intel_breadcrumbs.c 22.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/*
 * Copyright © 2015 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 */

25 26
#include <linux/kthread.h>

27 28
#include "i915_drv.h"

29 30
unsigned int intel_engine_wakeup(struct intel_engine_cs *engine)
{
31 32
	struct intel_wait *wait;
	unsigned long flags;
33 34
	unsigned int result = 0;

35 36 37
	spin_lock_irqsave(&engine->breadcrumbs.lock, flags);
	wait = engine->breadcrumbs.first_wait;
	if (wait) {
38
		result = ENGINE_WAKEUP_WAITER;
39
		if (!wake_up_process(wait->tsk))
40 41
			result |= ENGINE_WAKEUP_ACTIVE;
	}
42
	spin_unlock_irqrestore(&engine->breadcrumbs.lock, flags);
43 44 45 46

	return result;
}

47 48 49 50 51
static unsigned long wait_timeout(void)
{
	return round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES);
}

52 53 54 55 56 57 58 59
static void intel_breadcrumbs_hangcheck(unsigned long data)
{
	struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
	struct intel_breadcrumbs *b = &engine->breadcrumbs;

	if (!b->irq_enabled)
		return;

60 61 62
	if (b->hangcheck_interrupts != atomic_read(&engine->irq_count)) {
		b->hangcheck_interrupts = atomic_read(&engine->irq_count);
		mod_timer(&b->hangcheck, wait_timeout());
63 64 65
		return;
	}

66 67 68 69
	/* If the waiter was currently running, assume it hasn't had a chance
	 * to process the pending interrupt (e.g, low priority task on a loaded
	 * system) and wait until it sleeps before declaring a missed interrupt.
	 */
70
	if (intel_engine_wakeup(engine) & ENGINE_WAKEUP_ACTIVE) {
71 72 73 74
		mod_timer(&b->hangcheck, wait_timeout());
		return;
	}

75 76 77 78 79
	DRM_DEBUG("Hangcheck timer elapsed... %s idle\n", engine->name);
	set_bit(engine->id, &engine->i915->gpu_error.missed_irq_rings);
	mod_timer(&engine->breadcrumbs.fake_irq, jiffies + 1);
}

80 81 82 83 84 85 86 87 88 89 90
static void intel_breadcrumbs_fake_irq(unsigned long data)
{
	struct intel_engine_cs *engine = (struct intel_engine_cs *)data;

	/*
	 * The timer persists in case we cannot enable interrupts,
	 * or if we have previously seen seqno/interrupt incoherency
	 * ("missed interrupt" syndrome). Here the worker will wake up
	 * every jiffie in order to kick the oldest waiter to do the
	 * coherent seqno check.
	 */
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
	if (!intel_engine_wakeup(engine))
		return;

	mod_timer(&engine->breadcrumbs.fake_irq, jiffies + 1);

	/* Ensure that even if the GPU hangs, we get woken up.
	 *
	 * However, note that if no one is waiting, we never notice
	 * a gpu hang. Eventually, we will have to wait for a resource
	 * held by the GPU and so trigger a hangcheck. In the most
	 * pathological case, this will be upon memory starvation! To
	 * prevent this, we also queue the hangcheck from the retire
	 * worker.
	 */
	i915_queue_hangcheck(engine->i915);
106 107 108 109
}

static void irq_enable(struct intel_engine_cs *engine)
{
110 111 112 113
	/* Enabling the IRQ may miss the generation of the interrupt, but
	 * we still need to force the barrier before reading the seqno,
	 * just in case.
	 */
114
	set_bit(ENGINE_IRQ_BREADCRUMB, &engine->irq_posted);
115

116 117
	/* Caller disables interrupts */
	spin_lock(&engine->i915->irq_lock);
118
	engine->irq_enable(engine);
119
	spin_unlock(&engine->i915->irq_lock);
120 121 122 123
}

static void irq_disable(struct intel_engine_cs *engine)
{
124 125
	/* Caller disables interrupts */
	spin_lock(&engine->i915->irq_lock);
126
	engine->irq_disable(engine);
127
	spin_unlock(&engine->i915->irq_lock);
128 129
}

130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
static bool use_fake_irq(const struct intel_breadcrumbs *b)
{
	const struct intel_engine_cs *engine =
		container_of(b, struct intel_engine_cs, breadcrumbs);

	if (!test_bit(engine->id, &engine->i915->gpu_error.missed_irq_rings))
		return false;

	/* Only start with the heavy weight fake irq timer if we have not
	 * seen any interrupts since enabling it the first time. If the
	 * interrupts are still arriving, it means we made a mistake in our
	 * engine->seqno_barrier(), a timing error that should be transient
	 * and unlikely to reoccur.
	 */
	return atomic_read(&engine->irq_count) == b->hangcheck_interrupts;
}

147
static void __intel_breadcrumbs_enable_irq(struct intel_breadcrumbs *b)
148 149 150 151 152 153 154
{
	struct intel_engine_cs *engine =
		container_of(b, struct intel_engine_cs, breadcrumbs);
	struct drm_i915_private *i915 = engine->i915;

	assert_spin_locked(&b->lock);
	if (b->rpm_wakelock)
155
		return;
156

157 158 159 160 161 162 163 164 165 166 167 168
	if (I915_SELFTEST_ONLY(b->mock)) {
		/* For our mock objects we want to avoid interaction
		 * with the real hardware (which is not set up). So
		 * we simply pretend we have enabled the powerwell
		 * and the irq, and leave it up to the mock
		 * implementation to call intel_engine_wakeup()
		 * itself when it wants to simulate a user interrupt,
		 */
		b->rpm_wakelock = true;
		return;
	}

169 170 171 172 173 174 175 176 177 178
	/* Since we are waiting on a request, the GPU should be busy
	 * and should have its own rpm reference. For completeness,
	 * record an rpm reference for ourselves to cover the
	 * interrupt we unmask.
	 */
	intel_runtime_pm_get_noresume(i915);
	b->rpm_wakelock = true;

	/* No interrupts? Kick the waiter every jiffie! */
	if (intel_irqs_enabled(i915)) {
179
		if (!test_bit(engine->id, &i915->gpu_error.test_irq_rings))
180 181 182 183
			irq_enable(engine);
		b->irq_enabled = true;
	}

184 185
	/* Ensure we never sleep indefinitely */
	if (!b->irq_enabled || use_fake_irq(b))
186
		mod_timer(&b->fake_irq, jiffies + 1);
187
	else
188
		mod_timer(&b->hangcheck, wait_timeout());
189 190 191 192 193 194 195 196 197 198 199
}

static void __intel_breadcrumbs_disable_irq(struct intel_breadcrumbs *b)
{
	struct intel_engine_cs *engine =
		container_of(b, struct intel_engine_cs, breadcrumbs);

	assert_spin_locked(&b->lock);
	if (!b->rpm_wakelock)
		return;

200 201 202 203 204
	if (I915_SELFTEST_ONLY(b->mock)) {
		b->rpm_wakelock = false;
		return;
	}

205 206 207 208 209 210 211 212 213 214 215
	if (b->irq_enabled) {
		irq_disable(engine);
		b->irq_enabled = false;
	}

	intel_runtime_pm_put(engine->i915);
	b->rpm_wakelock = false;
}

static inline struct intel_wait *to_wait(struct rb_node *node)
{
216
	return rb_entry(node, struct intel_wait, node);
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
}

static inline void __intel_breadcrumbs_finish(struct intel_breadcrumbs *b,
					      struct intel_wait *wait)
{
	assert_spin_locked(&b->lock);

	/* This request is completed, so remove it from the tree, mark it as
	 * complete, and *then* wake up the associated task.
	 */
	rb_erase(&wait->node, &b->waiters);
	RB_CLEAR_NODE(&wait->node);

	wake_up_process(wait->tsk); /* implicit smp_wmb() */
}

static bool __intel_engine_add_wait(struct intel_engine_cs *engine,
				    struct intel_wait *wait)
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;
	struct rb_node **p, *parent, *completed;
	bool first;
	u32 seqno;

	/* Insert the request into the retirement ordered list
	 * of waiters by walking the rbtree. If we are the oldest
	 * seqno in the tree (the first to be retired), then
	 * set ourselves as the bottom-half.
	 *
	 * As we descend the tree, prune completed branches since we hold the
	 * spinlock we know that the first_waiter must be delayed and can
	 * reduce some of the sequential wake up latency if we take action
	 * ourselves and wake up the completed tasks in parallel. Also, by
	 * removing stale elements in the tree, we may be able to reduce the
	 * ping-pong between the old bottom-half and ourselves as first-waiter.
	 */
	first = true;
	parent = NULL;
	completed = NULL;
256
	seqno = intel_engine_get_seqno(engine);
257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314

	 /* If the request completed before we managed to grab the spinlock,
	  * return now before adding ourselves to the rbtree. We let the
	  * current bottom-half handle any pending wakeups and instead
	  * try and get out of the way quickly.
	  */
	if (i915_seqno_passed(seqno, wait->seqno)) {
		RB_CLEAR_NODE(&wait->node);
		return first;
	}

	p = &b->waiters.rb_node;
	while (*p) {
		parent = *p;
		if (wait->seqno == to_wait(parent)->seqno) {
			/* We have multiple waiters on the same seqno, select
			 * the highest priority task (that with the smallest
			 * task->prio) to serve as the bottom-half for this
			 * group.
			 */
			if (wait->tsk->prio > to_wait(parent)->tsk->prio) {
				p = &parent->rb_right;
				first = false;
			} else {
				p = &parent->rb_left;
			}
		} else if (i915_seqno_passed(wait->seqno,
					     to_wait(parent)->seqno)) {
			p = &parent->rb_right;
			if (i915_seqno_passed(seqno, to_wait(parent)->seqno))
				completed = parent;
			else
				first = false;
		} else {
			p = &parent->rb_left;
		}
	}
	rb_link_node(&wait->node, parent, p);
	rb_insert_color(&wait->node, &b->waiters);

	if (completed) {
		struct rb_node *next = rb_next(completed);

		GEM_BUG_ON(!next && !first);
		if (next && next != &wait->node) {
			GEM_BUG_ON(first);
			b->first_wait = to_wait(next);
			/* As there is a delay between reading the current
			 * seqno, processing the completed tasks and selecting
			 * the next waiter, we may have missed the interrupt
			 * and so need for the next bottom-half to wakeup.
			 *
			 * Also as we enable the IRQ, we may miss the
			 * interrupt for that seqno, so we have to wake up
			 * the next bottom-half in order to do a coherent check
			 * in case the seqno passed.
			 */
			__intel_breadcrumbs_enable_irq(b);
315 316
			if (test_bit(ENGINE_IRQ_BREADCRUMB,
				     &engine->irq_posted))
317
				wake_up_process(to_wait(next)->tsk);
318 319 320 321 322 323 324 325 326 327 328 329
		}

		do {
			struct intel_wait *crumb = to_wait(completed);
			completed = rb_prev(completed);
			__intel_breadcrumbs_finish(b, crumb);
		} while (completed);
	}

	if (first) {
		GEM_BUG_ON(rb_first(&b->waiters) != &wait->node);
		b->first_wait = wait;
330 331 332 333 334
		/* After assigning ourselves as the new bottom-half, we must
		 * perform a cursory check to prevent a missed interrupt.
		 * Either we miss the interrupt whilst programming the hardware,
		 * or if there was a previous waiter (for a later seqno) they
		 * may be woken instead of us (due to the inherent race
335 336
		 * in the unlocked read of b->irq_seqno_bh in the irq handler)
		 * and so we miss the wake up.
337 338
		 */
		__intel_breadcrumbs_enable_irq(b);
339 340 341 342 343 344 345 346 347 348 349 350 351
	}
	GEM_BUG_ON(!b->first_wait);
	GEM_BUG_ON(rb_first(&b->waiters) != &b->first_wait->node);

	return first;
}

bool intel_engine_add_wait(struct intel_engine_cs *engine,
			   struct intel_wait *wait)
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;
	bool first;

352
	spin_lock_irq(&b->lock);
353
	first = __intel_engine_add_wait(engine, wait);
354
	spin_unlock_irq(&b->lock);
355 356 357 358 359 360 361 362 363

	return first;
}

static inline bool chain_wakeup(struct rb_node *rb, int priority)
{
	return rb && to_wait(rb)->tsk->prio <= priority;
}

364 365 366 367 368 369 370 371 372
static inline int wakeup_priority(struct intel_breadcrumbs *b,
				  struct task_struct *tsk)
{
	if (tsk == b->signaler)
		return INT_MIN;
	else
		return tsk->prio;
}

373 374
static void __intel_engine_remove_wait(struct intel_engine_cs *engine,
				       struct intel_wait *wait)
375 376 377
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;

378
	assert_spin_locked(&b->lock);
379 380

	if (RB_EMPTY_NODE(&wait->node))
381
		goto out;
382 383

	if (b->first_wait == wait) {
384
		const int priority = wakeup_priority(b, wait->tsk);
385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406
		struct rb_node *next;

		/* We are the current bottom-half. Find the next candidate,
		 * the first waiter in the queue on the remaining oldest
		 * request. As multiple seqnos may complete in the time it
		 * takes us to wake up and find the next waiter, we have to
		 * wake up that waiter for it to perform its own coherent
		 * completion check.
		 */
		next = rb_next(&wait->node);
		if (chain_wakeup(next, priority)) {
			/* If the next waiter is already complete,
			 * wake it up and continue onto the next waiter. So
			 * if have a small herd, they will wake up in parallel
			 * rather than sequentially, which should reduce
			 * the overall latency in waking all the completed
			 * clients.
			 *
			 * However, waking up a chain adds extra latency to
			 * the first_waiter. This is undesirable if that
			 * waiter is a high priority task.
			 */
407
			u32 seqno = intel_engine_get_seqno(engine);
408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429

			while (i915_seqno_passed(seqno, to_wait(next)->seqno)) {
				struct rb_node *n = rb_next(next);

				__intel_breadcrumbs_finish(b, to_wait(next));
				next = n;
				if (!chain_wakeup(next, priority))
					break;
			}
		}

		if (next) {
			/* In our haste, we may have completed the first waiter
			 * before we enabled the interrupt. Do so now as we
			 * have a second waiter for a future seqno. Afterwards,
			 * we have to wake up that waiter in case we missed
			 * the interrupt, or if we have to handle an
			 * exception rather than a seqno completion.
			 */
			b->first_wait = to_wait(next);
			if (b->first_wait->seqno != wait->seqno)
				__intel_breadcrumbs_enable_irq(b);
430
			wake_up_process(b->first_wait->tsk);
431 432 433 434 435 436 437 438 439 440 441
		} else {
			b->first_wait = NULL;
			__intel_breadcrumbs_disable_irq(b);
		}
	} else {
		GEM_BUG_ON(rb_first(&b->waiters) == &wait->node);
	}

	GEM_BUG_ON(RB_EMPTY_NODE(&wait->node));
	rb_erase(&wait->node, &b->waiters);

442
out:
443 444 445
	GEM_BUG_ON(b->first_wait == wait);
	GEM_BUG_ON(rb_first(&b->waiters) !=
		   (b->first_wait ? &b->first_wait->node : NULL));
446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
}

void intel_engine_remove_wait(struct intel_engine_cs *engine,
			      struct intel_wait *wait)
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;

	/* Quick check to see if this waiter was already decoupled from
	 * the tree by the bottom-half to avoid contention on the spinlock
	 * by the herd.
	 */
	if (RB_EMPTY_NODE(&wait->node))
		return;

	spin_lock_irq(&b->lock);
	__intel_engine_remove_wait(engine, wait);
462
	spin_unlock_irq(&b->lock);
463 464
}

465 466 467 468 469 470
static bool signal_valid(const struct drm_i915_gem_request *request)
{
	return intel_wait_check_request(&request->signaling.wait, request);
}

static bool signal_complete(const struct drm_i915_gem_request *request)
471
{
472
	if (!request)
473 474 475 476 477
		return false;

	/* If another process served as the bottom-half it may have already
	 * signalled that this wait is already completed.
	 */
478
	if (intel_wait_complete(&request->signaling.wait))
479
		return signal_valid(request);
480 481 482 483

	/* Carefully check if the request is complete, giving time for the
	 * seqno to be visible or if the GPU hung.
	 */
484
	if (__i915_request_irq_complete(request))
485 486 487 488 489
		return true;

	return false;
}

490
static struct drm_i915_gem_request *to_signaler(struct rb_node *rb)
491
{
492
	return rb_entry(rb, struct drm_i915_gem_request, signaling.node);
493 494 495 496 497 498 499 500 501 502 503 504 505
}

static void signaler_set_rtpriority(void)
{
	 struct sched_param param = { .sched_priority = 1 };

	 sched_setscheduler_nocheck(current, SCHED_FIFO, &param);
}

static int intel_breadcrumbs_signaler(void *arg)
{
	struct intel_engine_cs *engine = arg;
	struct intel_breadcrumbs *b = &engine->breadcrumbs;
506
	struct drm_i915_gem_request *request;
507 508 509 510 511 512 513 514 515 516 517 518 519 520 521

	/* Install ourselves with high priority to reduce signalling latency */
	signaler_set_rtpriority();

	do {
		set_current_state(TASK_INTERRUPTIBLE);

		/* We are either woken up by the interrupt bottom-half,
		 * or by a client adding a new signaller. In both cases,
		 * the GPU seqno may have advanced beyond our oldest signal.
		 * If it has, propagate the signal, remove the waiter and
		 * check again with the next oldest signal. Otherwise we
		 * need to wait for a new interrupt from the GPU or for
		 * a new client.
		 */
522 523 524 525 526
		rcu_read_lock();
		request = rcu_dereference(b->first_signal);
		if (request)
			request = i915_gem_request_get_rcu(request);
		rcu_read_unlock();
527
		if (signal_complete(request)) {
528 529 530 531
			local_bh_disable();
			dma_fence_signal(&request->fence);
			local_bh_enable(); /* kick start the tasklets */

532 533
			spin_lock_irq(&b->lock);

534 535 536
			/* Wake up all other completed waiters and select the
			 * next bottom-half for the next user interrupt.
			 */
537 538
			__intel_engine_remove_wait(engine,
						   &request->signaling.wait);
539

540 541 542 543 544 545
			/* Find the next oldest signal. Note that as we have
			 * not been holding the lock, another client may
			 * have installed an even older signal than the one
			 * we just completed - so double check we are still
			 * the oldest before picking the next one.
			 */
546
			if (request == rcu_access_pointer(b->first_signal)) {
547 548
				struct rb_node *rb =
					rb_next(&request->signaling.node);
549 550
				rcu_assign_pointer(b->first_signal,
						   rb ? to_signaler(rb) : NULL);
551 552
			}
			rb_erase(&request->signaling.node, &b->signals);
553 554
			RB_CLEAR_NODE(&request->signaling.node);

555
			spin_unlock_irq(&b->lock);
556

557
			i915_gem_request_put(request);
558
		} else {
559 560
			DEFINE_WAIT(exec);

561 562
			if (kthread_should_stop()) {
				GEM_BUG_ON(request);
563
				break;
564
			}
565

566 567 568
			if (request)
				add_wait_queue(&request->execute, &exec);

569
			schedule();
570

571 572 573
			if (request)
				remove_wait_queue(&request->execute, &exec);

574 575
			if (kthread_should_park())
				kthread_parkme();
576
		}
577
		i915_gem_request_put(request);
578 579 580 581 582 583
	} while (1);
	__set_current_state(TASK_RUNNING);

	return 0;
}

584
void intel_engine_enable_signaling(struct drm_i915_gem_request *request)
585 586 587 588 589
{
	struct intel_engine_cs *engine = request->engine;
	struct intel_breadcrumbs *b = &engine->breadcrumbs;
	struct rb_node *parent, **p;
	bool first, wakeup;
590
	u32 seqno;
591

592 593 594 595 596 597 598 599
	/* Note that we may be called from an interrupt handler on another
	 * device (e.g. nouveau signaling a fence completion causing us
	 * to submit a request, and so enable signaling). As such,
	 * we need to make sure that all other users of b->lock protect
	 * against interrupts, i.e. use spin_lock_irqsave.
	 */

	/* locked by dma_fence_enable_sw_signaling() (irqsafe fence->lock) */
600
	assert_spin_locked(&request->lock);
601 602 603

	seqno = i915_gem_request_global_seqno(request);
	if (!seqno)
604
		return;
605

606
	request->signaling.wait.tsk = b->signaler;
607
	request->signaling.wait.request = request;
608
	request->signaling.wait.seqno = seqno;
609
	i915_gem_request_get(request);
610

611 612
	spin_lock(&b->lock);

613 614 615 616 617 618 619 620
	/* First add ourselves into the list of waiters, but register our
	 * bottom-half as the signaller thread. As per usual, only the oldest
	 * waiter (not just signaller) is tasked as the bottom-half waking
	 * up all completed waiters after the user interrupt.
	 *
	 * If we are the oldest waiter, enable the irq (after which we
	 * must double check that the seqno did not complete).
	 */
621
	wakeup = __intel_engine_add_wait(engine, &request->signaling.wait);
622 623 624 625 626 627 628 629 630 631

	/* Now insert ourselves into the retirement ordered list of signals
	 * on this engine. We track the oldest seqno as that will be the
	 * first signal to complete.
	 */
	parent = NULL;
	first = true;
	p = &b->signals.rb_node;
	while (*p) {
		parent = *p;
632 633
		if (i915_seqno_passed(seqno,
				      to_signaler(parent)->signaling.wait.seqno)) {
634 635 636 637 638 639
			p = &parent->rb_right;
			first = false;
		} else {
			p = &parent->rb_left;
		}
	}
640 641
	rb_link_node(&request->signaling.node, parent, p);
	rb_insert_color(&request->signaling.node, &b->signals);
642
	if (first)
643
		rcu_assign_pointer(b->first_signal, request);
644

645 646 647 648 649 650
	spin_unlock(&b->lock);

	if (wakeup)
		wake_up_process(b->signaler);
}

651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679
void intel_engine_cancel_signaling(struct drm_i915_gem_request *request)
{
	struct intel_engine_cs *engine = request->engine;
	struct intel_breadcrumbs *b = &engine->breadcrumbs;

	assert_spin_locked(&request->lock);
	GEM_BUG_ON(!request->signaling.wait.seqno);

	spin_lock(&b->lock);

	if (!RB_EMPTY_NODE(&request->signaling.node)) {
		if (request == rcu_access_pointer(b->first_signal)) {
			struct rb_node *rb =
				rb_next(&request->signaling.node);
			rcu_assign_pointer(b->first_signal,
					   rb ? to_signaler(rb) : NULL);
		}
		rb_erase(&request->signaling.node, &b->signals);
		RB_CLEAR_NODE(&request->signaling.node);
		i915_gem_request_put(request);
	}

	__intel_engine_remove_wait(engine, &request->signaling.wait);

	spin_unlock(&b->lock);

	request->signaling.wait.seqno = 0;
}

680 681 682
int intel_engine_init_breadcrumbs(struct intel_engine_cs *engine)
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;
683
	struct task_struct *tsk;
684 685 686 687 688

	spin_lock_init(&b->lock);
	setup_timer(&b->fake_irq,
		    intel_breadcrumbs_fake_irq,
		    (unsigned long)engine);
689 690 691
	setup_timer(&b->hangcheck,
		    intel_breadcrumbs_hangcheck,
		    (unsigned long)engine);
692

693 694 695 696 697 698 699 700 701 702 703 704 705
	/* Spawn a thread to provide a common bottom-half for all signals.
	 * As this is an asynchronous interface we cannot steal the current
	 * task for handling the bottom-half to the user interrupt, therefore
	 * we create a thread to do the coherent seqno dance after the
	 * interrupt and then signal the waitqueue (via the dma-buf/fence).
	 */
	tsk = kthread_run(intel_breadcrumbs_signaler, engine,
			  "i915/signal:%d", engine->id);
	if (IS_ERR(tsk))
		return PTR_ERR(tsk);

	b->signaler = tsk;

706 707 708
	return 0;
}

709 710 711 712 713 714 715 716 717 718 719 720 721 722
static void cancel_fake_irq(struct intel_engine_cs *engine)
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;

	del_timer_sync(&b->hangcheck);
	del_timer_sync(&b->fake_irq);
	clear_bit(engine->id, &engine->i915->gpu_error.missed_irq_rings);
}

void intel_engine_reset_breadcrumbs(struct intel_engine_cs *engine)
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;

	cancel_fake_irq(engine);
723
	spin_lock_irq(&b->lock);
724 725 726 727

	__intel_breadcrumbs_disable_irq(b);
	if (intel_engine_has_waiter(engine)) {
		__intel_breadcrumbs_enable_irq(b);
728
		if (test_bit(ENGINE_IRQ_BREADCRUMB, &engine->irq_posted))
729 730 731 732 733 734
			wake_up_process(b->first_wait->tsk);
	} else {
		/* sanitize the IMR and unmask any auxiliary interrupts */
		irq_disable(engine);
	}

735
	spin_unlock_irq(&b->lock);
736 737
}

738 739 740 741
void intel_engine_fini_breadcrumbs(struct intel_engine_cs *engine)
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;

742 743 744
	/* The engines should be idle and all requests accounted for! */
	WARN_ON(READ_ONCE(b->first_wait));
	WARN_ON(!RB_EMPTY_ROOT(&b->waiters));
745
	WARN_ON(rcu_access_pointer(b->first_signal));
746 747
	WARN_ON(!RB_EMPTY_ROOT(&b->signals));

748 749 750
	if (!IS_ERR_OR_NULL(b->signaler))
		kthread_stop(b->signaler);

751
	cancel_fake_irq(engine);
752 753
}

754
bool intel_breadcrumbs_busy(struct intel_engine_cs *engine)
755
{
756 757
	struct intel_breadcrumbs *b = &engine->breadcrumbs;
	bool busy = false;
758

759
	spin_lock_irq(&b->lock);
760

761 762 763 764
	if (b->first_wait) {
		wake_up_process(b->first_wait->tsk);
		busy |= intel_engine_flag(engine);
	}
765

766
	if (rcu_access_pointer(b->first_signal)) {
767 768
		wake_up_process(b->signaler);
		busy |= intel_engine_flag(engine);
769 770
	}

771 772 773
	spin_unlock_irq(&b->lock);

	return busy;
774
}
775 776 777 778

#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/intel_breadcrumbs.c"
#endif