops	= &mv5_ops,
447
	},
448 449 450 451
	{  /* chip_5080 */
		.sht		= &mv_sht,
		.host_flags	= (MV_COMMON_FLAGS | MV_FLAG_DUAL_HC),
		.pio_mask	= 0x1f,	/* pio0-4 */
452 453
		.udma_mask	= 0x7f,	/* udma0-6 */
		.port_ops	= &mv5_ops,
454
	},
455 456
	{  /* chip_604x */
		.sht		= &mv_sht,
457 458 459
		.host_flags	= (MV_COMMON_FLAGS | MV_6XXX_FLAGS),
		.pio_mask	= 0x1f,	/* pio0-4 */
		.udma_mask	= 0x7f,	/* udma0-6 */
460
		.port_ops	= &mv6_ops,
461 462 463
	},
	{  /* chip_608x */
		.sht		= &mv_sht,
464
		.host_flags	= (MV_COMMON_FLAGS | MV_6XXX_FLAGS |
465 466 467
				   MV_FLAG_DUAL_HC),
		.pio_mask	= 0x1f,	/* pio0-4 */
		.udma_mask	= 0x7f,	/* udma0-6 */
468
		.port_ops	= &mv6_ops,
469 470 471
	},
};

472
static const struct pci_device_id mv_pci_tbl[] = {
473 474
	{PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x5040), 0, 0, chip_504x},
	{PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x5041), 0, 0, chip_504x},
475
	{PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x5080), 0, 0, chip_5080},
476 477 478 479 480 481
	{PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x5081), 0, 0, chip_508x},

	{PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x6040), 0, 0, chip_604x},
	{PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x6041), 0, 0, chip_604x},
	{PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x6080), 0, 0, chip_608x},
	{PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x6081), 0, 0, chip_608x},
482 483

	{PCI_DEVICE(PCI_VENDOR_ID_ADAPTEC2, 0x0241), 0, 0, chip_604x},
484 485 486 487 488 489 490 491 492 493
	{}			/* terminate list */
};

static struct pci_driver mv_pci_driver = {
	.name			= DRV_NAME,
	.id_table		= mv_pci_tbl,
	.probe			= mv_init_one,
	.remove			= ata_pci_remove_one,
};

494 495 496 497 498
static const struct mv_hw_ops mv5xxx_ops = {
	.phy_errata		= mv5_phy_errata,
	.enable_leds		= mv5_enable_leds,
	.read_preamp		= mv5_read_preamp,
	.reset_hc		= mv5_reset_hc,
499 500
	.reset_flash		= mv5_reset_flash,
	.reset_bus		= mv5_reset_bus,
501 502 503 504 505 506 507
};

static const struct mv_hw_ops mv6xxx_ops = {
	.phy_errata		= mv6_phy_errata,
	.enable_leds		= mv6_enable_leds,
	.read_preamp		= mv6_read_preamp,
	.reset_hc		= mv6_reset_hc,
508 509
	.reset_flash		= mv6_reset_flash,
	.reset_bus		= mv_reset_pci_bus,
510 511
};

512 513 514 515 516 517 518 519 520 521 522 523 524 525 526
/*
 * Functions
 */

static inline void writelfl(unsigned long data, void __iomem *addr)
{
	writel(data, addr);
	(void) readl(addr);	/* flush to avoid PCI posted write */
}

static inline void __iomem *mv_hc_base(void __iomem *base, unsigned int hc)
{
	return (base + MV_SATAHC0_REG_BASE + (hc * MV_SATAHC_REG_SZ));
}

527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542
static inline unsigned int mv_hc_from_port(unsigned int port)
{
	return port >> MV_PORT_HC_SHIFT;
}

static inline unsigned int mv_hardport_from_port(unsigned int port)
{
	return port & MV_PORT_MASK;
}

static inline void __iomem *mv_hc_base_from_port(void __iomem *base,
						 unsigned int port)
{
	return mv_hc_base(base, mv_hc_from_port(port));
}

543 544
static inline void __iomem *mv_port_base(void __iomem *base, unsigned int port)
{
545
	return  mv_hc_base_from_port(base, port) +
546
		MV_SATAHC_ARBTR_REG_SZ +
547
		(mv_hardport_from_port(port) * MV_PORT_REG_SZ);
548 549 550 551 552 553 554
}

static inline void __iomem *mv_ap_base(struct ata_port *ap)
{
	return mv_port_base(ap->host_set->mmio_base, ap->port_no);
}

555
static inline int mv_get_hc_count(unsigned long host_flags)
556
{
557
	return ((host_flags & MV_FLAG_DUAL_HC) ? 2 : 1);
558 559 560
}

static void mv_irq_clear(struct ata_port *ap)
561 562 563
{
}

564 565 566 567 568 569 570 571 572 573 574
/**
 *      mv_start_dma - Enable eDMA engine
 *      @base: port base address
 *      @pp: port private data
 *
 *      Verify the local cache of the eDMA state is accurate with an
 *      assert.
 *
 *      LOCKING:
 *      Inherited from caller.
 */
575
static void mv_start_dma(void __iomem *base, struct mv_port_priv *pp)
576
{
577 578 579 580 581
	if (!(MV_PP_FLAG_EDMA_EN & pp->pp_flags)) {
		writelfl(EDMA_EN, base + EDMA_CMD_OFS);
		pp->pp_flags |= MV_PP_FLAG_EDMA_EN;
	}
	assert(EDMA_EN & readl(base + EDMA_CMD_OFS));
582 583
}

584 585 586 587 588 589 590 591 592 593
/**
 *      mv_stop_dma - Disable eDMA engine
 *      @ap: ATA channel to manipulate
 *
 *      Verify the local cache of the eDMA state is accurate with an
 *      assert.
 *
 *      LOCKING:
 *      Inherited from caller.
 */
594
static void mv_stop_dma(struct ata_port *ap)
595
{
596 597 598 599 600
	void __iomem *port_mmio = mv_ap_base(ap);
	struct mv_port_priv *pp	= ap->private_data;
	u32 reg;
	int i;

601 602
	if (MV_PP_FLAG_EDMA_EN & pp->pp_flags) {
		/* Disable EDMA if active.   The disable bit auto clears.
603 604 605
		 */
		writelfl(EDMA_DS, port_mmio + EDMA_CMD_OFS);
		pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
606 607 608
	} else {
		assert(!(EDMA_EN & readl(port_mmio + EDMA_CMD_OFS)));
  	}
609

610 611 612 613 614 615 616 617 618 619 620
	/* now properly wait for the eDMA to stop */
	for (i = 1000; i > 0; i--) {
		reg = readl(port_mmio + EDMA_CMD_OFS);
		if (!(EDMA_EN & reg)) {
			break;
		}
		udelay(100);
	}

	if (EDMA_EN & reg) {
		printk(KERN_ERR "ata%u: Unable to stop eDMA\n", ap->id);
621
		/* FIXME: Consider doing a reset here to recover */
622
	}
623 624
}

J
Jeff Garzik 已提交
625
#ifdef ATA_DEBUG
626
static void mv_dump_mem(void __iomem *start, unsigned bytes)
627
{
628 629 630 631 632 633 634 635 636 637
	int b, w;
	for (b = 0; b < bytes; ) {
		DPRINTK("%p: ", start + b);
		for (w = 0; b < bytes && w < 4; w++) {
			printk("%08x ",readl(start + b));
			b += sizeof(u32);
		}
		printk("\n");
	}
}
J
Jeff Garzik 已提交
638 639
#endif

640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659
static void mv_dump_pci_cfg(struct pci_dev *pdev, unsigned bytes)
{
#ifdef ATA_DEBUG
	int b, w;
	u32 dw;
	for (b = 0; b < bytes; ) {
		DPRINTK("%02x: ", b);
		for (w = 0; b < bytes && w < 4; w++) {
			(void) pci_read_config_dword(pdev,b,&dw);
			printk("%08x ",dw);
			b += sizeof(u32);
		}
		printk("\n");
	}
#endif
}
static void mv_dump_all_regs(void __iomem *mmio_base, int port,
			     struct pci_dev *pdev)
{
#ifdef ATA_DEBUG
660
	void __iomem *hc_base = mv_hc_base(mmio_base,
661 662 663 664 665 666 667 668 669 670 671 672 673
					   port >> MV_PORT_HC_SHIFT);
	void __iomem *port_base;
	int start_port, num_ports, p, start_hc, num_hcs, hc;

	if (0 > port) {
		start_hc = start_port = 0;
		num_ports = 8;		/* shld be benign for 4 port devs */
		num_hcs = 2;
	} else {
		start_hc = port >> MV_PORT_HC_SHIFT;
		start_port = port;
		num_ports = num_hcs = 1;
	}
674
	DPRINTK("All registers for port(s) %u-%u:\n", start_port,
675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698
		num_ports > 1 ? num_ports - 1 : start_port);

	if (NULL != pdev) {
		DPRINTK("PCI config space regs:\n");
		mv_dump_pci_cfg(pdev, 0x68);
	}
	DPRINTK("PCI regs:\n");
	mv_dump_mem(mmio_base+0xc00, 0x3c);
	mv_dump_mem(mmio_base+0xd00, 0x34);
	mv_dump_mem(mmio_base+0xf00, 0x4);
	mv_dump_mem(mmio_base+0x1d00, 0x6c);
	for (hc = start_hc; hc < start_hc + num_hcs; hc++) {
		hc_base = mv_hc_base(mmio_base, port >> MV_PORT_HC_SHIFT);
		DPRINTK("HC regs (HC %i):\n", hc);
		mv_dump_mem(hc_base, 0x1c);
	}
	for (p = start_port; p < start_port + num_ports; p++) {
		port_base = mv_port_base(mmio_base, p);
		DPRINTK("EDMA regs (port %i):\n",p);
		mv_dump_mem(port_base, 0x54);
		DPRINTK("SATA regs (port %i):\n",p);
		mv_dump_mem(port_base+0x300, 0x60);
	}
#endif
699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740
}

static unsigned int mv_scr_offset(unsigned int sc_reg_in)
{
	unsigned int ofs;

	switch (sc_reg_in) {
	case SCR_STATUS:
	case SCR_CONTROL:
	case SCR_ERROR:
		ofs = SATA_STATUS_OFS + (sc_reg_in * sizeof(u32));
		break;
	case SCR_ACTIVE:
		ofs = SATA_ACTIVE_OFS;   /* active is not with the others */
		break;
	default:
		ofs = 0xffffffffU;
		break;
	}
	return ofs;
}

static u32 mv_scr_read(struct ata_port *ap, unsigned int sc_reg_in)
{
	unsigned int ofs = mv_scr_offset(sc_reg_in);

	if (0xffffffffU != ofs) {
		return readl(mv_ap_base(ap) + ofs);
	} else {
		return (u32) ofs;
	}
}

static void mv_scr_write(struct ata_port *ap, unsigned int sc_reg_in, u32 val)
{
	unsigned int ofs = mv_scr_offset(sc_reg_in);

	if (0xffffffffU != ofs) {
		writelfl(val, mv_ap_base(ap) + ofs);
	}
}

741 742 743 744 745 746 747 748 749 750
/**
 *      mv_host_stop - Host specific cleanup/stop routine.
 *      @host_set: host data structure
 *
 *      Disable ints, cleanup host memory, call general purpose
 *      host_stop.
 *
 *      LOCKING:
 *      Inherited from caller.
 */
751
static void mv_host_stop(struct ata_host_set *host_set)
752
{
753 754 755 756 757 758 759 760 761 762 763 764
	struct mv_host_priv *hpriv = host_set->private_data;
	struct pci_dev *pdev = to_pci_dev(host_set->dev);

	if (hpriv->hp_flags & MV_HP_FLAG_MSI) {
		pci_disable_msi(pdev);
	} else {
		pci_intx(pdev, 0);
	}
	kfree(hpriv);
	ata_host_stop(host_set);
}

765 766 767 768 769
static inline void mv_priv_free(struct mv_port_priv *pp, struct device *dev)
{
	dma_free_coherent(dev, MV_PORT_PRIV_DMA_SZ, pp->crpb, pp->crpb_dma);
}

770 771 772 773 774 775 776 777 778 779
/**
 *      mv_port_start - Port specific init/start routine.
 *      @ap: ATA channel to manipulate
 *
 *      Allocate and point to DMA memory, init port private memory,
 *      zero indices.
 *
 *      LOCKING:
 *      Inherited from caller.
 */
780 781 782 783 784 785 786
static int mv_port_start(struct ata_port *ap)
{
	struct device *dev = ap->host_set->dev;
	struct mv_port_priv *pp;
	void __iomem *port_mmio = mv_ap_base(ap);
	void *mem;
	dma_addr_t mem_dma;
787
	int rc = -ENOMEM;
788 789

	pp = kmalloc(sizeof(*pp), GFP_KERNEL);
790 791
	if (!pp)
		goto err_out;
792 793
	memset(pp, 0, sizeof(*pp));

794
	mem = dma_alloc_coherent(dev, MV_PORT_PRIV_DMA_SZ, &mem_dma,
795
				 GFP_KERNEL);
796 797
	if (!mem)
		goto err_out_pp;
798 799
	memset(mem, 0, MV_PORT_PRIV_DMA_SZ);

800 801 802 803
	rc = ata_pad_alloc(ap, dev);
	if (rc)
		goto err_out_priv;

804
	/* First item in chunk of DMA memory:
805 806 807 808 809 810 811
	 * 32-slot command request table (CRQB), 32 bytes each in size
	 */
	pp->crqb = mem;
	pp->crqb_dma = mem_dma;
	mem += MV_CRQB_Q_SZ;
	mem_dma += MV_CRQB_Q_SZ;

812
	/* Second item:
813 814 815 816 817 818 819 820 821 822 823 824 825
	 * 32-slot command response table (CRPB), 8 bytes each in size
	 */
	pp->crpb = mem;
	pp->crpb_dma = mem_dma;
	mem += MV_CRPB_Q_SZ;
	mem_dma += MV_CRPB_Q_SZ;

	/* Third item:
	 * Table of scatter-gather descriptors (ePRD), 16 bytes each
	 */
	pp->sg_tbl = mem;
	pp->sg_tbl_dma = mem_dma;

826
	writelfl(EDMA_CFG_Q_DEPTH | EDMA_CFG_RD_BRST_EXT |
827 828 829
		 EDMA_CFG_WR_BUFF_LEN, port_mmio + EDMA_CFG_OFS);

	writel((pp->crqb_dma >> 16) >> 16, port_mmio + EDMA_REQ_Q_BASE_HI_OFS);
830
	writelfl(pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK,
831 832 833 834 835 836
		 port_mmio + EDMA_REQ_Q_IN_PTR_OFS);

	writelfl(0, port_mmio + EDMA_REQ_Q_OUT_PTR_OFS);
	writelfl(0, port_mmio + EDMA_RSP_Q_IN_PTR_OFS);

	writel((pp->crpb_dma >> 16) >> 16, port_mmio + EDMA_RSP_Q_BASE_HI_OFS);
837
	writelfl(pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK,
838 839 840 841 842 843 844 845 846 847
		 port_mmio + EDMA_RSP_Q_OUT_PTR_OFS);

	pp->req_producer = pp->rsp_consumer = 0;

	/* Don't turn on EDMA here...do it before DMA commands only.  Else
	 * we'll be unable to send non-data, PIO, etc due to restricted access
	 * to shadow regs.
	 */
	ap->private_data = pp;
	return 0;
848 849 850 851 852 853 854

err_out_priv:
	mv_priv_free(pp, dev);
err_out_pp:
	kfree(pp);
err_out:
	return rc;
855 856
}

857 858 859 860 861 862 863 864 865
/**
 *      mv_port_stop - Port specific cleanup/stop routine.
 *      @ap: ATA channel to manipulate
 *
 *      Stop DMA, cleanup port memory.
 *
 *      LOCKING:
 *      This routine uses the host_set lock to protect the DMA stop.
 */
866 867 868 869
static void mv_port_stop(struct ata_port *ap)
{
	struct device *dev = ap->host_set->dev;
	struct mv_port_priv *pp = ap->private_data;
870
	unsigned long flags;
871

872
	spin_lock_irqsave(&ap->host_set->lock, flags);
873
	mv_stop_dma(ap);
874
	spin_unlock_irqrestore(&ap->host_set->lock, flags);
875 876

	ap->private_data = NULL;
877 878
	ata_pad_free(ap, dev);
	mv_priv_free(pp, dev);
879 880 881
	kfree(pp);
}

882 883 884 885 886 887 888 889 890
/**
 *      mv_fill_sg - Fill out the Marvell ePRD (scatter gather) entries
 *      @qc: queued command whose SG list to source from
 *
 *      Populate the SG list and mark the last entry.
 *
 *      LOCKING:
 *      Inherited from caller.
 */
891 892 893
static void mv_fill_sg(struct ata_queued_cmd *qc)
{
	struct mv_port_priv *pp = qc->ap->private_data;
894 895
	unsigned int i = 0;
	struct scatterlist *sg;
896

897
	ata_for_each_sg(sg, qc) {
898
		dma_addr_t addr;
899
		u32 sg_len, len, offset;
900

901 902
		addr = sg_dma_address(sg);
		sg_len = sg_dma_len(sg);
903

904 905 906 907 908
		while (sg_len) {
			offset = addr & MV_DMA_BOUNDARY;
			len = sg_len;
			if ((offset + sg_len) > 0x10000)
				len = 0x10000 - offset;
909

910 911 912 913 914 915 916 917 918 919 920 921
			pp->sg_tbl[i].addr = cpu_to_le32(addr & 0xffffffff);
			pp->sg_tbl[i].addr_hi = cpu_to_le32((addr >> 16) >> 16);
			pp->sg_tbl[i].flags_size = cpu_to_le32(len);

			sg_len -= len;
			addr += len;

			if (!sg_len && ata_sg_is_last(sg, qc))
				pp->sg_tbl[i].flags_size |= cpu_to_le32(EPRD_FLAG_END_OF_TBL);

			i++;
		}
922 923 924 925 926 927 928 929 930 931 932 933 934 935 936
	}
}

static inline unsigned mv_inc_q_index(unsigned *index)
{
	*index = (*index + 1) & MV_MAX_Q_DEPTH_MASK;
	return *index;
}

static inline void mv_crqb_pack_cmd(u16 *cmdw, u8 data, u8 addr, unsigned last)
{
	*cmdw = data | (addr << CRQB_CMD_ADDR_SHIFT) | CRQB_CMD_CS |
		(last ? CRQB_CMD_LAST : 0);
}

937 938 939 940 941 942 943 944 945 946 947 948
/**
 *      mv_qc_prep - Host specific command preparation.
 *      @qc: queued command to prepare
 *
 *      This routine simply redirects to the general purpose routine
 *      if command is not DMA.  Else, it handles prep of the CRQB
 *      (command request block), does some sanity checking, and calls
 *      the SG load routine.
 *
 *      LOCKING:
 *      Inherited from caller.
 */
949 950 951 952 953 954 955 956 957 958 959
static void mv_qc_prep(struct ata_queued_cmd *qc)
{
	struct ata_port *ap = qc->ap;
	struct mv_port_priv *pp = ap->private_data;
	u16 *cw;
	struct ata_taskfile *tf;
	u16 flags = 0;

 	if (ATA_PROT_DMA != qc->tf.protocol) {
		return;
	}
960

961
	/* the req producer index should be the same as we remember it */
962
	assert(((readl(mv_ap_base(qc->ap) + EDMA_REQ_Q_IN_PTR_OFS) >>
963 964 965 966 967 968 969 970 971 972 973
		 EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK) ==
	       pp->req_producer);

	/* Fill in command request block
	 */
	if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
		flags |= CRQB_FLAG_READ;
	}
	assert(MV_MAX_Q_DEPTH > qc->tag);
	flags |= qc->tag << CRQB_TAG_SHIFT;

974
	pp->crqb[pp->req_producer].sg_addr =
975
		cpu_to_le32(pp->sg_tbl_dma & 0xffffffff);
976
	pp->crqb[pp->req_producer].sg_addr_hi =
977 978 979 980 981 982 983 984 985 986 987
		cpu_to_le32((pp->sg_tbl_dma >> 16) >> 16);
	pp->crqb[pp->req_producer].ctrl_flags = cpu_to_le16(flags);

	cw = &pp->crqb[pp->req_producer].ata_cmd[0];
	tf = &qc->tf;

	/* Sadly, the CRQB cannot accomodate all registers--there are
	 * only 11 bytes...so we must pick and choose required
	 * registers based on the command.  So, we drop feature and
	 * hob_feature for [RW] DMA commands, but they are needed for
	 * NCQ.  NCQ will drop hob_nsect.
988
	 */
989 990 991 992 993 994 995 996 997 998
	switch (tf->command) {
	case ATA_CMD_READ:
	case ATA_CMD_READ_EXT:
	case ATA_CMD_WRITE:
	case ATA_CMD_WRITE_EXT:
		mv_crqb_pack_cmd(cw++, tf->hob_nsect, ATA_REG_NSECT, 0);
		break;
#ifdef LIBATA_NCQ		/* FIXME: remove this line when NCQ added */
	case ATA_CMD_FPDMA_READ:
	case ATA_CMD_FPDMA_WRITE:
999
		mv_crqb_pack_cmd(cw++, tf->hob_feature, ATA_REG_FEATURE, 0);
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
		mv_crqb_pack_cmd(cw++, tf->feature, ATA_REG_FEATURE, 0);
		break;
#endif				/* FIXME: remove this line when NCQ added */
	default:
		/* The only other commands EDMA supports in non-queued and
		 * non-NCQ mode are: [RW] STREAM DMA and W DMA FUA EXT, none
		 * of which are defined/used by Linux.  If we get here, this
		 * driver needs work.
		 *
		 * FIXME: modify libata to give qc_prep a return value and
		 * return error here.
		 */
		BUG_ON(tf->command);
		break;
	}
	mv_crqb_pack_cmd(cw++, tf->nsect, ATA_REG_NSECT, 0);
	mv_crqb_pack_cmd(cw++, tf->hob_lbal, ATA_REG_LBAL, 0);
	mv_crqb_pack_cmd(cw++, tf->lbal, ATA_REG_LBAL, 0);
	mv_crqb_pack_cmd(cw++, tf->hob_lbam, ATA_REG_LBAM, 0);
	mv_crqb_pack_cmd(cw++, tf->lbam, ATA_REG_LBAM, 0);
	mv_crqb_pack_cmd(cw++, tf->hob_lbah, ATA_REG_LBAH, 0);
	mv_crqb_pack_cmd(cw++, tf->lbah, ATA_REG_LBAH, 0);
	mv_crqb_pack_cmd(cw++, tf->device, ATA_REG_DEVICE, 0);
	mv_crqb_pack_cmd(cw++, tf->command, ATA_REG_CMD, 1);	/* last */

	if (!(qc->flags & ATA_QCFLAG_DMAMAP)) {
		return;
	}
	mv_fill_sg(qc);
}

1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042
/**
 *      mv_qc_issue - Initiate a command to the host
 *      @qc: queued command to start
 *
 *      This routine simply redirects to the general purpose routine
 *      if command is not DMA.  Else, it sanity checks our local
 *      caches of the request producer/consumer indices then enables
 *      DMA and bumps the request producer index.
 *
 *      LOCKING:
 *      Inherited from caller.
 */
1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064
static int mv_qc_issue(struct ata_queued_cmd *qc)
{
	void __iomem *port_mmio = mv_ap_base(qc->ap);
	struct mv_port_priv *pp = qc->ap->private_data;
	u32 in_ptr;

	if (ATA_PROT_DMA != qc->tf.protocol) {
		/* We're about to send a non-EDMA capable command to the
		 * port.  Turn off EDMA so there won't be problems accessing
		 * shadow block, etc registers.
		 */
		mv_stop_dma(qc->ap);
		return ata_qc_issue_prot(qc);
	}

	in_ptr = readl(port_mmio + EDMA_REQ_Q_IN_PTR_OFS);

	/* the req producer index should be the same as we remember it */
	assert(((in_ptr >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK) ==
	       pp->req_producer);
	/* until we do queuing, the queue should be empty at this point */
	assert(((in_ptr >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK) ==
1065
	       ((readl(port_mmio + EDMA_REQ_Q_OUT_PTR_OFS) >>
1066 1067 1068 1069
		 EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK));

	mv_inc_q_index(&pp->req_producer);	/* now incr producer index */

1070
	mv_start_dma(port_mmio, pp);
1071 1072 1073 1074 1075 1076 1077 1078 1079

	/* and write the request in pointer to kick the EDMA to life */
	in_ptr &= EDMA_REQ_Q_BASE_LO_MASK;
	in_ptr |= pp->req_producer << EDMA_REQ_Q_PTR_SHIFT;
	writelfl(in_ptr, port_mmio + EDMA_REQ_Q_IN_PTR_OFS);

	return 0;
}

1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
/**
 *      mv_get_crpb_status - get status from most recently completed cmd
 *      @ap: ATA channel to manipulate
 *
 *      This routine is for use when the port is in DMA mode, when it
 *      will be using the CRPB (command response block) method of
 *      returning command completion information.  We assert indices
 *      are good, grab status, and bump the response consumer index to
 *      prove that we're up to date.
 *
 *      LOCKING:
 *      Inherited from caller.
 */
1093 1094 1095 1096 1097 1098 1099 1100 1101
static u8 mv_get_crpb_status(struct ata_port *ap)
{
	void __iomem *port_mmio = mv_ap_base(ap);
	struct mv_port_priv *pp = ap->private_data;
	u32 out_ptr;

	out_ptr = readl(port_mmio + EDMA_RSP_Q_OUT_PTR_OFS);

	/* the response consumer index should be the same as we remember it */
1102
	assert(((out_ptr >> EDMA_RSP_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK) ==
1103 1104 1105 1106
	       pp->rsp_consumer);

	/* increment our consumer index... */
	pp->rsp_consumer = mv_inc_q_index(&pp->rsp_consumer);
1107

1108
	/* and, until we do NCQ, there should only be 1 CRPB waiting */
1109 1110
	assert(((readl(port_mmio + EDMA_RSP_Q_IN_PTR_OFS) >>
		 EDMA_RSP_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK) ==
1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
	       pp->rsp_consumer);

	/* write out our inc'd consumer index so EDMA knows we're caught up */
	out_ptr &= EDMA_RSP_Q_BASE_LO_MASK;
	out_ptr |= pp->rsp_consumer << EDMA_RSP_Q_PTR_SHIFT;
	writelfl(out_ptr, port_mmio + EDMA_RSP_Q_OUT_PTR_OFS);

	/* Return ATA status register for completed CRPB */
	return (pp->crpb[pp->rsp_consumer].flags >> CRPB_FLAG_STATUS_SHIFT);
}

1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
/**
 *      mv_err_intr - Handle error interrupts on the port
 *      @ap: ATA channel to manipulate
 *
 *      In most cases, just clear the interrupt and move on.  However,
 *      some cases require an eDMA reset, which is done right before
 *      the COMRESET in mv_phy_reset().  The SERR case requires a
 *      clear of pending errors in the SATA SERROR register.  Finally,
 *      if the port disabled DMA, update our cached copy to match.
 *
 *      LOCKING:
 *      Inherited from caller.
 */
1135 1136 1137 1138
static void mv_err_intr(struct ata_port *ap)
{
	void __iomem *port_mmio = mv_ap_base(ap);
	u32 edma_err_cause, serr = 0;
1139 1140 1141 1142 1143 1144 1145

	edma_err_cause = readl(port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);

	if (EDMA_ERR_SERR & edma_err_cause) {
		serr = scr_read(ap, SCR_ERROR);
		scr_write_flush(ap, SCR_ERROR, serr);
	}
1146 1147 1148 1149 1150 1151
	if (EDMA_ERR_SELF_DIS & edma_err_cause) {
		struct mv_port_priv *pp	= ap->private_data;
		pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
	}
	DPRINTK(KERN_ERR "ata%u: port error; EDMA err cause: 0x%08x "
		"SERR: 0x%08x\n", ap->id, edma_err_cause, serr);
1152 1153 1154 1155 1156 1157

	/* Clear EDMA now that SERR cleanup done */
	writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);

	/* check for fatal here and recover if needed */
	if (EDMA_ERR_FATAL & edma_err_cause) {
1158
		mv_stop_and_reset(ap);
1159 1160 1161
	}
}

1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177
/**
 *      mv_host_intr - Handle all interrupts on the given host controller
 *      @host_set: host specific structure
 *      @relevant: port error bits relevant to this host controller
 *      @hc: which host controller we're to look at
 *
 *      Read then write clear the HC interrupt status then walk each
 *      port connected to the HC and see if it needs servicing.  Port
 *      success ints are reported in the HC interrupt status reg, the
 *      port error ints are reported in the higher level main
 *      interrupt status register and thus are passed in via the
 *      'relevant' argument.
 *
 *      LOCKING:
 *      Inherited from caller.
 */
1178 1179 1180 1181 1182 1183 1184 1185
static void mv_host_intr(struct ata_host_set *host_set, u32 relevant,
			 unsigned int hc)
{
	void __iomem *mmio = host_set->mmio_base;
	void __iomem *hc_mmio = mv_hc_base(mmio, hc);
	struct ata_port *ap;
	struct ata_queued_cmd *qc;
	u32 hc_irq_cause;
1186
	int shift, port, port0, hard_port, handled;
1187
	unsigned int err_mask;
1188
	u8 ata_status = 0;
1189 1190 1191 1192 1193 1194 1195 1196 1197 1198

	if (hc == 0) {
		port0 = 0;
	} else {
		port0 = MV_PORTS_PER_HC;
	}

	/* we'll need the HC success int register in most cases */
	hc_irq_cause = readl(hc_mmio + HC_IRQ_CAUSE_OFS);
	if (hc_irq_cause) {
1199
		writelfl(~hc_irq_cause, hc_mmio + HC_IRQ_CAUSE_OFS);
1200 1201 1202 1203 1204 1205 1206 1207
	}

	VPRINTK("ENTER, hc%u relevant=0x%08x HC IRQ cause=0x%08x\n",
		hc,relevant,hc_irq_cause);

	for (port = port0; port < port0 + MV_PORTS_PER_HC; port++) {
		ap = host_set->ports[port];
		hard_port = port & MV_PORT_MASK;	/* range 0-3 */
1208
		handled = 0;	/* ensure ata_status is set if handled++ */
1209

1210 1211 1212 1213 1214 1215 1216
		if ((CRPB_DMA_DONE << hard_port) & hc_irq_cause) {
			/* new CRPB on the queue; just one at a time until NCQ
			 */
			ata_status = mv_get_crpb_status(ap);
			handled++;
		} else if ((DEV_IRQ << hard_port) & hc_irq_cause) {
			/* received ATA IRQ; read the status reg to clear INTRQ
1217 1218 1219
			 */
			ata_status = readb((void __iomem *)
					   ap->ioaddr.status_addr);
1220
			handled++;
1221 1222
		}

1223 1224 1225 1226
		if (ap &&
		    (ap->flags & (ATA_FLAG_PORT_DISABLED | ATA_FLAG_NOINTR)))
			continue;

1227 1228
		err_mask = ac_err_mask(ata_status);

1229
		shift = port << 1;		/* (port * 2) */
1230 1231 1232 1233 1234
		if (port >= MV_PORTS_PER_HC) {
			shift++;	/* skip bit 8 in the HC Main IRQ reg */
		}
		if ((PORT0_ERR << shift) & relevant) {
			mv_err_intr(ap);
1235
			err_mask |= AC_ERR_OTHER;
1236
			handled++;
1237
		}
1238

1239
		if (handled && ap) {
1240 1241 1242 1243 1244
			qc = ata_qc_from_tag(ap, ap->active_tag);
			if (NULL != qc) {
				VPRINTK("port %u IRQ found for qc, "
					"ata_status 0x%x\n", port,ata_status);
				/* mark qc status appropriately */
1245 1246 1247 1248
				if (!(qc->tf.ctl & ATA_NIEN)) {
					qc->err_mask |= err_mask;
					ata_qc_complete(qc);
				}
1249 1250 1251 1252 1253 1254
			}
		}
	}
	VPRINTK("EXIT\n");
}

1255
/**
1256
 *      mv_interrupt -
1257 1258 1259 1260 1261 1262 1263 1264 1265
 *      @irq: unused
 *      @dev_instance: private data; in this case the host structure
 *      @regs: unused
 *
 *      Read the read only register to determine if any host
 *      controllers have pending interrupts.  If so, call lower level
 *      routine to handle.  Also check for PCI errors which are only
 *      reported here.
 *
1266
 *      LOCKING:
1267 1268 1269
 *      This routine holds the host_set lock while processing pending
 *      interrupts.
 */
1270 1271 1272 1273 1274
static irqreturn_t mv_interrupt(int irq, void *dev_instance,
				struct pt_regs *regs)
{
	struct ata_host_set *host_set = dev_instance;
	unsigned int hc, handled = 0, n_hcs;
1275
	void __iomem *mmio = host_set->mmio_base;
1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286
	u32 irq_stat;

	irq_stat = readl(mmio + HC_MAIN_IRQ_CAUSE_OFS);

	/* check the cases where we either have nothing pending or have read
	 * a bogus register value which can indicate HW removal or PCI fault
	 */
	if (!irq_stat || (0xffffffffU == irq_stat)) {
		return IRQ_NONE;
	}

1287
	n_hcs = mv_get_hc_count(host_set->ports[0]->flags);
1288 1289 1290 1291 1292 1293
	spin_lock(&host_set->lock);

	for (hc = 0; hc < n_hcs; hc++) {
		u32 relevant = irq_stat & (HC0_IRQ_PEND << (hc * HC_SHIFT));
		if (relevant) {
			mv_host_intr(host_set, relevant, hc);
1294
			handled++;
1295 1296 1297
		}
	}
	if (PCI_ERR & irq_stat) {
1298 1299 1300
		printk(KERN_ERR DRV_NAME ": PCI ERROR; PCI IRQ cause=0x%08x\n",
		       readl(mmio + PCI_IRQ_CAUSE_OFS));

1301
		DPRINTK("All regs @ PCI error\n");
1302
		mv_dump_all_regs(mmio, -1, to_pci_dev(host_set->dev));
1303

1304 1305 1306
		writelfl(0, mmio + PCI_IRQ_CAUSE_OFS);
		handled++;
	}
1307 1308 1309 1310 1311
	spin_unlock(&host_set->lock);

	return IRQ_RETVAL(handled);
}

1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356
static void __iomem *mv5_phy_base(void __iomem *mmio, unsigned int port)
{
	void __iomem *hc_mmio = mv_hc_base_from_port(mmio, port);
	unsigned long ofs = (mv_hardport_from_port(port) + 1) * 0x100UL;

	return hc_mmio + ofs;
}

static unsigned int mv5_scr_offset(unsigned int sc_reg_in)
{
	unsigned int ofs;

	switch (sc_reg_in) {
	case SCR_STATUS:
	case SCR_ERROR:
	case SCR_CONTROL:
		ofs = sc_reg_in * sizeof(u32);
		break;
	default:
		ofs = 0xffffffffU;
		break;
	}
	return ofs;
}

static u32 mv5_scr_read(struct ata_port *ap, unsigned int sc_reg_in)
{
	void __iomem *mmio = mv5_phy_base(ap->host_set->mmio_base, ap->port_no);
	unsigned int ofs = mv5_scr_offset(sc_reg_in);

	if (ofs != 0xffffffffU)
		return readl(mmio + ofs);
	else
		return (u32) ofs;
}

static void mv5_scr_write(struct ata_port *ap, unsigned int sc_reg_in, u32 val)
{
	void __iomem *mmio = mv5_phy_base(ap->host_set->mmio_base, ap->port_no);
	unsigned int ofs = mv5_scr_offset(sc_reg_in);

	if (ofs != 0xffffffffU)
		writelfl(val, mmio + ofs);
}

1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379
static void mv5_reset_bus(struct pci_dev *pdev, void __iomem *mmio)
{
	u8 rev_id;
	int early_5080;

	pci_read_config_byte(pdev, PCI_REVISION_ID, &rev_id);

	early_5080 = (pdev->device == 0x5080) && (rev_id == 0);

	if (!early_5080) {
		u32 tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
		tmp |= (1 << 0);
		writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
	}

	mv_reset_pci_bus(pdev, mmio);
}

static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
{
	writel(0x0fcfffff, mmio + MV_FLASH_CTL);
}

1380
static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
J
Jeff Garzik 已提交
1381 1382
			   void __iomem *mmio)
{
1383 1384 1385 1386 1387 1388 1389
	void __iomem *phy_mmio = mv5_phy_base(mmio, idx);
	u32 tmp;

	tmp = readl(phy_mmio + MV5_PHY_MODE);

	hpriv->signal[idx].pre = tmp & 0x1800;	/* bits 12:11 */
	hpriv->signal[idx].amps = tmp & 0xe0;	/* bits 7:5 */
J
Jeff Garzik 已提交
1390 1391
}

1392
static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
J
Jeff Garzik 已提交
1393
{
1394 1395 1396 1397 1398 1399 1400 1401 1402
	u32 tmp;

	writel(0, mmio + MV_GPIO_PORT_CTL);

	/* FIXME: handle MV_HP_ERRATA_50XXB2 errata */

	tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
	tmp |= ~(1 << 0);
	writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
J
Jeff Garzik 已提交
1403 1404
}

1405 1406
static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
			   unsigned int port)
1407
{
1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428
	void __iomem *phy_mmio = mv5_phy_base(mmio, port);
	const u32 mask = (1<<12) | (1<<11) | (1<<7) | (1<<6) | (1<<5);
	u32 tmp;
	int fix_apm_sq = (hpriv->hp_flags & MV_HP_ERRATA_50XXB0);

	if (fix_apm_sq) {
		tmp = readl(phy_mmio + MV5_LT_MODE);
		tmp |= (1 << 19);
		writel(tmp, phy_mmio + MV5_LT_MODE);

		tmp = readl(phy_mmio + MV5_PHY_CTL);
		tmp &= ~0x3;
		tmp |= 0x1;
		writel(tmp, phy_mmio + MV5_PHY_CTL);
	}

	tmp = readl(phy_mmio + MV5_PHY_MODE);
	tmp &= ~mask;
	tmp |= hpriv->signal[port].pre;
	tmp |= hpriv->signal[port].amps;
	writel(tmp, phy_mmio + MV5_PHY_MODE);
1429 1430
}

1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461

#undef ZERO
#define ZERO(reg) writel(0, port_mmio + (reg))
static void mv5_reset_hc_port(struct mv_host_priv *hpriv, void __iomem *mmio,
			     unsigned int port)
{
	void __iomem *port_mmio = mv_port_base(mmio, port);

	writelfl(EDMA_DS, port_mmio + EDMA_CMD_OFS);

	mv_channel_reset(hpriv, mmio, port);

	ZERO(0x028);	/* command */
	writel(0x11f, port_mmio + EDMA_CFG_OFS);
	ZERO(0x004);	/* timer */
	ZERO(0x008);	/* irq err cause */
	ZERO(0x00c);	/* irq err mask */
	ZERO(0x010);	/* rq bah */
	ZERO(0x014);	/* rq inp */
	ZERO(0x018);	/* rq outp */
	ZERO(0x01c);	/* respq bah */
	ZERO(0x024);	/* respq outp */
	ZERO(0x020);	/* respq inp */
	ZERO(0x02c);	/* test control */
	writel(0xbc, port_mmio + EDMA_IORDY_TMOUT);
}
#undef ZERO

#define ZERO(reg) writel(0, hc_mmio + (reg))
static void mv5_reset_one_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
			unsigned int hc)
1462
{
1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491
	void __iomem *hc_mmio = mv_hc_base(mmio, hc);
	u32 tmp;

	ZERO(0x00c);
	ZERO(0x010);
	ZERO(0x014);
	ZERO(0x018);

	tmp = readl(hc_mmio + 0x20);
	tmp &= 0x1c1c1c1c;
	tmp |= 0x03030303;
	writel(tmp, hc_mmio + 0x20);
}
#undef ZERO

static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
			unsigned int n_hc)
{
	unsigned int hc, port;

	for (hc = 0; hc < n_hc; hc++) {
		for (port = 0; port < MV_PORTS_PER_HC; port++)
			mv5_reset_hc_port(hpriv, mmio,
					  (hc * MV_PORTS_PER_HC) + port);

		mv5_reset_one_hc(hpriv, mmio, hc);
	}

	return 0;
1492 1493
}

J
Jeff Garzik 已提交
1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538
#undef ZERO
#define ZERO(reg) writel(0, mmio + (reg))
static void mv_reset_pci_bus(struct pci_dev *pdev, void __iomem *mmio)
{
	u32 tmp;

	tmp = readl(mmio + MV_PCI_MODE);
	tmp &= 0xff00ffff;
	writel(tmp, mmio + MV_PCI_MODE);

	ZERO(MV_PCI_DISC_TIMER);
	ZERO(MV_PCI_MSI_TRIGGER);
	writel(0x000100ff, mmio + MV_PCI_XBAR_TMOUT);
	ZERO(HC_MAIN_IRQ_MASK_OFS);
	ZERO(MV_PCI_SERR_MASK);
	ZERO(PCI_IRQ_CAUSE_OFS);
	ZERO(PCI_IRQ_MASK_OFS);
	ZERO(MV_PCI_ERR_LOW_ADDRESS);
	ZERO(MV_PCI_ERR_HIGH_ADDRESS);
	ZERO(MV_PCI_ERR_ATTRIBUTE);
	ZERO(MV_PCI_ERR_COMMAND);
}
#undef ZERO

static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
{
	u32 tmp;

	mv5_reset_flash(hpriv, mmio);

	tmp = readl(mmio + MV_GPIO_PORT_CTL);
	tmp &= 0x3;
	tmp |= (1 << 5) | (1 << 6);
	writel(tmp, mmio + MV_GPIO_PORT_CTL);
}

/**
 *      mv6_reset_hc - Perform the 6xxx global soft reset
 *      @mmio: base address of the HBA
 *
 *      This routine only applies to 6xxx parts.
 *
 *      LOCKING:
 *      Inherited from caller.
 */
1539 1540
static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
			unsigned int n_hc)
J
Jeff Garzik 已提交
1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594
{
	void __iomem *reg = mmio + PCI_MAIN_CMD_STS_OFS;
	int i, rc = 0;
	u32 t;

	/* Following procedure defined in PCI "main command and status
	 * register" table.
	 */
	t = readl(reg);
	writel(t | STOP_PCI_MASTER, reg);

	for (i = 0; i < 1000; i++) {
		udelay(1);
		t = readl(reg);
		if (PCI_MASTER_EMPTY & t) {
			break;
		}
	}
	if (!(PCI_MASTER_EMPTY & t)) {
		printk(KERN_ERR DRV_NAME ": PCI master won't flush\n");
		rc = 1;
		goto done;
	}

	/* set reset */
	i = 5;
	do {
		writel(t | GLOB_SFT_RST, reg);
		t = readl(reg);
		udelay(1);
	} while (!(GLOB_SFT_RST & t) && (i-- > 0));

	if (!(GLOB_SFT_RST & t)) {
		printk(KERN_ERR DRV_NAME ": can't set global reset\n");
		rc = 1;
		goto done;
	}

	/* clear reset and *reenable the PCI master* (not mentioned in spec) */
	i = 5;
	do {
		writel(t & ~(GLOB_SFT_RST | STOP_PCI_MASTER), reg);
		t = readl(reg);
		udelay(1);
	} while ((GLOB_SFT_RST & t) && (i-- > 0));

	if (GLOB_SFT_RST & t) {
		printk(KERN_ERR DRV_NAME ": can't clear global reset\n");
		rc = 1;
	}
done:
	return rc;
}

1595
static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
J
Jeff Garzik 已提交
1596 1597 1598 1599 1600 1601 1602
			   void __iomem *mmio)
{
	void __iomem *port_mmio;
	u32 tmp;

	tmp = readl(mmio + MV_RESET_CFG);
	if ((tmp & (1 << 0)) == 0) {
1603
		hpriv->signal[idx].amps = 0x7 << 8;
J
Jeff Garzik 已提交
1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614
		hpriv->signal[idx].pre = 0x1 << 5;
		return;
	}

	port_mmio = mv_port_base(mmio, idx);
	tmp = readl(port_mmio + PHY_MODE2);

	hpriv->signal[idx].amps = tmp & 0x700;	/* bits 10:8 */
	hpriv->signal[idx].pre = tmp & 0xe0;	/* bits 7:5 */
}

1615
static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
J
Jeff Garzik 已提交
1616
{
1617
	writel(0x00000060, mmio + MV_GPIO_PORT_CTL);
J
Jeff Garzik 已提交
1618 1619
}

1620
static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
1621
			   unsigned int port)
1622
{
1623 1624
	void __iomem *port_mmio = mv_port_base(mmio, port);

1625
	u32 hp_flags = hpriv->hp_flags;
1626 1627
	int fix_phy_mode2 =
		hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
1628
	int fix_phy_mode4 =
1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651
		hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
	u32 m2, tmp;

	if (fix_phy_mode2) {
		m2 = readl(port_mmio + PHY_MODE2);
		m2 &= ~(1 << 16);
		m2 |= (1 << 31);
		writel(m2, port_mmio + PHY_MODE2);

		udelay(200);

		m2 = readl(port_mmio + PHY_MODE2);
		m2 &= ~((1 << 16) | (1 << 31));
		writel(m2, port_mmio + PHY_MODE2);

		udelay(200);
	}

	/* who knows what this magic does */
	tmp = readl(port_mmio + PHY_MODE3);
	tmp &= ~0x7F800000;
	tmp |= 0x2A800000;
	writel(tmp, port_mmio + PHY_MODE3);
1652 1653

	if (fix_phy_mode4) {
1654
		u32 m4;
1655 1656

		m4 = readl(port_mmio + PHY_MODE4);
1657 1658 1659

		if (hp_flags & MV_HP_ERRATA_60X1B2)
			tmp = readl(port_mmio + 0x310);
1660 1661 1662 1663

		m4 = (m4 & ~(1 << 1)) | (1 << 0);

		writel(m4, port_mmio + PHY_MODE4);
1664 1665 1666

		if (hp_flags & MV_HP_ERRATA_60X1B2)
			writel(tmp, port_mmio + 0x310);
1667 1668 1669 1670 1671 1672
	}

	/* Revert values of pre-emphasis and signal amps to the saved ones */
	m2 = readl(port_mmio + PHY_MODE2);

	m2 &= ~MV_M2_PREAMP_MASK;
1673 1674
	m2 |= hpriv->signal[port].amps;
	m2 |= hpriv->signal[port].pre;
1675
	m2 &= ~(1 << 16);
1676 1677 1678 1679

	writel(m2, port_mmio + PHY_MODE2);
}

1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714
static void mv_channel_reset(struct mv_host_priv *hpriv, void __iomem *mmio,
			     unsigned int port_no)
{
	void __iomem *port_mmio = mv_port_base(mmio, port_no);

	writelfl(ATA_RST, port_mmio + EDMA_CMD_OFS);

	if (IS_60XX(hpriv)) {
		u32 ifctl = readl(port_mmio + SATA_INTERFACE_CTL);
		ifctl |= (1 << 12) | (1 << 7);
		writelfl(ifctl, port_mmio + SATA_INTERFACE_CTL);
	}

	udelay(25);		/* allow reset propagation */

	/* Spec never mentions clearing the bit.  Marvell's driver does
	 * clear the bit, however.
	 */
	writelfl(0, port_mmio + EDMA_CMD_OFS);

	hpriv->ops->phy_errata(hpriv, mmio, port_no);

	if (IS_50XX(hpriv))
		mdelay(1);
}

static void mv_stop_and_reset(struct ata_port *ap)
{
	struct mv_host_priv *hpriv = ap->host_set->private_data;
	void __iomem *mmio = ap->host_set->mmio_base;

	mv_stop_dma(ap);

	mv_channel_reset(hpriv, mmio, ap->port_no);

1715 1716 1717 1718 1719 1720 1721 1722 1723
	__mv_phy_reset(ap, 0);
}

static inline void __msleep(unsigned int msec, int can_sleep)
{
	if (can_sleep)
		msleep(msec);
	else
		mdelay(msec);
1724 1725
}

1726
/**
1727
 *      __mv_phy_reset - Perform eDMA reset followed by COMRESET
1728 1729 1730 1731 1732 1733 1734 1735
 *      @ap: ATA channel to manipulate
 *
 *      Part of this is taken from __sata_phy_reset and modified to
 *      not sleep since this routine gets called from interrupt level.
 *
 *      LOCKING:
 *      Inherited from caller.  This is coded to safe to call at
 *      interrupt level, i.e. it does not sleep.
1736
 */
1737
static void __mv_phy_reset(struct ata_port *ap, int can_sleep)
1738
{
J
Jeff Garzik 已提交
1739
	struct mv_port_priv *pp	= ap->private_data;
1740
	struct mv_host_priv *hpriv = ap->host_set->private_data;
1741 1742 1743
	void __iomem *port_mmio = mv_ap_base(ap);
	struct ata_taskfile tf;
	struct ata_device *dev = &ap->device[0];
1744
	unsigned long timeout;
1745 1746
	int retry = 5;
	u32 sstatus;
1747 1748 1749

	VPRINTK("ENTER, port %u, mmio 0x%p\n", ap->port_no, port_mmio);

J
Jeff Garzik 已提交
1750
	DPRINTK("S-regs after ATA_RST: SStat 0x%08x SErr 0x%08x "
1751 1752
		"SCtrl 0x%08x\n", mv_scr_read(ap, SCR_STATUS),
		mv_scr_read(ap, SCR_ERROR), mv_scr_read(ap, SCR_CONTROL));
1753

1754 1755
	/* Issue COMRESET via SControl */
comreset_retry:
1756
	scr_write_flush(ap, SCR_CONTROL, 0x301);
1757 1758
	__msleep(1, can_sleep);

1759
	scr_write_flush(ap, SCR_CONTROL, 0x300);
1760 1761 1762
	__msleep(20, can_sleep);

	timeout = jiffies + msecs_to_jiffies(200);
1763
	do {
1764 1765
		sstatus = scr_read(ap, SCR_STATUS) & 0x3;
		if ((sstatus == 3) || (sstatus == 0))
1766
			break;
1767 1768

		__msleep(1, can_sleep);
1769
	} while (time_before(jiffies, timeout));
1770

1771 1772 1773 1774 1775
	/* work around errata */
	if (IS_60XX(hpriv) &&
	    (sstatus != 0x0) && (sstatus != 0x113) && (sstatus != 0x123) &&
	    (retry-- > 0))
		goto comreset_retry;
J
Jeff Garzik 已提交
1776 1777

	DPRINTK("S-regs after PHY wake: SStat 0x%08x SErr 0x%08x "
1778 1779 1780 1781 1782 1783 1784 1785 1786
		"SCtrl 0x%08x\n", mv_scr_read(ap, SCR_STATUS),
		mv_scr_read(ap, SCR_ERROR), mv_scr_read(ap, SCR_CONTROL));

	if (sata_dev_present(ap)) {
		ata_port_probe(ap);
	} else {
		printk(KERN_INFO "ata%u: no device found (phy stat %08x)\n",
		       ap->id, scr_read(ap, SCR_STATUS));
		ata_port_disable(ap);
1787 1788
		return;
	}
1789
	ap->cbl = ATA_CBL_SATA;
1790

1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805
	/* even after SStatus reflects that device is ready,
	 * it seems to take a while for link to be fully
	 * established (and thus Status no longer 0x80/0x7F),
	 * so we poll a bit for that, here.
	 */
	retry = 20;
	while (1) {
		u8 drv_stat = ata_check_status(ap);
		if ((drv_stat != 0x80) && (drv_stat != 0x7f))
			break;
		__msleep(500, can_sleep);
		if (retry-- <= 0)
			break;
	}

1806 1807 1808 1809 1810 1811 1812 1813 1814 1815
	tf.lbah = readb((void __iomem *) ap->ioaddr.lbah_addr);
	tf.lbam = readb((void __iomem *) ap->ioaddr.lbam_addr);
	tf.lbal = readb((void __iomem *) ap->ioaddr.lbal_addr);
	tf.nsect = readb((void __iomem *) ap->ioaddr.nsect_addr);

	dev->class = ata_dev_classify(&tf);
	if (!ata_dev_present(dev)) {
		VPRINTK("Port disabled post-sig: No device present.\n");
		ata_port_disable(ap);
	}
J
Jeff Garzik 已提交
1816 1817 1818 1819 1820

	writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);

	pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;

1821
	VPRINTK("EXIT\n");
1822 1823
}

1824 1825 1826 1827 1828
static void mv_phy_reset(struct ata_port *ap)
{
	__mv_phy_reset(ap, 1);
}

1829 1830 1831 1832 1833 1834 1835 1836 1837 1838
/**
 *      mv_eng_timeout - Routine called by libata when SCSI times out I/O
 *      @ap: ATA channel to manipulate
 *
 *      Intent is to clear all pending error conditions, reset the
 *      chip/bus, fail the command, and move on.
 *
 *      LOCKING:
 *      This routine holds the host_set lock while failing the command.
 */
1839 1840 1841 1842 1843 1844 1845
static void mv_eng_timeout(struct ata_port *ap)
{
	struct ata_queued_cmd *qc;
	unsigned long flags;

	printk(KERN_ERR "ata%u: Entering mv_eng_timeout\n",ap->id);
	DPRINTK("All regs @ start of eng_timeout\n");
1846
	mv_dump_all_regs(ap->host_set->mmio_base, ap->port_no,
1847 1848 1849 1850
			 to_pci_dev(ap->host_set->dev));

	qc = ata_qc_from_tag(ap, ap->active_tag);
        printk(KERN_ERR "mmio_base %p ap %p qc %p scsi_cmnd %p &cmnd %p\n",
1851
	       ap->host_set->mmio_base, ap, qc, qc->scsicmd,
1852 1853 1854
	       &qc->scsicmd->cmnd);

	mv_err_intr(ap);
1855
	mv_stop_and_reset(ap);
1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868

	if (!qc) {
		printk(KERN_ERR "ata%u: BUG: timeout without command\n",
		       ap->id);
	} else {
		/* hack alert!  We cannot use the supplied completion
	 	 * function from inside the ->eh_strategy_handler() thread.
	 	 * libata is the only user of ->eh_strategy_handler() in
	 	 * any kernel, so the default scsi_done() assumes it is
	 	 * not being called from the SCSI EH.
	 	 */
		spin_lock_irqsave(&ap->host_set->lock, flags);
		qc->scsidone = scsi_finish_command;
1869 1870
		qc->err_mask |= AC_ERR_OTHER;
		ata_qc_complete(qc);
1871 1872 1873 1874
		spin_unlock_irqrestore(&ap->host_set->lock, flags);
	}
}

1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886
/**
 *      mv_port_init - Perform some early initialization on a single port.
 *      @port: libata data structure storing shadow register addresses
 *      @port_mmio: base address of the port
 *
 *      Initialize shadow register mmio addresses, clear outstanding
 *      interrupts on the port, and unmask interrupts for the future
 *      start of the port.
 *
 *      LOCKING:
 *      Inherited from caller.
 */
1887
static void mv_port_init(struct ata_ioports *port,  void __iomem *port_mmio)
1888
{
1889 1890 1891
	unsigned long shd_base = (unsigned long) port_mmio + SHD_BLK_OFS;
	unsigned serr_ofs;

1892
	/* PIO related setup
1893 1894
	 */
	port->data_addr = shd_base + (sizeof(u32) * ATA_REG_DATA);
1895
	port->error_addr =
1896 1897 1898 1899 1900 1901
		port->feature_addr = shd_base + (sizeof(u32) * ATA_REG_ERR);
	port->nsect_addr = shd_base + (sizeof(u32) * ATA_REG_NSECT);
	port->lbal_addr = shd_base + (sizeof(u32) * ATA_REG_LBAL);
	port->lbam_addr = shd_base + (sizeof(u32) * ATA_REG_LBAM);
	port->lbah_addr = shd_base + (sizeof(u32) * ATA_REG_LBAH);
	port->device_addr = shd_base + (sizeof(u32) * ATA_REG_DEVICE);
1902
	port->status_addr =
1903 1904 1905 1906 1907
		port->command_addr = shd_base + (sizeof(u32) * ATA_REG_STATUS);
	/* special case: control/altstatus doesn't have ATA_REG_ address */
	port->altstatus_addr = port->ctl_addr = shd_base + SHD_CTL_AST_OFS;

	/* unused: */
1908 1909
	port->cmd_addr = port->bmdma_addr = port->scr_addr = 0;

1910 1911 1912 1913 1914
	/* Clear any currently outstanding port interrupt conditions */
	serr_ofs = mv_scr_offset(SCR_ERROR);
	writelfl(readl(port_mmio + serr_ofs), port_mmio + serr_ofs);
	writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);

1915
	/* unmask all EDMA error interrupts */
1916
	writelfl(~0, port_mmio + EDMA_ERR_IRQ_MASK_OFS);
1917

1918
	VPRINTK("EDMA cfg=0x%08x EDMA IRQ err cause/mask=0x%08x/0x%08x\n",
1919 1920 1921
		readl(port_mmio + EDMA_CFG_OFS),
		readl(port_mmio + EDMA_ERR_IRQ_CAUSE_OFS),
		readl(port_mmio + EDMA_ERR_IRQ_MASK_OFS));
1922 1923
}

1924
static int mv_chip_id(struct pci_dev *pdev, struct mv_host_priv *hpriv,
1925
		      unsigned int board_idx)
1926 1927 1928 1929 1930 1931 1932
{
	u8 rev_id;
	u32 hp_flags = hpriv->hp_flags;

	pci_read_config_byte(pdev, PCI_REVISION_ID, &rev_id);

	switch(board_idx) {
1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951
	case chip_5080:
		hpriv->ops = &mv5xxx_ops;
		hp_flags |= MV_HP_50XX;

		switch (rev_id) {
		case 0x1:
			hp_flags |= MV_HP_ERRATA_50XXB0;
			break;
		case 0x3:
			hp_flags |= MV_HP_ERRATA_50XXB2;
			break;
		default:
			dev_printk(KERN_WARNING, &pdev->dev,
			   "Applying 50XXB2 workarounds to unknown rev\n");
			hp_flags |= MV_HP_ERRATA_50XXB2;
			break;
		}
		break;

1952 1953
	case chip_504x:
	case chip_508x:
1954
		hpriv->ops = &mv5xxx_ops;
1955 1956
		hp_flags |= MV_HP_50XX;

1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968
		switch (rev_id) {
		case 0x0:
			hp_flags |= MV_HP_ERRATA_50XXB0;
			break;
		case 0x3:
			hp_flags |= MV_HP_ERRATA_50XXB2;
			break;
		default:
			dev_printk(KERN_WARNING, &pdev->dev,
			   "Applying B2 workarounds to unknown rev\n");
			hp_flags |= MV_HP_ERRATA_50XXB2;
			break;
1969 1970 1971 1972 1973
		}
		break;

	case chip_604x:
	case chip_608x:
1974 1975
		hpriv->ops = &mv6xxx_ops;

1976
		switch (rev_id) {
1977 1978 1979 1980 1981
		case 0x7:
			hp_flags |= MV_HP_ERRATA_60X1B2;
			break;
		case 0x9:
			hp_flags |= MV_HP_ERRATA_60X1C0;
1982 1983 1984
			break;
		default:
			dev_printk(KERN_WARNING, &pdev->dev,
1985 1986
				   "Applying B2 workarounds to unknown rev\n");
			hp_flags |= MV_HP_ERRATA_60X1B2;
1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000
			break;
		}
		break;

	default:
		printk(KERN_ERR DRV_NAME ": BUG: invalid board index %u\n", board_idx);
		return 1;
	}

	hpriv->hp_flags = hp_flags;

	return 0;
}

2001
/**
2002
 *      mv_init_host - Perform some early initialization of the host.
2003
 *	@pdev: host PCI device
2004 2005 2006 2007 2008 2009 2010 2011
 *      @probe_ent: early data struct representing the host
 *
 *      If possible, do an early global reset of the host.  Then do
 *      our port init and clear/unmask all/relevant host interrupts.
 *
 *      LOCKING:
 *      Inherited from caller.
 */
2012
static int mv_init_host(struct pci_dev *pdev, struct ata_probe_ent *probe_ent,
2013
			unsigned int board_idx)
2014 2015 2016
{
	int rc = 0, n_hc, port, hc;
	void __iomem *mmio = probe_ent->mmio_base;
2017 2018
	struct mv_host_priv *hpriv = probe_ent->private_data;

2019 2020 2021 2022
	/* global interrupt mask */
	writel(0, mmio + HC_MAIN_IRQ_MASK_OFS);

	rc = mv_chip_id(pdev, hpriv, board_idx);
2023 2024 2025 2026 2027 2028
	if (rc)
		goto done;

	n_hc = mv_get_hc_count(probe_ent->host_flags);
	probe_ent->n_ports = MV_PORTS_PER_HC * n_hc;

2029 2030
	for (port = 0; port < probe_ent->n_ports; port++)
		hpriv->ops->read_preamp(hpriv, port, mmio);
2031

2032
	rc = hpriv->ops->reset_hc(hpriv, mmio, n_hc);
2033
	if (rc)
2034 2035
		goto done;

2036 2037
	hpriv->ops->reset_flash(hpriv, mmio);
	hpriv->ops->reset_bus(pdev, mmio);
2038
	hpriv->ops->enable_leds(hpriv, mmio);
2039 2040

	for (port = 0; port < probe_ent->n_ports; port++) {
2041
		if (IS_60XX(hpriv)) {
2042 2043
			void __iomem *port_mmio = mv_port_base(mmio, port);

2044 2045 2046 2047 2048
			u32 ifctl = readl(port_mmio + SATA_INTERFACE_CTL);
			ifctl |= (1 << 12);
			writelfl(ifctl, port_mmio + SATA_INTERFACE_CTL);
		}

2049
		hpriv->ops->phy_errata(hpriv, mmio, port);
2050 2051 2052 2053
	}

	for (port = 0; port < probe_ent->n_ports; port++) {
		void __iomem *port_mmio = mv_port_base(mmio, port);
2054
		mv_port_init(&probe_ent->port[port], port_mmio);
2055 2056 2057
	}

	for (hc = 0; hc < n_hc; hc++) {
2058 2059 2060 2061 2062 2063 2064 2065 2066
		void __iomem *hc_mmio = mv_hc_base(mmio, hc);

		VPRINTK("HC%i: HC config=0x%08x HC IRQ cause "
			"(before clear)=0x%08x\n", hc,
			readl(hc_mmio + HC_CFG_OFS),
			readl(hc_mmio + HC_IRQ_CAUSE_OFS));

		/* Clear any currently outstanding hc interrupt conditions */
		writelfl(0, hc_mmio + HC_IRQ_CAUSE_OFS);
2067 2068
	}

2069 2070 2071 2072 2073 2074
	/* Clear any currently outstanding host interrupt conditions */
	writelfl(0, mmio + PCI_IRQ_CAUSE_OFS);

	/* and unmask interrupt generation for host regs */
	writelfl(PCI_UNMASK_ALL_IRQS, mmio + PCI_IRQ_MASK_OFS);
	writelfl(~HC_MAIN_MASKED_IRQS, mmio + HC_MAIN_IRQ_MASK_OFS);
2075 2076

	VPRINTK("HC MAIN IRQ cause/mask=0x%08x/0x%08x "
2077
		"PCI int cause/mask=0x%08x/0x%08x\n",
2078 2079 2080 2081
		readl(mmio + HC_MAIN_IRQ_CAUSE_OFS),
		readl(mmio + HC_MAIN_IRQ_MASK_OFS),
		readl(mmio + PCI_IRQ_CAUSE_OFS),
		readl(mmio + PCI_IRQ_MASK_OFS));
2082

2083
done:
2084 2085 2086
	return rc;
}

2087 2088 2089 2090 2091 2092 2093 2094 2095
/**
 *      mv_print_info - Dump key info to kernel log for perusal.
 *      @probe_ent: early data struct representing the host
 *
 *      FIXME: complete this.
 *
 *      LOCKING:
 *      Inherited from caller.
 */
2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115
static void mv_print_info(struct ata_probe_ent *probe_ent)
{
	struct pci_dev *pdev = to_pci_dev(probe_ent->dev);
	struct mv_host_priv *hpriv = probe_ent->private_data;
	u8 rev_id, scc;
	const char *scc_s;

	/* Use this to determine the HW stepping of the chip so we know
	 * what errata to workaround
	 */
	pci_read_config_byte(pdev, PCI_REVISION_ID, &rev_id);

	pci_read_config_byte(pdev, PCI_CLASS_DEVICE, &scc);
	if (scc == 0)
		scc_s = "SCSI";
	else if (scc == 0x01)
		scc_s = "RAID";
	else
		scc_s = "unknown";

2116 2117
	dev_printk(KERN_INFO, &pdev->dev,
	       "%u slots %u ports %s mode IRQ via %s\n",
2118
	       (unsigned)MV_MAX_Q_DEPTH, probe_ent->n_ports,
2119 2120 2121
	       scc_s, (MV_HP_FLAG_MSI & hpriv->hp_flags) ? "MSI" : "INTx");
}

2122 2123 2124 2125 2126 2127 2128 2129
/**
 *      mv_init_one - handle a positive probe of a Marvell host
 *      @pdev: PCI device found
 *      @ent: PCI device ID entry for the matched host
 *
 *      LOCKING:
 *      Inherited from caller.
 */
2130 2131 2132 2133 2134 2135 2136
static int mv_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
{
	static int printed_version = 0;
	struct ata_probe_ent *probe_ent = NULL;
	struct mv_host_priv *hpriv;
	unsigned int board_idx = (unsigned int)ent->driver_data;
	void __iomem *mmio_base;
2137
	int pci_dev_busy = 0, rc;
2138

2139 2140
	if (!printed_version++)
		dev_printk(KERN_INFO, &pdev->dev, "version " DRV_VERSION "\n");
2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162

	rc = pci_enable_device(pdev);
	if (rc) {
		return rc;
	}

	rc = pci_request_regions(pdev, DRV_NAME);
	if (rc) {
		pci_dev_busy = 1;
		goto err_out;
	}

	probe_ent = kmalloc(sizeof(*probe_ent), GFP_KERNEL);
	if (probe_ent == NULL) {
		rc = -ENOMEM;
		goto err_out_regions;
	}

	memset(probe_ent, 0, sizeof(*probe_ent));
	probe_ent->dev = pci_dev_to_dev(pdev);
	INIT_LIST_HEAD(&probe_ent->node);

2163
	mmio_base = pci_iomap(pdev, MV_PRIMARY_BAR, 0);
2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187
	if (mmio_base == NULL) {
		rc = -ENOMEM;
		goto err_out_free_ent;
	}

	hpriv = kmalloc(sizeof(*hpriv), GFP_KERNEL);
	if (!hpriv) {
		rc = -ENOMEM;
		goto err_out_iounmap;
	}
	memset(hpriv, 0, sizeof(*hpriv));

	probe_ent->sht = mv_port_info[board_idx].sht;
	probe_ent->host_flags = mv_port_info[board_idx].host_flags;
	probe_ent->pio_mask = mv_port_info[board_idx].pio_mask;
	probe_ent->udma_mask = mv_port_info[board_idx].udma_mask;
	probe_ent->port_ops = mv_port_info[board_idx].port_ops;

	probe_ent->irq = pdev->irq;
	probe_ent->irq_flags = SA_SHIRQ;
	probe_ent->mmio_base = mmio_base;
	probe_ent->private_data = hpriv;

	/* initialize adapter */
2188
	rc = mv_init_host(pdev, probe_ent, board_idx);
2189 2190 2191 2192
	if (rc) {
		goto err_out_hpriv;
	}

2193 2194 2195 2196 2197
	/* Enable interrupts */
	if (pci_enable_msi(pdev) == 0) {
		hpriv->hp_flags |= MV_HP_FLAG_MSI;
	} else {
		pci_intx(pdev, 1);
2198 2199
	}

2200 2201 2202 2203 2204 2205 2206
	mv_dump_pci_cfg(pdev, 0x68);
	mv_print_info(probe_ent);

	if (ata_device_add(probe_ent) == 0) {
		rc = -ENODEV;		/* No devices discovered */
		goto err_out_dev_add;
	}
2207

2208
	kfree(probe_ent);
2209 2210
	return 0;

2211 2212 2213 2214 2215 2216 2217
err_out_dev_add:
	if (MV_HP_FLAG_MSI & hpriv->hp_flags) {
		pci_disable_msi(pdev);
	} else {
		pci_intx(pdev, 0);
	}
err_out_hpriv:
2218
	kfree(hpriv);
2219 2220 2221
err_out_iounmap:
	pci_iounmap(pdev, mmio_base);
err_out_free_ent:
2222
	kfree(probe_ent);
2223
err_out_regions:
2224
	pci_release_regions(pdev);
2225
err_out:
2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250
	if (!pci_dev_busy) {
		pci_disable_device(pdev);
	}

	return rc;
}

static int __init mv_init(void)
{
	return pci_module_init(&mv_pci_driver);
}

static void __exit mv_exit(void)
{
	pci_unregister_driver(&mv_pci_driver);
}

MODULE_AUTHOR("Brett Russ");
MODULE_DESCRIPTION("SCSI low-level driver for Marvell SATA controllers");
MODULE_LICENSE("GPL");
MODULE_DEVICE_TABLE(pci, mv_pci_tbl);
MODULE_VERSION(DRV_VERSION);

module_init(mv_init);
module_exit(mv_exit);