intel_breadcrumbs.c 24.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/*
 * Copyright © 2015 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 */

25
#include <linux/kthread.h>
26
#include <uapi/linux/sched/types.h>
27

28 29
#include "i915_drv.h"

30
#define task_asleep(tsk) ((tsk)->state & TASK_NORMAL && !(tsk)->on_rq)
31

32
static unsigned int __intel_breadcrumbs_wakeup(struct intel_breadcrumbs *b)
33
{
34
	struct intel_wait *wait;
35 36
	unsigned int result = 0;

37 38 39
	lockdep_assert_held(&b->irq_lock);

	wait = b->irq_wait;
40
	if (wait) {
41 42 43 44 45 46 47 48 49 50 51 52
		/*
		 * N.B. Since task_asleep() and ttwu are not atomic, the
		 * waiter may actually go to sleep after the check, causing
		 * us to suppress a valid wakeup. We prefer to reduce the
		 * number of false positive missed_breadcrumb() warnings
		 * at the expense of a few false negatives, as it it easy
		 * to trigger a false positive under heavy load. Enough
		 * signal should remain from genuine missed_breadcrumb()
		 * for us to detect in CI.
		 */
		bool was_asleep = task_asleep(wait->tsk);

53
		result = ENGINE_WAKEUP_WAITER;
54
		if (wake_up_process(wait->tsk) && was_asleep)
55
			result |= ENGINE_WAKEUP_ASLEEP;
56
	}
57 58 59 60 61 62 63

	return result;
}

unsigned int intel_engine_wakeup(struct intel_engine_cs *engine)
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;
64
	unsigned long flags;
65 66
	unsigned int result;

67
	spin_lock_irqsave(&b->irq_lock, flags);
68
	result = __intel_breadcrumbs_wakeup(b);
69
	spin_unlock_irqrestore(&b->irq_lock, flags);
70 71 72 73

	return result;
}

74 75 76 77 78
static unsigned long wait_timeout(void)
{
	return round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES);
}

79 80
static noinline void missed_breadcrumb(struct intel_engine_cs *engine)
{
81
	if (GEM_SHOW_DEBUG()) {
82 83 84 85 86 87
		struct drm_printer p = drm_debug_printer(__func__);

		intel_engine_dump(engine, &p,
				  "%s missed breadcrumb at %pS\n",
				  engine->name, __builtin_return_address(0));
	}
88 89 90 91

	set_bit(engine->id, &engine->i915->gpu_error.missed_irq_rings);
}

92
static void intel_breadcrumbs_hangcheck(struct timer_list *t)
93
{
94 95
	struct intel_engine_cs *engine =
		from_timer(engine, t, breadcrumbs.hangcheck);
96
	struct intel_breadcrumbs *b = &engine->breadcrumbs;
97
	unsigned int irq_count;
98

99
	if (!b->irq_armed)
100 101
		return;

102 103 104
	irq_count = READ_ONCE(b->irq_count);
	if (b->hangcheck_interrupts != irq_count) {
		b->hangcheck_interrupts = irq_count;
105
		mod_timer(&b->hangcheck, wait_timeout());
106 107 108
		return;
	}

109
	/* We keep the hangcheck timer alive until we disarm the irq, even
110 111 112
	 * if there are no waiters at present.
	 *
	 * If the waiter was currently running, assume it hasn't had a chance
113 114
	 * to process the pending interrupt (e.g, low priority task on a loaded
	 * system) and wait until it sleeps before declaring a missed interrupt.
115 116 117 118 119
	 *
	 * If the waiter was asleep (and not even pending a wakeup), then we
	 * must have missed an interrupt as the GPU has stopped advancing
	 * but we still have a waiter. Assuming all batches complete within
	 * DRM_I915_HANGCHECK_JIFFIES [1.5s]!
120
	 */
121
	if (intel_engine_wakeup(engine) & ENGINE_WAKEUP_ASLEEP) {
122
		missed_breadcrumb(engine);
123
		mod_timer(&b->fake_irq, jiffies + 1);
124
	} else {
125 126
		mod_timer(&b->hangcheck, wait_timeout());
	}
127 128
}

129
static void intel_breadcrumbs_fake_irq(struct timer_list *t)
130
{
131 132
	struct intel_engine_cs *engine =
		from_timer(engine, t, breadcrumbs.fake_irq);
133
	struct intel_breadcrumbs *b = &engine->breadcrumbs;
134

135 136
	/*
	 * The timer persists in case we cannot enable interrupts,
137
	 * or if we have previously seen seqno/interrupt incoherency
138 139 140
	 * ("missed interrupt" syndrome, better known as a "missed breadcrumb").
	 * Here the worker will wake up every jiffie in order to kick the
	 * oldest waiter to do the coherent seqno check.
141
	 */
142

143
	spin_lock_irq(&b->irq_lock);
144
	if (b->irq_armed && !__intel_breadcrumbs_wakeup(b))
145
		__intel_engine_disarm_breadcrumbs(engine);
146
	spin_unlock_irq(&b->irq_lock);
147
	if (!b->irq_armed)
148 149
		return;

150 151 152 153 154 155
	/* If the user has disabled the fake-irq, restore the hangchecking */
	if (!test_bit(engine->id, &engine->i915->gpu_error.missed_irq_rings)) {
		mod_timer(&b->hangcheck, wait_timeout());
		return;
	}

156
	mod_timer(&b->fake_irq, jiffies + 1);
157 158 159 160
}

static void irq_enable(struct intel_engine_cs *engine)
{
161 162
	if (!engine->irq_enable)
		return;
163

164
	/* Caller disables interrupts */
165 166 167
	spin_lock(&engine->i915->irq_lock);
	engine->irq_enable(engine);
	spin_unlock(&engine->i915->irq_lock);
168 169 170 171
}

static void irq_disable(struct intel_engine_cs *engine)
{
172 173 174
	if (!engine->irq_disable)
		return;

175
	/* Caller disables interrupts */
176 177 178
	spin_lock(&engine->i915->irq_lock);
	engine->irq_disable(engine);
	spin_unlock(&engine->i915->irq_lock);
179 180
}

181 182 183 184
void __intel_engine_disarm_breadcrumbs(struct intel_engine_cs *engine)
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;

185
	lockdep_assert_held(&b->irq_lock);
186
	GEM_BUG_ON(b->irq_wait);
187
	GEM_BUG_ON(!b->irq_armed);
188

189 190
	GEM_BUG_ON(!b->irq_enabled);
	if (!--b->irq_enabled)
191 192 193 194 195
		irq_disable(engine);

	b->irq_armed = false;
}

196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
void intel_engine_pin_breadcrumbs_irq(struct intel_engine_cs *engine)
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;

	spin_lock_irq(&b->irq_lock);
	if (!b->irq_enabled++)
		irq_enable(engine);
	GEM_BUG_ON(!b->irq_enabled); /* no overflow! */
	spin_unlock_irq(&b->irq_lock);
}

void intel_engine_unpin_breadcrumbs_irq(struct intel_engine_cs *engine)
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;

	spin_lock_irq(&b->irq_lock);
	GEM_BUG_ON(!b->irq_enabled); /* no underflow! */
	if (!--b->irq_enabled)
		irq_disable(engine);
	spin_unlock_irq(&b->irq_lock);
}

218 219 220
void intel_engine_disarm_breadcrumbs(struct intel_engine_cs *engine)
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;
221
	struct intel_wait *wait, *n;
222 223

	if (!b->irq_armed)
224
		return;
225

226 227
	/*
	 * We only disarm the irq when we are idle (all requests completed),
228
	 * so if the bottom-half remains asleep, it missed the request
229 230
	 * completion.
	 */
231 232
	if (intel_engine_wakeup(engine) & ENGINE_WAKEUP_ASLEEP)
		missed_breadcrumb(engine);
233

234
	spin_lock_irq(&b->rb_lock);
235 236

	spin_lock(&b->irq_lock);
237
	b->irq_wait = NULL;
238 239
	if (b->irq_armed)
		__intel_engine_disarm_breadcrumbs(engine);
240 241
	spin_unlock(&b->irq_lock);

242
	rbtree_postorder_for_each_entry_safe(wait, n, &b->waiters, node) {
243
		GEM_BUG_ON(!intel_engine_signaled(engine, wait->seqno));
244
		RB_CLEAR_NODE(&wait->node);
245
		wake_up_process(wait->tsk);
246 247 248 249
	}
	b->waiters = RB_ROOT;

	spin_unlock_irq(&b->rb_lock);
250 251
}

252 253 254 255 256 257 258 259
static bool use_fake_irq(const struct intel_breadcrumbs *b)
{
	const struct intel_engine_cs *engine =
		container_of(b, struct intel_engine_cs, breadcrumbs);

	if (!test_bit(engine->id, &engine->i915->gpu_error.missed_irq_rings))
		return false;

260 261
	/*
	 * Only start with the heavy weight fake irq timer if we have not
262 263 264 265 266
	 * seen any interrupts since enabling it the first time. If the
	 * interrupts are still arriving, it means we made a mistake in our
	 * engine->seqno_barrier(), a timing error that should be transient
	 * and unlikely to reoccur.
	 */
267
	return READ_ONCE(b->irq_count) == b->hangcheck_interrupts;
268 269
}

270 271 272 273 274 275 276 277 278
static void enable_fake_irq(struct intel_breadcrumbs *b)
{
	/* Ensure we never sleep indefinitely */
	if (!b->irq_enabled || use_fake_irq(b))
		mod_timer(&b->fake_irq, jiffies + 1);
	else
		mod_timer(&b->hangcheck, wait_timeout());
}

279
static bool __intel_breadcrumbs_enable_irq(struct intel_breadcrumbs *b)
280 281 282 283
{
	struct intel_engine_cs *engine =
		container_of(b, struct intel_engine_cs, breadcrumbs);
	struct drm_i915_private *i915 = engine->i915;
284 285
	bool enabled;

286
	lockdep_assert_held(&b->irq_lock);
287
	if (b->irq_armed)
288
		return false;
289

290 291 292 293 294 295 296
	/* The breadcrumb irq will be disarmed on the interrupt after the
	 * waiters are signaled. This gives us a single interrupt window in
	 * which we can add a new waiter and avoid the cost of re-enabling
	 * the irq.
	 */
	b->irq_armed = true;

297 298 299 300 301 302 303 304
	if (I915_SELFTEST_ONLY(b->mock)) {
		/* For our mock objects we want to avoid interaction
		 * with the real hardware (which is not set up). So
		 * we simply pretend we have enabled the powerwell
		 * and the irq, and leave it up to the mock
		 * implementation to call intel_engine_wakeup()
		 * itself when it wants to simulate a user interrupt,
		 */
305
		return true;
306 307
	}

308
	/* Since we are waiting on a request, the GPU should be busy
309 310 311 312
	 * and should have its own rpm reference. This is tracked
	 * by i915->gt.awake, we can forgo holding our own wakref
	 * for the interrupt as before i915->gt.awake is released (when
	 * the driver is idle) we disarm the breadcrumbs.
313 314 315
	 */

	/* No interrupts? Kick the waiter every jiffie! */
316 317 318 319 320
	enabled = false;
	if (!b->irq_enabled++ &&
	    !test_bit(engine->id, &i915->gpu_error.test_irq_rings)) {
		irq_enable(engine);
		enabled = true;
321 322
	}

323
	enable_fake_irq(b);
324
	return enabled;
325 326 327 328
}

static inline struct intel_wait *to_wait(struct rb_node *node)
{
329
	return rb_entry(node, struct intel_wait, node);
330 331 332 333 334
}

static inline void __intel_breadcrumbs_finish(struct intel_breadcrumbs *b,
					      struct intel_wait *wait)
{
335
	lockdep_assert_held(&b->rb_lock);
336
	GEM_BUG_ON(b->irq_wait == wait);
337

338 339
	/*
	 * This request is completed, so remove it from the tree, mark it as
340 341 342 343 344 345
	 * complete, and *then* wake up the associated task. N.B. when the
	 * task wakes up, it will find the empty rb_node, discern that it
	 * has already been removed from the tree and skip the serialisation
	 * of the b->rb_lock and b->irq_lock. This means that the destruction
	 * of the intel_wait is not serialised with the interrupt handler
	 * by the waiter - it must instead be serialised by the caller.
346 347 348 349
	 */
	rb_erase(&wait->node, &b->waiters);
	RB_CLEAR_NODE(&wait->node);

350 351
	if (wait->tsk->state != TASK_RUNNING)
		wake_up_process(wait->tsk); /* implicit smp_wmb() */
352 353
}

354 355 356 357 358
static inline void __intel_breadcrumbs_next(struct intel_engine_cs *engine,
					    struct rb_node *next)
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;

359
	spin_lock(&b->irq_lock);
360
	GEM_BUG_ON(!b->irq_armed);
361
	GEM_BUG_ON(!b->irq_wait);
362 363
	b->irq_wait = to_wait(next);
	spin_unlock(&b->irq_lock);
364 365 366 367 368 369 370 371 372

	/* We always wake up the next waiter that takes over as the bottom-half
	 * as we may delegate not only the irq-seqno barrier to the next waiter
	 * but also the task of waking up concurrent waiters.
	 */
	if (next)
		wake_up_process(to_wait(next)->tsk);
}

373 374 375 376 377
static bool __intel_engine_add_wait(struct intel_engine_cs *engine,
				    struct intel_wait *wait)
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;
	struct rb_node **p, *parent, *completed;
378
	bool first, armed;
379 380
	u32 seqno;

381 382
	GEM_BUG_ON(!wait->seqno);

383 384 385 386 387 388 389 390 391 392 393 394
	/* Insert the request into the retirement ordered list
	 * of waiters by walking the rbtree. If we are the oldest
	 * seqno in the tree (the first to be retired), then
	 * set ourselves as the bottom-half.
	 *
	 * As we descend the tree, prune completed branches since we hold the
	 * spinlock we know that the first_waiter must be delayed and can
	 * reduce some of the sequential wake up latency if we take action
	 * ourselves and wake up the completed tasks in parallel. Also, by
	 * removing stale elements in the tree, we may be able to reduce the
	 * ping-pong between the old bottom-half and ourselves as first-waiter.
	 */
395
	armed = false;
396 397 398
	first = true;
	parent = NULL;
	completed = NULL;
399
	seqno = intel_engine_get_seqno(engine);
400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440

	 /* If the request completed before we managed to grab the spinlock,
	  * return now before adding ourselves to the rbtree. We let the
	  * current bottom-half handle any pending wakeups and instead
	  * try and get out of the way quickly.
	  */
	if (i915_seqno_passed(seqno, wait->seqno)) {
		RB_CLEAR_NODE(&wait->node);
		return first;
	}

	p = &b->waiters.rb_node;
	while (*p) {
		parent = *p;
		if (wait->seqno == to_wait(parent)->seqno) {
			/* We have multiple waiters on the same seqno, select
			 * the highest priority task (that with the smallest
			 * task->prio) to serve as the bottom-half for this
			 * group.
			 */
			if (wait->tsk->prio > to_wait(parent)->tsk->prio) {
				p = &parent->rb_right;
				first = false;
			} else {
				p = &parent->rb_left;
			}
		} else if (i915_seqno_passed(wait->seqno,
					     to_wait(parent)->seqno)) {
			p = &parent->rb_right;
			if (i915_seqno_passed(seqno, to_wait(parent)->seqno))
				completed = parent;
			else
				first = false;
		} else {
			p = &parent->rb_left;
		}
	}
	rb_link_node(&wait->node, parent, p);
	rb_insert_color(&wait->node, &b->waiters);

	if (first) {
441 442
		spin_lock(&b->irq_lock);
		b->irq_wait = wait;
443 444 445 446 447
		/* After assigning ourselves as the new bottom-half, we must
		 * perform a cursory check to prevent a missed interrupt.
		 * Either we miss the interrupt whilst programming the hardware,
		 * or if there was a previous waiter (for a later seqno) they
		 * may be woken instead of us (due to the inherent race
448 449
		 * in the unlocked read of b->irq_seqno_bh in the irq handler)
		 * and so we miss the wake up.
450
		 */
451
		armed = __intel_breadcrumbs_enable_irq(b);
452
		spin_unlock(&b->irq_lock);
453
	}
454 455

	if (completed) {
456 457 458 459 460
		/* Advance the bottom-half (b->irq_wait) before we wake up
		 * the waiters who may scribble over their intel_wait
		 * just as the interrupt handler is dereferencing it via
		 * b->irq_wait.
		 */
461 462 463 464 465 466 467 468 469 470 471 472 473
		if (!first) {
			struct rb_node *next = rb_next(completed);
			GEM_BUG_ON(next == &wait->node);
			__intel_breadcrumbs_next(engine, next);
		}

		do {
			struct intel_wait *crumb = to_wait(completed);
			completed = rb_prev(completed);
			__intel_breadcrumbs_finish(b, crumb);
		} while (completed);
	}

474
	GEM_BUG_ON(!b->irq_wait);
475
	GEM_BUG_ON(!b->irq_armed);
476
	GEM_BUG_ON(rb_first(&b->waiters) != &b->irq_wait->node);
477

478
	return armed;
479 480 481 482 483 484
}

bool intel_engine_add_wait(struct intel_engine_cs *engine,
			   struct intel_wait *wait)
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;
485
	bool armed;
486

487
	spin_lock_irq(&b->rb_lock);
488
	armed = __intel_engine_add_wait(engine, wait);
489
	spin_unlock_irq(&b->rb_lock);
490 491
	if (armed)
		return armed;
492

493
	/* Make the caller recheck if its request has already started. */
494
	return intel_engine_has_started(engine, wait->seqno);
495 496 497 498 499 500 501
}

static inline bool chain_wakeup(struct rb_node *rb, int priority)
{
	return rb && to_wait(rb)->tsk->prio <= priority;
}

502 503 504 505 506 507 508 509 510
static inline int wakeup_priority(struct intel_breadcrumbs *b,
				  struct task_struct *tsk)
{
	if (tsk == b->signaler)
		return INT_MIN;
	else
		return tsk->prio;
}

511 512
static void __intel_engine_remove_wait(struct intel_engine_cs *engine,
				       struct intel_wait *wait)
513 514 515
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;

516
	lockdep_assert_held(&b->rb_lock);
517 518

	if (RB_EMPTY_NODE(&wait->node))
519
		goto out;
520

521
	if (b->irq_wait == wait) {
522
		const int priority = wakeup_priority(b, wait->tsk);
523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544
		struct rb_node *next;

		/* We are the current bottom-half. Find the next candidate,
		 * the first waiter in the queue on the remaining oldest
		 * request. As multiple seqnos may complete in the time it
		 * takes us to wake up and find the next waiter, we have to
		 * wake up that waiter for it to perform its own coherent
		 * completion check.
		 */
		next = rb_next(&wait->node);
		if (chain_wakeup(next, priority)) {
			/* If the next waiter is already complete,
			 * wake it up and continue onto the next waiter. So
			 * if have a small herd, they will wake up in parallel
			 * rather than sequentially, which should reduce
			 * the overall latency in waking all the completed
			 * clients.
			 *
			 * However, waking up a chain adds extra latency to
			 * the first_waiter. This is undesirable if that
			 * waiter is a high priority task.
			 */
545
			u32 seqno = intel_engine_get_seqno(engine);
546 547 548 549 550 551 552 553 554 555 556

			while (i915_seqno_passed(seqno, to_wait(next)->seqno)) {
				struct rb_node *n = rb_next(next);

				__intel_breadcrumbs_finish(b, to_wait(next));
				next = n;
				if (!chain_wakeup(next, priority))
					break;
			}
		}

557
		__intel_breadcrumbs_next(engine, next);
558 559 560 561 562 563
	} else {
		GEM_BUG_ON(rb_first(&b->waiters) == &wait->node);
	}

	GEM_BUG_ON(RB_EMPTY_NODE(&wait->node));
	rb_erase(&wait->node, &b->waiters);
564
	RB_CLEAR_NODE(&wait->node);
565

566
out:
567
	GEM_BUG_ON(b->irq_wait == wait);
568
	GEM_BUG_ON(rb_first(&b->waiters) !=
569
		   (b->irq_wait ? &b->irq_wait->node : NULL));
570 571 572 573 574 575 576 577 578 579 580
}

void intel_engine_remove_wait(struct intel_engine_cs *engine,
			      struct intel_wait *wait)
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;

	/* Quick check to see if this waiter was already decoupled from
	 * the tree by the bottom-half to avoid contention on the spinlock
	 * by the herd.
	 */
581 582
	if (RB_EMPTY_NODE(&wait->node)) {
		GEM_BUG_ON(READ_ONCE(b->irq_wait) == wait);
583
		return;
584
	}
585

586
	spin_lock_irq(&b->rb_lock);
587
	__intel_engine_remove_wait(engine, wait);
588
	spin_unlock_irq(&b->rb_lock);
589 590
}

591 592 593 594 595 596 597 598 599 600 601
static void signaler_set_rtpriority(void)
{
	 struct sched_param param = { .sched_priority = 1 };

	 sched_setscheduler_nocheck(current, SCHED_FIFO, &param);
}

static int intel_breadcrumbs_signaler(void *arg)
{
	struct intel_engine_cs *engine = arg;
	struct intel_breadcrumbs *b = &engine->breadcrumbs;
602
	struct i915_request *rq, *n;
603 604 605 606 607

	/* Install ourselves with high priority to reduce signalling latency */
	signaler_set_rtpriority();

	do {
608
		bool do_schedule = true;
609 610
		LIST_HEAD(list);
		u32 seqno;
611

612
		set_current_state(TASK_INTERRUPTIBLE);
613 614
		if (list_empty(&b->signals))
			goto sleep;
615

616 617
		/*
		 * We are either woken up by the interrupt bottom-half,
618 619 620 621 622 623 624
		 * or by a client adding a new signaller. In both cases,
		 * the GPU seqno may have advanced beyond our oldest signal.
		 * If it has, propagate the signal, remove the waiter and
		 * check again with the next oldest signal. Otherwise we
		 * need to wait for a new interrupt from the GPU or for
		 * a new client.
		 */
625 626 627 628 629 630 631
		seqno = intel_engine_get_seqno(engine);

		spin_lock_irq(&b->rb_lock);
		list_for_each_entry_safe(rq, n, &b->signals, signaling.link) {
			u32 this = rq->signaling.wait.seqno;

			GEM_BUG_ON(!rq->signaling.wait.seqno);
632

633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658
			if (!i915_seqno_passed(seqno, this))
				break;

			if (likely(this == i915_request_global_seqno(rq))) {
				__intel_engine_remove_wait(engine,
							   &rq->signaling.wait);

				rq->signaling.wait.seqno = 0;
				__list_del_entry(&rq->signaling.link);

				if (!test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
					      &rq->fence.flags)) {
					list_add_tail(&rq->signaling.link,
						      &list);
					i915_request_get(rq);
				}
			}
		}
		spin_unlock_irq(&b->rb_lock);

		if (!list_empty(&list)) {
			local_bh_disable();
			list_for_each_entry_safe(rq, n, &list, signaling.link) {
				dma_fence_signal(&rq->fence);
				GEM_BUG_ON(!i915_request_completed(rq));
				i915_request_put(rq);
659
			}
660
			local_bh_enable(); /* kick start the tasklets */
661

662 663
			/*
			 * If the engine is saturated we may be continually
664 665 666 667 668 669 670 671 672 673
			 * processing completed requests. This angers the
			 * NMI watchdog if we never let anything else
			 * have access to the CPU. Let's pretend to be nice
			 * and relinquish the CPU if we burn through the
			 * entire RT timeslice!
			 */
			do_schedule = need_resched();
		}

		if (unlikely(do_schedule)) {
674
sleep:
675 676 677
			if (kthread_should_park())
				kthread_parkme();

678
			if (unlikely(kthread_should_stop()))
679 680 681 682 683 684 685 686 687 688
				break;

			schedule();
		}
	} while (1);
	__set_current_state(TASK_RUNNING);

	return 0;
}

689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714
static void insert_signal(struct intel_breadcrumbs *b,
			  struct i915_request *request,
			  const u32 seqno)
{
	struct i915_request *iter;

	lockdep_assert_held(&b->rb_lock);

	/*
	 * A reasonable assumption is that we are called to add signals
	 * in sequence, as the requests are submitted for execution and
	 * assigned a global_seqno. This will be the case for the majority
	 * of internally generated signals (inter-engine signaling).
	 *
	 * Out of order waiters triggering random signaling enabling will
	 * be more problematic, but hopefully rare enough and the list
	 * small enough that the O(N) insertion sort is not an issue.
	 */

	list_for_each_entry_reverse(iter, &b->signals, signaling.link)
		if (i915_seqno_passed(seqno, iter->signaling.wait.seqno))
			break;

	list_add(&request->signaling.link, &iter->signaling.link);
}

715
bool intel_engine_enable_signaling(struct i915_request *request, bool wakeup)
716 717 718
{
	struct intel_engine_cs *engine = request->engine;
	struct intel_breadcrumbs *b = &engine->breadcrumbs;
719
	struct intel_wait *wait = &request->signaling.wait;
720
	u32 seqno;
721

722 723
	/*
	 * Note that we may be called from an interrupt handler on another
724 725
	 * device (e.g. nouveau signaling a fence completion causing us
	 * to submit a request, and so enable signaling). As such,
726
	 * we need to make sure that all other users of b->rb_lock protect
727 728 729 730
	 * against interrupts, i.e. use spin_lock_irqsave.
	 */

	/* locked by dma_fence_enable_sw_signaling() (irqsafe fence->lock) */
731
	GEM_BUG_ON(!irqs_disabled());
732
	lockdep_assert_held(&request->lock);
733

734
	seqno = i915_request_global_seqno(request);
735
	if (!seqno) /* will be enabled later upon execution */
736
		return true;
737

738 739 740 741
	GEM_BUG_ON(wait->seqno);
	wait->tsk = b->signaler;
	wait->request = request;
	wait->seqno = seqno;
742

743 744
	/*
	 * Add ourselves into the list of waiters, but registering our
745 746 747 748 749 750 751
	 * bottom-half as the signaller thread. As per usual, only the oldest
	 * waiter (not just signaller) is tasked as the bottom-half waking
	 * up all completed waiters after the user interrupt.
	 *
	 * If we are the oldest waiter, enable the irq (after which we
	 * must double check that the seqno did not complete).
	 */
752 753
	spin_lock(&b->rb_lock);
	insert_signal(b, request, seqno);
754
	wakeup &= __intel_engine_add_wait(engine, wait);
755
	spin_unlock(&b->rb_lock);
756

757
	if (wakeup) {
758
		wake_up_process(b->signaler);
759 760 761 762
		return !intel_wait_complete(wait);
	}

	return true;
763 764
}

765
void intel_engine_cancel_signaling(struct i915_request *request)
766
{
767 768 769
	struct intel_engine_cs *engine = request->engine;
	struct intel_breadcrumbs *b = &engine->breadcrumbs;

770
	GEM_BUG_ON(!irqs_disabled());
771
	lockdep_assert_held(&request->lock);
772

773 774
	if (!READ_ONCE(request->signaling.wait.seqno))
		return;
775

776 777 778 779 780
	spin_lock(&b->rb_lock);
	__intel_engine_remove_wait(engine, &request->signaling.wait);
	if (fetch_and_zero(&request->signaling.wait.seqno))
		__list_del_entry(&request->signaling.link);
	spin_unlock(&b->rb_lock);
781 782
}

783 784 785
int intel_engine_init_breadcrumbs(struct intel_engine_cs *engine)
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;
786
	struct task_struct *tsk;
787

788 789 790
	spin_lock_init(&b->rb_lock);
	spin_lock_init(&b->irq_lock);

791 792
	timer_setup(&b->fake_irq, intel_breadcrumbs_fake_irq, 0);
	timer_setup(&b->hangcheck, intel_breadcrumbs_hangcheck, 0);
793

794 795
	INIT_LIST_HEAD(&b->signals);

796 797 798 799 800 801 802 803 804 805 806 807 808
	/* Spawn a thread to provide a common bottom-half for all signals.
	 * As this is an asynchronous interface we cannot steal the current
	 * task for handling the bottom-half to the user interrupt, therefore
	 * we create a thread to do the coherent seqno dance after the
	 * interrupt and then signal the waitqueue (via the dma-buf/fence).
	 */
	tsk = kthread_run(intel_breadcrumbs_signaler, engine,
			  "i915/signal:%d", engine->id);
	if (IS_ERR(tsk))
		return PTR_ERR(tsk);

	b->signaler = tsk;

809 810 811
	return 0;
}

812 813 814 815
static void cancel_fake_irq(struct intel_engine_cs *engine)
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;

816
	del_timer_sync(&b->fake_irq); /* may queue b->hangcheck */
817 818 819 820 821 822 823
	del_timer_sync(&b->hangcheck);
	clear_bit(engine->id, &engine->i915->gpu_error.missed_irq_rings);
}

void intel_engine_reset_breadcrumbs(struct intel_engine_cs *engine)
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;
824
	unsigned long flags;
825

826
	spin_lock_irqsave(&b->irq_lock, flags);
827

828 829 830 831 832 833 834
	/*
	 * Leave the fake_irq timer enabled (if it is running), but clear the
	 * bit so that it turns itself off on its next wake up and goes back
	 * to the long hangcheck interval if still required.
	 */
	clear_bit(engine->id, &engine->i915->gpu_error.missed_irq_rings);

835 836 837
	if (b->irq_enabled)
		irq_enable(engine);
	else
838
		irq_disable(engine);
839

840
	spin_unlock_irqrestore(&b->irq_lock, flags);
841 842
}

843 844 845 846
void intel_engine_fini_breadcrumbs(struct intel_engine_cs *engine)
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;

847
	/* The engines should be idle and all requests accounted for! */
848
	WARN_ON(READ_ONCE(b->irq_wait));
849
	WARN_ON(!RB_EMPTY_ROOT(&b->waiters));
850
	WARN_ON(!list_empty(&b->signals));
851

852 853 854
	if (!IS_ERR_OR_NULL(b->signaler))
		kthread_stop(b->signaler);

855
	cancel_fake_irq(engine);
856 857
}

858 859 860
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/intel_breadcrumbs.c"
#endif