sata_mv.c 52.1 KB
Newer Older
1 2 3
/*
 * sata_mv.c - Marvell SATA support
 *
4
 * Copyright 2005: EMC Corporation, all rights reserved.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
 *
 * Please ALWAYS copy linux-ide@vger.kernel.org on emails.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; version 2 of the License.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 */

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/init.h>
#include <linux/blkdev.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/sched.h>
#include <linux/dma-mapping.h>
32
#include <linux/device.h>
33
#include <scsi/scsi_host.h>
34
#include <scsi/scsi_cmnd.h>
35 36 37 38
#include <linux/libata.h>
#include <asm/io.h>

#define DRV_NAME	"sata_mv"
B
Brett Russ 已提交
39
#define DRV_VERSION	"0.25"
40 41 42 43 44 45 46 47 48 49 50 51 52

enum {
	/* BAR's are enumerated in terms of pci_resource_start() terms */
	MV_PRIMARY_BAR		= 0,	/* offset 0x10: memory space */
	MV_IO_BAR		= 2,	/* offset 0x18: IO space */
	MV_MISC_BAR		= 3,	/* offset 0x1c: FLASH, NVRAM, SRAM */

	MV_MAJOR_REG_AREA_SZ	= 0x10000,	/* 64KB */
	MV_MINOR_REG_AREA_SZ	= 0x2000,	/* 8KB */

	MV_PCI_REG_BASE		= 0,
	MV_IRQ_COAL_REG_BASE	= 0x18000,	/* 6xxx part only */
	MV_SATAHC0_REG_BASE	= 0x20000,
53
	MV_FLASH_CTL		= 0x1046c,
54 55
	MV_GPIO_PORT_CTL	= 0x104f0,
	MV_RESET_CFG		= 0x180d8,
56 57 58 59 60 61

	MV_PCI_REG_SZ		= MV_MAJOR_REG_AREA_SZ,
	MV_SATAHC_REG_SZ	= MV_MAJOR_REG_AREA_SZ,
	MV_SATAHC_ARBTR_REG_SZ	= MV_MINOR_REG_AREA_SZ,		/* arbiter */
	MV_PORT_REG_SZ		= MV_MINOR_REG_AREA_SZ,

62
	MV_USE_Q_DEPTH		= ATA_DEF_QUEUE,
63

64 65 66 67 68 69 70 71 72 73 74 75 76 77
	MV_MAX_Q_DEPTH		= 32,
	MV_MAX_Q_DEPTH_MASK	= MV_MAX_Q_DEPTH - 1,

	/* CRQB needs alignment on a 1KB boundary. Size == 1KB
	 * CRPB needs alignment on a 256B boundary. Size == 256B
	 * SG count of 176 leads to MV_PORT_PRIV_DMA_SZ == 4KB
	 * ePRD (SG) entries need alignment on a 16B boundary. Size == 16B
	 */
	MV_CRQB_Q_SZ		= (32 * MV_MAX_Q_DEPTH),
	MV_CRPB_Q_SZ		= (8 * MV_MAX_Q_DEPTH),
	MV_MAX_SG_CT		= 176,
	MV_SG_TBL_SZ		= (16 * MV_MAX_SG_CT),
	MV_PORT_PRIV_DMA_SZ	= (MV_CRQB_Q_SZ + MV_CRPB_Q_SZ + MV_SG_TBL_SZ),

78 79 80
	MV_PORTS_PER_HC		= 4,
	/* == (port / MV_PORTS_PER_HC) to determine HC from 0-7 port */
	MV_PORT_HC_SHIFT	= 2,
81
	/* == (port % MV_PORTS_PER_HC) to determine hard port from 0-7 port */
82 83 84 85 86
	MV_PORT_MASK		= 3,

	/* Host Flags */
	MV_FLAG_DUAL_HC		= (1 << 30),  /* two SATA Host Controllers */
	MV_FLAG_IRQ_COALESCE	= (1 << 29),  /* IRQ coalescing capability */
87 88
	MV_COMMON_FLAGS		= (ATA_FLAG_SATA | ATA_FLAG_NO_LEGACY |
				   ATA_FLAG_SATA_RESET | ATA_FLAG_MMIO),
89
	MV_6XXX_FLAGS		= MV_FLAG_IRQ_COALESCE,
90

91 92 93 94 95 96 97 98 99 100
	CRQB_FLAG_READ		= (1 << 0),
	CRQB_TAG_SHIFT		= 1,
	CRQB_CMD_ADDR_SHIFT	= 8,
	CRQB_CMD_CS		= (0x2 << 11),
	CRQB_CMD_LAST		= (1 << 15),

	CRPB_FLAG_STATUS_SHIFT	= 8,

	EPRD_FLAG_END_OF_TBL	= (1 << 31),

101 102
	/* PCI interface registers */

103 104
	PCI_COMMAND_OFS		= 0xc00,

105 106 107 108 109
	PCI_MAIN_CMD_STS_OFS	= 0xd30,
	STOP_PCI_MASTER		= (1 << 2),
	PCI_MASTER_EMPTY	= (1 << 3),
	GLOB_SFT_RST		= (1 << 4),

110 111 112 113 114 115 116 117 118 119 120 121 122
	MV_PCI_MODE		= 0xd00,
	MV_PCI_EXP_ROM_BAR_CTL	= 0xd2c,
	MV_PCI_DISC_TIMER	= 0xd04,
	MV_PCI_MSI_TRIGGER	= 0xc38,
	MV_PCI_SERR_MASK	= 0xc28,
	MV_PCI_XBAR_TMOUT	= 0x1d04,
	MV_PCI_ERR_LOW_ADDRESS	= 0x1d40,
	MV_PCI_ERR_HIGH_ADDRESS	= 0x1d44,
	MV_PCI_ERR_ATTRIBUTE	= 0x1d48,
	MV_PCI_ERR_COMMAND	= 0x1d50,

	PCI_IRQ_CAUSE_OFS		= 0x1d58,
	PCI_IRQ_MASK_OFS		= 0x1d5c,
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
	PCI_UNMASK_ALL_IRQS	= 0x7fffff,	/* bits 22-0 */

	HC_MAIN_IRQ_CAUSE_OFS	= 0x1d60,
	HC_MAIN_IRQ_MASK_OFS	= 0x1d64,
	PORT0_ERR		= (1 << 0),	/* shift by port # */
	PORT0_DONE		= (1 << 1),	/* shift by port # */
	HC0_IRQ_PEND		= 0x1ff,	/* bits 0-8 = HC0's ports */
	HC_SHIFT		= 9,		/* bits 9-17 = HC1's ports */
	PCI_ERR			= (1 << 18),
	TRAN_LO_DONE		= (1 << 19),	/* 6xxx: IRQ coalescing */
	TRAN_HI_DONE		= (1 << 20),	/* 6xxx: IRQ coalescing */
	PORTS_0_7_COAL_DONE	= (1 << 21),	/* 6xxx: IRQ coalescing */
	GPIO_INT		= (1 << 22),
	SELF_INT		= (1 << 23),
	TWSI_INT		= (1 << 24),
	HC_MAIN_RSVD		= (0x7f << 25),	/* bits 31-25 */
139
	HC_MAIN_MASKED_IRQS	= (TRAN_LO_DONE | TRAN_HI_DONE |
140 141 142 143 144 145 146
				   PORTS_0_7_COAL_DONE | GPIO_INT | TWSI_INT |
				   HC_MAIN_RSVD),

	/* SATAHC registers */
	HC_CFG_OFS		= 0,

	HC_IRQ_CAUSE_OFS	= 0x14,
147
	CRPB_DMA_DONE		= (1 << 0),	/* shift by port # */
148 149 150 151
	HC_IRQ_COAL		= (1 << 4),	/* IRQ coalescing */
	DEV_IRQ			= (1 << 8),	/* shift by port # */

	/* Shadow block registers */
152 153
	SHD_BLK_OFS		= 0x100,
	SHD_CTL_AST_OFS		= 0x20,		/* ofs from SHD_BLK_OFS */
154 155 156 157

	/* SATA registers */
	SATA_STATUS_OFS		= 0x300,  /* ctrl, err regs follow status */
	SATA_ACTIVE_OFS		= 0x350,
158
	PHY_MODE3		= 0x310,
159 160 161 162 163
	PHY_MODE4		= 0x314,
	PHY_MODE2		= 0x330,
	SATA_INTERFACE_CTL	= 0x050,

	MV_M2_PREAMP_MASK	= 0x7e0,
164 165 166

	/* Port registers */
	EDMA_CFG_OFS		= 0,
167 168 169 170 171
	EDMA_CFG_Q_DEPTH	= 0,			/* queueing disabled */
	EDMA_CFG_NCQ		= (1 << 5),
	EDMA_CFG_NCQ_GO_ON_ERR	= (1 << 14),		/* continue on error */
	EDMA_CFG_RD_BRST_EXT	= (1 << 11),		/* read burst 512B */
	EDMA_CFG_WR_BUFF_LEN	= (1 << 13),		/* write buffer 512B */
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192

	EDMA_ERR_IRQ_CAUSE_OFS	= 0x8,
	EDMA_ERR_IRQ_MASK_OFS	= 0xc,
	EDMA_ERR_D_PAR		= (1 << 0),
	EDMA_ERR_PRD_PAR	= (1 << 1),
	EDMA_ERR_DEV		= (1 << 2),
	EDMA_ERR_DEV_DCON	= (1 << 3),
	EDMA_ERR_DEV_CON	= (1 << 4),
	EDMA_ERR_SERR		= (1 << 5),
	EDMA_ERR_SELF_DIS	= (1 << 7),
	EDMA_ERR_BIST_ASYNC	= (1 << 8),
	EDMA_ERR_CRBQ_PAR	= (1 << 9),
	EDMA_ERR_CRPB_PAR	= (1 << 10),
	EDMA_ERR_INTRL_PAR	= (1 << 11),
	EDMA_ERR_IORDY		= (1 << 12),
	EDMA_ERR_LNK_CTRL_RX	= (0xf << 13),
	EDMA_ERR_LNK_CTRL_RX_2	= (1 << 15),
	EDMA_ERR_LNK_DATA_RX	= (0xf << 17),
	EDMA_ERR_LNK_CTRL_TX	= (0x1f << 21),
	EDMA_ERR_LNK_DATA_TX	= (0x1f << 26),
	EDMA_ERR_TRANS_PROTO	= (1 << 31),
193
	EDMA_ERR_FATAL		= (EDMA_ERR_D_PAR | EDMA_ERR_PRD_PAR |
194 195
				   EDMA_ERR_DEV_DCON | EDMA_ERR_CRBQ_PAR |
				   EDMA_ERR_CRPB_PAR | EDMA_ERR_INTRL_PAR |
196
				   EDMA_ERR_IORDY | EDMA_ERR_LNK_CTRL_RX_2 |
197
				   EDMA_ERR_LNK_DATA_RX |
198
				   EDMA_ERR_LNK_DATA_TX |
199 200
				   EDMA_ERR_TRANS_PROTO),

201 202 203 204 205 206 207 208 209 210 211
	EDMA_REQ_Q_BASE_HI_OFS	= 0x10,
	EDMA_REQ_Q_IN_PTR_OFS	= 0x14,		/* also contains BASE_LO */

	EDMA_REQ_Q_OUT_PTR_OFS	= 0x18,
	EDMA_REQ_Q_PTR_SHIFT	= 5,

	EDMA_RSP_Q_BASE_HI_OFS	= 0x1c,
	EDMA_RSP_Q_IN_PTR_OFS	= 0x20,
	EDMA_RSP_Q_OUT_PTR_OFS	= 0x24,		/* also contains BASE_LO */
	EDMA_RSP_Q_PTR_SHIFT	= 3,

212 213 214 215 216
	EDMA_CMD_OFS		= 0x28,
	EDMA_EN			= (1 << 0),
	EDMA_DS			= (1 << 1),
	ATA_RST			= (1 << 2),

217 218
	EDMA_ARB_CFG		= 0x38,

219 220
	/* Host private flags (hp_flags) */
	MV_HP_FLAG_MSI		= (1 << 0),
221 222 223 224 225
	MV_HP_ERRATA_50XXB0	= (1 << 1),
	MV_HP_ERRATA_50XXB2	= (1 << 2),
	MV_HP_ERRATA_60X1B2	= (1 << 3),
	MV_HP_ERRATA_60X1C0	= (1 << 4),
	MV_HP_50XX		= (1 << 5),
226

227 228 229
	/* Port private flags (pp_flags) */
	MV_PP_FLAG_EDMA_EN	= (1 << 0),
	MV_PP_FLAG_EDMA_DS_ACT	= (1 << 1),
230 231
};

232 233
#define IS_60XX(hpriv) (((hpriv)->hp_flags & MV_HP_50XX) == 0)

J
Jeff Garzik 已提交
234 235 236 237 238 239 240 241 242 243 244
enum {
	/* Our DMA boundary is determined by an ePRD being unable to handle
	 * anything larger than 64KB
	 */
	MV_DMA_BOUNDARY		= 0xffffU,

	EDMA_REQ_Q_BASE_LO_MASK	= 0xfffffc00U,

	EDMA_RSP_Q_BASE_LO_MASK	= 0xffffff00U,
};

245 246 247 248 249 250 251 252
enum chip_type {
	chip_504x,
	chip_508x,
	chip_5080,
	chip_604x,
	chip_608x,
};

253 254 255 256 257 258 259
/* Command ReQuest Block: 32B */
struct mv_crqb {
	u32			sg_addr;
	u32			sg_addr_hi;
	u16			ctrl_flags;
	u16			ata_cmd[11];
};
260

261 262 263 264 265
/* Command ResPonse Block: 8B */
struct mv_crpb {
	u16			id;
	u16			flags;
	u32			tmstmp;
266 267
};

268 269 270 271 272 273 274
/* EDMA Physical Region Descriptor (ePRD); A.K.A. SG */
struct mv_sg {
	u32			addr;
	u32			flags_size;
	u32			addr_hi;
	u32			reserved;
};
275

276 277 278 279 280 281 282 283 284 285 286 287 288
struct mv_port_priv {
	struct mv_crqb		*crqb;
	dma_addr_t		crqb_dma;
	struct mv_crpb		*crpb;
	dma_addr_t		crpb_dma;
	struct mv_sg		*sg_tbl;
	dma_addr_t		sg_tbl_dma;

	unsigned		req_producer;		/* cp of req_in_ptr */
	unsigned		rsp_consumer;		/* cp of rsp_out_ptr */
	u32			pp_flags;
};

289 290 291 292 293
struct mv_port_signal {
	u32			amps;
	u32			pre;
};

294 295 296 297 298 299 300
struct mv_host_priv;
struct mv_hw_ops {
	void (*phy_errata)(struct ata_port *ap);
	void (*enable_leds)(struct mv_host_priv *hpriv, void __iomem *mmio);
	void (*read_preamp)(struct mv_host_priv *hpriv, int idx,
			   void __iomem *mmio);
	int (*reset_hc)(struct mv_host_priv *hpriv, void __iomem *mmio);
301 302
	void (*reset_flash)(struct mv_host_priv *hpriv, void __iomem *mmio);
	void (*reset_bus)(struct pci_dev *pdev, void __iomem *mmio);
303 304
};

305 306
struct mv_host_priv {
	u32			hp_flags;
307
	struct mv_port_signal	signal[8];
308
	const struct mv_hw_ops	*ops;
309 310 311 312 313 314
};

static void mv_irq_clear(struct ata_port *ap);
static u32 mv_scr_read(struct ata_port *ap, unsigned int sc_reg_in);
static void mv_scr_write(struct ata_port *ap, unsigned int sc_reg_in, u32 val);
static void mv_phy_reset(struct ata_port *ap);
315 316 317 318 319
static void mv_host_stop(struct ata_host_set *host_set);
static int mv_port_start(struct ata_port *ap);
static void mv_port_stop(struct ata_port *ap);
static void mv_qc_prep(struct ata_queued_cmd *qc);
static int mv_qc_issue(struct ata_queued_cmd *qc);
320 321
static irqreturn_t mv_interrupt(int irq, void *dev_instance,
				struct pt_regs *regs);
322
static void mv_eng_timeout(struct ata_port *ap);
323 324
static int mv_init_one(struct pci_dev *pdev, const struct pci_device_id *ent);

325 326 327 328 329
static void mv5_phy_errata(struct ata_port *ap);
static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
			   void __iomem *mmio);
static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio);
330 331
static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
static void mv5_reset_bus(struct pci_dev *pdev, void __iomem *mmio);
332 333 334 335 336 337

static void mv6_phy_errata(struct ata_port *ap);
static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
			   void __iomem *mmio);
static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio);
338 339
static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
static void mv_reset_pci_bus(struct pci_dev *pdev, void __iomem *mmio);
340

341
static struct scsi_host_template mv_sht = {
342 343 344 345 346
	.module			= THIS_MODULE,
	.name			= DRV_NAME,
	.ioctl			= ata_scsi_ioctl,
	.queuecommand		= ata_scsi_queuecmd,
	.eh_strategy_handler	= ata_scsi_error,
347
	.can_queue		= MV_USE_Q_DEPTH,
348
	.this_id		= ATA_SHT_THIS_ID,
349
	.sg_tablesize		= MV_MAX_SG_CT,
350 351 352
	.max_sectors		= ATA_MAX_SECTORS,
	.cmd_per_lun		= ATA_SHT_CMD_PER_LUN,
	.emulated		= ATA_SHT_EMULATED,
353
	.use_clustering		= ATA_SHT_USE_CLUSTERING,
354 355 356 357 358 359 360
	.proc_name		= DRV_NAME,
	.dma_boundary		= MV_DMA_BOUNDARY,
	.slave_configure	= ata_scsi_slave_config,
	.bios_param		= ata_std_bios_param,
	.ordered_flush		= 1,
};

J
Jeff Garzik 已提交
361
static const struct ata_port_operations mv_ops = {
362 363 364 365 366 367 368 369 370 371
	.port_disable		= ata_port_disable,

	.tf_load		= ata_tf_load,
	.tf_read		= ata_tf_read,
	.check_status		= ata_check_status,
	.exec_command		= ata_exec_command,
	.dev_select		= ata_std_dev_select,

	.phy_reset		= mv_phy_reset,

372 373
	.qc_prep		= mv_qc_prep,
	.qc_issue		= mv_qc_issue,
374

375
	.eng_timeout		= mv_eng_timeout,
376 377 378 379 380 381 382

	.irq_handler		= mv_interrupt,
	.irq_clear		= mv_irq_clear,

	.scr_read		= mv_scr_read,
	.scr_write		= mv_scr_write,

383 384 385
	.port_start		= mv_port_start,
	.port_stop		= mv_port_stop,
	.host_stop		= mv_host_stop,
386 387 388 389 390
};

static struct ata_port_info mv_port_info[] = {
	{  /* chip_504x */
		.sht		= &mv_sht,
391 392 393
		.host_flags	= MV_COMMON_FLAGS,
		.pio_mask	= 0x1f,	/* pio0-4 */
		.udma_mask	= 0,	/* 0x7f (udma0-6 disabled for now) */
394 395 396 397
		.port_ops	= &mv_ops,
	},
	{  /* chip_508x */
		.sht		= &mv_sht,
398 399 400
		.host_flags	= (MV_COMMON_FLAGS | MV_FLAG_DUAL_HC),
		.pio_mask	= 0x1f,	/* pio0-4 */
		.udma_mask	= 0,	/* 0x7f (udma0-6 disabled for now) */
401 402
		.port_ops	= &mv_ops,
	},
403 404 405 406 407 408 409
	{  /* chip_5080 */
		.sht		= &mv_sht,
		.host_flags	= (MV_COMMON_FLAGS | MV_FLAG_DUAL_HC),
		.pio_mask	= 0x1f,	/* pio0-4 */
		.udma_mask	= 0,	/* 0x7f (udma0-6 disabled for now) */
		.port_ops	= &mv_ops,
	},
410 411
	{  /* chip_604x */
		.sht		= &mv_sht,
412 413 414
		.host_flags	= (MV_COMMON_FLAGS | MV_6XXX_FLAGS),
		.pio_mask	= 0x1f,	/* pio0-4 */
		.udma_mask	= 0x7f,	/* udma0-6 */
415 416 417 418
		.port_ops	= &mv_ops,
	},
	{  /* chip_608x */
		.sht		= &mv_sht,
419
		.host_flags	= (MV_COMMON_FLAGS | MV_6XXX_FLAGS |
420 421 422
				   MV_FLAG_DUAL_HC),
		.pio_mask	= 0x1f,	/* pio0-4 */
		.udma_mask	= 0x7f,	/* udma0-6 */
423 424 425 426
		.port_ops	= &mv_ops,
	},
};

427
static const struct pci_device_id mv_pci_tbl[] = {
428
#if 0 /* unusably broken right now */
429 430
	{PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x5040), 0, 0, chip_504x},
	{PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x5041), 0, 0, chip_504x},
431
	{PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x5080), 0, 0, chip_5080},
432
	{PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x5081), 0, 0, chip_508x},
433
#endif
434 435 436 437 438

	{PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x6040), 0, 0, chip_604x},
	{PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x6041), 0, 0, chip_604x},
	{PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x6080), 0, 0, chip_608x},
	{PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x6081), 0, 0, chip_608x},
439 440

	{PCI_DEVICE(PCI_VENDOR_ID_ADAPTEC2, 0x0241), 0, 0, chip_604x},
441 442 443 444 445 446 447 448 449 450
	{}			/* terminate list */
};

static struct pci_driver mv_pci_driver = {
	.name			= DRV_NAME,
	.id_table		= mv_pci_tbl,
	.probe			= mv_init_one,
	.remove			= ata_pci_remove_one,
};

451 452 453 454 455
static const struct mv_hw_ops mv5xxx_ops = {
	.phy_errata		= mv5_phy_errata,
	.enable_leds		= mv5_enable_leds,
	.read_preamp		= mv5_read_preamp,
	.reset_hc		= mv5_reset_hc,
456 457
	.reset_flash		= mv5_reset_flash,
	.reset_bus		= mv5_reset_bus,
458 459 460 461 462 463 464
};

static const struct mv_hw_ops mv6xxx_ops = {
	.phy_errata		= mv6_phy_errata,
	.enable_leds		= mv6_enable_leds,
	.read_preamp		= mv6_read_preamp,
	.reset_hc		= mv6_reset_hc,
465 466
	.reset_flash		= mv6_reset_flash,
	.reset_bus		= mv_reset_pci_bus,
467 468
};

469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
/*
 * Functions
 */

static inline void writelfl(unsigned long data, void __iomem *addr)
{
	writel(data, addr);
	(void) readl(addr);	/* flush to avoid PCI posted write */
}

static inline void __iomem *mv_hc_base(void __iomem *base, unsigned int hc)
{
	return (base + MV_SATAHC0_REG_BASE + (hc * MV_SATAHC_REG_SZ));
}

static inline void __iomem *mv_port_base(void __iomem *base, unsigned int port)
{
	return (mv_hc_base(base, port >> MV_PORT_HC_SHIFT) +
487
		MV_SATAHC_ARBTR_REG_SZ +
488 489 490 491 492 493 494 495
		((port & MV_PORT_MASK) * MV_PORT_REG_SZ));
}

static inline void __iomem *mv_ap_base(struct ata_port *ap)
{
	return mv_port_base(ap->host_set->mmio_base, ap->port_no);
}

496
static inline int mv_get_hc_count(unsigned long host_flags)
497
{
498
	return ((host_flags & MV_FLAG_DUAL_HC) ? 2 : 1);
499 500 501
}

static void mv_irq_clear(struct ata_port *ap)
502 503 504
{
}

505 506 507 508 509 510 511 512 513 514 515
/**
 *      mv_start_dma - Enable eDMA engine
 *      @base: port base address
 *      @pp: port private data
 *
 *      Verify the local cache of the eDMA state is accurate with an
 *      assert.
 *
 *      LOCKING:
 *      Inherited from caller.
 */
516
static void mv_start_dma(void __iomem *base, struct mv_port_priv *pp)
517
{
518 519 520 521 522
	if (!(MV_PP_FLAG_EDMA_EN & pp->pp_flags)) {
		writelfl(EDMA_EN, base + EDMA_CMD_OFS);
		pp->pp_flags |= MV_PP_FLAG_EDMA_EN;
	}
	assert(EDMA_EN & readl(base + EDMA_CMD_OFS));
523 524
}

525 526 527 528 529 530 531 532 533 534
/**
 *      mv_stop_dma - Disable eDMA engine
 *      @ap: ATA channel to manipulate
 *
 *      Verify the local cache of the eDMA state is accurate with an
 *      assert.
 *
 *      LOCKING:
 *      Inherited from caller.
 */
535
static void mv_stop_dma(struct ata_port *ap)
536
{
537 538 539 540 541
	void __iomem *port_mmio = mv_ap_base(ap);
	struct mv_port_priv *pp	= ap->private_data;
	u32 reg;
	int i;

542 543
	if (MV_PP_FLAG_EDMA_EN & pp->pp_flags) {
		/* Disable EDMA if active.   The disable bit auto clears.
544 545 546
		 */
		writelfl(EDMA_DS, port_mmio + EDMA_CMD_OFS);
		pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
547 548 549
	} else {
		assert(!(EDMA_EN & readl(port_mmio + EDMA_CMD_OFS)));
  	}
550

551 552 553 554 555 556 557 558 559 560 561
	/* now properly wait for the eDMA to stop */
	for (i = 1000; i > 0; i--) {
		reg = readl(port_mmio + EDMA_CMD_OFS);
		if (!(EDMA_EN & reg)) {
			break;
		}
		udelay(100);
	}

	if (EDMA_EN & reg) {
		printk(KERN_ERR "ata%u: Unable to stop eDMA\n", ap->id);
562
		/* FIXME: Consider doing a reset here to recover */
563
	}
564 565
}

J
Jeff Garzik 已提交
566
#ifdef ATA_DEBUG
567
static void mv_dump_mem(void __iomem *start, unsigned bytes)
568
{
569 570 571 572 573 574 575 576 577 578
	int b, w;
	for (b = 0; b < bytes; ) {
		DPRINTK("%p: ", start + b);
		for (w = 0; b < bytes && w < 4; w++) {
			printk("%08x ",readl(start + b));
			b += sizeof(u32);
		}
		printk("\n");
	}
}
J
Jeff Garzik 已提交
579 580
#endif

581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600
static void mv_dump_pci_cfg(struct pci_dev *pdev, unsigned bytes)
{
#ifdef ATA_DEBUG
	int b, w;
	u32 dw;
	for (b = 0; b < bytes; ) {
		DPRINTK("%02x: ", b);
		for (w = 0; b < bytes && w < 4; w++) {
			(void) pci_read_config_dword(pdev,b,&dw);
			printk("%08x ",dw);
			b += sizeof(u32);
		}
		printk("\n");
	}
#endif
}
static void mv_dump_all_regs(void __iomem *mmio_base, int port,
			     struct pci_dev *pdev)
{
#ifdef ATA_DEBUG
601
	void __iomem *hc_base = mv_hc_base(mmio_base,
602 603 604 605 606 607 608 609 610 611 612 613 614
					   port >> MV_PORT_HC_SHIFT);
	void __iomem *port_base;
	int start_port, num_ports, p, start_hc, num_hcs, hc;

	if (0 > port) {
		start_hc = start_port = 0;
		num_ports = 8;		/* shld be benign for 4 port devs */
		num_hcs = 2;
	} else {
		start_hc = port >> MV_PORT_HC_SHIFT;
		start_port = port;
		num_ports = num_hcs = 1;
	}
615
	DPRINTK("All registers for port(s) %u-%u:\n", start_port,
616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639
		num_ports > 1 ? num_ports - 1 : start_port);

	if (NULL != pdev) {
		DPRINTK("PCI config space regs:\n");
		mv_dump_pci_cfg(pdev, 0x68);
	}
	DPRINTK("PCI regs:\n");
	mv_dump_mem(mmio_base+0xc00, 0x3c);
	mv_dump_mem(mmio_base+0xd00, 0x34);
	mv_dump_mem(mmio_base+0xf00, 0x4);
	mv_dump_mem(mmio_base+0x1d00, 0x6c);
	for (hc = start_hc; hc < start_hc + num_hcs; hc++) {
		hc_base = mv_hc_base(mmio_base, port >> MV_PORT_HC_SHIFT);
		DPRINTK("HC regs (HC %i):\n", hc);
		mv_dump_mem(hc_base, 0x1c);
	}
	for (p = start_port; p < start_port + num_ports; p++) {
		port_base = mv_port_base(mmio_base, p);
		DPRINTK("EDMA regs (port %i):\n",p);
		mv_dump_mem(port_base, 0x54);
		DPRINTK("SATA regs (port %i):\n",p);
		mv_dump_mem(port_base+0x300, 0x60);
	}
#endif
640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681
}

static unsigned int mv_scr_offset(unsigned int sc_reg_in)
{
	unsigned int ofs;

	switch (sc_reg_in) {
	case SCR_STATUS:
	case SCR_CONTROL:
	case SCR_ERROR:
		ofs = SATA_STATUS_OFS + (sc_reg_in * sizeof(u32));
		break;
	case SCR_ACTIVE:
		ofs = SATA_ACTIVE_OFS;   /* active is not with the others */
		break;
	default:
		ofs = 0xffffffffU;
		break;
	}
	return ofs;
}

static u32 mv_scr_read(struct ata_port *ap, unsigned int sc_reg_in)
{
	unsigned int ofs = mv_scr_offset(sc_reg_in);

	if (0xffffffffU != ofs) {
		return readl(mv_ap_base(ap) + ofs);
	} else {
		return (u32) ofs;
	}
}

static void mv_scr_write(struct ata_port *ap, unsigned int sc_reg_in, u32 val)
{
	unsigned int ofs = mv_scr_offset(sc_reg_in);

	if (0xffffffffU != ofs) {
		writelfl(val, mv_ap_base(ap) + ofs);
	}
}

682 683 684 685 686 687 688 689 690 691
/**
 *      mv_host_stop - Host specific cleanup/stop routine.
 *      @host_set: host data structure
 *
 *      Disable ints, cleanup host memory, call general purpose
 *      host_stop.
 *
 *      LOCKING:
 *      Inherited from caller.
 */
692
static void mv_host_stop(struct ata_host_set *host_set)
693
{
694 695 696 697 698 699 700 701 702 703 704 705
	struct mv_host_priv *hpriv = host_set->private_data;
	struct pci_dev *pdev = to_pci_dev(host_set->dev);

	if (hpriv->hp_flags & MV_HP_FLAG_MSI) {
		pci_disable_msi(pdev);
	} else {
		pci_intx(pdev, 0);
	}
	kfree(hpriv);
	ata_host_stop(host_set);
}

706 707 708 709 710
static inline void mv_priv_free(struct mv_port_priv *pp, struct device *dev)
{
	dma_free_coherent(dev, MV_PORT_PRIV_DMA_SZ, pp->crpb, pp->crpb_dma);
}

711 712 713 714 715 716 717 718 719 720
/**
 *      mv_port_start - Port specific init/start routine.
 *      @ap: ATA channel to manipulate
 *
 *      Allocate and point to DMA memory, init port private memory,
 *      zero indices.
 *
 *      LOCKING:
 *      Inherited from caller.
 */
721 722 723 724 725 726 727
static int mv_port_start(struct ata_port *ap)
{
	struct device *dev = ap->host_set->dev;
	struct mv_port_priv *pp;
	void __iomem *port_mmio = mv_ap_base(ap);
	void *mem;
	dma_addr_t mem_dma;
728
	int rc = -ENOMEM;
729 730

	pp = kmalloc(sizeof(*pp), GFP_KERNEL);
731 732
	if (!pp)
		goto err_out;
733 734
	memset(pp, 0, sizeof(*pp));

735
	mem = dma_alloc_coherent(dev, MV_PORT_PRIV_DMA_SZ, &mem_dma,
736
				 GFP_KERNEL);
737 738
	if (!mem)
		goto err_out_pp;
739 740
	memset(mem, 0, MV_PORT_PRIV_DMA_SZ);

741 742 743 744
	rc = ata_pad_alloc(ap, dev);
	if (rc)
		goto err_out_priv;

745
	/* First item in chunk of DMA memory:
746 747 748 749 750 751 752
	 * 32-slot command request table (CRQB), 32 bytes each in size
	 */
	pp->crqb = mem;
	pp->crqb_dma = mem_dma;
	mem += MV_CRQB_Q_SZ;
	mem_dma += MV_CRQB_Q_SZ;

753
	/* Second item:
754 755 756 757 758 759 760 761 762 763 764 765 766
	 * 32-slot command response table (CRPB), 8 bytes each in size
	 */
	pp->crpb = mem;
	pp->crpb_dma = mem_dma;
	mem += MV_CRPB_Q_SZ;
	mem_dma += MV_CRPB_Q_SZ;

	/* Third item:
	 * Table of scatter-gather descriptors (ePRD), 16 bytes each
	 */
	pp->sg_tbl = mem;
	pp->sg_tbl_dma = mem_dma;

767
	writelfl(EDMA_CFG_Q_DEPTH | EDMA_CFG_RD_BRST_EXT |
768 769 770
		 EDMA_CFG_WR_BUFF_LEN, port_mmio + EDMA_CFG_OFS);

	writel((pp->crqb_dma >> 16) >> 16, port_mmio + EDMA_REQ_Q_BASE_HI_OFS);
771
	writelfl(pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK,
772 773 774 775 776 777
		 port_mmio + EDMA_REQ_Q_IN_PTR_OFS);

	writelfl(0, port_mmio + EDMA_REQ_Q_OUT_PTR_OFS);
	writelfl(0, port_mmio + EDMA_RSP_Q_IN_PTR_OFS);

	writel((pp->crpb_dma >> 16) >> 16, port_mmio + EDMA_RSP_Q_BASE_HI_OFS);
778
	writelfl(pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK,
779 780 781 782 783 784 785 786 787 788
		 port_mmio + EDMA_RSP_Q_OUT_PTR_OFS);

	pp->req_producer = pp->rsp_consumer = 0;

	/* Don't turn on EDMA here...do it before DMA commands only.  Else
	 * we'll be unable to send non-data, PIO, etc due to restricted access
	 * to shadow regs.
	 */
	ap->private_data = pp;
	return 0;
789 790 791 792 793 794 795

err_out_priv:
	mv_priv_free(pp, dev);
err_out_pp:
	kfree(pp);
err_out:
	return rc;
796 797
}

798 799 800 801 802 803 804 805 806
/**
 *      mv_port_stop - Port specific cleanup/stop routine.
 *      @ap: ATA channel to manipulate
 *
 *      Stop DMA, cleanup port memory.
 *
 *      LOCKING:
 *      This routine uses the host_set lock to protect the DMA stop.
 */
807 808 809 810
static void mv_port_stop(struct ata_port *ap)
{
	struct device *dev = ap->host_set->dev;
	struct mv_port_priv *pp = ap->private_data;
811
	unsigned long flags;
812

813
	spin_lock_irqsave(&ap->host_set->lock, flags);
814
	mv_stop_dma(ap);
815
	spin_unlock_irqrestore(&ap->host_set->lock, flags);
816 817

	ap->private_data = NULL;
818 819
	ata_pad_free(ap, dev);
	mv_priv_free(pp, dev);
820 821 822
	kfree(pp);
}

823 824 825 826 827 828 829 830 831
/**
 *      mv_fill_sg - Fill out the Marvell ePRD (scatter gather) entries
 *      @qc: queued command whose SG list to source from
 *
 *      Populate the SG list and mark the last entry.
 *
 *      LOCKING:
 *      Inherited from caller.
 */
832 833 834
static void mv_fill_sg(struct ata_queued_cmd *qc)
{
	struct mv_port_priv *pp = qc->ap->private_data;
835 836
	unsigned int i = 0;
	struct scatterlist *sg;
837

838
	ata_for_each_sg(sg, qc) {
839 840 841
		u32 sg_len;
		dma_addr_t addr;

842 843
		addr = sg_dma_address(sg);
		sg_len = sg_dma_len(sg);
844 845 846 847 848

		pp->sg_tbl[i].addr = cpu_to_le32(addr & 0xffffffff);
		pp->sg_tbl[i].addr_hi = cpu_to_le32((addr >> 16) >> 16);
		assert(0 == (sg_len & ~MV_DMA_BOUNDARY));
		pp->sg_tbl[i].flags_size = cpu_to_le32(sg_len);
849 850 851 852
		if (ata_sg_is_last(sg, qc))
			pp->sg_tbl[i].flags_size |= cpu_to_le32(EPRD_FLAG_END_OF_TBL);

		i++;
853 854 855 856 857 858 859 860 861 862 863 864 865 866 867
	}
}

static inline unsigned mv_inc_q_index(unsigned *index)
{
	*index = (*index + 1) & MV_MAX_Q_DEPTH_MASK;
	return *index;
}

static inline void mv_crqb_pack_cmd(u16 *cmdw, u8 data, u8 addr, unsigned last)
{
	*cmdw = data | (addr << CRQB_CMD_ADDR_SHIFT) | CRQB_CMD_CS |
		(last ? CRQB_CMD_LAST : 0);
}

868 869 870 871 872 873 874 875 876 877 878 879
/**
 *      mv_qc_prep - Host specific command preparation.
 *      @qc: queued command to prepare
 *
 *      This routine simply redirects to the general purpose routine
 *      if command is not DMA.  Else, it handles prep of the CRQB
 *      (command request block), does some sanity checking, and calls
 *      the SG load routine.
 *
 *      LOCKING:
 *      Inherited from caller.
 */
880 881 882 883 884 885 886 887 888 889 890
static void mv_qc_prep(struct ata_queued_cmd *qc)
{
	struct ata_port *ap = qc->ap;
	struct mv_port_priv *pp = ap->private_data;
	u16 *cw;
	struct ata_taskfile *tf;
	u16 flags = 0;

 	if (ATA_PROT_DMA != qc->tf.protocol) {
		return;
	}
891

892
	/* the req producer index should be the same as we remember it */
893
	assert(((readl(mv_ap_base(qc->ap) + EDMA_REQ_Q_IN_PTR_OFS) >>
894 895 896 897 898 899 900 901 902 903 904
		 EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK) ==
	       pp->req_producer);

	/* Fill in command request block
	 */
	if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
		flags |= CRQB_FLAG_READ;
	}
	assert(MV_MAX_Q_DEPTH > qc->tag);
	flags |= qc->tag << CRQB_TAG_SHIFT;

905
	pp->crqb[pp->req_producer].sg_addr =
906
		cpu_to_le32(pp->sg_tbl_dma & 0xffffffff);
907
	pp->crqb[pp->req_producer].sg_addr_hi =
908 909 910 911 912 913 914 915 916 917 918
		cpu_to_le32((pp->sg_tbl_dma >> 16) >> 16);
	pp->crqb[pp->req_producer].ctrl_flags = cpu_to_le16(flags);

	cw = &pp->crqb[pp->req_producer].ata_cmd[0];
	tf = &qc->tf;

	/* Sadly, the CRQB cannot accomodate all registers--there are
	 * only 11 bytes...so we must pick and choose required
	 * registers based on the command.  So, we drop feature and
	 * hob_feature for [RW] DMA commands, but they are needed for
	 * NCQ.  NCQ will drop hob_nsect.
919
	 */
920 921 922 923 924 925 926 927 928 929
	switch (tf->command) {
	case ATA_CMD_READ:
	case ATA_CMD_READ_EXT:
	case ATA_CMD_WRITE:
	case ATA_CMD_WRITE_EXT:
		mv_crqb_pack_cmd(cw++, tf->hob_nsect, ATA_REG_NSECT, 0);
		break;
#ifdef LIBATA_NCQ		/* FIXME: remove this line when NCQ added */
	case ATA_CMD_FPDMA_READ:
	case ATA_CMD_FPDMA_WRITE:
930
		mv_crqb_pack_cmd(cw++, tf->hob_feature, ATA_REG_FEATURE, 0);
931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961
		mv_crqb_pack_cmd(cw++, tf->feature, ATA_REG_FEATURE, 0);
		break;
#endif				/* FIXME: remove this line when NCQ added */
	default:
		/* The only other commands EDMA supports in non-queued and
		 * non-NCQ mode are: [RW] STREAM DMA and W DMA FUA EXT, none
		 * of which are defined/used by Linux.  If we get here, this
		 * driver needs work.
		 *
		 * FIXME: modify libata to give qc_prep a return value and
		 * return error here.
		 */
		BUG_ON(tf->command);
		break;
	}
	mv_crqb_pack_cmd(cw++, tf->nsect, ATA_REG_NSECT, 0);
	mv_crqb_pack_cmd(cw++, tf->hob_lbal, ATA_REG_LBAL, 0);
	mv_crqb_pack_cmd(cw++, tf->lbal, ATA_REG_LBAL, 0);
	mv_crqb_pack_cmd(cw++, tf->hob_lbam, ATA_REG_LBAM, 0);
	mv_crqb_pack_cmd(cw++, tf->lbam, ATA_REG_LBAM, 0);
	mv_crqb_pack_cmd(cw++, tf->hob_lbah, ATA_REG_LBAH, 0);
	mv_crqb_pack_cmd(cw++, tf->lbah, ATA_REG_LBAH, 0);
	mv_crqb_pack_cmd(cw++, tf->device, ATA_REG_DEVICE, 0);
	mv_crqb_pack_cmd(cw++, tf->command, ATA_REG_CMD, 1);	/* last */

	if (!(qc->flags & ATA_QCFLAG_DMAMAP)) {
		return;
	}
	mv_fill_sg(qc);
}

962 963 964 965 966 967 968 969 970 971 972 973
/**
 *      mv_qc_issue - Initiate a command to the host
 *      @qc: queued command to start
 *
 *      This routine simply redirects to the general purpose routine
 *      if command is not DMA.  Else, it sanity checks our local
 *      caches of the request producer/consumer indices then enables
 *      DMA and bumps the request producer index.
 *
 *      LOCKING:
 *      Inherited from caller.
 */
974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995
static int mv_qc_issue(struct ata_queued_cmd *qc)
{
	void __iomem *port_mmio = mv_ap_base(qc->ap);
	struct mv_port_priv *pp = qc->ap->private_data;
	u32 in_ptr;

	if (ATA_PROT_DMA != qc->tf.protocol) {
		/* We're about to send a non-EDMA capable command to the
		 * port.  Turn off EDMA so there won't be problems accessing
		 * shadow block, etc registers.
		 */
		mv_stop_dma(qc->ap);
		return ata_qc_issue_prot(qc);
	}

	in_ptr = readl(port_mmio + EDMA_REQ_Q_IN_PTR_OFS);

	/* the req producer index should be the same as we remember it */
	assert(((in_ptr >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK) ==
	       pp->req_producer);
	/* until we do queuing, the queue should be empty at this point */
	assert(((in_ptr >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK) ==
996
	       ((readl(port_mmio + EDMA_REQ_Q_OUT_PTR_OFS) >>
997 998 999 1000
		 EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK));

	mv_inc_q_index(&pp->req_producer);	/* now incr producer index */

1001
	mv_start_dma(port_mmio, pp);
1002 1003 1004 1005 1006 1007 1008 1009 1010

	/* and write the request in pointer to kick the EDMA to life */
	in_ptr &= EDMA_REQ_Q_BASE_LO_MASK;
	in_ptr |= pp->req_producer << EDMA_REQ_Q_PTR_SHIFT;
	writelfl(in_ptr, port_mmio + EDMA_REQ_Q_IN_PTR_OFS);

	return 0;
}

1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
/**
 *      mv_get_crpb_status - get status from most recently completed cmd
 *      @ap: ATA channel to manipulate
 *
 *      This routine is for use when the port is in DMA mode, when it
 *      will be using the CRPB (command response block) method of
 *      returning command completion information.  We assert indices
 *      are good, grab status, and bump the response consumer index to
 *      prove that we're up to date.
 *
 *      LOCKING:
 *      Inherited from caller.
 */
1024 1025 1026 1027 1028 1029 1030 1031 1032
static u8 mv_get_crpb_status(struct ata_port *ap)
{
	void __iomem *port_mmio = mv_ap_base(ap);
	struct mv_port_priv *pp = ap->private_data;
	u32 out_ptr;

	out_ptr = readl(port_mmio + EDMA_RSP_Q_OUT_PTR_OFS);

	/* the response consumer index should be the same as we remember it */
1033
	assert(((out_ptr >> EDMA_RSP_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK) ==
1034 1035 1036 1037
	       pp->rsp_consumer);

	/* increment our consumer index... */
	pp->rsp_consumer = mv_inc_q_index(&pp->rsp_consumer);
1038

1039
	/* and, until we do NCQ, there should only be 1 CRPB waiting */
1040 1041
	assert(((readl(port_mmio + EDMA_RSP_Q_IN_PTR_OFS) >>
		 EDMA_RSP_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK) ==
1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052
	       pp->rsp_consumer);

	/* write out our inc'd consumer index so EDMA knows we're caught up */
	out_ptr &= EDMA_RSP_Q_BASE_LO_MASK;
	out_ptr |= pp->rsp_consumer << EDMA_RSP_Q_PTR_SHIFT;
	writelfl(out_ptr, port_mmio + EDMA_RSP_Q_OUT_PTR_OFS);

	/* Return ATA status register for completed CRPB */
	return (pp->crpb[pp->rsp_consumer].flags >> CRPB_FLAG_STATUS_SHIFT);
}

1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
/**
 *      mv_err_intr - Handle error interrupts on the port
 *      @ap: ATA channel to manipulate
 *
 *      In most cases, just clear the interrupt and move on.  However,
 *      some cases require an eDMA reset, which is done right before
 *      the COMRESET in mv_phy_reset().  The SERR case requires a
 *      clear of pending errors in the SATA SERROR register.  Finally,
 *      if the port disabled DMA, update our cached copy to match.
 *
 *      LOCKING:
 *      Inherited from caller.
 */
1066 1067 1068 1069
static void mv_err_intr(struct ata_port *ap)
{
	void __iomem *port_mmio = mv_ap_base(ap);
	u32 edma_err_cause, serr = 0;
1070 1071 1072 1073 1074 1075 1076

	edma_err_cause = readl(port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);

	if (EDMA_ERR_SERR & edma_err_cause) {
		serr = scr_read(ap, SCR_ERROR);
		scr_write_flush(ap, SCR_ERROR, serr);
	}
1077 1078 1079 1080 1081 1082
	if (EDMA_ERR_SELF_DIS & edma_err_cause) {
		struct mv_port_priv *pp	= ap->private_data;
		pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
	}
	DPRINTK(KERN_ERR "ata%u: port error; EDMA err cause: 0x%08x "
		"SERR: 0x%08x\n", ap->id, edma_err_cause, serr);
1083 1084 1085 1086 1087 1088 1089 1090 1091 1092

	/* Clear EDMA now that SERR cleanup done */
	writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);

	/* check for fatal here and recover if needed */
	if (EDMA_ERR_FATAL & edma_err_cause) {
		mv_phy_reset(ap);
	}
}

1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108
/**
 *      mv_host_intr - Handle all interrupts on the given host controller
 *      @host_set: host specific structure
 *      @relevant: port error bits relevant to this host controller
 *      @hc: which host controller we're to look at
 *
 *      Read then write clear the HC interrupt status then walk each
 *      port connected to the HC and see if it needs servicing.  Port
 *      success ints are reported in the HC interrupt status reg, the
 *      port error ints are reported in the higher level main
 *      interrupt status register and thus are passed in via the
 *      'relevant' argument.
 *
 *      LOCKING:
 *      Inherited from caller.
 */
1109 1110 1111 1112 1113 1114 1115 1116
static void mv_host_intr(struct ata_host_set *host_set, u32 relevant,
			 unsigned int hc)
{
	void __iomem *mmio = host_set->mmio_base;
	void __iomem *hc_mmio = mv_hc_base(mmio, hc);
	struct ata_port *ap;
	struct ata_queued_cmd *qc;
	u32 hc_irq_cause;
1117
	int shift, port, port0, hard_port, handled;
1118
	unsigned int err_mask;
1119
	u8 ata_status = 0;
1120 1121 1122 1123 1124 1125 1126 1127 1128 1129

	if (hc == 0) {
		port0 = 0;
	} else {
		port0 = MV_PORTS_PER_HC;
	}

	/* we'll need the HC success int register in most cases */
	hc_irq_cause = readl(hc_mmio + HC_IRQ_CAUSE_OFS);
	if (hc_irq_cause) {
1130
		writelfl(~hc_irq_cause, hc_mmio + HC_IRQ_CAUSE_OFS);
1131 1132 1133 1134 1135 1136 1137 1138
	}

	VPRINTK("ENTER, hc%u relevant=0x%08x HC IRQ cause=0x%08x\n",
		hc,relevant,hc_irq_cause);

	for (port = port0; port < port0 + MV_PORTS_PER_HC; port++) {
		ap = host_set->ports[port];
		hard_port = port & MV_PORT_MASK;	/* range 0-3 */
1139
		handled = 0;	/* ensure ata_status is set if handled++ */
1140

1141 1142 1143 1144 1145 1146 1147
		if ((CRPB_DMA_DONE << hard_port) & hc_irq_cause) {
			/* new CRPB on the queue; just one at a time until NCQ
			 */
			ata_status = mv_get_crpb_status(ap);
			handled++;
		} else if ((DEV_IRQ << hard_port) & hc_irq_cause) {
			/* received ATA IRQ; read the status reg to clear INTRQ
1148 1149 1150
			 */
			ata_status = readb((void __iomem *)
					   ap->ioaddr.status_addr);
1151
			handled++;
1152 1153
		}

1154 1155
		err_mask = ac_err_mask(ata_status);

1156
		shift = port << 1;		/* (port * 2) */
1157 1158 1159 1160 1161
		if (port >= MV_PORTS_PER_HC) {
			shift++;	/* skip bit 8 in the HC Main IRQ reg */
		}
		if ((PORT0_ERR << shift) & relevant) {
			mv_err_intr(ap);
1162
			err_mask |= AC_ERR_OTHER;
1163
			handled++;
1164
		}
1165

1166
		if (handled && ap) {
1167 1168 1169 1170 1171
			qc = ata_qc_from_tag(ap, ap->active_tag);
			if (NULL != qc) {
				VPRINTK("port %u IRQ found for qc, "
					"ata_status 0x%x\n", port,ata_status);
				/* mark qc status appropriately */
1172
				ata_qc_complete(qc, err_mask);
1173 1174 1175 1176 1177 1178
			}
		}
	}
	VPRINTK("EXIT\n");
}

1179
/**
1180
 *      mv_interrupt -
1181 1182 1183 1184 1185 1186 1187 1188 1189
 *      @irq: unused
 *      @dev_instance: private data; in this case the host structure
 *      @regs: unused
 *
 *      Read the read only register to determine if any host
 *      controllers have pending interrupts.  If so, call lower level
 *      routine to handle.  Also check for PCI errors which are only
 *      reported here.
 *
1190
 *      LOCKING:
1191 1192 1193
 *      This routine holds the host_set lock while processing pending
 *      interrupts.
 */
1194 1195 1196 1197 1198
static irqreturn_t mv_interrupt(int irq, void *dev_instance,
				struct pt_regs *regs)
{
	struct ata_host_set *host_set = dev_instance;
	unsigned int hc, handled = 0, n_hcs;
1199
	void __iomem *mmio = host_set->mmio_base;
1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210
	u32 irq_stat;

	irq_stat = readl(mmio + HC_MAIN_IRQ_CAUSE_OFS);

	/* check the cases where we either have nothing pending or have read
	 * a bogus register value which can indicate HW removal or PCI fault
	 */
	if (!irq_stat || (0xffffffffU == irq_stat)) {
		return IRQ_NONE;
	}

1211
	n_hcs = mv_get_hc_count(host_set->ports[0]->flags);
1212 1213 1214 1215 1216 1217
	spin_lock(&host_set->lock);

	for (hc = 0; hc < n_hcs; hc++) {
		u32 relevant = irq_stat & (HC0_IRQ_PEND << (hc * HC_SHIFT));
		if (relevant) {
			mv_host_intr(host_set, relevant, hc);
1218
			handled++;
1219 1220 1221
		}
	}
	if (PCI_ERR & irq_stat) {
1222 1223 1224
		printk(KERN_ERR DRV_NAME ": PCI ERROR; PCI IRQ cause=0x%08x\n",
		       readl(mmio + PCI_IRQ_CAUSE_OFS));

1225
		DPRINTK("All regs @ PCI error\n");
1226
		mv_dump_all_regs(mmio, -1, to_pci_dev(host_set->dev));
1227

1228 1229 1230
		writelfl(0, mmio + PCI_IRQ_CAUSE_OFS);
		handled++;
	}
1231 1232 1233 1234 1235
	spin_unlock(&host_set->lock);

	return IRQ_RETVAL(handled);
}

1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258
static void mv5_reset_bus(struct pci_dev *pdev, void __iomem *mmio)
{
	u8 rev_id;
	int early_5080;

	pci_read_config_byte(pdev, PCI_REVISION_ID, &rev_id);

	early_5080 = (pdev->device == 0x5080) && (rev_id == 0);

	if (!early_5080) {
		u32 tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
		tmp |= (1 << 0);
		writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
	}

	mv_reset_pci_bus(pdev, mmio);
}

static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
{
	writel(0x0fcfffff, mmio + MV_FLASH_CTL);
}

1259
static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
J
Jeff Garzik 已提交
1260 1261 1262 1263 1264
			   void __iomem *mmio)
{
	/* FIXME */
}

1265
static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
J
Jeff Garzik 已提交
1266
{
1267 1268 1269 1270 1271 1272 1273 1274 1275
	u32 tmp;

	writel(0, mmio + MV_GPIO_PORT_CTL);

	/* FIXME: handle MV_HP_ERRATA_50XXB2 errata */

	tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
	tmp |= ~(1 << 0);
	writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
J
Jeff Garzik 已提交
1276 1277
}

1278
static void mv5_phy_errata(struct ata_port *ap)
1279 1280 1281 1282
{
	/* FIXME */
}

1283 1284 1285 1286 1287 1288
static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio)
{
	/* FIXME */
	return 1;
}

J
Jeff Garzik 已提交
1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388
#undef ZERO
#define ZERO(reg) writel(0, mmio + (reg))
static void mv_reset_pci_bus(struct pci_dev *pdev, void __iomem *mmio)
{
	u32 tmp;

	tmp = readl(mmio + MV_PCI_MODE);
	tmp &= 0xff00ffff;
	writel(tmp, mmio + MV_PCI_MODE);

	ZERO(MV_PCI_DISC_TIMER);
	ZERO(MV_PCI_MSI_TRIGGER);
	writel(0x000100ff, mmio + MV_PCI_XBAR_TMOUT);
	ZERO(HC_MAIN_IRQ_MASK_OFS);
	ZERO(MV_PCI_SERR_MASK);
	ZERO(PCI_IRQ_CAUSE_OFS);
	ZERO(PCI_IRQ_MASK_OFS);
	ZERO(MV_PCI_ERR_LOW_ADDRESS);
	ZERO(MV_PCI_ERR_HIGH_ADDRESS);
	ZERO(MV_PCI_ERR_ATTRIBUTE);
	ZERO(MV_PCI_ERR_COMMAND);
}
#undef ZERO

static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
{
	u32 tmp;

	mv5_reset_flash(hpriv, mmio);

	tmp = readl(mmio + MV_GPIO_PORT_CTL);
	tmp &= 0x3;
	tmp |= (1 << 5) | (1 << 6);
	writel(tmp, mmio + MV_GPIO_PORT_CTL);
}

/**
 *      mv6_reset_hc - Perform the 6xxx global soft reset
 *      @mmio: base address of the HBA
 *
 *      This routine only applies to 6xxx parts.
 *
 *      LOCKING:
 *      Inherited from caller.
 */
static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio)
{
	void __iomem *reg = mmio + PCI_MAIN_CMD_STS_OFS;
	int i, rc = 0;
	u32 t;

	/* Following procedure defined in PCI "main command and status
	 * register" table.
	 */
	t = readl(reg);
	writel(t | STOP_PCI_MASTER, reg);

	for (i = 0; i < 1000; i++) {
		udelay(1);
		t = readl(reg);
		if (PCI_MASTER_EMPTY & t) {
			break;
		}
	}
	if (!(PCI_MASTER_EMPTY & t)) {
		printk(KERN_ERR DRV_NAME ": PCI master won't flush\n");
		rc = 1;
		goto done;
	}

	/* set reset */
	i = 5;
	do {
		writel(t | GLOB_SFT_RST, reg);
		t = readl(reg);
		udelay(1);
	} while (!(GLOB_SFT_RST & t) && (i-- > 0));

	if (!(GLOB_SFT_RST & t)) {
		printk(KERN_ERR DRV_NAME ": can't set global reset\n");
		rc = 1;
		goto done;
	}

	/* clear reset and *reenable the PCI master* (not mentioned in spec) */
	i = 5;
	do {
		writel(t & ~(GLOB_SFT_RST | STOP_PCI_MASTER), reg);
		t = readl(reg);
		udelay(1);
	} while ((GLOB_SFT_RST & t) && (i-- > 0));

	if (GLOB_SFT_RST & t) {
		printk(KERN_ERR DRV_NAME ": can't clear global reset\n");
		rc = 1;
	}
done:
	return rc;
}

1389
static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
J
Jeff Garzik 已提交
1390 1391 1392 1393 1394 1395 1396
			   void __iomem *mmio)
{
	void __iomem *port_mmio;
	u32 tmp;

	tmp = readl(mmio + MV_RESET_CFG);
	if ((tmp & (1 << 0)) == 0) {
1397
		hpriv->signal[idx].amps = 0x7 << 8;
J
Jeff Garzik 已提交
1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408
		hpriv->signal[idx].pre = 0x1 << 5;
		return;
	}

	port_mmio = mv_port_base(mmio, idx);
	tmp = readl(port_mmio + PHY_MODE2);

	hpriv->signal[idx].amps = tmp & 0x700;	/* bits 10:8 */
	hpriv->signal[idx].pre = tmp & 0xe0;	/* bits 7:5 */
}

1409
static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
J
Jeff Garzik 已提交
1410
{
1411
	writel(0x00000060, mmio + MV_GPIO_PORT_CTL);
J
Jeff Garzik 已提交
1412 1413
}

1414
static void mv6_phy_errata(struct ata_port *ap)
1415 1416 1417 1418
{
	struct mv_host_priv *hpriv = ap->host_set->private_data;
	u32 hp_flags = hpriv->hp_flags;
	void __iomem *port_mmio = mv_ap_base(ap);
1419 1420
	int fix_phy_mode2 =
		hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
1421
	int fix_phy_mode4 =
1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444
		hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
	u32 m2, tmp;

	if (fix_phy_mode2) {
		m2 = readl(port_mmio + PHY_MODE2);
		m2 &= ~(1 << 16);
		m2 |= (1 << 31);
		writel(m2, port_mmio + PHY_MODE2);

		udelay(200);

		m2 = readl(port_mmio + PHY_MODE2);
		m2 &= ~((1 << 16) | (1 << 31));
		writel(m2, port_mmio + PHY_MODE2);

		udelay(200);
	}

	/* who knows what this magic does */
	tmp = readl(port_mmio + PHY_MODE3);
	tmp &= ~0x7F800000;
	tmp |= 0x2A800000;
	writel(tmp, port_mmio + PHY_MODE3);
1445 1446

	if (fix_phy_mode4) {
1447
		u32 m4;
1448 1449

		m4 = readl(port_mmio + PHY_MODE4);
1450 1451 1452

		if (hp_flags & MV_HP_ERRATA_60X1B2)
			tmp = readl(port_mmio + 0x310);
1453 1454 1455 1456

		m4 = (m4 & ~(1 << 1)) | (1 << 0);

		writel(m4, port_mmio + PHY_MODE4);
1457 1458 1459

		if (hp_flags & MV_HP_ERRATA_60X1B2)
			writel(tmp, port_mmio + 0x310);
1460 1461 1462 1463 1464 1465 1466 1467
	}

	/* Revert values of pre-emphasis and signal amps to the saved ones */
	m2 = readl(port_mmio + PHY_MODE2);

	m2 &= ~MV_M2_PREAMP_MASK;
	m2 |= hpriv->signal[ap->port_no].amps;
	m2 |= hpriv->signal[ap->port_no].pre;
1468
	m2 &= ~(1 << 16);
1469 1470 1471 1472

	writel(m2, port_mmio + PHY_MODE2);
}

1473 1474 1475 1476 1477 1478 1479 1480 1481 1482
/**
 *      mv_phy_reset - Perform eDMA reset followed by COMRESET
 *      @ap: ATA channel to manipulate
 *
 *      Part of this is taken from __sata_phy_reset and modified to
 *      not sleep since this routine gets called from interrupt level.
 *
 *      LOCKING:
 *      Inherited from caller.  This is coded to safe to call at
 *      interrupt level, i.e. it does not sleep.
1483
 */
1484 1485
static void mv_phy_reset(struct ata_port *ap)
{
J
Jeff Garzik 已提交
1486
	struct mv_port_priv *pp	= ap->private_data;
1487
	struct mv_host_priv *hpriv = ap->host_set->private_data;
1488 1489 1490
	void __iomem *port_mmio = mv_ap_base(ap);
	struct ata_taskfile tf;
	struct ata_device *dev = &ap->device[0];
1491
	unsigned long timeout;
1492 1493 1494

	VPRINTK("ENTER, port %u, mmio 0x%p\n", ap->port_no, port_mmio);

1495
	mv_stop_dma(ap);
1496

1497
	writelfl(ATA_RST, port_mmio + EDMA_CMD_OFS);
1498 1499 1500 1501 1502 1503 1504

	if (IS_60XX(hpriv)) {
		u32 ifctl = readl(port_mmio + SATA_INTERFACE_CTL);
		ifctl |= (1 << 12) | (1 << 7);
		writelfl(ifctl, port_mmio + SATA_INTERFACE_CTL);
	}

1505 1506 1507 1508 1509
	udelay(25);		/* allow reset propagation */

	/* Spec never mentions clearing the bit.  Marvell's driver does
	 * clear the bit, however.
	 */
1510
	writelfl(0, port_mmio + EDMA_CMD_OFS);
1511

1512
	hpriv->ops->phy_errata(ap);
1513

J
Jeff Garzik 已提交
1514
	DPRINTK("S-regs after ATA_RST: SStat 0x%08x SErr 0x%08x "
1515 1516
		"SCtrl 0x%08x\n", mv_scr_read(ap, SCR_STATUS),
		mv_scr_read(ap, SCR_ERROR), mv_scr_read(ap, SCR_CONTROL));
1517 1518

	/* proceed to init communications via the scr_control reg */
1519 1520 1521 1522 1523 1524 1525 1526 1527
	scr_write_flush(ap, SCR_CONTROL, 0x301);
	mdelay(1);
	scr_write_flush(ap, SCR_CONTROL, 0x300);
	timeout = jiffies + (HZ * 1);
	do {
		mdelay(10);
		if ((scr_read(ap, SCR_STATUS) & 0xf) != 1)
			break;
	} while (time_before(jiffies, timeout));
1528

J
Jeff Garzik 已提交
1529 1530 1531
	mv_scr_write(ap, SCR_ERROR, mv_scr_read(ap, SCR_ERROR));

	DPRINTK("S-regs after PHY wake: SStat 0x%08x SErr 0x%08x "
1532 1533 1534 1535 1536 1537 1538 1539 1540
		"SCtrl 0x%08x\n", mv_scr_read(ap, SCR_STATUS),
		mv_scr_read(ap, SCR_ERROR), mv_scr_read(ap, SCR_CONTROL));

	if (sata_dev_present(ap)) {
		ata_port_probe(ap);
	} else {
		printk(KERN_INFO "ata%u: no device found (phy stat %08x)\n",
		       ap->id, scr_read(ap, SCR_STATUS));
		ata_port_disable(ap);
1541 1542
		return;
	}
1543
	ap->cbl = ATA_CBL_SATA;
1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554

	tf.lbah = readb((void __iomem *) ap->ioaddr.lbah_addr);
	tf.lbam = readb((void __iomem *) ap->ioaddr.lbam_addr);
	tf.lbal = readb((void __iomem *) ap->ioaddr.lbal_addr);
	tf.nsect = readb((void __iomem *) ap->ioaddr.nsect_addr);

	dev->class = ata_dev_classify(&tf);
	if (!ata_dev_present(dev)) {
		VPRINTK("Port disabled post-sig: No device present.\n");
		ata_port_disable(ap);
	}
J
Jeff Garzik 已提交
1555 1556 1557 1558 1559

	writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);

	pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;

1560
	VPRINTK("EXIT\n");
1561 1562
}

1563 1564 1565 1566 1567 1568 1569 1570 1571 1572
/**
 *      mv_eng_timeout - Routine called by libata when SCSI times out I/O
 *      @ap: ATA channel to manipulate
 *
 *      Intent is to clear all pending error conditions, reset the
 *      chip/bus, fail the command, and move on.
 *
 *      LOCKING:
 *      This routine holds the host_set lock while failing the command.
 */
1573 1574 1575 1576 1577 1578 1579
static void mv_eng_timeout(struct ata_port *ap)
{
	struct ata_queued_cmd *qc;
	unsigned long flags;

	printk(KERN_ERR "ata%u: Entering mv_eng_timeout\n",ap->id);
	DPRINTK("All regs @ start of eng_timeout\n");
1580
	mv_dump_all_regs(ap->host_set->mmio_base, ap->port_no,
1581 1582 1583 1584
			 to_pci_dev(ap->host_set->dev));

	qc = ata_qc_from_tag(ap, ap->active_tag);
        printk(KERN_ERR "mmio_base %p ap %p qc %p scsi_cmnd %p &cmnd %p\n",
1585
	       ap->host_set->mmio_base, ap, qc, qc->scsicmd,
1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602
	       &qc->scsicmd->cmnd);

	mv_err_intr(ap);
	mv_phy_reset(ap);

	if (!qc) {
		printk(KERN_ERR "ata%u: BUG: timeout without command\n",
		       ap->id);
	} else {
		/* hack alert!  We cannot use the supplied completion
	 	 * function from inside the ->eh_strategy_handler() thread.
	 	 * libata is the only user of ->eh_strategy_handler() in
	 	 * any kernel, so the default scsi_done() assumes it is
	 	 * not being called from the SCSI EH.
	 	 */
		spin_lock_irqsave(&ap->host_set->lock, flags);
		qc->scsidone = scsi_finish_command;
1603
		ata_qc_complete(qc, AC_ERR_OTHER);
1604 1605 1606 1607
		spin_unlock_irqrestore(&ap->host_set->lock, flags);
	}
}

1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619
/**
 *      mv_port_init - Perform some early initialization on a single port.
 *      @port: libata data structure storing shadow register addresses
 *      @port_mmio: base address of the port
 *
 *      Initialize shadow register mmio addresses, clear outstanding
 *      interrupts on the port, and unmask interrupts for the future
 *      start of the port.
 *
 *      LOCKING:
 *      Inherited from caller.
 */
1620
static void mv_port_init(struct ata_ioports *port,  void __iomem *port_mmio)
1621
{
1622 1623 1624
	unsigned long shd_base = (unsigned long) port_mmio + SHD_BLK_OFS;
	unsigned serr_ofs;

1625
	/* PIO related setup
1626 1627
	 */
	port->data_addr = shd_base + (sizeof(u32) * ATA_REG_DATA);
1628
	port->error_addr =
1629 1630 1631 1632 1633 1634
		port->feature_addr = shd_base + (sizeof(u32) * ATA_REG_ERR);
	port->nsect_addr = shd_base + (sizeof(u32) * ATA_REG_NSECT);
	port->lbal_addr = shd_base + (sizeof(u32) * ATA_REG_LBAL);
	port->lbam_addr = shd_base + (sizeof(u32) * ATA_REG_LBAM);
	port->lbah_addr = shd_base + (sizeof(u32) * ATA_REG_LBAH);
	port->device_addr = shd_base + (sizeof(u32) * ATA_REG_DEVICE);
1635
	port->status_addr =
1636 1637 1638 1639 1640
		port->command_addr = shd_base + (sizeof(u32) * ATA_REG_STATUS);
	/* special case: control/altstatus doesn't have ATA_REG_ address */
	port->altstatus_addr = port->ctl_addr = shd_base + SHD_CTL_AST_OFS;

	/* unused: */
1641 1642
	port->cmd_addr = port->bmdma_addr = port->scr_addr = 0;

1643 1644 1645 1646 1647
	/* Clear any currently outstanding port interrupt conditions */
	serr_ofs = mv_scr_offset(SCR_ERROR);
	writelfl(readl(port_mmio + serr_ofs), port_mmio + serr_ofs);
	writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);

1648
	/* unmask all EDMA error interrupts */
1649
	writelfl(~0, port_mmio + EDMA_ERR_IRQ_MASK_OFS);
1650

1651
	VPRINTK("EDMA cfg=0x%08x EDMA IRQ err cause/mask=0x%08x/0x%08x\n",
1652 1653 1654
		readl(port_mmio + EDMA_CFG_OFS),
		readl(port_mmio + EDMA_ERR_IRQ_CAUSE_OFS),
		readl(port_mmio + EDMA_ERR_IRQ_MASK_OFS));
1655 1656
}

1657
static int mv_chip_id(struct pci_dev *pdev, struct mv_host_priv *hpriv,
1658
		      unsigned int board_idx)
1659 1660 1661 1662 1663 1664 1665
{
	u8 rev_id;
	u32 hp_flags = hpriv->hp_flags;

	pci_read_config_byte(pdev, PCI_REVISION_ID, &rev_id);

	switch(board_idx) {
1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684
	case chip_5080:
		hpriv->ops = &mv5xxx_ops;
		hp_flags |= MV_HP_50XX;

		switch (rev_id) {
		case 0x1:
			hp_flags |= MV_HP_ERRATA_50XXB0;
			break;
		case 0x3:
			hp_flags |= MV_HP_ERRATA_50XXB2;
			break;
		default:
			dev_printk(KERN_WARNING, &pdev->dev,
			   "Applying 50XXB2 workarounds to unknown rev\n");
			hp_flags |= MV_HP_ERRATA_50XXB2;
			break;
		}
		break;

1685 1686
	case chip_504x:
	case chip_508x:
1687
		hpriv->ops = &mv5xxx_ops;
1688 1689
		hp_flags |= MV_HP_50XX;

1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701
		switch (rev_id) {
		case 0x0:
			hp_flags |= MV_HP_ERRATA_50XXB0;
			break;
		case 0x3:
			hp_flags |= MV_HP_ERRATA_50XXB2;
			break;
		default:
			dev_printk(KERN_WARNING, &pdev->dev,
			   "Applying B2 workarounds to unknown rev\n");
			hp_flags |= MV_HP_ERRATA_50XXB2;
			break;
1702 1703 1704 1705 1706
		}
		break;

	case chip_604x:
	case chip_608x:
1707 1708
		hpriv->ops = &mv6xxx_ops;

1709
		switch (rev_id) {
1710 1711 1712 1713 1714
		case 0x7:
			hp_flags |= MV_HP_ERRATA_60X1B2;
			break;
		case 0x9:
			hp_flags |= MV_HP_ERRATA_60X1C0;
1715 1716 1717
			break;
		default:
			dev_printk(KERN_WARNING, &pdev->dev,
1718 1719
				   "Applying B2 workarounds to unknown rev\n");
			hp_flags |= MV_HP_ERRATA_60X1B2;
1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733
			break;
		}
		break;

	default:
		printk(KERN_ERR DRV_NAME ": BUG: invalid board index %u\n", board_idx);
		return 1;
	}

	hpriv->hp_flags = hp_flags;

	return 0;
}

1734
/**
1735
 *      mv_init_host - Perform some early initialization of the host.
1736
 *	@pdev: host PCI device
1737 1738 1739 1740 1741 1742 1743 1744
 *      @probe_ent: early data struct representing the host
 *
 *      If possible, do an early global reset of the host.  Then do
 *      our port init and clear/unmask all/relevant host interrupts.
 *
 *      LOCKING:
 *      Inherited from caller.
 */
1745
static int mv_init_host(struct pci_dev *pdev, struct ata_probe_ent *probe_ent,
1746
			unsigned int board_idx)
1747 1748 1749 1750
{
	int rc = 0, n_hc, port, hc;
	void __iomem *mmio = probe_ent->mmio_base;
	void __iomem *port_mmio;
1751 1752
	struct mv_host_priv *hpriv = probe_ent->private_data;

1753 1754 1755 1756
	/* global interrupt mask */
	writel(0, mmio + HC_MAIN_IRQ_MASK_OFS);

	rc = mv_chip_id(pdev, hpriv, board_idx);
1757 1758 1759 1760 1761 1762
	if (rc)
		goto done;

	n_hc = mv_get_hc_count(probe_ent->host_flags);
	probe_ent->n_ports = MV_PORTS_PER_HC * n_hc;

1763 1764
	for (port = 0; port < probe_ent->n_ports; port++)
		hpriv->ops->read_preamp(hpriv, port, mmio);
1765

1766 1767
	rc = hpriv->ops->reset_hc(hpriv, mmio);
	if (rc)
1768 1769
		goto done;

1770 1771
	hpriv->ops->reset_flash(hpriv, mmio);
	hpriv->ops->reset_bus(pdev, mmio);
1772
	hpriv->ops->enable_leds(hpriv, mmio);
1773 1774 1775

	for (port = 0; port < probe_ent->n_ports; port++) {
		port_mmio = mv_port_base(mmio, port);
1776
		mv_port_init(&probe_ent->port[port], port_mmio);
1777 1778 1779
	}

	for (hc = 0; hc < n_hc; hc++) {
1780 1781 1782 1783 1784 1785 1786 1787 1788
		void __iomem *hc_mmio = mv_hc_base(mmio, hc);

		VPRINTK("HC%i: HC config=0x%08x HC IRQ cause "
			"(before clear)=0x%08x\n", hc,
			readl(hc_mmio + HC_CFG_OFS),
			readl(hc_mmio + HC_IRQ_CAUSE_OFS));

		/* Clear any currently outstanding hc interrupt conditions */
		writelfl(0, hc_mmio + HC_IRQ_CAUSE_OFS);
1789 1790
	}

1791 1792 1793 1794 1795 1796
	/* Clear any currently outstanding host interrupt conditions */
	writelfl(0, mmio + PCI_IRQ_CAUSE_OFS);

	/* and unmask interrupt generation for host regs */
	writelfl(PCI_UNMASK_ALL_IRQS, mmio + PCI_IRQ_MASK_OFS);
	writelfl(~HC_MAIN_MASKED_IRQS, mmio + HC_MAIN_IRQ_MASK_OFS);
1797 1798

	VPRINTK("HC MAIN IRQ cause/mask=0x%08x/0x%08x "
1799
		"PCI int cause/mask=0x%08x/0x%08x\n",
1800 1801 1802 1803
		readl(mmio + HC_MAIN_IRQ_CAUSE_OFS),
		readl(mmio + HC_MAIN_IRQ_MASK_OFS),
		readl(mmio + PCI_IRQ_CAUSE_OFS),
		readl(mmio + PCI_IRQ_MASK_OFS));
1804

1805
done:
1806 1807 1808
	return rc;
}

1809 1810 1811 1812 1813 1814 1815 1816 1817
/**
 *      mv_print_info - Dump key info to kernel log for perusal.
 *      @probe_ent: early data struct representing the host
 *
 *      FIXME: complete this.
 *
 *      LOCKING:
 *      Inherited from caller.
 */
1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837
static void mv_print_info(struct ata_probe_ent *probe_ent)
{
	struct pci_dev *pdev = to_pci_dev(probe_ent->dev);
	struct mv_host_priv *hpriv = probe_ent->private_data;
	u8 rev_id, scc;
	const char *scc_s;

	/* Use this to determine the HW stepping of the chip so we know
	 * what errata to workaround
	 */
	pci_read_config_byte(pdev, PCI_REVISION_ID, &rev_id);

	pci_read_config_byte(pdev, PCI_CLASS_DEVICE, &scc);
	if (scc == 0)
		scc_s = "SCSI";
	else if (scc == 0x01)
		scc_s = "RAID";
	else
		scc_s = "unknown";

1838 1839
	dev_printk(KERN_INFO, &pdev->dev,
	       "%u slots %u ports %s mode IRQ via %s\n",
1840
	       (unsigned)MV_MAX_Q_DEPTH, probe_ent->n_ports,
1841 1842 1843
	       scc_s, (MV_HP_FLAG_MSI & hpriv->hp_flags) ? "MSI" : "INTx");
}

1844 1845 1846 1847 1848 1849 1850 1851
/**
 *      mv_init_one - handle a positive probe of a Marvell host
 *      @pdev: PCI device found
 *      @ent: PCI device ID entry for the matched host
 *
 *      LOCKING:
 *      Inherited from caller.
 */
1852 1853 1854 1855 1856 1857 1858
static int mv_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
{
	static int printed_version = 0;
	struct ata_probe_ent *probe_ent = NULL;
	struct mv_host_priv *hpriv;
	unsigned int board_idx = (unsigned int)ent->driver_data;
	void __iomem *mmio_base;
1859
	int pci_dev_busy = 0, rc;
1860

1861 1862
	if (!printed_version++)
		dev_printk(KERN_INFO, &pdev->dev, "version " DRV_VERSION "\n");
1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884

	rc = pci_enable_device(pdev);
	if (rc) {
		return rc;
	}

	rc = pci_request_regions(pdev, DRV_NAME);
	if (rc) {
		pci_dev_busy = 1;
		goto err_out;
	}

	probe_ent = kmalloc(sizeof(*probe_ent), GFP_KERNEL);
	if (probe_ent == NULL) {
		rc = -ENOMEM;
		goto err_out_regions;
	}

	memset(probe_ent, 0, sizeof(*probe_ent));
	probe_ent->dev = pci_dev_to_dev(pdev);
	INIT_LIST_HEAD(&probe_ent->node);

1885
	mmio_base = pci_iomap(pdev, MV_PRIMARY_BAR, 0);
1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909
	if (mmio_base == NULL) {
		rc = -ENOMEM;
		goto err_out_free_ent;
	}

	hpriv = kmalloc(sizeof(*hpriv), GFP_KERNEL);
	if (!hpriv) {
		rc = -ENOMEM;
		goto err_out_iounmap;
	}
	memset(hpriv, 0, sizeof(*hpriv));

	probe_ent->sht = mv_port_info[board_idx].sht;
	probe_ent->host_flags = mv_port_info[board_idx].host_flags;
	probe_ent->pio_mask = mv_port_info[board_idx].pio_mask;
	probe_ent->udma_mask = mv_port_info[board_idx].udma_mask;
	probe_ent->port_ops = mv_port_info[board_idx].port_ops;

	probe_ent->irq = pdev->irq;
	probe_ent->irq_flags = SA_SHIRQ;
	probe_ent->mmio_base = mmio_base;
	probe_ent->private_data = hpriv;

	/* initialize adapter */
1910
	rc = mv_init_host(pdev, probe_ent, board_idx);
1911 1912 1913 1914
	if (rc) {
		goto err_out_hpriv;
	}

1915 1916 1917 1918 1919
	/* Enable interrupts */
	if (pci_enable_msi(pdev) == 0) {
		hpriv->hp_flags |= MV_HP_FLAG_MSI;
	} else {
		pci_intx(pdev, 1);
1920 1921
	}

1922 1923 1924 1925 1926 1927 1928
	mv_dump_pci_cfg(pdev, 0x68);
	mv_print_info(probe_ent);

	if (ata_device_add(probe_ent) == 0) {
		rc = -ENODEV;		/* No devices discovered */
		goto err_out_dev_add;
	}
1929

1930
	kfree(probe_ent);
1931 1932
	return 0;

1933 1934 1935 1936 1937 1938 1939
err_out_dev_add:
	if (MV_HP_FLAG_MSI & hpriv->hp_flags) {
		pci_disable_msi(pdev);
	} else {
		pci_intx(pdev, 0);
	}
err_out_hpriv:
1940
	kfree(hpriv);
1941 1942 1943
err_out_iounmap:
	pci_iounmap(pdev, mmio_base);
err_out_free_ent:
1944
	kfree(probe_ent);
1945
err_out_regions:
1946
	pci_release_regions(pdev);
1947
err_out:
1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972
	if (!pci_dev_busy) {
		pci_disable_device(pdev);
	}

	return rc;
}

static int __init mv_init(void)
{
	return pci_module_init(&mv_pci_driver);
}

static void __exit mv_exit(void)
{
	pci_unregister_driver(&mv_pci_driver);
}

MODULE_AUTHOR("Brett Russ");
MODULE_DESCRIPTION("SCSI low-level driver for Marvell SATA controllers");
MODULE_LICENSE("GPL");
MODULE_DEVICE_TABLE(pci, mv_pci_tbl);
MODULE_VERSION(DRV_VERSION);

module_init(mv_init);
module_exit(mv_exit);