sata_mv.c 43.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
/*
 * sata_mv.c - Marvell SATA support
 *
 * Copyright 2005: EMC Corporation, all rights reserved. 
 *
 * Please ALWAYS copy linux-ide@vger.kernel.org on emails.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; version 2 of the License.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 */

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/init.h>
#include <linux/blkdev.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/sched.h>
#include <linux/dma-mapping.h>
32
#include <linux/device.h>
33 34 35 36 37 38
#include "scsi.h"
#include <scsi/scsi_host.h>
#include <linux/libata.h>
#include <asm/io.h>

#define DRV_NAME	"sata_mv"
B
Brett Russ 已提交
39
#define DRV_VERSION	"0.25"
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58

enum {
	/* BAR's are enumerated in terms of pci_resource_start() terms */
	MV_PRIMARY_BAR		= 0,	/* offset 0x10: memory space */
	MV_IO_BAR		= 2,	/* offset 0x18: IO space */
	MV_MISC_BAR		= 3,	/* offset 0x1c: FLASH, NVRAM, SRAM */

	MV_MAJOR_REG_AREA_SZ	= 0x10000,	/* 64KB */
	MV_MINOR_REG_AREA_SZ	= 0x2000,	/* 8KB */

	MV_PCI_REG_BASE		= 0,
	MV_IRQ_COAL_REG_BASE	= 0x18000,	/* 6xxx part only */
	MV_SATAHC0_REG_BASE	= 0x20000,

	MV_PCI_REG_SZ		= MV_MAJOR_REG_AREA_SZ,
	MV_SATAHC_REG_SZ	= MV_MAJOR_REG_AREA_SZ,
	MV_SATAHC_ARBTR_REG_SZ	= MV_MINOR_REG_AREA_SZ,		/* arbiter */
	MV_PORT_REG_SZ		= MV_MINOR_REG_AREA_SZ,

59
	MV_USE_Q_DEPTH		= ATA_DEF_QUEUE,
60

61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
	MV_MAX_Q_DEPTH		= 32,
	MV_MAX_Q_DEPTH_MASK	= MV_MAX_Q_DEPTH - 1,

	/* CRQB needs alignment on a 1KB boundary. Size == 1KB
	 * CRPB needs alignment on a 256B boundary. Size == 256B
	 * SG count of 176 leads to MV_PORT_PRIV_DMA_SZ == 4KB
	 * ePRD (SG) entries need alignment on a 16B boundary. Size == 16B
	 */
	MV_CRQB_Q_SZ		= (32 * MV_MAX_Q_DEPTH),
	MV_CRPB_Q_SZ		= (8 * MV_MAX_Q_DEPTH),
	MV_MAX_SG_CT		= 176,
	MV_SG_TBL_SZ		= (16 * MV_MAX_SG_CT),
	MV_PORT_PRIV_DMA_SZ	= (MV_CRQB_Q_SZ + MV_CRPB_Q_SZ + MV_SG_TBL_SZ),

	/* Our DMA boundary is determined by an ePRD being unable to handle
	 * anything larger than 64KB
	 */
	MV_DMA_BOUNDARY		= 0xffffU,
79 80 81 82

	MV_PORTS_PER_HC		= 4,
	/* == (port / MV_PORTS_PER_HC) to determine HC from 0-7 port */
	MV_PORT_HC_SHIFT	= 2,
83
	/* == (port % MV_PORTS_PER_HC) to determine hard port from 0-7 port */
84 85 86 87 88
	MV_PORT_MASK		= 3,

	/* Host Flags */
	MV_FLAG_DUAL_HC		= (1 << 30),  /* two SATA Host Controllers */
	MV_FLAG_IRQ_COALESCE	= (1 << 29),  /* IRQ coalescing capability */
89 90 91 92 93
	MV_FLAG_GLBL_SFT_RST	= (1 << 28),  /* Global Soft Reset support */
	MV_COMMON_FLAGS		= (ATA_FLAG_SATA | ATA_FLAG_NO_LEGACY |
				   ATA_FLAG_SATA_RESET | ATA_FLAG_MMIO),
	MV_6XXX_FLAGS		= (MV_FLAG_IRQ_COALESCE | 
				   MV_FLAG_GLBL_SFT_RST),
94 95 96 97 98 99

	chip_504x		= 0,
	chip_508x		= 1,
	chip_604x		= 2,
	chip_608x		= 3,

100 101 102 103 104 105 106 107 108 109
	CRQB_FLAG_READ		= (1 << 0),
	CRQB_TAG_SHIFT		= 1,
	CRQB_CMD_ADDR_SHIFT	= 8,
	CRQB_CMD_CS		= (0x2 << 11),
	CRQB_CMD_LAST		= (1 << 15),

	CRPB_FLAG_STATUS_SHIFT	= 8,

	EPRD_FLAG_END_OF_TBL	= (1 << 31),

110 111
	/* PCI interface registers */

112 113
	PCI_COMMAND_OFS		= 0xc00,

114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
	PCI_MAIN_CMD_STS_OFS	= 0xd30,
	STOP_PCI_MASTER		= (1 << 2),
	PCI_MASTER_EMPTY	= (1 << 3),
	GLOB_SFT_RST		= (1 << 4),

	PCI_IRQ_CAUSE_OFS	= 0x1d58,
	PCI_IRQ_MASK_OFS	= 0x1d5c,
	PCI_UNMASK_ALL_IRQS	= 0x7fffff,	/* bits 22-0 */

	HC_MAIN_IRQ_CAUSE_OFS	= 0x1d60,
	HC_MAIN_IRQ_MASK_OFS	= 0x1d64,
	PORT0_ERR		= (1 << 0),	/* shift by port # */
	PORT0_DONE		= (1 << 1),	/* shift by port # */
	HC0_IRQ_PEND		= 0x1ff,	/* bits 0-8 = HC0's ports */
	HC_SHIFT		= 9,		/* bits 9-17 = HC1's ports */
	PCI_ERR			= (1 << 18),
	TRAN_LO_DONE		= (1 << 19),	/* 6xxx: IRQ coalescing */
	TRAN_HI_DONE		= (1 << 20),	/* 6xxx: IRQ coalescing */
	PORTS_0_7_COAL_DONE	= (1 << 21),	/* 6xxx: IRQ coalescing */
	GPIO_INT		= (1 << 22),
	SELF_INT		= (1 << 23),
	TWSI_INT		= (1 << 24),
	HC_MAIN_RSVD		= (0x7f << 25),	/* bits 31-25 */
	HC_MAIN_MASKED_IRQS	= (TRAN_LO_DONE | TRAN_HI_DONE | 
				   PORTS_0_7_COAL_DONE | GPIO_INT | TWSI_INT |
				   HC_MAIN_RSVD),

	/* SATAHC registers */
	HC_CFG_OFS		= 0,

	HC_IRQ_CAUSE_OFS	= 0x14,
145
	CRPB_DMA_DONE		= (1 << 0),	/* shift by port # */
146 147 148 149
	HC_IRQ_COAL		= (1 << 4),	/* IRQ coalescing */
	DEV_IRQ			= (1 << 8),	/* shift by port # */

	/* Shadow block registers */
150 151
	SHD_BLK_OFS		= 0x100,
	SHD_CTL_AST_OFS		= 0x20,		/* ofs from SHD_BLK_OFS */
152 153 154 155 156 157 158

	/* SATA registers */
	SATA_STATUS_OFS		= 0x300,  /* ctrl, err regs follow status */
	SATA_ACTIVE_OFS		= 0x350,

	/* Port registers */
	EDMA_CFG_OFS		= 0,
159 160 161 162 163
	EDMA_CFG_Q_DEPTH	= 0,			/* queueing disabled */
	EDMA_CFG_NCQ		= (1 << 5),
	EDMA_CFG_NCQ_GO_ON_ERR	= (1 << 14),		/* continue on error */
	EDMA_CFG_RD_BRST_EXT	= (1 << 11),		/* read burst 512B */
	EDMA_CFG_WR_BUFF_LEN	= (1 << 13),		/* write buffer 512B */
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192

	EDMA_ERR_IRQ_CAUSE_OFS	= 0x8,
	EDMA_ERR_IRQ_MASK_OFS	= 0xc,
	EDMA_ERR_D_PAR		= (1 << 0),
	EDMA_ERR_PRD_PAR	= (1 << 1),
	EDMA_ERR_DEV		= (1 << 2),
	EDMA_ERR_DEV_DCON	= (1 << 3),
	EDMA_ERR_DEV_CON	= (1 << 4),
	EDMA_ERR_SERR		= (1 << 5),
	EDMA_ERR_SELF_DIS	= (1 << 7),
	EDMA_ERR_BIST_ASYNC	= (1 << 8),
	EDMA_ERR_CRBQ_PAR	= (1 << 9),
	EDMA_ERR_CRPB_PAR	= (1 << 10),
	EDMA_ERR_INTRL_PAR	= (1 << 11),
	EDMA_ERR_IORDY		= (1 << 12),
	EDMA_ERR_LNK_CTRL_RX	= (0xf << 13),
	EDMA_ERR_LNK_CTRL_RX_2	= (1 << 15),
	EDMA_ERR_LNK_DATA_RX	= (0xf << 17),
	EDMA_ERR_LNK_CTRL_TX	= (0x1f << 21),
	EDMA_ERR_LNK_DATA_TX	= (0x1f << 26),
	EDMA_ERR_TRANS_PROTO	= (1 << 31),
	EDMA_ERR_FATAL		= (EDMA_ERR_D_PAR | EDMA_ERR_PRD_PAR | 
				   EDMA_ERR_DEV_DCON | EDMA_ERR_CRBQ_PAR |
				   EDMA_ERR_CRPB_PAR | EDMA_ERR_INTRL_PAR |
				   EDMA_ERR_IORDY | EDMA_ERR_LNK_CTRL_RX_2 | 
				   EDMA_ERR_LNK_DATA_RX |
				   EDMA_ERR_LNK_DATA_TX | 
				   EDMA_ERR_TRANS_PROTO),

193 194 195 196 197 198 199 200 201 202 203 204 205
	EDMA_REQ_Q_BASE_HI_OFS	= 0x10,
	EDMA_REQ_Q_IN_PTR_OFS	= 0x14,		/* also contains BASE_LO */
	EDMA_REQ_Q_BASE_LO_MASK	= 0xfffffc00U,

	EDMA_REQ_Q_OUT_PTR_OFS	= 0x18,
	EDMA_REQ_Q_PTR_SHIFT	= 5,

	EDMA_RSP_Q_BASE_HI_OFS	= 0x1c,
	EDMA_RSP_Q_IN_PTR_OFS	= 0x20,
	EDMA_RSP_Q_OUT_PTR_OFS	= 0x24,		/* also contains BASE_LO */
	EDMA_RSP_Q_BASE_LO_MASK	= 0xffffff00U,
	EDMA_RSP_Q_PTR_SHIFT	= 3,

206 207 208 209 210
	EDMA_CMD_OFS		= 0x28,
	EDMA_EN			= (1 << 0),
	EDMA_DS			= (1 << 1),
	ATA_RST			= (1 << 2),

211 212
	/* Host private flags (hp_flags) */
	MV_HP_FLAG_MSI		= (1 << 0),
213

214 215 216
	/* Port private flags (pp_flags) */
	MV_PP_FLAG_EDMA_EN	= (1 << 0),
	MV_PP_FLAG_EDMA_DS_ACT	= (1 << 1),
217 218
};

219 220 221 222 223 224 225
/* Command ReQuest Block: 32B */
struct mv_crqb {
	u32			sg_addr;
	u32			sg_addr_hi;
	u16			ctrl_flags;
	u16			ata_cmd[11];
};
226

227 228 229 230 231
/* Command ResPonse Block: 8B */
struct mv_crpb {
	u16			id;
	u16			flags;
	u32			tmstmp;
232 233
};

234 235 236 237 238 239 240
/* EDMA Physical Region Descriptor (ePRD); A.K.A. SG */
struct mv_sg {
	u32			addr;
	u32			flags_size;
	u32			addr_hi;
	u32			reserved;
};
241

242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
struct mv_port_priv {
	struct mv_crqb		*crqb;
	dma_addr_t		crqb_dma;
	struct mv_crpb		*crpb;
	dma_addr_t		crpb_dma;
	struct mv_sg		*sg_tbl;
	dma_addr_t		sg_tbl_dma;

	unsigned		req_producer;		/* cp of req_in_ptr */
	unsigned		rsp_consumer;		/* cp of rsp_out_ptr */
	u32			pp_flags;
};

struct mv_host_priv {
	u32			hp_flags;
257 258 259 260 261 262
};

static void mv_irq_clear(struct ata_port *ap);
static u32 mv_scr_read(struct ata_port *ap, unsigned int sc_reg_in);
static void mv_scr_write(struct ata_port *ap, unsigned int sc_reg_in, u32 val);
static void mv_phy_reset(struct ata_port *ap);
263 264 265 266 267
static void mv_host_stop(struct ata_host_set *host_set);
static int mv_port_start(struct ata_port *ap);
static void mv_port_stop(struct ata_port *ap);
static void mv_qc_prep(struct ata_queued_cmd *qc);
static int mv_qc_issue(struct ata_queued_cmd *qc);
268 269
static irqreturn_t mv_interrupt(int irq, void *dev_instance,
				struct pt_regs *regs);
270
static void mv_eng_timeout(struct ata_port *ap);
271 272 273 274 275 276 277 278
static int mv_init_one(struct pci_dev *pdev, const struct pci_device_id *ent);

static Scsi_Host_Template mv_sht = {
	.module			= THIS_MODULE,
	.name			= DRV_NAME,
	.ioctl			= ata_scsi_ioctl,
	.queuecommand		= ata_scsi_queuecmd,
	.eh_strategy_handler	= ata_scsi_error,
279
	.can_queue		= MV_USE_Q_DEPTH,
280
	.this_id		= ATA_SHT_THIS_ID,
281
	.sg_tablesize		= MV_MAX_SG_CT,
282 283 284
	.max_sectors		= ATA_MAX_SECTORS,
	.cmd_per_lun		= ATA_SHT_CMD_PER_LUN,
	.emulated		= ATA_SHT_EMULATED,
285
	.use_clustering		= ATA_SHT_USE_CLUSTERING,
286 287 288 289 290 291 292
	.proc_name		= DRV_NAME,
	.dma_boundary		= MV_DMA_BOUNDARY,
	.slave_configure	= ata_scsi_slave_config,
	.bios_param		= ata_std_bios_param,
	.ordered_flush		= 1,
};

J
Jeff Garzik 已提交
293
static const struct ata_port_operations mv_ops = {
294 295 296 297 298 299 300 301 302 303
	.port_disable		= ata_port_disable,

	.tf_load		= ata_tf_load,
	.tf_read		= ata_tf_read,
	.check_status		= ata_check_status,
	.exec_command		= ata_exec_command,
	.dev_select		= ata_std_dev_select,

	.phy_reset		= mv_phy_reset,

304 305
	.qc_prep		= mv_qc_prep,
	.qc_issue		= mv_qc_issue,
306

307
	.eng_timeout		= mv_eng_timeout,
308 309 310 311 312 313 314

	.irq_handler		= mv_interrupt,
	.irq_clear		= mv_irq_clear,

	.scr_read		= mv_scr_read,
	.scr_write		= mv_scr_write,

315 316 317
	.port_start		= mv_port_start,
	.port_stop		= mv_port_stop,
	.host_stop		= mv_host_stop,
318 319 320 321 322
};

static struct ata_port_info mv_port_info[] = {
	{  /* chip_504x */
		.sht		= &mv_sht,
323 324 325
		.host_flags	= MV_COMMON_FLAGS,
		.pio_mask	= 0x1f,	/* pio0-4 */
		.udma_mask	= 0,	/* 0x7f (udma0-6 disabled for now) */
326 327 328 329
		.port_ops	= &mv_ops,
	},
	{  /* chip_508x */
		.sht		= &mv_sht,
330 331 332
		.host_flags	= (MV_COMMON_FLAGS | MV_FLAG_DUAL_HC),
		.pio_mask	= 0x1f,	/* pio0-4 */
		.udma_mask	= 0,	/* 0x7f (udma0-6 disabled for now) */
333 334 335 336
		.port_ops	= &mv_ops,
	},
	{  /* chip_604x */
		.sht		= &mv_sht,
337 338 339
		.host_flags	= (MV_COMMON_FLAGS | MV_6XXX_FLAGS),
		.pio_mask	= 0x1f,	/* pio0-4 */
		.udma_mask	= 0x7f,	/* udma0-6 */
340 341 342 343
		.port_ops	= &mv_ops,
	},
	{  /* chip_608x */
		.sht		= &mv_sht,
344 345 346 347
		.host_flags	= (MV_COMMON_FLAGS | MV_6XXX_FLAGS | 
				   MV_FLAG_DUAL_HC),
		.pio_mask	= 0x1f,	/* pio0-4 */
		.udma_mask	= 0x7f,	/* udma0-6 */
348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398
		.port_ops	= &mv_ops,
	},
};

static struct pci_device_id mv_pci_tbl[] = {
	{PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x5040), 0, 0, chip_504x},
	{PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x5041), 0, 0, chip_504x},
	{PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x5080), 0, 0, chip_508x},
	{PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x5081), 0, 0, chip_508x},

	{PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x6040), 0, 0, chip_604x},
	{PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x6041), 0, 0, chip_604x},
	{PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x6080), 0, 0, chip_608x},
	{PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x6081), 0, 0, chip_608x},
	{}			/* terminate list */
};

static struct pci_driver mv_pci_driver = {
	.name			= DRV_NAME,
	.id_table		= mv_pci_tbl,
	.probe			= mv_init_one,
	.remove			= ata_pci_remove_one,
};

/*
 * Functions
 */

static inline void writelfl(unsigned long data, void __iomem *addr)
{
	writel(data, addr);
	(void) readl(addr);	/* flush to avoid PCI posted write */
}

static inline void __iomem *mv_hc_base(void __iomem *base, unsigned int hc)
{
	return (base + MV_SATAHC0_REG_BASE + (hc * MV_SATAHC_REG_SZ));
}

static inline void __iomem *mv_port_base(void __iomem *base, unsigned int port)
{
	return (mv_hc_base(base, port >> MV_PORT_HC_SHIFT) +
		MV_SATAHC_ARBTR_REG_SZ + 
		((port & MV_PORT_MASK) * MV_PORT_REG_SZ));
}

static inline void __iomem *mv_ap_base(struct ata_port *ap)
{
	return mv_port_base(ap->host_set->mmio_base, ap->port_no);
}

399 400 401 402 403 404
static inline int mv_get_hc_count(unsigned long hp_flags)
{
	return ((hp_flags & MV_FLAG_DUAL_HC) ? 2 : 1);
}

static void mv_irq_clear(struct ata_port *ap)
405 406 407
{
}

408 409 410 411 412 413 414 415 416 417 418
/**
 *      mv_start_dma - Enable eDMA engine
 *      @base: port base address
 *      @pp: port private data
 *
 *      Verify the local cache of the eDMA state is accurate with an
 *      assert.
 *
 *      LOCKING:
 *      Inherited from caller.
 */
419
static void mv_start_dma(void __iomem *base, struct mv_port_priv *pp)
420
{
421 422 423 424 425
	if (!(MV_PP_FLAG_EDMA_EN & pp->pp_flags)) {
		writelfl(EDMA_EN, base + EDMA_CMD_OFS);
		pp->pp_flags |= MV_PP_FLAG_EDMA_EN;
	}
	assert(EDMA_EN & readl(base + EDMA_CMD_OFS));
426 427
}

428 429 430 431 432 433 434 435 436 437
/**
 *      mv_stop_dma - Disable eDMA engine
 *      @ap: ATA channel to manipulate
 *
 *      Verify the local cache of the eDMA state is accurate with an
 *      assert.
 *
 *      LOCKING:
 *      Inherited from caller.
 */
438
static void mv_stop_dma(struct ata_port *ap)
439
{
440 441 442 443 444
	void __iomem *port_mmio = mv_ap_base(ap);
	struct mv_port_priv *pp	= ap->private_data;
	u32 reg;
	int i;

445 446
	if (MV_PP_FLAG_EDMA_EN & pp->pp_flags) {
		/* Disable EDMA if active.   The disable bit auto clears.
447 448 449
		 */
		writelfl(EDMA_DS, port_mmio + EDMA_CMD_OFS);
		pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
450 451 452
	} else {
		assert(!(EDMA_EN & readl(port_mmio + EDMA_CMD_OFS)));
  	}
453 454 455 456 457 458 459 460 461 462 463 464
	
	/* now properly wait for the eDMA to stop */
	for (i = 1000; i > 0; i--) {
		reg = readl(port_mmio + EDMA_CMD_OFS);
		if (!(EDMA_EN & reg)) {
			break;
		}
		udelay(100);
	}

	if (EDMA_EN & reg) {
		printk(KERN_ERR "ata%u: Unable to stop eDMA\n", ap->id);
465
		/* FIXME: Consider doing a reset here to recover */
466
	}
467 468
}

J
Jeff Garzik 已提交
469
#ifdef ATA_DEBUG
470
static void mv_dump_mem(void __iomem *start, unsigned bytes)
471
{
472 473 474 475 476 477 478 479 480 481
	int b, w;
	for (b = 0; b < bytes; ) {
		DPRINTK("%p: ", start + b);
		for (w = 0; b < bytes && w < 4; w++) {
			printk("%08x ",readl(start + b));
			b += sizeof(u32);
		}
		printk("\n");
	}
}
J
Jeff Garzik 已提交
482 483
#endif

484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542
static void mv_dump_pci_cfg(struct pci_dev *pdev, unsigned bytes)
{
#ifdef ATA_DEBUG
	int b, w;
	u32 dw;
	for (b = 0; b < bytes; ) {
		DPRINTK("%02x: ", b);
		for (w = 0; b < bytes && w < 4; w++) {
			(void) pci_read_config_dword(pdev,b,&dw);
			printk("%08x ",dw);
			b += sizeof(u32);
		}
		printk("\n");
	}
#endif
}
static void mv_dump_all_regs(void __iomem *mmio_base, int port,
			     struct pci_dev *pdev)
{
#ifdef ATA_DEBUG
	void __iomem *hc_base = mv_hc_base(mmio_base, 
					   port >> MV_PORT_HC_SHIFT);
	void __iomem *port_base;
	int start_port, num_ports, p, start_hc, num_hcs, hc;

	if (0 > port) {
		start_hc = start_port = 0;
		num_ports = 8;		/* shld be benign for 4 port devs */
		num_hcs = 2;
	} else {
		start_hc = port >> MV_PORT_HC_SHIFT;
		start_port = port;
		num_ports = num_hcs = 1;
	}
	DPRINTK("All registers for port(s) %u-%u:\n", start_port, 
		num_ports > 1 ? num_ports - 1 : start_port);

	if (NULL != pdev) {
		DPRINTK("PCI config space regs:\n");
		mv_dump_pci_cfg(pdev, 0x68);
	}
	DPRINTK("PCI regs:\n");
	mv_dump_mem(mmio_base+0xc00, 0x3c);
	mv_dump_mem(mmio_base+0xd00, 0x34);
	mv_dump_mem(mmio_base+0xf00, 0x4);
	mv_dump_mem(mmio_base+0x1d00, 0x6c);
	for (hc = start_hc; hc < start_hc + num_hcs; hc++) {
		hc_base = mv_hc_base(mmio_base, port >> MV_PORT_HC_SHIFT);
		DPRINTK("HC regs (HC %i):\n", hc);
		mv_dump_mem(hc_base, 0x1c);
	}
	for (p = start_port; p < start_port + num_ports; p++) {
		port_base = mv_port_base(mmio_base, p);
		DPRINTK("EDMA regs (port %i):\n",p);
		mv_dump_mem(port_base, 0x54);
		DPRINTK("SATA regs (port %i):\n",p);
		mv_dump_mem(port_base+0x300, 0x60);
	}
#endif
543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584
}

static unsigned int mv_scr_offset(unsigned int sc_reg_in)
{
	unsigned int ofs;

	switch (sc_reg_in) {
	case SCR_STATUS:
	case SCR_CONTROL:
	case SCR_ERROR:
		ofs = SATA_STATUS_OFS + (sc_reg_in * sizeof(u32));
		break;
	case SCR_ACTIVE:
		ofs = SATA_ACTIVE_OFS;   /* active is not with the others */
		break;
	default:
		ofs = 0xffffffffU;
		break;
	}
	return ofs;
}

static u32 mv_scr_read(struct ata_port *ap, unsigned int sc_reg_in)
{
	unsigned int ofs = mv_scr_offset(sc_reg_in);

	if (0xffffffffU != ofs) {
		return readl(mv_ap_base(ap) + ofs);
	} else {
		return (u32) ofs;
	}
}

static void mv_scr_write(struct ata_port *ap, unsigned int sc_reg_in, u32 val)
{
	unsigned int ofs = mv_scr_offset(sc_reg_in);

	if (0xffffffffU != ofs) {
		writelfl(val, mv_ap_base(ap) + ofs);
	}
}

585 586 587 588 589 590 591 592 593
/**
 *      mv_global_soft_reset - Perform the 6xxx global soft reset
 *      @mmio_base: base address of the HBA
 *
 *      This routine only applies to 6xxx parts.
 *
 *      LOCKING:
 *      Inherited from caller.
 */
594
static int mv_global_soft_reset(void __iomem *mmio_base)
595 596 597 598 599 600 601 602 603 604 605
{
	void __iomem *reg = mmio_base + PCI_MAIN_CMD_STS_OFS;
	int i, rc = 0;
	u32 t;

	/* Following procedure defined in PCI "main command and status
	 * register" table.
	 */
	t = readl(reg);
	writel(t | STOP_PCI_MASTER, reg);

606 607
	for (i = 0; i < 1000; i++) {
		udelay(1);
608 609 610 611 612 613
		t = readl(reg);
		if (PCI_MASTER_EMPTY & t) {
			break;
		}
	}
	if (!(PCI_MASTER_EMPTY & t)) {
614 615
		printk(KERN_ERR DRV_NAME ": PCI master won't flush\n");
		rc = 1;
616 617 618 619 620 621 622 623 624 625 626 627
		goto done;
	}

	/* set reset */
	i = 5;
	do {
		writel(t | GLOB_SFT_RST, reg);
		t = readl(reg);
		udelay(1);
	} while (!(GLOB_SFT_RST & t) && (i-- > 0));

	if (!(GLOB_SFT_RST & t)) {
628 629
		printk(KERN_ERR DRV_NAME ": can't set global reset\n");
		rc = 1;
630 631 632
		goto done;
	}

633
	/* clear reset and *reenable the PCI master* (not mentioned in spec) */
634 635
	i = 5;
	do {
636
		writel(t & ~(GLOB_SFT_RST | STOP_PCI_MASTER), reg);
637 638 639 640 641
		t = readl(reg);
		udelay(1);
	} while ((GLOB_SFT_RST & t) && (i-- > 0));

	if (GLOB_SFT_RST & t) {
642 643
		printk(KERN_ERR DRV_NAME ": can't clear global reset\n");
		rc = 1;
644
	}
645
done:
646 647 648
	return rc;
}

649 650 651 652 653 654 655 656 657 658
/**
 *      mv_host_stop - Host specific cleanup/stop routine.
 *      @host_set: host data structure
 *
 *      Disable ints, cleanup host memory, call general purpose
 *      host_stop.
 *
 *      LOCKING:
 *      Inherited from caller.
 */
659
static void mv_host_stop(struct ata_host_set *host_set)
660
{
661 662 663 664 665 666 667 668 669 670 671 672
	struct mv_host_priv *hpriv = host_set->private_data;
	struct pci_dev *pdev = to_pci_dev(host_set->dev);

	if (hpriv->hp_flags & MV_HP_FLAG_MSI) {
		pci_disable_msi(pdev);
	} else {
		pci_intx(pdev, 0);
	}
	kfree(hpriv);
	ata_host_stop(host_set);
}

673 674 675 676 677
static inline void mv_priv_free(struct mv_port_priv *pp, struct device *dev)
{
	dma_free_coherent(dev, MV_PORT_PRIV_DMA_SZ, pp->crpb, pp->crpb_dma);
}

678 679 680 681 682 683 684 685 686 687
/**
 *      mv_port_start - Port specific init/start routine.
 *      @ap: ATA channel to manipulate
 *
 *      Allocate and point to DMA memory, init port private memory,
 *      zero indices.
 *
 *      LOCKING:
 *      Inherited from caller.
 */
688 689 690 691 692 693 694
static int mv_port_start(struct ata_port *ap)
{
	struct device *dev = ap->host_set->dev;
	struct mv_port_priv *pp;
	void __iomem *port_mmio = mv_ap_base(ap);
	void *mem;
	dma_addr_t mem_dma;
695
	int rc = -ENOMEM;
696 697

	pp = kmalloc(sizeof(*pp), GFP_KERNEL);
698 699
	if (!pp)
		goto err_out;
700 701 702 703
	memset(pp, 0, sizeof(*pp));

	mem = dma_alloc_coherent(dev, MV_PORT_PRIV_DMA_SZ, &mem_dma, 
				 GFP_KERNEL);
704 705
	if (!mem)
		goto err_out_pp;
706 707
	memset(mem, 0, MV_PORT_PRIV_DMA_SZ);

708 709 710 711
	rc = ata_pad_alloc(ap, dev);
	if (rc)
		goto err_out_priv;

712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755
	/* First item in chunk of DMA memory: 
	 * 32-slot command request table (CRQB), 32 bytes each in size
	 */
	pp->crqb = mem;
	pp->crqb_dma = mem_dma;
	mem += MV_CRQB_Q_SZ;
	mem_dma += MV_CRQB_Q_SZ;

	/* Second item: 
	 * 32-slot command response table (CRPB), 8 bytes each in size
	 */
	pp->crpb = mem;
	pp->crpb_dma = mem_dma;
	mem += MV_CRPB_Q_SZ;
	mem_dma += MV_CRPB_Q_SZ;

	/* Third item:
	 * Table of scatter-gather descriptors (ePRD), 16 bytes each
	 */
	pp->sg_tbl = mem;
	pp->sg_tbl_dma = mem_dma;

	writelfl(EDMA_CFG_Q_DEPTH | EDMA_CFG_RD_BRST_EXT | 
		 EDMA_CFG_WR_BUFF_LEN, port_mmio + EDMA_CFG_OFS);

	writel((pp->crqb_dma >> 16) >> 16, port_mmio + EDMA_REQ_Q_BASE_HI_OFS);
	writelfl(pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK, 
		 port_mmio + EDMA_REQ_Q_IN_PTR_OFS);

	writelfl(0, port_mmio + EDMA_REQ_Q_OUT_PTR_OFS);
	writelfl(0, port_mmio + EDMA_RSP_Q_IN_PTR_OFS);

	writel((pp->crpb_dma >> 16) >> 16, port_mmio + EDMA_RSP_Q_BASE_HI_OFS);
	writelfl(pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK, 
		 port_mmio + EDMA_RSP_Q_OUT_PTR_OFS);

	pp->req_producer = pp->rsp_consumer = 0;

	/* Don't turn on EDMA here...do it before DMA commands only.  Else
	 * we'll be unable to send non-data, PIO, etc due to restricted access
	 * to shadow regs.
	 */
	ap->private_data = pp;
	return 0;
756 757 758 759 760 761 762

err_out_priv:
	mv_priv_free(pp, dev);
err_out_pp:
	kfree(pp);
err_out:
	return rc;
763 764
}

765 766 767 768 769 770 771 772 773
/**
 *      mv_port_stop - Port specific cleanup/stop routine.
 *      @ap: ATA channel to manipulate
 *
 *      Stop DMA, cleanup port memory.
 *
 *      LOCKING:
 *      This routine uses the host_set lock to protect the DMA stop.
 */
774 775 776 777
static void mv_port_stop(struct ata_port *ap)
{
	struct device *dev = ap->host_set->dev;
	struct mv_port_priv *pp = ap->private_data;
778
	unsigned long flags;
779

780
	spin_lock_irqsave(&ap->host_set->lock, flags);
781
	mv_stop_dma(ap);
782
	spin_unlock_irqrestore(&ap->host_set->lock, flags);
783 784

	ap->private_data = NULL;
785 786
	ata_pad_free(ap, dev);
	mv_priv_free(pp, dev);
787 788 789
	kfree(pp);
}

790 791 792 793 794 795 796 797 798
/**
 *      mv_fill_sg - Fill out the Marvell ePRD (scatter gather) entries
 *      @qc: queued command whose SG list to source from
 *
 *      Populate the SG list and mark the last entry.
 *
 *      LOCKING:
 *      Inherited from caller.
 */
799 800 801
static void mv_fill_sg(struct ata_queued_cmd *qc)
{
	struct mv_port_priv *pp = qc->ap->private_data;
802 803
	unsigned int i = 0;
	struct scatterlist *sg;
804

805
	ata_for_each_sg(sg, qc) {
806 807 808
		u32 sg_len;
		dma_addr_t addr;

809 810
		addr = sg_dma_address(sg);
		sg_len = sg_dma_len(sg);
811 812 813 814 815

		pp->sg_tbl[i].addr = cpu_to_le32(addr & 0xffffffff);
		pp->sg_tbl[i].addr_hi = cpu_to_le32((addr >> 16) >> 16);
		assert(0 == (sg_len & ~MV_DMA_BOUNDARY));
		pp->sg_tbl[i].flags_size = cpu_to_le32(sg_len);
816 817 818 819
		if (ata_sg_is_last(sg, qc))
			pp->sg_tbl[i].flags_size |= cpu_to_le32(EPRD_FLAG_END_OF_TBL);

		i++;
820 821 822 823 824 825 826 827 828 829 830 831 832 833 834
	}
}

static inline unsigned mv_inc_q_index(unsigned *index)
{
	*index = (*index + 1) & MV_MAX_Q_DEPTH_MASK;
	return *index;
}

static inline void mv_crqb_pack_cmd(u16 *cmdw, u8 data, u8 addr, unsigned last)
{
	*cmdw = data | (addr << CRQB_CMD_ADDR_SHIFT) | CRQB_CMD_CS |
		(last ? CRQB_CMD_LAST : 0);
}

835 836 837 838 839 840 841 842 843 844 845 846
/**
 *      mv_qc_prep - Host specific command preparation.
 *      @qc: queued command to prepare
 *
 *      This routine simply redirects to the general purpose routine
 *      if command is not DMA.  Else, it handles prep of the CRQB
 *      (command request block), does some sanity checking, and calls
 *      the SG load routine.
 *
 *      LOCKING:
 *      Inherited from caller.
 */
847 848 849 850 851 852 853 854 855 856 857
static void mv_qc_prep(struct ata_queued_cmd *qc)
{
	struct ata_port *ap = qc->ap;
	struct mv_port_priv *pp = ap->private_data;
	u16 *cw;
	struct ata_taskfile *tf;
	u16 flags = 0;

 	if (ATA_PROT_DMA != qc->tf.protocol) {
		return;
	}
858

859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885
	/* the req producer index should be the same as we remember it */
	assert(((readl(mv_ap_base(qc->ap) + EDMA_REQ_Q_IN_PTR_OFS) >> 
		 EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK) ==
	       pp->req_producer);

	/* Fill in command request block
	 */
	if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
		flags |= CRQB_FLAG_READ;
	}
	assert(MV_MAX_Q_DEPTH > qc->tag);
	flags |= qc->tag << CRQB_TAG_SHIFT;

	pp->crqb[pp->req_producer].sg_addr = 
		cpu_to_le32(pp->sg_tbl_dma & 0xffffffff);
	pp->crqb[pp->req_producer].sg_addr_hi = 
		cpu_to_le32((pp->sg_tbl_dma >> 16) >> 16);
	pp->crqb[pp->req_producer].ctrl_flags = cpu_to_le16(flags);

	cw = &pp->crqb[pp->req_producer].ata_cmd[0];
	tf = &qc->tf;

	/* Sadly, the CRQB cannot accomodate all registers--there are
	 * only 11 bytes...so we must pick and choose required
	 * registers based on the command.  So, we drop feature and
	 * hob_feature for [RW] DMA commands, but they are needed for
	 * NCQ.  NCQ will drop hob_nsect.
886
	 */
887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928
	switch (tf->command) {
	case ATA_CMD_READ:
	case ATA_CMD_READ_EXT:
	case ATA_CMD_WRITE:
	case ATA_CMD_WRITE_EXT:
		mv_crqb_pack_cmd(cw++, tf->hob_nsect, ATA_REG_NSECT, 0);
		break;
#ifdef LIBATA_NCQ		/* FIXME: remove this line when NCQ added */
	case ATA_CMD_FPDMA_READ:
	case ATA_CMD_FPDMA_WRITE:
		mv_crqb_pack_cmd(cw++, tf->hob_feature, ATA_REG_FEATURE, 0); 
		mv_crqb_pack_cmd(cw++, tf->feature, ATA_REG_FEATURE, 0);
		break;
#endif				/* FIXME: remove this line when NCQ added */
	default:
		/* The only other commands EDMA supports in non-queued and
		 * non-NCQ mode are: [RW] STREAM DMA and W DMA FUA EXT, none
		 * of which are defined/used by Linux.  If we get here, this
		 * driver needs work.
		 *
		 * FIXME: modify libata to give qc_prep a return value and
		 * return error here.
		 */
		BUG_ON(tf->command);
		break;
	}
	mv_crqb_pack_cmd(cw++, tf->nsect, ATA_REG_NSECT, 0);
	mv_crqb_pack_cmd(cw++, tf->hob_lbal, ATA_REG_LBAL, 0);
	mv_crqb_pack_cmd(cw++, tf->lbal, ATA_REG_LBAL, 0);
	mv_crqb_pack_cmd(cw++, tf->hob_lbam, ATA_REG_LBAM, 0);
	mv_crqb_pack_cmd(cw++, tf->lbam, ATA_REG_LBAM, 0);
	mv_crqb_pack_cmd(cw++, tf->hob_lbah, ATA_REG_LBAH, 0);
	mv_crqb_pack_cmd(cw++, tf->lbah, ATA_REG_LBAH, 0);
	mv_crqb_pack_cmd(cw++, tf->device, ATA_REG_DEVICE, 0);
	mv_crqb_pack_cmd(cw++, tf->command, ATA_REG_CMD, 1);	/* last */

	if (!(qc->flags & ATA_QCFLAG_DMAMAP)) {
		return;
	}
	mv_fill_sg(qc);
}

929 930 931 932 933 934 935 936 937 938 939 940
/**
 *      mv_qc_issue - Initiate a command to the host
 *      @qc: queued command to start
 *
 *      This routine simply redirects to the general purpose routine
 *      if command is not DMA.  Else, it sanity checks our local
 *      caches of the request producer/consumer indices then enables
 *      DMA and bumps the request producer index.
 *
 *      LOCKING:
 *      Inherited from caller.
 */
941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967
static int mv_qc_issue(struct ata_queued_cmd *qc)
{
	void __iomem *port_mmio = mv_ap_base(qc->ap);
	struct mv_port_priv *pp = qc->ap->private_data;
	u32 in_ptr;

	if (ATA_PROT_DMA != qc->tf.protocol) {
		/* We're about to send a non-EDMA capable command to the
		 * port.  Turn off EDMA so there won't be problems accessing
		 * shadow block, etc registers.
		 */
		mv_stop_dma(qc->ap);
		return ata_qc_issue_prot(qc);
	}

	in_ptr = readl(port_mmio + EDMA_REQ_Q_IN_PTR_OFS);

	/* the req producer index should be the same as we remember it */
	assert(((in_ptr >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK) ==
	       pp->req_producer);
	/* until we do queuing, the queue should be empty at this point */
	assert(((in_ptr >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK) ==
	       ((readl(port_mmio + EDMA_REQ_Q_OUT_PTR_OFS) >> 
		 EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK));

	mv_inc_q_index(&pp->req_producer);	/* now incr producer index */

968
	mv_start_dma(port_mmio, pp);
969 970 971 972 973 974 975 976 977

	/* and write the request in pointer to kick the EDMA to life */
	in_ptr &= EDMA_REQ_Q_BASE_LO_MASK;
	in_ptr |= pp->req_producer << EDMA_REQ_Q_PTR_SHIFT;
	writelfl(in_ptr, port_mmio + EDMA_REQ_Q_IN_PTR_OFS);

	return 0;
}

978 979 980 981 982 983 984 985 986 987 988 989 990
/**
 *      mv_get_crpb_status - get status from most recently completed cmd
 *      @ap: ATA channel to manipulate
 *
 *      This routine is for use when the port is in DMA mode, when it
 *      will be using the CRPB (command response block) method of
 *      returning command completion information.  We assert indices
 *      are good, grab status, and bump the response consumer index to
 *      prove that we're up to date.
 *
 *      LOCKING:
 *      Inherited from caller.
 */
991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
static u8 mv_get_crpb_status(struct ata_port *ap)
{
	void __iomem *port_mmio = mv_ap_base(ap);
	struct mv_port_priv *pp = ap->private_data;
	u32 out_ptr;

	out_ptr = readl(port_mmio + EDMA_RSP_Q_OUT_PTR_OFS);

	/* the response consumer index should be the same as we remember it */
	assert(((out_ptr >> EDMA_RSP_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK) == 
	       pp->rsp_consumer);

	/* increment our consumer index... */
	pp->rsp_consumer = mv_inc_q_index(&pp->rsp_consumer);
	
	/* and, until we do NCQ, there should only be 1 CRPB waiting */
	assert(((readl(port_mmio + EDMA_RSP_Q_IN_PTR_OFS) >> 
		 EDMA_RSP_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK) == 
	       pp->rsp_consumer);

	/* write out our inc'd consumer index so EDMA knows we're caught up */
	out_ptr &= EDMA_RSP_Q_BASE_LO_MASK;
	out_ptr |= pp->rsp_consumer << EDMA_RSP_Q_PTR_SHIFT;
	writelfl(out_ptr, port_mmio + EDMA_RSP_Q_OUT_PTR_OFS);

	/* Return ATA status register for completed CRPB */
	return (pp->crpb[pp->rsp_consumer].flags >> CRPB_FLAG_STATUS_SHIFT);
}

1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
/**
 *      mv_err_intr - Handle error interrupts on the port
 *      @ap: ATA channel to manipulate
 *
 *      In most cases, just clear the interrupt and move on.  However,
 *      some cases require an eDMA reset, which is done right before
 *      the COMRESET in mv_phy_reset().  The SERR case requires a
 *      clear of pending errors in the SATA SERROR register.  Finally,
 *      if the port disabled DMA, update our cached copy to match.
 *
 *      LOCKING:
 *      Inherited from caller.
 */
1033 1034 1035 1036
static void mv_err_intr(struct ata_port *ap)
{
	void __iomem *port_mmio = mv_ap_base(ap);
	u32 edma_err_cause, serr = 0;
1037 1038 1039 1040 1041 1042 1043

	edma_err_cause = readl(port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);

	if (EDMA_ERR_SERR & edma_err_cause) {
		serr = scr_read(ap, SCR_ERROR);
		scr_write_flush(ap, SCR_ERROR, serr);
	}
1044 1045 1046 1047 1048 1049
	if (EDMA_ERR_SELF_DIS & edma_err_cause) {
		struct mv_port_priv *pp	= ap->private_data;
		pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
	}
	DPRINTK(KERN_ERR "ata%u: port error; EDMA err cause: 0x%08x "
		"SERR: 0x%08x\n", ap->id, edma_err_cause, serr);
1050 1051 1052 1053 1054 1055 1056 1057 1058 1059

	/* Clear EDMA now that SERR cleanup done */
	writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);

	/* check for fatal here and recover if needed */
	if (EDMA_ERR_FATAL & edma_err_cause) {
		mv_phy_reset(ap);
	}
}

1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075
/**
 *      mv_host_intr - Handle all interrupts on the given host controller
 *      @host_set: host specific structure
 *      @relevant: port error bits relevant to this host controller
 *      @hc: which host controller we're to look at
 *
 *      Read then write clear the HC interrupt status then walk each
 *      port connected to the HC and see if it needs servicing.  Port
 *      success ints are reported in the HC interrupt status reg, the
 *      port error ints are reported in the higher level main
 *      interrupt status register and thus are passed in via the
 *      'relevant' argument.
 *
 *      LOCKING:
 *      Inherited from caller.
 */
1076 1077 1078 1079 1080 1081 1082 1083
static void mv_host_intr(struct ata_host_set *host_set, u32 relevant,
			 unsigned int hc)
{
	void __iomem *mmio = host_set->mmio_base;
	void __iomem *hc_mmio = mv_hc_base(mmio, hc);
	struct ata_port *ap;
	struct ata_queued_cmd *qc;
	u32 hc_irq_cause;
1084
	int shift, port, port0, hard_port, handled;
1085
	unsigned int err_mask;
1086
	u8 ata_status = 0;
1087 1088 1089 1090 1091 1092 1093 1094 1095 1096

	if (hc == 0) {
		port0 = 0;
	} else {
		port0 = MV_PORTS_PER_HC;
	}

	/* we'll need the HC success int register in most cases */
	hc_irq_cause = readl(hc_mmio + HC_IRQ_CAUSE_OFS);
	if (hc_irq_cause) {
1097
		writelfl(~hc_irq_cause, hc_mmio + HC_IRQ_CAUSE_OFS);
1098 1099 1100 1101 1102 1103 1104 1105
	}

	VPRINTK("ENTER, hc%u relevant=0x%08x HC IRQ cause=0x%08x\n",
		hc,relevant,hc_irq_cause);

	for (port = port0; port < port0 + MV_PORTS_PER_HC; port++) {
		ap = host_set->ports[port];
		hard_port = port & MV_PORT_MASK;	/* range 0-3 */
1106
		handled = 0;	/* ensure ata_status is set if handled++ */
1107

1108 1109 1110 1111 1112 1113 1114
		if ((CRPB_DMA_DONE << hard_port) & hc_irq_cause) {
			/* new CRPB on the queue; just one at a time until NCQ
			 */
			ata_status = mv_get_crpb_status(ap);
			handled++;
		} else if ((DEV_IRQ << hard_port) & hc_irq_cause) {
			/* received ATA IRQ; read the status reg to clear INTRQ
1115 1116 1117
			 */
			ata_status = readb((void __iomem *)
					   ap->ioaddr.status_addr);
1118
			handled++;
1119 1120
		}

1121 1122
		err_mask = ac_err_mask(ata_status);

1123
		shift = port << 1;		/* (port * 2) */
1124 1125 1126 1127 1128
		if (port >= MV_PORTS_PER_HC) {
			shift++;	/* skip bit 8 in the HC Main IRQ reg */
		}
		if ((PORT0_ERR << shift) & relevant) {
			mv_err_intr(ap);
1129
			err_mask |= AC_ERR_OTHER;
1130
			handled++;
1131 1132
		}
		
1133
		if (handled && ap) {
1134 1135 1136 1137 1138
			qc = ata_qc_from_tag(ap, ap->active_tag);
			if (NULL != qc) {
				VPRINTK("port %u IRQ found for qc, "
					"ata_status 0x%x\n", port,ata_status);
				/* mark qc status appropriately */
1139
				ata_qc_complete(qc, err_mask);
1140 1141 1142 1143 1144 1145
			}
		}
	}
	VPRINTK("EXIT\n");
}

1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160
/**
 *      mv_interrupt - 
 *      @irq: unused
 *      @dev_instance: private data; in this case the host structure
 *      @regs: unused
 *
 *      Read the read only register to determine if any host
 *      controllers have pending interrupts.  If so, call lower level
 *      routine to handle.  Also check for PCI errors which are only
 *      reported here.
 *
 *      LOCKING: 
 *      This routine holds the host_set lock while processing pending
 *      interrupts.
 */
1161 1162 1163 1164 1165
static irqreturn_t mv_interrupt(int irq, void *dev_instance,
				struct pt_regs *regs)
{
	struct ata_host_set *host_set = dev_instance;
	unsigned int hc, handled = 0, n_hcs;
1166
	void __iomem *mmio = host_set->mmio_base;
1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177
	u32 irq_stat;

	irq_stat = readl(mmio + HC_MAIN_IRQ_CAUSE_OFS);

	/* check the cases where we either have nothing pending or have read
	 * a bogus register value which can indicate HW removal or PCI fault
	 */
	if (!irq_stat || (0xffffffffU == irq_stat)) {
		return IRQ_NONE;
	}

1178
	n_hcs = mv_get_hc_count(host_set->ports[0]->flags);
1179 1180 1181 1182 1183 1184
	spin_lock(&host_set->lock);

	for (hc = 0; hc < n_hcs; hc++) {
		u32 relevant = irq_stat & (HC0_IRQ_PEND << (hc * HC_SHIFT));
		if (relevant) {
			mv_host_intr(host_set, relevant, hc);
1185
			handled++;
1186 1187 1188
		}
	}
	if (PCI_ERR & irq_stat) {
1189 1190 1191
		printk(KERN_ERR DRV_NAME ": PCI ERROR; PCI IRQ cause=0x%08x\n",
		       readl(mmio + PCI_IRQ_CAUSE_OFS));

1192
		DPRINTK("All regs @ PCI error\n");
1193
		mv_dump_all_regs(mmio, -1, to_pci_dev(host_set->dev));
1194

1195 1196 1197
		writelfl(0, mmio + PCI_IRQ_CAUSE_OFS);
		handled++;
	}
1198 1199 1200 1201 1202
	spin_unlock(&host_set->lock);

	return IRQ_RETVAL(handled);
}

1203 1204 1205 1206 1207 1208 1209 1210 1211 1212
/**
 *      mv_phy_reset - Perform eDMA reset followed by COMRESET
 *      @ap: ATA channel to manipulate
 *
 *      Part of this is taken from __sata_phy_reset and modified to
 *      not sleep since this routine gets called from interrupt level.
 *
 *      LOCKING:
 *      Inherited from caller.  This is coded to safe to call at
 *      interrupt level, i.e. it does not sleep.
1213
 */
1214 1215 1216 1217 1218
static void mv_phy_reset(struct ata_port *ap)
{
	void __iomem *port_mmio = mv_ap_base(ap);
	struct ata_taskfile tf;
	struct ata_device *dev = &ap->device[0];
1219
	unsigned long timeout;
1220 1221 1222

	VPRINTK("ENTER, port %u, mmio 0x%p\n", ap->port_no, port_mmio);

1223
	mv_stop_dma(ap);
1224

1225
	writelfl(ATA_RST, port_mmio + EDMA_CMD_OFS);
1226 1227 1228 1229 1230
	udelay(25);		/* allow reset propagation */

	/* Spec never mentions clearing the bit.  Marvell's driver does
	 * clear the bit, however.
	 */
1231
	writelfl(0, port_mmio + EDMA_CMD_OFS);
1232

1233 1234 1235
	VPRINTK("S-regs after ATA_RST: SStat 0x%08x SErr 0x%08x "
		"SCtrl 0x%08x\n", mv_scr_read(ap, SCR_STATUS),
		mv_scr_read(ap, SCR_ERROR), mv_scr_read(ap, SCR_CONTROL));
1236 1237

	/* proceed to init communications via the scr_control reg */
1238 1239 1240 1241 1242 1243 1244 1245 1246
	scr_write_flush(ap, SCR_CONTROL, 0x301);
	mdelay(1);
	scr_write_flush(ap, SCR_CONTROL, 0x300);
	timeout = jiffies + (HZ * 1);
	do {
		mdelay(10);
		if ((scr_read(ap, SCR_STATUS) & 0xf) != 1)
			break;
	} while (time_before(jiffies, timeout));
1247

1248 1249 1250 1251 1252 1253 1254 1255 1256 1257
	VPRINTK("S-regs after PHY wake: SStat 0x%08x SErr 0x%08x "
		"SCtrl 0x%08x\n", mv_scr_read(ap, SCR_STATUS),
		mv_scr_read(ap, SCR_ERROR), mv_scr_read(ap, SCR_CONTROL));

	if (sata_dev_present(ap)) {
		ata_port_probe(ap);
	} else {
		printk(KERN_INFO "ata%u: no device found (phy stat %08x)\n",
		       ap->id, scr_read(ap, SCR_STATUS));
		ata_port_disable(ap);
1258 1259
		return;
	}
1260
	ap->cbl = ATA_CBL_SATA;
1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274

	tf.lbah = readb((void __iomem *) ap->ioaddr.lbah_addr);
	tf.lbam = readb((void __iomem *) ap->ioaddr.lbam_addr);
	tf.lbal = readb((void __iomem *) ap->ioaddr.lbal_addr);
	tf.nsect = readb((void __iomem *) ap->ioaddr.nsect_addr);

	dev->class = ata_dev_classify(&tf);
	if (!ata_dev_present(dev)) {
		VPRINTK("Port disabled post-sig: No device present.\n");
		ata_port_disable(ap);
	}
	VPRINTK("EXIT\n");
}

1275 1276 1277 1278 1279 1280 1281 1282 1283 1284
/**
 *      mv_eng_timeout - Routine called by libata when SCSI times out I/O
 *      @ap: ATA channel to manipulate
 *
 *      Intent is to clear all pending error conditions, reset the
 *      chip/bus, fail the command, and move on.
 *
 *      LOCKING:
 *      This routine holds the host_set lock while failing the command.
 */
1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314
static void mv_eng_timeout(struct ata_port *ap)
{
	struct ata_queued_cmd *qc;
	unsigned long flags;

	printk(KERN_ERR "ata%u: Entering mv_eng_timeout\n",ap->id);
	DPRINTK("All regs @ start of eng_timeout\n");
	mv_dump_all_regs(ap->host_set->mmio_base, ap->port_no, 
			 to_pci_dev(ap->host_set->dev));

	qc = ata_qc_from_tag(ap, ap->active_tag);
        printk(KERN_ERR "mmio_base %p ap %p qc %p scsi_cmnd %p &cmnd %p\n",
	       ap->host_set->mmio_base, ap, qc, qc->scsicmd, 
	       &qc->scsicmd->cmnd);

	mv_err_intr(ap);
	mv_phy_reset(ap);

	if (!qc) {
		printk(KERN_ERR "ata%u: BUG: timeout without command\n",
		       ap->id);
	} else {
		/* hack alert!  We cannot use the supplied completion
	 	 * function from inside the ->eh_strategy_handler() thread.
	 	 * libata is the only user of ->eh_strategy_handler() in
	 	 * any kernel, so the default scsi_done() assumes it is
	 	 * not being called from the SCSI EH.
	 	 */
		spin_lock_irqsave(&ap->host_set->lock, flags);
		qc->scsidone = scsi_finish_command;
1315
		ata_qc_complete(qc, AC_ERR_OTHER);
1316 1317 1318 1319
		spin_unlock_irqrestore(&ap->host_set->lock, flags);
	}
}

1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331
/**
 *      mv_port_init - Perform some early initialization on a single port.
 *      @port: libata data structure storing shadow register addresses
 *      @port_mmio: base address of the port
 *
 *      Initialize shadow register mmio addresses, clear outstanding
 *      interrupts on the port, and unmask interrupts for the future
 *      start of the port.
 *
 *      LOCKING:
 *      Inherited from caller.
 */
1332
static void mv_port_init(struct ata_ioports *port,  void __iomem *port_mmio)
1333
{
1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352
	unsigned long shd_base = (unsigned long) port_mmio + SHD_BLK_OFS;
	unsigned serr_ofs;

	/* PIO related setup 
	 */
	port->data_addr = shd_base + (sizeof(u32) * ATA_REG_DATA);
	port->error_addr = 
		port->feature_addr = shd_base + (sizeof(u32) * ATA_REG_ERR);
	port->nsect_addr = shd_base + (sizeof(u32) * ATA_REG_NSECT);
	port->lbal_addr = shd_base + (sizeof(u32) * ATA_REG_LBAL);
	port->lbam_addr = shd_base + (sizeof(u32) * ATA_REG_LBAM);
	port->lbah_addr = shd_base + (sizeof(u32) * ATA_REG_LBAH);
	port->device_addr = shd_base + (sizeof(u32) * ATA_REG_DEVICE);
	port->status_addr = 
		port->command_addr = shd_base + (sizeof(u32) * ATA_REG_STATUS);
	/* special case: control/altstatus doesn't have ATA_REG_ address */
	port->altstatus_addr = port->ctl_addr = shd_base + SHD_CTL_AST_OFS;

	/* unused: */
1353 1354
	port->cmd_addr = port->bmdma_addr = port->scr_addr = 0;

1355 1356 1357 1358 1359
	/* Clear any currently outstanding port interrupt conditions */
	serr_ofs = mv_scr_offset(SCR_ERROR);
	writelfl(readl(port_mmio + serr_ofs), port_mmio + serr_ofs);
	writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);

1360
	/* unmask all EDMA error interrupts */
1361
	writelfl(~0, port_mmio + EDMA_ERR_IRQ_MASK_OFS);
1362 1363

	VPRINTK("EDMA cfg=0x%08x EDMA IRQ err cause/mask=0x%08x/0x%08x\n", 
1364 1365 1366
		readl(port_mmio + EDMA_CFG_OFS),
		readl(port_mmio + EDMA_ERR_IRQ_CAUSE_OFS),
		readl(port_mmio + EDMA_ERR_IRQ_MASK_OFS));
1367 1368
}

1369 1370 1371 1372 1373 1374 1375 1376 1377 1378
/**
 *      mv_host_init - Perform some early initialization of the host.
 *      @probe_ent: early data struct representing the host
 *
 *      If possible, do an early global reset of the host.  Then do
 *      our port init and clear/unmask all/relevant host interrupts.
 *
 *      LOCKING:
 *      Inherited from caller.
 */
1379 1380 1381 1382 1383 1384
static int mv_host_init(struct ata_probe_ent *probe_ent)
{
	int rc = 0, n_hc, port, hc;
	void __iomem *mmio = probe_ent->mmio_base;
	void __iomem *port_mmio;

1385 1386
	if ((MV_FLAG_GLBL_SFT_RST & probe_ent->host_flags) && 
	    mv_global_soft_reset(probe_ent->mmio_base)) {
1387 1388 1389 1390 1391 1392 1393 1394 1395
		rc = 1;
		goto done;
	}

	n_hc = mv_get_hc_count(probe_ent->host_flags);
	probe_ent->n_ports = MV_PORTS_PER_HC * n_hc;

	for (port = 0; port < probe_ent->n_ports; port++) {
		port_mmio = mv_port_base(mmio, port);
1396
		mv_port_init(&probe_ent->port[port], port_mmio);
1397 1398 1399
	}

	for (hc = 0; hc < n_hc; hc++) {
1400 1401 1402 1403 1404 1405 1406 1407 1408
		void __iomem *hc_mmio = mv_hc_base(mmio, hc);

		VPRINTK("HC%i: HC config=0x%08x HC IRQ cause "
			"(before clear)=0x%08x\n", hc,
			readl(hc_mmio + HC_CFG_OFS),
			readl(hc_mmio + HC_IRQ_CAUSE_OFS));

		/* Clear any currently outstanding hc interrupt conditions */
		writelfl(0, hc_mmio + HC_IRQ_CAUSE_OFS);
1409 1410
	}

1411 1412 1413 1414 1415 1416
	/* Clear any currently outstanding host interrupt conditions */
	writelfl(0, mmio + PCI_IRQ_CAUSE_OFS);

	/* and unmask interrupt generation for host regs */
	writelfl(PCI_UNMASK_ALL_IRQS, mmio + PCI_IRQ_MASK_OFS);
	writelfl(~HC_MAIN_MASKED_IRQS, mmio + HC_MAIN_IRQ_MASK_OFS);
1417 1418 1419 1420 1421 1422 1423

	VPRINTK("HC MAIN IRQ cause/mask=0x%08x/0x%08x "
		"PCI int cause/mask=0x%08x/0x%08x\n", 
		readl(mmio + HC_MAIN_IRQ_CAUSE_OFS),
		readl(mmio + HC_MAIN_IRQ_MASK_OFS),
		readl(mmio + PCI_IRQ_CAUSE_OFS),
		readl(mmio + PCI_IRQ_MASK_OFS));
1424
done:
1425 1426 1427
	return rc;
}

1428 1429 1430 1431 1432 1433 1434 1435 1436
/**
 *      mv_print_info - Dump key info to kernel log for perusal.
 *      @probe_ent: early data struct representing the host
 *
 *      FIXME: complete this.
 *
 *      LOCKING:
 *      Inherited from caller.
 */
1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456
static void mv_print_info(struct ata_probe_ent *probe_ent)
{
	struct pci_dev *pdev = to_pci_dev(probe_ent->dev);
	struct mv_host_priv *hpriv = probe_ent->private_data;
	u8 rev_id, scc;
	const char *scc_s;

	/* Use this to determine the HW stepping of the chip so we know
	 * what errata to workaround
	 */
	pci_read_config_byte(pdev, PCI_REVISION_ID, &rev_id);

	pci_read_config_byte(pdev, PCI_CLASS_DEVICE, &scc);
	if (scc == 0)
		scc_s = "SCSI";
	else if (scc == 0x01)
		scc_s = "RAID";
	else
		scc_s = "unknown";

1457 1458 1459
	dev_printk(KERN_INFO, &pdev->dev,
	       "%u slots %u ports %s mode IRQ via %s\n",
	       (unsigned)MV_MAX_Q_DEPTH, probe_ent->n_ports, 
1460 1461 1462
	       scc_s, (MV_HP_FLAG_MSI & hpriv->hp_flags) ? "MSI" : "INTx");
}

1463 1464 1465 1466 1467 1468 1469 1470
/**
 *      mv_init_one - handle a positive probe of a Marvell host
 *      @pdev: PCI device found
 *      @ent: PCI device ID entry for the matched host
 *
 *      LOCKING:
 *      Inherited from caller.
 */
1471 1472 1473 1474 1475 1476 1477
static int mv_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
{
	static int printed_version = 0;
	struct ata_probe_ent *probe_ent = NULL;
	struct mv_host_priv *hpriv;
	unsigned int board_idx = (unsigned int)ent->driver_data;
	void __iomem *mmio_base;
1478
	int pci_dev_busy = 0, rc;
1479

1480 1481
	if (!printed_version++)
		dev_printk(KERN_INFO, &pdev->dev, "version " DRV_VERSION "\n");
1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503

	rc = pci_enable_device(pdev);
	if (rc) {
		return rc;
	}

	rc = pci_request_regions(pdev, DRV_NAME);
	if (rc) {
		pci_dev_busy = 1;
		goto err_out;
	}

	probe_ent = kmalloc(sizeof(*probe_ent), GFP_KERNEL);
	if (probe_ent == NULL) {
		rc = -ENOMEM;
		goto err_out_regions;
	}

	memset(probe_ent, 0, sizeof(*probe_ent));
	probe_ent->dev = pci_dev_to_dev(pdev);
	INIT_LIST_HEAD(&probe_ent->node);

1504
	mmio_base = pci_iomap(pdev, MV_PRIMARY_BAR, 0);
1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533
	if (mmio_base == NULL) {
		rc = -ENOMEM;
		goto err_out_free_ent;
	}

	hpriv = kmalloc(sizeof(*hpriv), GFP_KERNEL);
	if (!hpriv) {
		rc = -ENOMEM;
		goto err_out_iounmap;
	}
	memset(hpriv, 0, sizeof(*hpriv));

	probe_ent->sht = mv_port_info[board_idx].sht;
	probe_ent->host_flags = mv_port_info[board_idx].host_flags;
	probe_ent->pio_mask = mv_port_info[board_idx].pio_mask;
	probe_ent->udma_mask = mv_port_info[board_idx].udma_mask;
	probe_ent->port_ops = mv_port_info[board_idx].port_ops;

	probe_ent->irq = pdev->irq;
	probe_ent->irq_flags = SA_SHIRQ;
	probe_ent->mmio_base = mmio_base;
	probe_ent->private_data = hpriv;

	/* initialize adapter */
	rc = mv_host_init(probe_ent);
	if (rc) {
		goto err_out_hpriv;
	}

1534 1535 1536 1537 1538
	/* Enable interrupts */
	if (pci_enable_msi(pdev) == 0) {
		hpriv->hp_flags |= MV_HP_FLAG_MSI;
	} else {
		pci_intx(pdev, 1);
1539 1540
	}

1541 1542 1543 1544 1545 1546 1547
	mv_dump_pci_cfg(pdev, 0x68);
	mv_print_info(probe_ent);

	if (ata_device_add(probe_ent) == 0) {
		rc = -ENODEV;		/* No devices discovered */
		goto err_out_dev_add;
	}
1548

1549
	kfree(probe_ent);
1550 1551
	return 0;

1552 1553 1554 1555 1556 1557 1558
err_out_dev_add:
	if (MV_HP_FLAG_MSI & hpriv->hp_flags) {
		pci_disable_msi(pdev);
	} else {
		pci_intx(pdev, 0);
	}
err_out_hpriv:
1559
	kfree(hpriv);
1560 1561 1562
err_out_iounmap:
	pci_iounmap(pdev, mmio_base);
err_out_free_ent:
1563
	kfree(probe_ent);
1564
err_out_regions:
1565
	pci_release_regions(pdev);
1566
err_out:
1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591
	if (!pci_dev_busy) {
		pci_disable_device(pdev);
	}

	return rc;
}

static int __init mv_init(void)
{
	return pci_module_init(&mv_pci_driver);
}

static void __exit mv_exit(void)
{
	pci_unregister_driver(&mv_pci_driver);
}

MODULE_AUTHOR("Brett Russ");
MODULE_DESCRIPTION("SCSI low-level driver for Marvell SATA controllers");
MODULE_LICENSE("GPL");
MODULE_DEVICE_TABLE(pci, mv_pci_tbl);
MODULE_VERSION(DRV_VERSION);

module_init(mv_init);
module_exit(mv_exit);