slice.c 22.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
/*
 * address space "slices" (meta-segments) support
 *
 * Copyright (C) 2007 Benjamin Herrenschmidt, IBM Corporation.
 *
 * Based on hugetlb implementation
 *
 * Copyright (C) 2003 David Gibson, IBM Corporation.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 */

#undef DEBUG

#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/pagemap.h>
#include <linux/err.h>
#include <linux/spinlock.h>
32
#include <linux/export.h>
33
#include <linux/hugetlb.h>
34
#include <linux/sched/mm.h>
35
#include <linux/security.h>
36 37
#include <asm/mman.h>
#include <asm/mmu.h>
38
#include <asm/copro.h>
39
#include <asm/hugetlb.h>
40
#include <asm/mmu_context.h>
41

R
Roel Kluin 已提交
42
static DEFINE_SPINLOCK(slice_convert_lock);
43 44 45 46

#ifdef DEBUG
int _slice_debug = 1;

47
static void slice_print_mask(const char *label, const struct slice_mask *mask)
48 49 50
{
	if (!_slice_debug)
		return;
51 52 53 54
	pr_devel("%s low_slice: %*pbl\n", label,
			(int)SLICE_NUM_LOW, &mask->low_slices);
	pr_devel("%s high_slice: %*pbl\n", label,
			(int)SLICE_NUM_HIGH, mask->high_slices);
55 56
}

57
#define slice_dbg(fmt...) do { if (_slice_debug) pr_devel(fmt); } while (0)
58 59 60

#else

61
static void slice_print_mask(const char *label, const struct slice_mask *mask) {}
62 63 64 65
#define slice_dbg(fmt...)

#endif

66 67 68 69 70 71 72
static inline bool slice_addr_is_low(unsigned long addr)
{
	u64 tmp = (u64)addr;

	return tmp < SLICE_LOW_TOP;
}

73 74
static void slice_range_to_mask(unsigned long start, unsigned long len,
				struct slice_mask *ret)
75 76
{
	unsigned long end = start + len - 1;
77

78
	ret->low_slices = 0;
79 80
	if (SLICE_NUM_HIGH)
		bitmap_zero(ret->high_slices, SLICE_NUM_HIGH);
81

82
	if (slice_addr_is_low(start)) {
83 84
		unsigned long mend = min(end,
					 (unsigned long)(SLICE_LOW_TOP - 1));
85

86
		ret->low_slices = (1u << (GET_LOW_SLICE_INDEX(mend) + 1))
87
			- (1u << GET_LOW_SLICE_INDEX(start));
88 89
	}

90
	if (SLICE_NUM_HIGH && !slice_addr_is_low(end)) {
91 92 93
		unsigned long start_index = GET_HIGH_SLICE_INDEX(start);
		unsigned long align_end = ALIGN(end, (1UL << SLICE_HIGH_SHIFT));
		unsigned long count = GET_HIGH_SLICE_INDEX(align_end) - start_index;
94

95
		bitmap_set(ret->high_slices, start_index, count);
96
	}
97 98 99 100 101 102 103
}

static int slice_area_is_free(struct mm_struct *mm, unsigned long addr,
			      unsigned long len)
{
	struct vm_area_struct *vma;

104
	if ((mm_ctx_slb_addr_limit(&mm->context) - len) < addr)
105 106
		return 0;
	vma = find_vma(mm, addr);
107
	return (!vma || (addr + len) <= vm_start_gap(vma));
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
}

static int slice_low_has_vma(struct mm_struct *mm, unsigned long slice)
{
	return !slice_area_is_free(mm, slice << SLICE_LOW_SHIFT,
				   1ul << SLICE_LOW_SHIFT);
}

static int slice_high_has_vma(struct mm_struct *mm, unsigned long slice)
{
	unsigned long start = slice << SLICE_HIGH_SHIFT;
	unsigned long end = start + (1ul << SLICE_HIGH_SHIFT);

	/* Hack, so that each addresses is controlled by exactly one
	 * of the high or low area bitmaps, the first high area starts
	 * at 4GB, not 0 */
	if (start == 0)
125
		start = (unsigned long)SLICE_LOW_TOP;
126 127 128 129

	return !slice_area_is_free(mm, start, end - start);
}

130 131
static void slice_mask_for_free(struct mm_struct *mm, struct slice_mask *ret,
				unsigned long high_limit)
132 133 134
{
	unsigned long i;

135
	ret->low_slices = 0;
136 137
	if (SLICE_NUM_HIGH)
		bitmap_zero(ret->high_slices, SLICE_NUM_HIGH);
138

139 140
	for (i = 0; i < SLICE_NUM_LOW; i++)
		if (!slice_low_has_vma(mm, i))
141
			ret->low_slices |= 1u << i;
142

143
	if (slice_addr_is_low(high_limit - 1))
144
		return;
145

146
	for (i = 0; i < GET_HIGH_SLICE_INDEX(high_limit); i++)
147
		if (!slice_high_has_vma(mm, i))
148
			__set_bit(i, ret->high_slices);
149 150
}

151 152 153
static bool slice_check_range_fits(struct mm_struct *mm,
			   const struct slice_mask *available,
			   unsigned long start, unsigned long len)
154
{
155 156
	unsigned long end = start + len - 1;
	u64 low_slices = 0;
157

158
	if (slice_addr_is_low(start)) {
159 160
		unsigned long mend = min(end,
					 (unsigned long)(SLICE_LOW_TOP - 1));
161

162 163 164 165 166
		low_slices = (1u << (GET_LOW_SLICE_INDEX(mend) + 1))
				- (1u << GET_LOW_SLICE_INDEX(start));
	}
	if ((low_slices & available->low_slices) != low_slices)
		return false;
167

168
	if (SLICE_NUM_HIGH && !slice_addr_is_low(end)) {
169 170 171 172 173 174 175 176 177 178 179 180
		unsigned long start_index = GET_HIGH_SLICE_INDEX(start);
		unsigned long align_end = ALIGN(end, (1UL << SLICE_HIGH_SHIFT));
		unsigned long count = GET_HIGH_SLICE_INDEX(align_end) - start_index;
		unsigned long i;

		for (i = start_index; i < start_index + count; i++) {
			if (!test_bit(i, available->high_slices))
				return false;
		}
	}

	return true;
181 182
}

183 184 185 186 187 188 189 190 191 192 193 194
static void slice_flush_segments(void *parm)
{
#ifdef CONFIG_PPC64
	struct mm_struct *mm = parm;
	unsigned long flags;

	if (mm != current->active_mm)
		return;

	copy_mm_to_paca(current->active_mm);

	local_irq_save(flags);
195
	slb_flush_and_restore_bolted();
196 197 198 199
	local_irq_restore(flags);
#endif
}

200 201
static void slice_convert(struct mm_struct *mm,
				const struct slice_mask *mask, int psize)
202
{
203
	int index, mask_index;
204
	/* Write the new slice psize bits */
205
	unsigned char *hpsizes, *lpsizes;
206
	struct slice_mask *psize_mask, *old_mask;
207
	unsigned long i, flags;
208
	int old_psize;
209 210 211 212

	slice_dbg("slice_convert(mm=%p, psize=%d)\n", mm, psize);
	slice_print_mask(" mask", mask);

213
	psize_mask = slice_mask_for_size(&mm->context, psize);
214

215 216 217 218 219
	/* We need to use a spinlock here to protect against
	 * concurrent 64k -> 4k demotion ...
	 */
	spin_lock_irqsave(&slice_convert_lock, flags);

220
	lpsizes = mm_ctx_low_slices(&mm->context);
221
	for (i = 0; i < SLICE_NUM_LOW; i++) {
222
		if (!(mask->low_slices & (1u << i)))
223 224 225 226
			continue;

		mask_index = i & 0x1;
		index = i >> 1;
227 228 229

		/* Update the slice_mask */
		old_psize = (lpsizes[index] >> (mask_index * 4)) & 0xf;
230
		old_mask = slice_mask_for_size(&mm->context, old_psize);
231 232 233 234
		old_mask->low_slices &= ~(1u << i);
		psize_mask->low_slices |= 1u << i;

		/* Update the sizes array */
235
		lpsizes[index] = (lpsizes[index] & ~(0xf << (mask_index * 4))) |
236
				(((unsigned long)psize) << (mask_index * 4));
237
	}
238

239 240
	hpsizes = mm_ctx_high_slices(&mm->context);
	for (i = 0; i < GET_HIGH_SLICE_INDEX(mm_ctx_slb_addr_limit(&mm->context)); i++) {
241
		if (!test_bit(i, mask->high_slices))
242 243
			continue;

244 245
		mask_index = i & 0x1;
		index = i >> 1;
246 247 248

		/* Update the slice_mask */
		old_psize = (hpsizes[index] >> (mask_index * 4)) & 0xf;
249
		old_mask = slice_mask_for_size(&mm->context, old_psize);
250 251 252 253
		__clear_bit(i, old_mask->high_slices);
		__set_bit(i, psize_mask->high_slices);

		/* Update the sizes array */
254
		hpsizes[index] = (hpsizes[index] & ~(0xf << (mask_index * 4))) |
255 256
				(((unsigned long)psize) << (mask_index * 4));
	}
257 258

	slice_dbg(" lsps=%lx, hsps=%lx\n",
259 260
		  (unsigned long)mm_ctx_low_slices(&mm->context),
		  (unsigned long)mm_ctx_high_slices(&mm->context));
261 262 263

	spin_unlock_irqrestore(&slice_convert_lock, flags);

264
	copro_flush_all_slbs(mm);
265 266
}

267 268 269 270 271 272 273 274
/*
 * Compute which slice addr is part of;
 * set *boundary_addr to the start or end boundary of that slice
 * (depending on 'end' parameter);
 * return boolean indicating if the slice is marked as available in the
 * 'available' slice_mark.
 */
static bool slice_scan_available(unsigned long addr,
275 276
				 const struct slice_mask *available,
				 int end, unsigned long *boundary_addr)
277 278
{
	unsigned long slice;
279
	if (slice_addr_is_low(addr)) {
280 281
		slice = GET_LOW_SLICE_INDEX(addr);
		*boundary_addr = (slice + end) << SLICE_LOW_SHIFT;
282
		return !!(available->low_slices & (1u << slice));
283 284 285 286
	} else {
		slice = GET_HIGH_SLICE_INDEX(addr);
		*boundary_addr = (slice + end) ?
			((slice + end) << SLICE_HIGH_SHIFT) : SLICE_LOW_TOP;
287
		return !!test_bit(slice, available->high_slices);
288 289 290
	}
}

291 292
static unsigned long slice_find_area_bottomup(struct mm_struct *mm,
					      unsigned long len,
293
					      const struct slice_mask *available,
294
					      int psize, unsigned long high_limit)
295 296
{
	int pshift = max_t(int, mmu_psize_defs[psize].shift, PAGE_SHIFT);
297 298
	unsigned long addr, found, next_end;
	struct vm_unmapped_area_info info;
299

300 301 302 303
	info.flags = 0;
	info.length = len;
	info.align_mask = PAGE_MASK & ((1ul << pshift) - 1);
	info.align_offset = 0;
304

305
	addr = TASK_UNMAPPED_BASE;
306 307 308 309
	/*
	 * Check till the allow max value for this mmap request
	 */
	while (addr < high_limit) {
310 311
		info.low_limit = addr;
		if (!slice_scan_available(addr, available, 1, &addr))
312
			continue;
313 314 315 316 317 318 319 320

 next_slice:
		/*
		 * At this point [info.low_limit; addr) covers
		 * available slices only and ends at a slice boundary.
		 * Check if we need to reduce the range, or if we can
		 * extend it to cover the next available slice.
		 */
321 322
		if (addr >= high_limit)
			addr = high_limit;
323 324 325
		else if (slice_scan_available(addr, available, 1, &next_end)) {
			addr = next_end;
			goto next_slice;
326
		}
327 328 329 330 331
		info.high_limit = addr;

		found = vm_unmapped_area(&info);
		if (!(found & ~PAGE_MASK))
			return found;
332 333 334 335 336 337 338
	}

	return -ENOMEM;
}

static unsigned long slice_find_area_topdown(struct mm_struct *mm,
					     unsigned long len,
339
					     const struct slice_mask *available,
340
					     int psize, unsigned long high_limit)
341 342
{
	int pshift = max_t(int, mmu_psize_defs[psize].shift, PAGE_SHIFT);
343 344
	unsigned long addr, found, prev;
	struct vm_unmapped_area_info info;
345
	unsigned long min_addr = max(PAGE_SIZE, mmap_min_addr);
346 347 348 349 350

	info.flags = VM_UNMAPPED_AREA_TOPDOWN;
	info.length = len;
	info.align_mask = PAGE_MASK & ((1ul << pshift) - 1);
	info.align_offset = 0;
351 352

	addr = mm->mmap_base;
353 354 355 356 357 358
	/*
	 * If we are trying to allocate above DEFAULT_MAP_WINDOW
	 * Add the different to the mmap_base.
	 * Only for that request for which high_limit is above
	 * DEFAULT_MAP_WINDOW we should apply this.
	 */
359
	if (high_limit > DEFAULT_MAP_WINDOW)
360
		addr += mm_ctx_slb_addr_limit(&mm->context) - DEFAULT_MAP_WINDOW;
361

362
	while (addr > min_addr) {
363 364
		info.high_limit = addr;
		if (!slice_scan_available(addr - 1, available, 0, &addr))
365 366
			continue;

367
 prev_slice:
368
		/*
369 370 371 372
		 * At this point [addr; info.high_limit) covers
		 * available slices only and starts at a slice boundary.
		 * Check if we need to reduce the range, or if we can
		 * extend it to cover the previous available slice.
373
		 */
374 375
		if (addr < min_addr)
			addr = min_addr;
376 377 378 379 380
		else if (slice_scan_available(addr - 1, available, 0, &prev)) {
			addr = prev;
			goto prev_slice;
		}
		info.low_limit = addr;
381

382 383 384
		found = vm_unmapped_area(&info);
		if (!(found & ~PAGE_MASK))
			return found;
385 386 387 388 389 390 391 392
	}

	/*
	 * A failed mmap() very likely causes application failure,
	 * so fall back to the bottom-up function here. This scenario
	 * can happen with large stack limits and large mmap()
	 * allocations.
	 */
393
	return slice_find_area_bottomup(mm, len, available, psize, high_limit);
394 395 396 397
}


static unsigned long slice_find_area(struct mm_struct *mm, unsigned long len,
398
				     const struct slice_mask *mask, int psize,
399
				     int topdown, unsigned long high_limit)
400 401
{
	if (topdown)
402
		return slice_find_area_topdown(mm, len, mask, psize, high_limit);
403
	else
404
		return slice_find_area_bottomup(mm, len, mask, psize, high_limit);
405 406
}

407
static inline void slice_copy_mask(struct slice_mask *dst,
408
					const struct slice_mask *src)
409
{
410
	dst->low_slices = src->low_slices;
411 412
	if (!SLICE_NUM_HIGH)
		return;
413
	bitmap_copy(dst->high_slices, src->high_slices, SLICE_NUM_HIGH);
414 415
}

416 417 418
static inline void slice_or_mask(struct slice_mask *dst,
					const struct slice_mask *src1,
					const struct slice_mask *src2)
419
{
420 421 422 423 424
	dst->low_slices = src1->low_slices | src2->low_slices;
	if (!SLICE_NUM_HIGH)
		return;
	bitmap_or(dst->high_slices, src1->high_slices, src2->high_slices, SLICE_NUM_HIGH);
}
425

426 427 428 429 430
static inline void slice_andnot_mask(struct slice_mask *dst,
					const struct slice_mask *src1,
					const struct slice_mask *src2)
{
	dst->low_slices = src1->low_slices & ~src2->low_slices;
431 432
	if (!SLICE_NUM_HIGH)
		return;
433
	bitmap_andnot(dst->high_slices, src1->high_slices, src2->high_slices, SLICE_NUM_HIGH);
434
}
435 436 437 438 439 440 441

#ifdef CONFIG_PPC_64K_PAGES
#define MMU_PAGE_BASE	MMU_PAGE_64K
#else
#define MMU_PAGE_BASE	MMU_PAGE_4K
#endif

442 443
unsigned long slice_get_unmapped_area(unsigned long addr, unsigned long len,
				      unsigned long flags, unsigned int psize,
444
				      int topdown)
445 446
{
	struct slice_mask good_mask;
447
	struct slice_mask potential_mask;
448 449
	const struct slice_mask *maskp;
	const struct slice_mask *compat_maskp = NULL;
450 451
	int fixed = (flags & MAP_FIXED);
	int pshift = max_t(int, mmu_psize_defs[psize].shift, PAGE_SHIFT);
452
	unsigned long page_size = 1UL << pshift;
453
	struct mm_struct *mm = current->mm;
454
	unsigned long newaddr;
455
	unsigned long high_limit;
456

457
	high_limit = DEFAULT_MAP_WINDOW;
458
	if (addr >= high_limit || (fixed && (addr + len > high_limit)))
459 460 461 462 463 464 465 466 467 468 469 470 471
		high_limit = TASK_SIZE;

	if (len > high_limit)
		return -ENOMEM;
	if (len & (page_size - 1))
		return -EINVAL;
	if (fixed) {
		if (addr & (page_size - 1))
			return -EINVAL;
		if (addr > high_limit - len)
			return -ENOMEM;
	}

472
	if (high_limit > mm_ctx_slb_addr_limit(&mm->context)) {
473 474 475 476 477
		/*
		 * Increasing the slb_addr_limit does not require
		 * slice mask cache to be recalculated because it should
		 * be already initialised beyond the old address limit.
		 */
478
		mm_ctx_set_slb_addr_limit(&mm->context, high_limit);
479 480

		on_each_cpu(slice_flush_segments, mm, 1);
481
	}
482

483 484
	/* Sanity checks */
	BUG_ON(mm->task_size == 0);
485
	BUG_ON(mm_ctx_slb_addr_limit(&mm->context) == 0);
486
	VM_BUG_ON(radix_enabled());
487 488

	slice_dbg("slice_get_unmapped_area(mm=%p, psize=%d...\n", mm, psize);
489 490
	slice_dbg(" addr=%lx, len=%lx, flags=%lx, topdown=%d\n",
		  addr, len, flags, topdown);
491 492 493

	/* If hint, make sure it matches our alignment restrictions */
	if (!fixed && addr) {
494
		addr = _ALIGN_UP(addr, page_size);
495
		slice_dbg(" aligned addr=%lx\n", addr);
496
		/* Ignore hint if it's too large or overlaps a VMA */
497
		if (addr > high_limit - len || addr < mmap_min_addr ||
498 499
		    !slice_area_is_free(mm, addr, len))
			addr = 0;
500 501
	}

502
	/* First make up a "good" mask of slices that have the right size
503 504
	 * already
	 */
505
	maskp = slice_mask_for_size(&mm->context, psize);
506

507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524
	/*
	 * Here "good" means slices that are already the right page size,
	 * "compat" means slices that have a compatible page size (i.e.
	 * 4k in a 64k pagesize kernel), and "free" means slices without
	 * any VMAs.
	 *
	 * If MAP_FIXED:
	 *	check if fits in good | compat => OK
	 *	check if fits in good | compat | free => convert free
	 *	else bad
	 * If have hint:
	 *	check if hint fits in good => OK
	 *	check if hint fits in good | free => convert free
	 * Otherwise:
	 *	search in good, found => OK
	 *	search in good | free, found => convert free
	 *	search in good | compat | free, found => convert free.
	 */
525

526 527 528 529 530 531
	/*
	 * If we support combo pages, we can allow 64k pages in 4k slices
	 * The mask copies could be avoided in most cases here if we had
	 * a pointer to good mask for the next code to use.
	 */
	if (IS_ENABLED(CONFIG_PPC_64K_PAGES) && psize == MMU_PAGE_64K) {
532
		compat_maskp = slice_mask_for_size(&mm->context, MMU_PAGE_4K);
533
		if (fixed)
534 535 536 537 538
			slice_or_mask(&good_mask, maskp, compat_maskp);
		else
			slice_copy_mask(&good_mask, maskp);
	} else {
		slice_copy_mask(&good_mask, maskp);
539
	}
540 541 542 543

	slice_print_mask(" good_mask", &good_mask);
	if (compat_maskp)
		slice_print_mask(" compat_mask", compat_maskp);
544

545 546
	/* First check hint if it's valid or if we have MAP_FIXED */
	if (addr != 0 || fixed) {
547 548 549
		/* Check if we fit in the good mask. If we do, we just return,
		 * nothing else to do
		 */
550
		if (slice_check_range_fits(mm, &good_mask, addr, len)) {
551
			slice_dbg(" fits good !\n");
552 553
			newaddr = addr;
			goto return_addr;
554
		}
555 556 557
	} else {
		/* Now let's see if we can find something in the existing
		 * slices for that size
558
		 */
559
		newaddr = slice_find_area(mm, len, &good_mask,
560
					  psize, topdown, high_limit);
561 562 563 564 565
		if (newaddr != -ENOMEM) {
			/* Found within the good mask, we don't have to setup,
			 * we thus return directly
			 */
			slice_dbg(" found area at 0x%lx\n", newaddr);
566
			goto return_addr;
567 568
		}
	}
569 570
	/*
	 * We don't fit in the good mask, check what other slices are
571 572
	 * empty and thus can be converted
	 */
573
	slice_mask_for_free(mm, &potential_mask, high_limit);
574
	slice_or_mask(&potential_mask, &potential_mask, &good_mask);
575
	slice_print_mask(" potential", &potential_mask);
576

577 578 579
	if (addr != 0 || fixed) {
		if (slice_check_range_fits(mm, &potential_mask, addr, len)) {
			slice_dbg(" fits potential !\n");
580
			newaddr = addr;
581 582
			goto convert;
		}
583 584 585
	}

	/* If we have MAP_FIXED and failed the above steps, then error out */
586 587 588 589 590
	if (fixed)
		return -EBUSY;

	slice_dbg(" search...\n");

591 592
	/* If we had a hint that didn't work out, see if we can fit
	 * anywhere in the good area.
593
	 */
594
	if (addr) {
595 596 597 598 599
		newaddr = slice_find_area(mm, len, &good_mask,
					  psize, topdown, high_limit);
		if (newaddr != -ENOMEM) {
			slice_dbg(" found area at 0x%lx\n", newaddr);
			goto return_addr;
600
		}
601 602 603
	}

	/* Now let's see if we can find something in the existing slices
604
	 * for that size plus free slices
605
	 */
606 607
	newaddr = slice_find_area(mm, len, &potential_mask,
				  psize, topdown, high_limit);
608 609

#ifdef CONFIG_PPC_64K_PAGES
610
	if (newaddr == -ENOMEM && psize == MMU_PAGE_64K) {
611
		/* retry the search with 4k-page slices included */
612
		slice_or_mask(&potential_mask, &potential_mask, compat_maskp);
613 614
		newaddr = slice_find_area(mm, len, &potential_mask,
					  psize, topdown, high_limit);
615 616 617
	}
#endif

618
	if (newaddr == -ENOMEM)
619 620
		return -ENOMEM;

621 622
	slice_range_to_mask(newaddr, len, &potential_mask);
	slice_dbg(" found potential area at 0x%lx\n", newaddr);
623
	slice_print_mask(" mask", &potential_mask);
624 625

 convert:
626 627 628 629 630 631 632 633 634
	/*
	 * Try to allocate the context before we do slice convert
	 * so that we handle the context allocation failure gracefully.
	 */
	if (need_extra_context(mm, newaddr)) {
		if (alloc_extended_context(mm, newaddr) < 0)
			return -ENOMEM;
	}

635 636 637 638 639 640 641
	slice_andnot_mask(&potential_mask, &potential_mask, &good_mask);
	if (compat_maskp && !fixed)
		slice_andnot_mask(&potential_mask, &potential_mask, compat_maskp);
	if (potential_mask.low_slices ||
		(SLICE_NUM_HIGH &&
		 !bitmap_empty(potential_mask.high_slices, SLICE_NUM_HIGH))) {
		slice_convert(mm, &potential_mask, psize);
642
		if (psize > MMU_PAGE_BASE)
643
			on_each_cpu(slice_flush_segments, mm, 1);
644
	}
645
	return newaddr;
646 647

return_addr:
648 649 650 651
	if (need_extra_context(mm, newaddr)) {
		if (alloc_extended_context(mm, newaddr) < 0)
			return -ENOMEM;
	}
652
	return newaddr;
653 654 655 656 657 658 659 660 661 662
}
EXPORT_SYMBOL_GPL(slice_get_unmapped_area);

unsigned long arch_get_unmapped_area(struct file *filp,
				     unsigned long addr,
				     unsigned long len,
				     unsigned long pgoff,
				     unsigned long flags)
{
	return slice_get_unmapped_area(addr, len, flags,
663
				       mm_ctx_user_psize(&current->mm->context), 0);
664 665 666 667 668 669 670 671 672
}

unsigned long arch_get_unmapped_area_topdown(struct file *filp,
					     const unsigned long addr0,
					     const unsigned long len,
					     const unsigned long pgoff,
					     const unsigned long flags)
{
	return slice_get_unmapped_area(addr0, len, flags,
673
				       mm_ctx_user_psize(&current->mm->context), 1);
674 675 676 677
}

unsigned int get_slice_psize(struct mm_struct *mm, unsigned long addr)
{
678
	unsigned char *psizes;
679
	int index, mask_index;
680

681 682
	VM_BUG_ON(radix_enabled());

683
	if (slice_addr_is_low(addr)) {
684
		psizes = mm_ctx_low_slices(&mm->context);
685
		index = GET_LOW_SLICE_INDEX(addr);
686
	} else {
687
		psizes = mm_ctx_high_slices(&mm->context);
688
		index = GET_HIGH_SLICE_INDEX(addr);
689
	}
690
	mask_index = index & 0x1;
691
	return (psizes[index >> 1] >> (mask_index * 4)) & 0xf;
692 693 694
}
EXPORT_SYMBOL_GPL(get_slice_psize);

695
void slice_init_new_context_exec(struct mm_struct *mm)
696
{
697
	unsigned char *hpsizes, *lpsizes;
698
	struct slice_mask *mask;
699
	unsigned int psize = mmu_virtual_psize;
700

701
	slice_dbg("slice_init_new_context_exec(mm=%p)\n", mm);
702

703 704 705 706 707 708
	/*
	 * In the case of exec, use the default limit. In the
	 * case of fork it is just inherited from the mm being
	 * duplicated.
	 */
#ifdef CONFIG_PPC64
709
	mm_ctx_set_slb_addr_limit(&mm->context, DEFAULT_MAP_WINDOW_USER64);
710 711 712
#else
	mm->context.slb_addr_limit = DEFAULT_MAP_WINDOW;
#endif
713
	mm_ctx_set_user_psize(&mm->context, psize);
714

715 716 717
	/*
	 * Set all slice psizes to the default.
	 */
718
	lpsizes = mm_ctx_low_slices(&mm->context);
719
	memset(lpsizes, (psize << 4) | psize, SLICE_NUM_LOW >> 1);
720

721
	hpsizes = mm_ctx_high_slices(&mm->context);
722
	memset(hpsizes, (psize << 4) | psize, SLICE_NUM_HIGH >> 1);
723 724 725 726

	/*
	 * Slice mask cache starts zeroed, fill the default size cache.
	 */
727
	mask = slice_mask_for_size(&mm->context, psize);
728 729 730
	mask->low_slices = ~0UL;
	if (SLICE_NUM_HIGH)
		bitmap_fill(mask->high_slices, SLICE_NUM_HIGH);
731 732
}

733 734 735 736 737 738 739 740 741 742
#ifdef CONFIG_PPC_BOOK3S_64
void slice_setup_new_exec(void)
{
	struct mm_struct *mm = current->mm;

	slice_dbg("slice_setup_new_exec(mm=%p)\n", mm);

	if (!is_32bit_task())
		return;

743
	mm_ctx_set_slb_addr_limit(&mm->context, DEFAULT_MAP_WINDOW);
744 745 746
}
#endif

747 748 749
void slice_set_range_psize(struct mm_struct *mm, unsigned long start,
			   unsigned long len, unsigned int psize)
{
750
	struct slice_mask mask;
751

752
	VM_BUG_ON(radix_enabled());
753 754

	slice_range_to_mask(start, len, &mask);
755
	slice_convert(mm, &mask, psize);
756 757
}

758
#ifdef CONFIG_HUGETLB_PAGE
759
/*
760
 * is_hugepage_only_range() is used by generic code to verify whether
761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777
 * a normal mmap mapping (non hugetlbfs) is valid on a given area.
 *
 * until the generic code provides a more generic hook and/or starts
 * calling arch get_unmapped_area for MAP_FIXED (which our implementation
 * here knows how to deal with), we hijack it to keep standard mappings
 * away from us.
 *
 * because of that generic code limitation, MAP_FIXED mapping cannot
 * "convert" back a slice with no VMAs to the standard page size, only
 * get_unmapped_area() can. It would be possible to fix it here but I
 * prefer working on fixing the generic code instead.
 *
 * WARNING: This will not work if hugetlbfs isn't enabled since the
 * generic code will redefine that function as 0 in that. This is ok
 * for now as we only use slices with hugetlbfs enabled. This should
 * be fixed as the generic code gets fixed.
 */
778
int slice_is_hugepage_only_range(struct mm_struct *mm, unsigned long addr,
779 780
			   unsigned long len)
{
781
	const struct slice_mask *maskp;
782
	unsigned int psize = mm_ctx_user_psize(&mm->context);
783

784
	VM_BUG_ON(radix_enabled());
785

786
	maskp = slice_mask_for_size(&mm->context, psize);
787 788 789
#ifdef CONFIG_PPC_64K_PAGES
	/* We need to account for 4k slices too */
	if (psize == MMU_PAGE_64K) {
790 791 792
		const struct slice_mask *compat_maskp;
		struct slice_mask available;

793
		compat_maskp = slice_mask_for_size(&mm->context, MMU_PAGE_4K);
794 795
		slice_or_mask(&available, maskp, compat_maskp);
		return !slice_check_range_fits(mm, &available, addr, len);
796 797
	}
#endif
798

799
	return !slice_check_range_fits(mm, maskp, addr, len);
800
}
801
#endif