slice.c 21.7 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-or-later
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 * address space "slices" (meta-segments) support
 *
 * Copyright (C) 2007 Benjamin Herrenschmidt, IBM Corporation.
 *
 * Based on hugetlb implementation
 *
 * Copyright (C) 2003 David Gibson, IBM Corporation.
 */

#undef DEBUG

#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/pagemap.h>
#include <linux/err.h>
#include <linux/spinlock.h>
19
#include <linux/export.h>
20
#include <linux/hugetlb.h>
21
#include <linux/sched/mm.h>
22
#include <linux/security.h>
23 24
#include <asm/mman.h>
#include <asm/mmu.h>
25
#include <asm/copro.h>
26
#include <asm/hugetlb.h>
27
#include <asm/mmu_context.h>
28

R
Roel Kluin 已提交
29
static DEFINE_SPINLOCK(slice_convert_lock);
30 31 32 33

#ifdef DEBUG
int _slice_debug = 1;

34
static void slice_print_mask(const char *label, const struct slice_mask *mask)
35 36 37
{
	if (!_slice_debug)
		return;
38 39 40 41
	pr_devel("%s low_slice: %*pbl\n", label,
			(int)SLICE_NUM_LOW, &mask->low_slices);
	pr_devel("%s high_slice: %*pbl\n", label,
			(int)SLICE_NUM_HIGH, mask->high_slices);
42 43
}

44
#define slice_dbg(fmt...) do { if (_slice_debug) pr_devel(fmt); } while (0)
45 46 47

#else

48
static void slice_print_mask(const char *label, const struct slice_mask *mask) {}
49 50 51 52
#define slice_dbg(fmt...)

#endif

53
static inline notrace bool slice_addr_is_low(unsigned long addr)
54 55 56 57 58 59
{
	u64 tmp = (u64)addr;

	return tmp < SLICE_LOW_TOP;
}

60 61
static void slice_range_to_mask(unsigned long start, unsigned long len,
				struct slice_mask *ret)
62 63
{
	unsigned long end = start + len - 1;
64

65
	ret->low_slices = 0;
66 67
	if (SLICE_NUM_HIGH)
		bitmap_zero(ret->high_slices, SLICE_NUM_HIGH);
68

69
	if (slice_addr_is_low(start)) {
70 71
		unsigned long mend = min(end,
					 (unsigned long)(SLICE_LOW_TOP - 1));
72

73
		ret->low_slices = (1u << (GET_LOW_SLICE_INDEX(mend) + 1))
74
			- (1u << GET_LOW_SLICE_INDEX(start));
75 76
	}

77
	if (SLICE_NUM_HIGH && !slice_addr_is_low(end)) {
78 79 80
		unsigned long start_index = GET_HIGH_SLICE_INDEX(start);
		unsigned long align_end = ALIGN(end, (1UL << SLICE_HIGH_SHIFT));
		unsigned long count = GET_HIGH_SLICE_INDEX(align_end) - start_index;
81

82
		bitmap_set(ret->high_slices, start_index, count);
83
	}
84 85 86 87 88 89 90
}

static int slice_area_is_free(struct mm_struct *mm, unsigned long addr,
			      unsigned long len)
{
	struct vm_area_struct *vma;

91
	if ((mm_ctx_slb_addr_limit(&mm->context) - len) < addr)
92 93
		return 0;
	vma = find_vma(mm, addr);
94
	return (!vma || (addr + len) <= vm_start_gap(vma));
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
}

static int slice_low_has_vma(struct mm_struct *mm, unsigned long slice)
{
	return !slice_area_is_free(mm, slice << SLICE_LOW_SHIFT,
				   1ul << SLICE_LOW_SHIFT);
}

static int slice_high_has_vma(struct mm_struct *mm, unsigned long slice)
{
	unsigned long start = slice << SLICE_HIGH_SHIFT;
	unsigned long end = start + (1ul << SLICE_HIGH_SHIFT);

	/* Hack, so that each addresses is controlled by exactly one
	 * of the high or low area bitmaps, the first high area starts
	 * at 4GB, not 0 */
	if (start == 0)
112
		start = (unsigned long)SLICE_LOW_TOP;
113 114 115 116

	return !slice_area_is_free(mm, start, end - start);
}

117 118
static void slice_mask_for_free(struct mm_struct *mm, struct slice_mask *ret,
				unsigned long high_limit)
119 120 121
{
	unsigned long i;

122
	ret->low_slices = 0;
123 124
	if (SLICE_NUM_HIGH)
		bitmap_zero(ret->high_slices, SLICE_NUM_HIGH);
125

126 127
	for (i = 0; i < SLICE_NUM_LOW; i++)
		if (!slice_low_has_vma(mm, i))
128
			ret->low_slices |= 1u << i;
129

130
	if (slice_addr_is_low(high_limit - 1))
131
		return;
132

133
	for (i = 0; i < GET_HIGH_SLICE_INDEX(high_limit); i++)
134
		if (!slice_high_has_vma(mm, i))
135
			__set_bit(i, ret->high_slices);
136 137
}

138 139 140
static bool slice_check_range_fits(struct mm_struct *mm,
			   const struct slice_mask *available,
			   unsigned long start, unsigned long len)
141
{
142 143
	unsigned long end = start + len - 1;
	u64 low_slices = 0;
144

145
	if (slice_addr_is_low(start)) {
146 147
		unsigned long mend = min(end,
					 (unsigned long)(SLICE_LOW_TOP - 1));
148

149 150 151 152 153
		low_slices = (1u << (GET_LOW_SLICE_INDEX(mend) + 1))
				- (1u << GET_LOW_SLICE_INDEX(start));
	}
	if ((low_slices & available->low_slices) != low_slices)
		return false;
154

155
	if (SLICE_NUM_HIGH && !slice_addr_is_low(end)) {
156 157 158 159 160 161 162 163 164 165 166 167
		unsigned long start_index = GET_HIGH_SLICE_INDEX(start);
		unsigned long align_end = ALIGN(end, (1UL << SLICE_HIGH_SHIFT));
		unsigned long count = GET_HIGH_SLICE_INDEX(align_end) - start_index;
		unsigned long i;

		for (i = start_index; i < start_index + count; i++) {
			if (!test_bit(i, available->high_slices))
				return false;
		}
	}

	return true;
168 169
}

170 171 172 173 174 175 176 177 178 179 180 181
static void slice_flush_segments(void *parm)
{
#ifdef CONFIG_PPC64
	struct mm_struct *mm = parm;
	unsigned long flags;

	if (mm != current->active_mm)
		return;

	copy_mm_to_paca(current->active_mm);

	local_irq_save(flags);
182
	slb_flush_and_restore_bolted();
183 184 185 186
	local_irq_restore(flags);
#endif
}

187 188
static void slice_convert(struct mm_struct *mm,
				const struct slice_mask *mask, int psize)
189
{
190
	int index, mask_index;
191
	/* Write the new slice psize bits */
192
	unsigned char *hpsizes, *lpsizes;
193
	struct slice_mask *psize_mask, *old_mask;
194
	unsigned long i, flags;
195
	int old_psize;
196 197 198 199

	slice_dbg("slice_convert(mm=%p, psize=%d)\n", mm, psize);
	slice_print_mask(" mask", mask);

200
	psize_mask = slice_mask_for_size(&mm->context, psize);
201

202 203 204 205 206
	/* We need to use a spinlock here to protect against
	 * concurrent 64k -> 4k demotion ...
	 */
	spin_lock_irqsave(&slice_convert_lock, flags);

207
	lpsizes = mm_ctx_low_slices(&mm->context);
208
	for (i = 0; i < SLICE_NUM_LOW; i++) {
209
		if (!(mask->low_slices & (1u << i)))
210 211 212 213
			continue;

		mask_index = i & 0x1;
		index = i >> 1;
214 215 216

		/* Update the slice_mask */
		old_psize = (lpsizes[index] >> (mask_index * 4)) & 0xf;
217
		old_mask = slice_mask_for_size(&mm->context, old_psize);
218 219 220 221
		old_mask->low_slices &= ~(1u << i);
		psize_mask->low_slices |= 1u << i;

		/* Update the sizes array */
222
		lpsizes[index] = (lpsizes[index] & ~(0xf << (mask_index * 4))) |
223
				(((unsigned long)psize) << (mask_index * 4));
224
	}
225

226 227
	hpsizes = mm_ctx_high_slices(&mm->context);
	for (i = 0; i < GET_HIGH_SLICE_INDEX(mm_ctx_slb_addr_limit(&mm->context)); i++) {
228
		if (!test_bit(i, mask->high_slices))
229 230
			continue;

231 232
		mask_index = i & 0x1;
		index = i >> 1;
233 234 235

		/* Update the slice_mask */
		old_psize = (hpsizes[index] >> (mask_index * 4)) & 0xf;
236
		old_mask = slice_mask_for_size(&mm->context, old_psize);
237 238 239 240
		__clear_bit(i, old_mask->high_slices);
		__set_bit(i, psize_mask->high_slices);

		/* Update the sizes array */
241
		hpsizes[index] = (hpsizes[index] & ~(0xf << (mask_index * 4))) |
242 243
				(((unsigned long)psize) << (mask_index * 4));
	}
244 245

	slice_dbg(" lsps=%lx, hsps=%lx\n",
246 247
		  (unsigned long)mm_ctx_low_slices(&mm->context),
		  (unsigned long)mm_ctx_high_slices(&mm->context));
248 249 250

	spin_unlock_irqrestore(&slice_convert_lock, flags);

251
	copro_flush_all_slbs(mm);
252 253
}

254 255 256 257 258 259 260 261
/*
 * Compute which slice addr is part of;
 * set *boundary_addr to the start or end boundary of that slice
 * (depending on 'end' parameter);
 * return boolean indicating if the slice is marked as available in the
 * 'available' slice_mark.
 */
static bool slice_scan_available(unsigned long addr,
262 263
				 const struct slice_mask *available,
				 int end, unsigned long *boundary_addr)
264 265
{
	unsigned long slice;
266
	if (slice_addr_is_low(addr)) {
267 268
		slice = GET_LOW_SLICE_INDEX(addr);
		*boundary_addr = (slice + end) << SLICE_LOW_SHIFT;
269
		return !!(available->low_slices & (1u << slice));
270 271 272 273
	} else {
		slice = GET_HIGH_SLICE_INDEX(addr);
		*boundary_addr = (slice + end) ?
			((slice + end) << SLICE_HIGH_SHIFT) : SLICE_LOW_TOP;
274
		return !!test_bit(slice, available->high_slices);
275 276 277
	}
}

278 279
static unsigned long slice_find_area_bottomup(struct mm_struct *mm,
					      unsigned long len,
280
					      const struct slice_mask *available,
281
					      int psize, unsigned long high_limit)
282 283
{
	int pshift = max_t(int, mmu_psize_defs[psize].shift, PAGE_SHIFT);
284 285
	unsigned long addr, found, next_end;
	struct vm_unmapped_area_info info;
286

287 288 289 290
	info.flags = 0;
	info.length = len;
	info.align_mask = PAGE_MASK & ((1ul << pshift) - 1);
	info.align_offset = 0;
291

292
	addr = TASK_UNMAPPED_BASE;
293 294 295 296
	/*
	 * Check till the allow max value for this mmap request
	 */
	while (addr < high_limit) {
297 298
		info.low_limit = addr;
		if (!slice_scan_available(addr, available, 1, &addr))
299
			continue;
300 301 302 303 304 305 306 307

 next_slice:
		/*
		 * At this point [info.low_limit; addr) covers
		 * available slices only and ends at a slice boundary.
		 * Check if we need to reduce the range, or if we can
		 * extend it to cover the next available slice.
		 */
308 309
		if (addr >= high_limit)
			addr = high_limit;
310 311 312
		else if (slice_scan_available(addr, available, 1, &next_end)) {
			addr = next_end;
			goto next_slice;
313
		}
314 315 316 317 318
		info.high_limit = addr;

		found = vm_unmapped_area(&info);
		if (!(found & ~PAGE_MASK))
			return found;
319 320 321 322 323 324 325
	}

	return -ENOMEM;
}

static unsigned long slice_find_area_topdown(struct mm_struct *mm,
					     unsigned long len,
326
					     const struct slice_mask *available,
327
					     int psize, unsigned long high_limit)
328 329
{
	int pshift = max_t(int, mmu_psize_defs[psize].shift, PAGE_SHIFT);
330 331
	unsigned long addr, found, prev;
	struct vm_unmapped_area_info info;
332
	unsigned long min_addr = max(PAGE_SIZE, mmap_min_addr);
333 334 335 336 337

	info.flags = VM_UNMAPPED_AREA_TOPDOWN;
	info.length = len;
	info.align_mask = PAGE_MASK & ((1ul << pshift) - 1);
	info.align_offset = 0;
338 339

	addr = mm->mmap_base;
340 341 342 343 344 345
	/*
	 * If we are trying to allocate above DEFAULT_MAP_WINDOW
	 * Add the different to the mmap_base.
	 * Only for that request for which high_limit is above
	 * DEFAULT_MAP_WINDOW we should apply this.
	 */
346
	if (high_limit > DEFAULT_MAP_WINDOW)
347
		addr += mm_ctx_slb_addr_limit(&mm->context) - DEFAULT_MAP_WINDOW;
348

349
	while (addr > min_addr) {
350 351
		info.high_limit = addr;
		if (!slice_scan_available(addr - 1, available, 0, &addr))
352 353
			continue;

354
 prev_slice:
355
		/*
356 357 358 359
		 * At this point [addr; info.high_limit) covers
		 * available slices only and starts at a slice boundary.
		 * Check if we need to reduce the range, or if we can
		 * extend it to cover the previous available slice.
360
		 */
361 362
		if (addr < min_addr)
			addr = min_addr;
363 364 365 366 367
		else if (slice_scan_available(addr - 1, available, 0, &prev)) {
			addr = prev;
			goto prev_slice;
		}
		info.low_limit = addr;
368

369 370 371
		found = vm_unmapped_area(&info);
		if (!(found & ~PAGE_MASK))
			return found;
372 373 374 375 376 377 378 379
	}

	/*
	 * A failed mmap() very likely causes application failure,
	 * so fall back to the bottom-up function here. This scenario
	 * can happen with large stack limits and large mmap()
	 * allocations.
	 */
380
	return slice_find_area_bottomup(mm, len, available, psize, high_limit);
381 382 383 384
}


static unsigned long slice_find_area(struct mm_struct *mm, unsigned long len,
385
				     const struct slice_mask *mask, int psize,
386
				     int topdown, unsigned long high_limit)
387 388
{
	if (topdown)
389
		return slice_find_area_topdown(mm, len, mask, psize, high_limit);
390
	else
391
		return slice_find_area_bottomup(mm, len, mask, psize, high_limit);
392 393
}

394
static inline void slice_copy_mask(struct slice_mask *dst,
395
					const struct slice_mask *src)
396
{
397
	dst->low_slices = src->low_slices;
398 399
	if (!SLICE_NUM_HIGH)
		return;
400
	bitmap_copy(dst->high_slices, src->high_slices, SLICE_NUM_HIGH);
401 402
}

403 404 405
static inline void slice_or_mask(struct slice_mask *dst,
					const struct slice_mask *src1,
					const struct slice_mask *src2)
406
{
407 408 409 410 411
	dst->low_slices = src1->low_slices | src2->low_slices;
	if (!SLICE_NUM_HIGH)
		return;
	bitmap_or(dst->high_slices, src1->high_slices, src2->high_slices, SLICE_NUM_HIGH);
}
412

413 414 415 416 417
static inline void slice_andnot_mask(struct slice_mask *dst,
					const struct slice_mask *src1,
					const struct slice_mask *src2)
{
	dst->low_slices = src1->low_slices & ~src2->low_slices;
418 419
	if (!SLICE_NUM_HIGH)
		return;
420
	bitmap_andnot(dst->high_slices, src1->high_slices, src2->high_slices, SLICE_NUM_HIGH);
421
}
422 423 424 425 426 427 428

#ifdef CONFIG_PPC_64K_PAGES
#define MMU_PAGE_BASE	MMU_PAGE_64K
#else
#define MMU_PAGE_BASE	MMU_PAGE_4K
#endif

429 430
unsigned long slice_get_unmapped_area(unsigned long addr, unsigned long len,
				      unsigned long flags, unsigned int psize,
431
				      int topdown)
432 433
{
	struct slice_mask good_mask;
434
	struct slice_mask potential_mask;
435 436
	const struct slice_mask *maskp;
	const struct slice_mask *compat_maskp = NULL;
437 438
	int fixed = (flags & MAP_FIXED);
	int pshift = max_t(int, mmu_psize_defs[psize].shift, PAGE_SHIFT);
439
	unsigned long page_size = 1UL << pshift;
440
	struct mm_struct *mm = current->mm;
441
	unsigned long newaddr;
442
	unsigned long high_limit;
443

444
	high_limit = DEFAULT_MAP_WINDOW;
445
	if (addr >= high_limit || (fixed && (addr + len > high_limit)))
446 447 448 449 450 451 452 453 454 455 456 457 458
		high_limit = TASK_SIZE;

	if (len > high_limit)
		return -ENOMEM;
	if (len & (page_size - 1))
		return -EINVAL;
	if (fixed) {
		if (addr & (page_size - 1))
			return -EINVAL;
		if (addr > high_limit - len)
			return -ENOMEM;
	}

459
	if (high_limit > mm_ctx_slb_addr_limit(&mm->context)) {
460 461 462 463 464
		/*
		 * Increasing the slb_addr_limit does not require
		 * slice mask cache to be recalculated because it should
		 * be already initialised beyond the old address limit.
		 */
465
		mm_ctx_set_slb_addr_limit(&mm->context, high_limit);
466 467

		on_each_cpu(slice_flush_segments, mm, 1);
468
	}
469

470 471
	/* Sanity checks */
	BUG_ON(mm->task_size == 0);
472
	BUG_ON(mm_ctx_slb_addr_limit(&mm->context) == 0);
473
	VM_BUG_ON(radix_enabled());
474 475

	slice_dbg("slice_get_unmapped_area(mm=%p, psize=%d...\n", mm, psize);
476 477
	slice_dbg(" addr=%lx, len=%lx, flags=%lx, topdown=%d\n",
		  addr, len, flags, topdown);
478 479 480

	/* If hint, make sure it matches our alignment restrictions */
	if (!fixed && addr) {
481
		addr = _ALIGN_UP(addr, page_size);
482
		slice_dbg(" aligned addr=%lx\n", addr);
483
		/* Ignore hint if it's too large or overlaps a VMA */
484
		if (addr > high_limit - len || addr < mmap_min_addr ||
485 486
		    !slice_area_is_free(mm, addr, len))
			addr = 0;
487 488
	}

489
	/* First make up a "good" mask of slices that have the right size
490 491
	 * already
	 */
492
	maskp = slice_mask_for_size(&mm->context, psize);
493

494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
	/*
	 * Here "good" means slices that are already the right page size,
	 * "compat" means slices that have a compatible page size (i.e.
	 * 4k in a 64k pagesize kernel), and "free" means slices without
	 * any VMAs.
	 *
	 * If MAP_FIXED:
	 *	check if fits in good | compat => OK
	 *	check if fits in good | compat | free => convert free
	 *	else bad
	 * If have hint:
	 *	check if hint fits in good => OK
	 *	check if hint fits in good | free => convert free
	 * Otherwise:
	 *	search in good, found => OK
	 *	search in good | free, found => convert free
	 *	search in good | compat | free, found => convert free.
	 */
512

513 514 515 516 517 518
	/*
	 * If we support combo pages, we can allow 64k pages in 4k slices
	 * The mask copies could be avoided in most cases here if we had
	 * a pointer to good mask for the next code to use.
	 */
	if (IS_ENABLED(CONFIG_PPC_64K_PAGES) && psize == MMU_PAGE_64K) {
519
		compat_maskp = slice_mask_for_size(&mm->context, MMU_PAGE_4K);
520
		if (fixed)
521 522 523 524 525
			slice_or_mask(&good_mask, maskp, compat_maskp);
		else
			slice_copy_mask(&good_mask, maskp);
	} else {
		slice_copy_mask(&good_mask, maskp);
526
	}
527 528 529 530

	slice_print_mask(" good_mask", &good_mask);
	if (compat_maskp)
		slice_print_mask(" compat_mask", compat_maskp);
531

532 533
	/* First check hint if it's valid or if we have MAP_FIXED */
	if (addr != 0 || fixed) {
534 535 536
		/* Check if we fit in the good mask. If we do, we just return,
		 * nothing else to do
		 */
537
		if (slice_check_range_fits(mm, &good_mask, addr, len)) {
538
			slice_dbg(" fits good !\n");
539 540
			newaddr = addr;
			goto return_addr;
541
		}
542 543 544
	} else {
		/* Now let's see if we can find something in the existing
		 * slices for that size
545
		 */
546
		newaddr = slice_find_area(mm, len, &good_mask,
547
					  psize, topdown, high_limit);
548 549 550 551 552
		if (newaddr != -ENOMEM) {
			/* Found within the good mask, we don't have to setup,
			 * we thus return directly
			 */
			slice_dbg(" found area at 0x%lx\n", newaddr);
553
			goto return_addr;
554 555
		}
	}
556 557
	/*
	 * We don't fit in the good mask, check what other slices are
558 559
	 * empty and thus can be converted
	 */
560
	slice_mask_for_free(mm, &potential_mask, high_limit);
561
	slice_or_mask(&potential_mask, &potential_mask, &good_mask);
562
	slice_print_mask(" potential", &potential_mask);
563

564 565 566
	if (addr != 0 || fixed) {
		if (slice_check_range_fits(mm, &potential_mask, addr, len)) {
			slice_dbg(" fits potential !\n");
567
			newaddr = addr;
568 569
			goto convert;
		}
570 571 572
	}

	/* If we have MAP_FIXED and failed the above steps, then error out */
573 574 575 576 577
	if (fixed)
		return -EBUSY;

	slice_dbg(" search...\n");

578 579
	/* If we had a hint that didn't work out, see if we can fit
	 * anywhere in the good area.
580
	 */
581
	if (addr) {
582 583 584 585 586
		newaddr = slice_find_area(mm, len, &good_mask,
					  psize, topdown, high_limit);
		if (newaddr != -ENOMEM) {
			slice_dbg(" found area at 0x%lx\n", newaddr);
			goto return_addr;
587
		}
588 589 590
	}

	/* Now let's see if we can find something in the existing slices
591
	 * for that size plus free slices
592
	 */
593 594
	newaddr = slice_find_area(mm, len, &potential_mask,
				  psize, topdown, high_limit);
595

596 597
	if (IS_ENABLED(CONFIG_PPC_64K_PAGES) && newaddr == -ENOMEM &&
	    psize == MMU_PAGE_64K) {
598
		/* retry the search with 4k-page slices included */
599
		slice_or_mask(&potential_mask, &potential_mask, compat_maskp);
600 601
		newaddr = slice_find_area(mm, len, &potential_mask,
					  psize, topdown, high_limit);
602 603
	}

604
	if (newaddr == -ENOMEM)
605 606
		return -ENOMEM;

607 608
	slice_range_to_mask(newaddr, len, &potential_mask);
	slice_dbg(" found potential area at 0x%lx\n", newaddr);
609
	slice_print_mask(" mask", &potential_mask);
610 611

 convert:
612 613 614 615 616 617 618 619 620
	/*
	 * Try to allocate the context before we do slice convert
	 * so that we handle the context allocation failure gracefully.
	 */
	if (need_extra_context(mm, newaddr)) {
		if (alloc_extended_context(mm, newaddr) < 0)
			return -ENOMEM;
	}

621 622 623 624 625 626 627
	slice_andnot_mask(&potential_mask, &potential_mask, &good_mask);
	if (compat_maskp && !fixed)
		slice_andnot_mask(&potential_mask, &potential_mask, compat_maskp);
	if (potential_mask.low_slices ||
		(SLICE_NUM_HIGH &&
		 !bitmap_empty(potential_mask.high_slices, SLICE_NUM_HIGH))) {
		slice_convert(mm, &potential_mask, psize);
628
		if (psize > MMU_PAGE_BASE)
629
			on_each_cpu(slice_flush_segments, mm, 1);
630
	}
631
	return newaddr;
632 633

return_addr:
634 635 636 637
	if (need_extra_context(mm, newaddr)) {
		if (alloc_extended_context(mm, newaddr) < 0)
			return -ENOMEM;
	}
638
	return newaddr;
639 640 641 642 643 644 645 646 647 648
}
EXPORT_SYMBOL_GPL(slice_get_unmapped_area);

unsigned long arch_get_unmapped_area(struct file *filp,
				     unsigned long addr,
				     unsigned long len,
				     unsigned long pgoff,
				     unsigned long flags)
{
	return slice_get_unmapped_area(addr, len, flags,
649
				       mm_ctx_user_psize(&current->mm->context), 0);
650 651 652 653 654 655 656 657 658
}

unsigned long arch_get_unmapped_area_topdown(struct file *filp,
					     const unsigned long addr0,
					     const unsigned long len,
					     const unsigned long pgoff,
					     const unsigned long flags)
{
	return slice_get_unmapped_area(addr0, len, flags,
659
				       mm_ctx_user_psize(&current->mm->context), 1);
660 661
}

662
unsigned int notrace get_slice_psize(struct mm_struct *mm, unsigned long addr)
663
{
664
	unsigned char *psizes;
665
	int index, mask_index;
666

667 668
	VM_BUG_ON(radix_enabled());

669
	if (slice_addr_is_low(addr)) {
670
		psizes = mm_ctx_low_slices(&mm->context);
671
		index = GET_LOW_SLICE_INDEX(addr);
672
	} else {
673
		psizes = mm_ctx_high_slices(&mm->context);
674
		index = GET_HIGH_SLICE_INDEX(addr);
675
	}
676
	mask_index = index & 0x1;
677
	return (psizes[index >> 1] >> (mask_index * 4)) & 0xf;
678 679 680
}
EXPORT_SYMBOL_GPL(get_slice_psize);

681
void slice_init_new_context_exec(struct mm_struct *mm)
682
{
683
	unsigned char *hpsizes, *lpsizes;
684
	struct slice_mask *mask;
685
	unsigned int psize = mmu_virtual_psize;
686

687
	slice_dbg("slice_init_new_context_exec(mm=%p)\n", mm);
688

689 690 691 692 693
	/*
	 * In the case of exec, use the default limit. In the
	 * case of fork it is just inherited from the mm being
	 * duplicated.
	 */
694
	mm_ctx_set_slb_addr_limit(&mm->context, SLB_ADDR_LIMIT_DEFAULT);
695
	mm_ctx_set_user_psize(&mm->context, psize);
696

697 698 699
	/*
	 * Set all slice psizes to the default.
	 */
700
	lpsizes = mm_ctx_low_slices(&mm->context);
701
	memset(lpsizes, (psize << 4) | psize, SLICE_NUM_LOW >> 1);
702

703
	hpsizes = mm_ctx_high_slices(&mm->context);
704
	memset(hpsizes, (psize << 4) | psize, SLICE_NUM_HIGH >> 1);
705 706 707 708

	/*
	 * Slice mask cache starts zeroed, fill the default size cache.
	 */
709
	mask = slice_mask_for_size(&mm->context, psize);
710 711 712
	mask->low_slices = ~0UL;
	if (SLICE_NUM_HIGH)
		bitmap_fill(mask->high_slices, SLICE_NUM_HIGH);
713 714
}

715 716 717 718 719 720 721 722 723 724
#ifdef CONFIG_PPC_BOOK3S_64
void slice_setup_new_exec(void)
{
	struct mm_struct *mm = current->mm;

	slice_dbg("slice_setup_new_exec(mm=%p)\n", mm);

	if (!is_32bit_task())
		return;

725
	mm_ctx_set_slb_addr_limit(&mm->context, DEFAULT_MAP_WINDOW);
726 727 728
}
#endif

729 730 731
void slice_set_range_psize(struct mm_struct *mm, unsigned long start,
			   unsigned long len, unsigned int psize)
{
732
	struct slice_mask mask;
733

734
	VM_BUG_ON(radix_enabled());
735 736

	slice_range_to_mask(start, len, &mask);
737
	slice_convert(mm, &mask, psize);
738 739
}

740
#ifdef CONFIG_HUGETLB_PAGE
741
/*
742
 * is_hugepage_only_range() is used by generic code to verify whether
743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759
 * a normal mmap mapping (non hugetlbfs) is valid on a given area.
 *
 * until the generic code provides a more generic hook and/or starts
 * calling arch get_unmapped_area for MAP_FIXED (which our implementation
 * here knows how to deal with), we hijack it to keep standard mappings
 * away from us.
 *
 * because of that generic code limitation, MAP_FIXED mapping cannot
 * "convert" back a slice with no VMAs to the standard page size, only
 * get_unmapped_area() can. It would be possible to fix it here but I
 * prefer working on fixing the generic code instead.
 *
 * WARNING: This will not work if hugetlbfs isn't enabled since the
 * generic code will redefine that function as 0 in that. This is ok
 * for now as we only use slices with hugetlbfs enabled. This should
 * be fixed as the generic code gets fixed.
 */
760
int slice_is_hugepage_only_range(struct mm_struct *mm, unsigned long addr,
761 762
			   unsigned long len)
{
763
	const struct slice_mask *maskp;
764
	unsigned int psize = mm_ctx_user_psize(&mm->context);
765

766
	VM_BUG_ON(radix_enabled());
767

768
	maskp = slice_mask_for_size(&mm->context, psize);
769

770
	/* We need to account for 4k slices too */
771
	if (IS_ENABLED(CONFIG_PPC_64K_PAGES) && psize == MMU_PAGE_64K) {
772 773 774
		const struct slice_mask *compat_maskp;
		struct slice_mask available;

775
		compat_maskp = slice_mask_for_size(&mm->context, MMU_PAGE_4K);
776 777
		slice_or_mask(&available, maskp, compat_maskp);
		return !slice_check_range_fits(mm, &available, addr, len);
778
	}
779

780
	return !slice_check_range_fits(mm, maskp, addr, len);
781
}
782
#endif