slice.c 22.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
/*
 * address space "slices" (meta-segments) support
 *
 * Copyright (C) 2007 Benjamin Herrenschmidt, IBM Corporation.
 *
 * Based on hugetlb implementation
 *
 * Copyright (C) 2003 David Gibson, IBM Corporation.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 */

#undef DEBUG

#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/pagemap.h>
#include <linux/err.h>
#include <linux/spinlock.h>
32
#include <linux/export.h>
33
#include <linux/hugetlb.h>
34 35
#include <asm/mman.h>
#include <asm/mmu.h>
36
#include <asm/copro.h>
37
#include <asm/hugetlb.h>
38

R
Roel Kluin 已提交
39
static DEFINE_SPINLOCK(slice_convert_lock);
40 41 42 43

#ifdef DEBUG
int _slice_debug = 1;

44
static void slice_print_mask(const char *label, const struct slice_mask *mask)
45 46 47
{
	if (!_slice_debug)
		return;
48 49 50 51
	pr_devel("%s low_slice: %*pbl\n", label,
			(int)SLICE_NUM_LOW, &mask->low_slices);
	pr_devel("%s high_slice: %*pbl\n", label,
			(int)SLICE_NUM_HIGH, mask->high_slices);
52 53
}

54
#define slice_dbg(fmt...) do { if (_slice_debug) pr_devel(fmt); } while (0)
55 56 57

#else

58
static void slice_print_mask(const char *label, const struct slice_mask *mask) {}
59 60 61 62
#define slice_dbg(fmt...)

#endif

63 64
static void slice_range_to_mask(unsigned long start, unsigned long len,
				struct slice_mask *ret)
65 66
{
	unsigned long end = start + len - 1;
67

68
	ret->low_slices = 0;
69 70
	if (SLICE_NUM_HIGH)
		bitmap_zero(ret->high_slices, SLICE_NUM_HIGH);
71 72

	if (start < SLICE_LOW_TOP) {
73 74
		unsigned long mend = min(end,
					 (unsigned long)(SLICE_LOW_TOP - 1));
75

76
		ret->low_slices = (1u << (GET_LOW_SLICE_INDEX(mend) + 1))
77
			- (1u << GET_LOW_SLICE_INDEX(start));
78 79
	}

80 81 82 83
	if ((start + len) > SLICE_LOW_TOP) {
		unsigned long start_index = GET_HIGH_SLICE_INDEX(start);
		unsigned long align_end = ALIGN(end, (1UL << SLICE_HIGH_SHIFT));
		unsigned long count = GET_HIGH_SLICE_INDEX(align_end) - start_index;
84

85
		bitmap_set(ret->high_slices, start_index, count);
86
	}
87 88 89 90 91 92 93
}

static int slice_area_is_free(struct mm_struct *mm, unsigned long addr,
			      unsigned long len)
{
	struct vm_area_struct *vma;

94
	if ((mm->context.slb_addr_limit - len) < addr)
95 96
		return 0;
	vma = find_vma(mm, addr);
97
	return (!vma || (addr + len) <= vm_start_gap(vma));
98 99 100 101 102 103 104 105 106 107 108 109 110
}

static int slice_low_has_vma(struct mm_struct *mm, unsigned long slice)
{
	return !slice_area_is_free(mm, slice << SLICE_LOW_SHIFT,
				   1ul << SLICE_LOW_SHIFT);
}

static int slice_high_has_vma(struct mm_struct *mm, unsigned long slice)
{
	unsigned long start = slice << SLICE_HIGH_SHIFT;
	unsigned long end = start + (1ul << SLICE_HIGH_SHIFT);

111
#ifdef CONFIG_PPC64
112 113 114 115 116
	/* Hack, so that each addresses is controlled by exactly one
	 * of the high or low area bitmaps, the first high area starts
	 * at 4GB, not 0 */
	if (start == 0)
		start = SLICE_LOW_TOP;
117
#endif
118 119 120 121

	return !slice_area_is_free(mm, start, end - start);
}

122 123
static void slice_mask_for_free(struct mm_struct *mm, struct slice_mask *ret,
				unsigned long high_limit)
124 125 126
{
	unsigned long i;

127
	ret->low_slices = 0;
128 129
	if (SLICE_NUM_HIGH)
		bitmap_zero(ret->high_slices, SLICE_NUM_HIGH);
130

131 132
	for (i = 0; i < SLICE_NUM_LOW; i++)
		if (!slice_low_has_vma(mm, i))
133
			ret->low_slices |= 1u << i;
134

135
	if (high_limit <= SLICE_LOW_TOP)
136
		return;
137

138
	for (i = 0; i < GET_HIGH_SLICE_INDEX(high_limit); i++)
139
		if (!slice_high_has_vma(mm, i))
140
			__set_bit(i, ret->high_slices);
141 142
}

143 144
#ifdef CONFIG_PPC_BOOK3S_64
static struct slice_mask *slice_mask_for_size(struct mm_struct *mm, int psize)
145
{
146 147 148 149 150 151 152 153 154 155 156 157 158
#ifdef CONFIG_PPC_64K_PAGES
	if (psize == MMU_PAGE_64K)
		return &mm->context.mask_64k;
#endif
	if (psize == MMU_PAGE_4K)
		return &mm->context.mask_4k;
#ifdef CONFIG_HUGETLB_PAGE
	if (psize == MMU_PAGE_16M)
		return &mm->context.mask_16m;
	if (psize == MMU_PAGE_16G)
		return &mm->context.mask_16g;
#endif
	BUG();
159
}
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
#elif defined(CONFIG_PPC_8xx)
static struct slice_mask *slice_mask_for_size(struct mm_struct *mm, int psize)
{
	if (psize == mmu_virtual_psize)
		return &mm->context.mask_base_psize;
#ifdef CONFIG_HUGETLB_PAGE
	if (psize == MMU_PAGE_512K)
		return &mm->context.mask_512k;
	if (psize == MMU_PAGE_8M)
		return &mm->context.mask_8m;
#endif
	BUG();
}
#else
#error "Must define the slice masks for page sizes supported by the platform"
#endif
176

177 178 179
static bool slice_check_range_fits(struct mm_struct *mm,
			   const struct slice_mask *available,
			   unsigned long start, unsigned long len)
180
{
181 182
	unsigned long end = start + len - 1;
	u64 low_slices = 0;
183

184 185 186
	if (start < SLICE_LOW_TOP) {
		unsigned long mend = min(end,
					 (unsigned long)(SLICE_LOW_TOP - 1));
187

188 189 190 191 192
		low_slices = (1u << (GET_LOW_SLICE_INDEX(mend) + 1))
				- (1u << GET_LOW_SLICE_INDEX(start));
	}
	if ((low_slices & available->low_slices) != low_slices)
		return false;
193

194 195 196 197 198 199 200 201 202 203 204 205 206
	if (SLICE_NUM_HIGH && ((start + len) > SLICE_LOW_TOP)) {
		unsigned long start_index = GET_HIGH_SLICE_INDEX(start);
		unsigned long align_end = ALIGN(end, (1UL << SLICE_HIGH_SHIFT));
		unsigned long count = GET_HIGH_SLICE_INDEX(align_end) - start_index;
		unsigned long i;

		for (i = start_index; i < start_index + count; i++) {
			if (!test_bit(i, available->high_slices))
				return false;
		}
	}

	return true;
207 208 209 210
}

static void slice_flush_segments(void *parm)
{
211
#ifdef CONFIG_PPC64
212 213 214 215 216 217
	struct mm_struct *mm = parm;
	unsigned long flags;

	if (mm != current->active_mm)
		return;

218
	copy_mm_to_paca(current->active_mm);
219 220 221 222

	local_irq_save(flags);
	slb_flush_and_rebolt();
	local_irq_restore(flags);
223
#endif
224 225
}

226 227
static void slice_convert(struct mm_struct *mm,
				const struct slice_mask *mask, int psize)
228
{
229
	int index, mask_index;
230
	/* Write the new slice psize bits */
231
	unsigned char *hpsizes, *lpsizes;
232
	struct slice_mask *psize_mask, *old_mask;
233
	unsigned long i, flags;
234
	int old_psize;
235 236 237 238

	slice_dbg("slice_convert(mm=%p, psize=%d)\n", mm, psize);
	slice_print_mask(" mask", mask);

239 240
	psize_mask = slice_mask_for_size(mm, psize);

241 242 243 244 245 246
	/* We need to use a spinlock here to protect against
	 * concurrent 64k -> 4k demotion ...
	 */
	spin_lock_irqsave(&slice_convert_lock, flags);

	lpsizes = mm->context.low_slices_psize;
247
	for (i = 0; i < SLICE_NUM_LOW; i++) {
248
		if (!(mask->low_slices & (1u << i)))
249 250 251 252
			continue;

		mask_index = i & 0x1;
		index = i >> 1;
253 254 255 256 257 258 259 260

		/* Update the slice_mask */
		old_psize = (lpsizes[index] >> (mask_index * 4)) & 0xf;
		old_mask = slice_mask_for_size(mm, old_psize);
		old_mask->low_slices &= ~(1u << i);
		psize_mask->low_slices |= 1u << i;

		/* Update the sizes array */
261
		lpsizes[index] = (lpsizes[index] & ~(0xf << (mask_index * 4))) |
262
				(((unsigned long)psize) << (mask_index * 4));
263
	}
264 265

	hpsizes = mm->context.high_slices_psize;
266
	for (i = 0; i < GET_HIGH_SLICE_INDEX(mm->context.slb_addr_limit); i++) {
267
		if (!test_bit(i, mask->high_slices))
268 269
			continue;

270 271
		mask_index = i & 0x1;
		index = i >> 1;
272 273 274 275 276 277 278 279

		/* Update the slice_mask */
		old_psize = (hpsizes[index] >> (mask_index * 4)) & 0xf;
		old_mask = slice_mask_for_size(mm, old_psize);
		__clear_bit(i, old_mask->high_slices);
		__set_bit(i, psize_mask->high_slices);

		/* Update the sizes array */
280
		hpsizes[index] = (hpsizes[index] & ~(0xf << (mask_index * 4))) |
281 282
				(((unsigned long)psize) << (mask_index * 4));
	}
283 284

	slice_dbg(" lsps=%lx, hsps=%lx\n",
285 286
		  (unsigned long)mm->context.low_slices_psize,
		  (unsigned long)mm->context.high_slices_psize);
287 288 289

	spin_unlock_irqrestore(&slice_convert_lock, flags);

290
	copro_flush_all_slbs(mm);
291 292
}

293 294 295 296 297 298 299 300
/*
 * Compute which slice addr is part of;
 * set *boundary_addr to the start or end boundary of that slice
 * (depending on 'end' parameter);
 * return boolean indicating if the slice is marked as available in the
 * 'available' slice_mark.
 */
static bool slice_scan_available(unsigned long addr,
301 302
				 const struct slice_mask *available,
				 int end, unsigned long *boundary_addr)
303 304 305 306 307
{
	unsigned long slice;
	if (addr < SLICE_LOW_TOP) {
		slice = GET_LOW_SLICE_INDEX(addr);
		*boundary_addr = (slice + end) << SLICE_LOW_SHIFT;
308
		return !!(available->low_slices & (1u << slice));
309 310 311 312
	} else {
		slice = GET_HIGH_SLICE_INDEX(addr);
		*boundary_addr = (slice + end) ?
			((slice + end) << SLICE_HIGH_SHIFT) : SLICE_LOW_TOP;
313
		return !!test_bit(slice, available->high_slices);
314 315 316
	}
}

317 318
static unsigned long slice_find_area_bottomup(struct mm_struct *mm,
					      unsigned long len,
319
					      const struct slice_mask *available,
320
					      int psize, unsigned long high_limit)
321 322
{
	int pshift = max_t(int, mmu_psize_defs[psize].shift, PAGE_SHIFT);
323 324
	unsigned long addr, found, next_end;
	struct vm_unmapped_area_info info;
325

326 327 328 329
	info.flags = 0;
	info.length = len;
	info.align_mask = PAGE_MASK & ((1ul << pshift) - 1);
	info.align_offset = 0;
330

331
	addr = TASK_UNMAPPED_BASE;
332 333 334 335
	/*
	 * Check till the allow max value for this mmap request
	 */
	while (addr < high_limit) {
336 337
		info.low_limit = addr;
		if (!slice_scan_available(addr, available, 1, &addr))
338
			continue;
339 340 341 342 343 344 345 346

 next_slice:
		/*
		 * At this point [info.low_limit; addr) covers
		 * available slices only and ends at a slice boundary.
		 * Check if we need to reduce the range, or if we can
		 * extend it to cover the next available slice.
		 */
347 348
		if (addr >= high_limit)
			addr = high_limit;
349 350 351
		else if (slice_scan_available(addr, available, 1, &next_end)) {
			addr = next_end;
			goto next_slice;
352
		}
353 354 355 356 357
		info.high_limit = addr;

		found = vm_unmapped_area(&info);
		if (!(found & ~PAGE_MASK))
			return found;
358 359 360 361 362 363 364
	}

	return -ENOMEM;
}

static unsigned long slice_find_area_topdown(struct mm_struct *mm,
					     unsigned long len,
365
					     const struct slice_mask *available,
366
					     int psize, unsigned long high_limit)
367 368
{
	int pshift = max_t(int, mmu_psize_defs[psize].shift, PAGE_SHIFT);
369 370 371 372 373 374 375
	unsigned long addr, found, prev;
	struct vm_unmapped_area_info info;

	info.flags = VM_UNMAPPED_AREA_TOPDOWN;
	info.length = len;
	info.align_mask = PAGE_MASK & ((1ul << pshift) - 1);
	info.align_offset = 0;
376 377

	addr = mm->mmap_base;
378 379 380 381 382 383
	/*
	 * If we are trying to allocate above DEFAULT_MAP_WINDOW
	 * Add the different to the mmap_base.
	 * Only for that request for which high_limit is above
	 * DEFAULT_MAP_WINDOW we should apply this.
	 */
384 385
	if (high_limit > DEFAULT_MAP_WINDOW)
		addr += mm->context.slb_addr_limit - DEFAULT_MAP_WINDOW;
386

387 388 389
	while (addr > PAGE_SIZE) {
		info.high_limit = addr;
		if (!slice_scan_available(addr - 1, available, 0, &addr))
390 391
			continue;

392
 prev_slice:
393
		/*
394 395 396 397
		 * At this point [addr; info.high_limit) covers
		 * available slices only and starts at a slice boundary.
		 * Check if we need to reduce the range, or if we can
		 * extend it to cover the previous available slice.
398
		 */
399 400 401 402 403 404 405
		if (addr < PAGE_SIZE)
			addr = PAGE_SIZE;
		else if (slice_scan_available(addr - 1, available, 0, &prev)) {
			addr = prev;
			goto prev_slice;
		}
		info.low_limit = addr;
406

407 408 409
		found = vm_unmapped_area(&info);
		if (!(found & ~PAGE_MASK))
			return found;
410 411 412 413 414 415 416 417
	}

	/*
	 * A failed mmap() very likely causes application failure,
	 * so fall back to the bottom-up function here. This scenario
	 * can happen with large stack limits and large mmap()
	 * allocations.
	 */
418
	return slice_find_area_bottomup(mm, len, available, psize, high_limit);
419 420 421 422
}


static unsigned long slice_find_area(struct mm_struct *mm, unsigned long len,
423
				     const struct slice_mask *mask, int psize,
424
				     int topdown, unsigned long high_limit)
425 426
{
	if (topdown)
427
		return slice_find_area_topdown(mm, len, mask, psize, high_limit);
428
	else
429
		return slice_find_area_bottomup(mm, len, mask, psize, high_limit);
430 431
}

432
static inline void slice_copy_mask(struct slice_mask *dst,
433
					const struct slice_mask *src)
434
{
435
	dst->low_slices = src->low_slices;
436 437
	if (!SLICE_NUM_HIGH)
		return;
438
	bitmap_copy(dst->high_slices, src->high_slices, SLICE_NUM_HIGH);
439 440
}

441 442 443
static inline void slice_or_mask(struct slice_mask *dst,
					const struct slice_mask *src1,
					const struct slice_mask *src2)
444
{
445 446 447 448 449
	dst->low_slices = src1->low_slices | src2->low_slices;
	if (!SLICE_NUM_HIGH)
		return;
	bitmap_or(dst->high_slices, src1->high_slices, src2->high_slices, SLICE_NUM_HIGH);
}
450

451 452 453 454 455
static inline void slice_andnot_mask(struct slice_mask *dst,
					const struct slice_mask *src1,
					const struct slice_mask *src2)
{
	dst->low_slices = src1->low_slices & ~src2->low_slices;
456 457
	if (!SLICE_NUM_HIGH)
		return;
458
	bitmap_andnot(dst->high_slices, src1->high_slices, src2->high_slices, SLICE_NUM_HIGH);
459
}
460 461 462 463 464 465 466

#ifdef CONFIG_PPC_64K_PAGES
#define MMU_PAGE_BASE	MMU_PAGE_64K
#else
#define MMU_PAGE_BASE	MMU_PAGE_4K
#endif

467 468
unsigned long slice_get_unmapped_area(unsigned long addr, unsigned long len,
				      unsigned long flags, unsigned int psize,
469
				      int topdown)
470 471
{
	struct slice_mask good_mask;
472
	struct slice_mask potential_mask;
473 474
	const struct slice_mask *maskp;
	const struct slice_mask *compat_maskp = NULL;
475 476
	int fixed = (flags & MAP_FIXED);
	int pshift = max_t(int, mmu_psize_defs[psize].shift, PAGE_SHIFT);
477
	unsigned long page_size = 1UL << pshift;
478
	struct mm_struct *mm = current->mm;
479
	unsigned long newaddr;
480
	unsigned long high_limit;
481

482
	high_limit = DEFAULT_MAP_WINDOW;
483
	if (addr >= high_limit || (fixed && (addr + len > high_limit)))
484 485 486 487 488 489 490 491 492 493 494 495 496
		high_limit = TASK_SIZE;

	if (len > high_limit)
		return -ENOMEM;
	if (len & (page_size - 1))
		return -EINVAL;
	if (fixed) {
		if (addr & (page_size - 1))
			return -EINVAL;
		if (addr > high_limit - len)
			return -ENOMEM;
	}

497
	if (high_limit > mm->context.slb_addr_limit) {
498 499 500 501 502
		/*
		 * Increasing the slb_addr_limit does not require
		 * slice mask cache to be recalculated because it should
		 * be already initialised beyond the old address limit.
		 */
503
		mm->context.slb_addr_limit = high_limit;
504

505 506
		on_each_cpu(slice_flush_segments, mm, 1);
	}
507

508 509
	/* Sanity checks */
	BUG_ON(mm->task_size == 0);
510
	BUG_ON(mm->context.slb_addr_limit == 0);
511
	VM_BUG_ON(radix_enabled());
512 513

	slice_dbg("slice_get_unmapped_area(mm=%p, psize=%d...\n", mm, psize);
514 515
	slice_dbg(" addr=%lx, len=%lx, flags=%lx, topdown=%d\n",
		  addr, len, flags, topdown);
516 517 518

	/* If hint, make sure it matches our alignment restrictions */
	if (!fixed && addr) {
519
		addr = _ALIGN_UP(addr, page_size);
520
		slice_dbg(" aligned addr=%lx\n", addr);
521
		/* Ignore hint if it's too large or overlaps a VMA */
522
		if (addr > high_limit - len ||
523 524
		    !slice_area_is_free(mm, addr, len))
			addr = 0;
525 526
	}

527
	/* First make up a "good" mask of slices that have the right size
528 529
	 * already
	 */
530
	maskp = slice_mask_for_size(mm, psize);
531

532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549
	/*
	 * Here "good" means slices that are already the right page size,
	 * "compat" means slices that have a compatible page size (i.e.
	 * 4k in a 64k pagesize kernel), and "free" means slices without
	 * any VMAs.
	 *
	 * If MAP_FIXED:
	 *	check if fits in good | compat => OK
	 *	check if fits in good | compat | free => convert free
	 *	else bad
	 * If have hint:
	 *	check if hint fits in good => OK
	 *	check if hint fits in good | free => convert free
	 * Otherwise:
	 *	search in good, found => OK
	 *	search in good | free, found => convert free
	 *	search in good | compat | free, found => convert free.
	 */
550

551 552 553 554 555 556 557
	/*
	 * If we support combo pages, we can allow 64k pages in 4k slices
	 * The mask copies could be avoided in most cases here if we had
	 * a pointer to good mask for the next code to use.
	 */
	if (IS_ENABLED(CONFIG_PPC_64K_PAGES) && psize == MMU_PAGE_64K) {
		compat_maskp = slice_mask_for_size(mm, MMU_PAGE_4K);
558
		if (fixed)
559 560 561 562 563
			slice_or_mask(&good_mask, maskp, compat_maskp);
		else
			slice_copy_mask(&good_mask, maskp);
	} else {
		slice_copy_mask(&good_mask, maskp);
564
	}
565 566 567 568

	slice_print_mask(" good_mask", &good_mask);
	if (compat_maskp)
		slice_print_mask(" compat_mask", compat_maskp);
569

570 571
	/* First check hint if it's valid or if we have MAP_FIXED */
	if (addr != 0 || fixed) {
572 573 574
		/* Check if we fit in the good mask. If we do, we just return,
		 * nothing else to do
		 */
575
		if (slice_check_range_fits(mm, &good_mask, addr, len)) {
576
			slice_dbg(" fits good !\n");
577 578
			newaddr = addr;
			goto return_addr;
579
		}
580 581 582
	} else {
		/* Now let's see if we can find something in the existing
		 * slices for that size
583
		 */
584
		newaddr = slice_find_area(mm, len, &good_mask,
585
					  psize, topdown, high_limit);
586 587 588 589 590
		if (newaddr != -ENOMEM) {
			/* Found within the good mask, we don't have to setup,
			 * we thus return directly
			 */
			slice_dbg(" found area at 0x%lx\n", newaddr);
591
			goto return_addr;
592 593
		}
	}
594 595
	/*
	 * We don't fit in the good mask, check what other slices are
596 597
	 * empty and thus can be converted
	 */
598
	slice_mask_for_free(mm, &potential_mask, high_limit);
599
	slice_or_mask(&potential_mask, &potential_mask, &good_mask);
600
	slice_print_mask(" potential", &potential_mask);
601

602 603 604
	if (addr != 0 || fixed) {
		if (slice_check_range_fits(mm, &potential_mask, addr, len)) {
			slice_dbg(" fits potential !\n");
605
			newaddr = addr;
606 607
			goto convert;
		}
608 609 610
	}

	/* If we have MAP_FIXED and failed the above steps, then error out */
611 612 613 614 615
	if (fixed)
		return -EBUSY;

	slice_dbg(" search...\n");

616 617
	/* If we had a hint that didn't work out, see if we can fit
	 * anywhere in the good area.
618
	 */
619
	if (addr) {
620 621 622 623 624
		newaddr = slice_find_area(mm, len, &good_mask,
					  psize, topdown, high_limit);
		if (newaddr != -ENOMEM) {
			slice_dbg(" found area at 0x%lx\n", newaddr);
			goto return_addr;
625
		}
626 627 628
	}

	/* Now let's see if we can find something in the existing slices
629
	 * for that size plus free slices
630
	 */
631 632
	newaddr = slice_find_area(mm, len, &potential_mask,
				  psize, topdown, high_limit);
633 634

#ifdef CONFIG_PPC_64K_PAGES
635
	if (newaddr == -ENOMEM && psize == MMU_PAGE_64K) {
636
		/* retry the search with 4k-page slices included */
637
		slice_or_mask(&potential_mask, &potential_mask, compat_maskp);
638 639
		newaddr = slice_find_area(mm, len, &potential_mask,
					  psize, topdown, high_limit);
640 641 642
	}
#endif

643
	if (newaddr == -ENOMEM)
644 645
		return -ENOMEM;

646 647
	slice_range_to_mask(newaddr, len, &potential_mask);
	slice_dbg(" found potential area at 0x%lx\n", newaddr);
648
	slice_print_mask(" mask", &potential_mask);
649 650

 convert:
651 652 653 654 655 656 657
	slice_andnot_mask(&potential_mask, &potential_mask, &good_mask);
	if (compat_maskp && !fixed)
		slice_andnot_mask(&potential_mask, &potential_mask, compat_maskp);
	if (potential_mask.low_slices ||
		(SLICE_NUM_HIGH &&
		 !bitmap_empty(potential_mask.high_slices, SLICE_NUM_HIGH))) {
		slice_convert(mm, &potential_mask, psize);
658
		if (psize > MMU_PAGE_BASE)
659
			on_each_cpu(slice_flush_segments, mm, 1);
660
	}
661 662 663

return_addr:
	return newaddr;
664 665 666 667 668 669 670 671 672 673 674

}
EXPORT_SYMBOL_GPL(slice_get_unmapped_area);

unsigned long arch_get_unmapped_area(struct file *filp,
				     unsigned long addr,
				     unsigned long len,
				     unsigned long pgoff,
				     unsigned long flags)
{
	return slice_get_unmapped_area(addr, len, flags,
675
				       current->mm->context.user_psize, 0);
676 677 678 679 680 681 682 683 684
}

unsigned long arch_get_unmapped_area_topdown(struct file *filp,
					     const unsigned long addr0,
					     const unsigned long len,
					     const unsigned long pgoff,
					     const unsigned long flags)
{
	return slice_get_unmapped_area(addr0, len, flags,
685
				       current->mm->context.user_psize, 1);
686 687 688 689
}

unsigned int get_slice_psize(struct mm_struct *mm, unsigned long addr)
{
690
	unsigned char *psizes;
691
	int index, mask_index;
692

693 694
	VM_BUG_ON(radix_enabled());

695
	if (addr < SLICE_LOW_TOP) {
696
		psizes = mm->context.low_slices_psize;
697
		index = GET_LOW_SLICE_INDEX(addr);
698 699 700
	} else {
		psizes = mm->context.high_slices_psize;
		index = GET_HIGH_SLICE_INDEX(addr);
701
	}
702
	mask_index = index & 0x1;
703
	return (psizes[index >> 1] >> (mask_index * 4)) & 0xf;
704 705 706
}
EXPORT_SYMBOL_GPL(get_slice_psize);

707
void slice_init_new_context_exec(struct mm_struct *mm)
708
{
709
	unsigned char *hpsizes, *lpsizes;
710
	struct slice_mask *mask;
711
	unsigned int psize = mmu_virtual_psize;
712

713
	slice_dbg("slice_init_new_context_exec(mm=%p)\n", mm);
714

715 716 717 718 719 720 721 722 723 724
	/*
	 * In the case of exec, use the default limit. In the
	 * case of fork it is just inherited from the mm being
	 * duplicated.
	 */
#ifdef CONFIG_PPC64
	mm->context.slb_addr_limit = DEFAULT_MAP_WINDOW_USER64;
#else
	mm->context.slb_addr_limit = DEFAULT_MAP_WINDOW;
#endif
725 726 727

	mm->context.user_psize = psize;

728 729 730
	/*
	 * Set all slice psizes to the default.
	 */
731
	lpsizes = mm->context.low_slices_psize;
732
	memset(lpsizes, (psize << 4) | psize, SLICE_NUM_LOW >> 1);
733 734

	hpsizes = mm->context.high_slices_psize;
735
	memset(hpsizes, (psize << 4) | psize, SLICE_NUM_HIGH >> 1);
736 737 738 739 740 741 742 743

	/*
	 * Slice mask cache starts zeroed, fill the default size cache.
	 */
	mask = slice_mask_for_size(mm, psize);
	mask->low_slices = ~0UL;
	if (SLICE_NUM_HIGH)
		bitmap_fill(mask->high_slices, SLICE_NUM_HIGH);
744 745
}

746 747 748
void slice_set_range_psize(struct mm_struct *mm, unsigned long start,
			   unsigned long len, unsigned int psize)
{
749
	struct slice_mask mask;
750

751
	VM_BUG_ON(radix_enabled());
752 753

	slice_range_to_mask(start, len, &mask);
754
	slice_convert(mm, &mask, psize);
755 756
}

757
#ifdef CONFIG_HUGETLB_PAGE
758
/*
759
 * is_hugepage_only_range() is used by generic code to verify whether
760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776
 * a normal mmap mapping (non hugetlbfs) is valid on a given area.
 *
 * until the generic code provides a more generic hook and/or starts
 * calling arch get_unmapped_area for MAP_FIXED (which our implementation
 * here knows how to deal with), we hijack it to keep standard mappings
 * away from us.
 *
 * because of that generic code limitation, MAP_FIXED mapping cannot
 * "convert" back a slice with no VMAs to the standard page size, only
 * get_unmapped_area() can. It would be possible to fix it here but I
 * prefer working on fixing the generic code instead.
 *
 * WARNING: This will not work if hugetlbfs isn't enabled since the
 * generic code will redefine that function as 0 in that. This is ok
 * for now as we only use slices with hugetlbfs enabled. This should
 * be fixed as the generic code gets fixed.
 */
777
int slice_is_hugepage_only_range(struct mm_struct *mm, unsigned long addr,
778 779
			   unsigned long len)
{
780
	const struct slice_mask *maskp;
781
	unsigned int psize = mm->context.user_psize;
782

783
	VM_BUG_ON(radix_enabled());
784

785
	maskp = slice_mask_for_size(mm, psize);
786 787 788
#ifdef CONFIG_PPC_64K_PAGES
	/* We need to account for 4k slices too */
	if (psize == MMU_PAGE_64K) {
789 790 791 792 793 794
		const struct slice_mask *compat_maskp;
		struct slice_mask available;

		compat_maskp = slice_mask_for_size(mm, MMU_PAGE_4K);
		slice_or_mask(&available, maskp, compat_maskp);
		return !slice_check_range_fits(mm, &available, addr, len);
795 796
	}
#endif
797

798
	return !slice_check_range_fits(mm, maskp, addr, len);
799
}
800
#endif