intel_breadcrumbs.c 23.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/*
 * Copyright © 2015 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 */

25 26
#include <linux/kthread.h>

27 28
#include "i915_drv.h"

29
static unsigned int __intel_breadcrumbs_wakeup(struct intel_breadcrumbs *b)
30
{
31
	struct intel_wait *wait;
32 33
	unsigned int result = 0;

34 35 36
	lockdep_assert_held(&b->irq_lock);

	wait = b->irq_wait;
37
	if (wait) {
38
		result = ENGINE_WAKEUP_WAITER;
39 40
		if (wake_up_process(wait->tsk))
			result |= ENGINE_WAKEUP_ASLEEP;
41
	}
42 43 44 45 46 47 48 49 50 51

	return result;
}

unsigned int intel_engine_wakeup(struct intel_engine_cs *engine)
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;
	unsigned long flags;
	unsigned int result;

52
	spin_lock_irqsave(&b->irq_lock, flags);
53
	result = __intel_breadcrumbs_wakeup(b);
54
	spin_unlock_irqrestore(&b->irq_lock, flags);
55 56 57 58

	return result;
}

59 60 61 62 63
static unsigned long wait_timeout(void)
{
	return round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES);
}

64 65 66 67 68 69 70 71 72 73
static noinline void missed_breadcrumb(struct intel_engine_cs *engine)
{
	DRM_DEBUG_DRIVER("%s missed breadcrumb at %pF, irq posted? %s\n",
			 engine->name, __builtin_return_address(0),
			 yesno(test_bit(ENGINE_IRQ_BREADCRUMB,
					&engine->irq_posted)));

	set_bit(engine->id, &engine->i915->gpu_error.missed_irq_rings);
}

74 75 76 77 78
static void intel_breadcrumbs_hangcheck(unsigned long data)
{
	struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
	struct intel_breadcrumbs *b = &engine->breadcrumbs;

79
	if (!b->irq_armed)
80 81
		return;

82 83 84
	if (b->hangcheck_interrupts != atomic_read(&engine->irq_count)) {
		b->hangcheck_interrupts = atomic_read(&engine->irq_count);
		mod_timer(&b->hangcheck, wait_timeout());
85 86 87
		return;
	}

88 89 90 91
	/* We keep the hangcheck time alive until we disarm the irq, even
	 * if there are no waiters at present.
	 *
	 * If the waiter was currently running, assume it hasn't had a chance
92 93
	 * to process the pending interrupt (e.g, low priority task on a loaded
	 * system) and wait until it sleeps before declaring a missed interrupt.
94 95 96 97 98
	 *
	 * If the waiter was asleep (and not even pending a wakeup), then we
	 * must have missed an interrupt as the GPU has stopped advancing
	 * but we still have a waiter. Assuming all batches complete within
	 * DRM_I915_HANGCHECK_JIFFIES [1.5s]!
99
	 */
100
	if (intel_engine_wakeup(engine) & ENGINE_WAKEUP_ASLEEP) {
101
		missed_breadcrumb(engine);
102 103
		mod_timer(&engine->breadcrumbs.fake_irq, jiffies + 1);
	} else {
104 105
		mod_timer(&b->hangcheck, wait_timeout());
	}
106 107
}

108 109 110
static void intel_breadcrumbs_fake_irq(unsigned long data)
{
	struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
111 112
	struct intel_breadcrumbs *b = &engine->breadcrumbs;
	unsigned long flags;
113 114 115 116 117 118 119 120

	/*
	 * The timer persists in case we cannot enable interrupts,
	 * or if we have previously seen seqno/interrupt incoherency
	 * ("missed interrupt" syndrome). Here the worker will wake up
	 * every jiffie in order to kick the oldest waiter to do the
	 * coherent seqno check.
	 */
121

122
	spin_lock_irqsave(&b->irq_lock, flags);
123 124
	if (!__intel_breadcrumbs_wakeup(b))
		__intel_engine_disarm_breadcrumbs(engine);
125
	spin_unlock_irqrestore(&b->irq_lock, flags);
126
	if (!b->irq_armed)
127 128
		return;

129
	mod_timer(&b->fake_irq, jiffies + 1);
130 131 132 133 134 135 136 137 138 139 140

	/* Ensure that even if the GPU hangs, we get woken up.
	 *
	 * However, note that if no one is waiting, we never notice
	 * a gpu hang. Eventually, we will have to wait for a resource
	 * held by the GPU and so trigger a hangcheck. In the most
	 * pathological case, this will be upon memory starvation! To
	 * prevent this, we also queue the hangcheck from the retire
	 * worker.
	 */
	i915_queue_hangcheck(engine->i915);
141 142 143 144
}

static void irq_enable(struct intel_engine_cs *engine)
{
145 146 147 148
	/* Enabling the IRQ may miss the generation of the interrupt, but
	 * we still need to force the barrier before reading the seqno,
	 * just in case.
	 */
149
	set_bit(ENGINE_IRQ_BREADCRUMB, &engine->irq_posted);
150

151 152
	/* Caller disables interrupts */
	spin_lock(&engine->i915->irq_lock);
153
	engine->irq_enable(engine);
154
	spin_unlock(&engine->i915->irq_lock);
155 156 157 158
}

static void irq_disable(struct intel_engine_cs *engine)
{
159 160
	/* Caller disables interrupts */
	spin_lock(&engine->i915->irq_lock);
161
	engine->irq_disable(engine);
162
	spin_unlock(&engine->i915->irq_lock);
163 164
}

165 166 167 168
void __intel_engine_disarm_breadcrumbs(struct intel_engine_cs *engine)
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;

169
	lockdep_assert_held(&b->irq_lock);
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186

	if (b->irq_enabled) {
		irq_disable(engine);
		b->irq_enabled = false;
	}

	b->irq_armed = false;
}

void intel_engine_disarm_breadcrumbs(struct intel_engine_cs *engine)
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;
	unsigned long flags;

	if (!b->irq_armed)
		return;

187
	spin_lock_irqsave(&b->irq_lock, flags);
188 189 190 191 192 193

	/* We only disarm the irq when we are idle (all requests completed),
	 * so if there remains a sleeping waiter, it missed the request
	 * completion.
	 */
	if (__intel_breadcrumbs_wakeup(b) & ENGINE_WAKEUP_ASLEEP)
194
		missed_breadcrumb(engine);
195 196 197

	__intel_engine_disarm_breadcrumbs(engine);

198
	spin_unlock_irqrestore(&b->irq_lock, flags);
199 200
}

201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
static bool use_fake_irq(const struct intel_breadcrumbs *b)
{
	const struct intel_engine_cs *engine =
		container_of(b, struct intel_engine_cs, breadcrumbs);

	if (!test_bit(engine->id, &engine->i915->gpu_error.missed_irq_rings))
		return false;

	/* Only start with the heavy weight fake irq timer if we have not
	 * seen any interrupts since enabling it the first time. If the
	 * interrupts are still arriving, it means we made a mistake in our
	 * engine->seqno_barrier(), a timing error that should be transient
	 * and unlikely to reoccur.
	 */
	return atomic_read(&engine->irq_count) == b->hangcheck_interrupts;
}

218 219 220 221 222 223 224 225 226
static void enable_fake_irq(struct intel_breadcrumbs *b)
{
	/* Ensure we never sleep indefinitely */
	if (!b->irq_enabled || use_fake_irq(b))
		mod_timer(&b->fake_irq, jiffies + 1);
	else
		mod_timer(&b->hangcheck, wait_timeout());
}

227
static void __intel_breadcrumbs_enable_irq(struct intel_breadcrumbs *b)
228 229 230 231 232
{
	struct intel_engine_cs *engine =
		container_of(b, struct intel_engine_cs, breadcrumbs);
	struct drm_i915_private *i915 = engine->i915;

233
	lockdep_assert_held(&b->irq_lock);
234
	if (b->irq_armed)
235
		return;
236

237 238 239 240 241 242 243 244
	/* The breadcrumb irq will be disarmed on the interrupt after the
	 * waiters are signaled. This gives us a single interrupt window in
	 * which we can add a new waiter and avoid the cost of re-enabling
	 * the irq.
	 */
	b->irq_armed = true;
	GEM_BUG_ON(b->irq_enabled);

245 246 247 248 249 250 251 252 253 254 255
	if (I915_SELFTEST_ONLY(b->mock)) {
		/* For our mock objects we want to avoid interaction
		 * with the real hardware (which is not set up). So
		 * we simply pretend we have enabled the powerwell
		 * and the irq, and leave it up to the mock
		 * implementation to call intel_engine_wakeup()
		 * itself when it wants to simulate a user interrupt,
		 */
		return;
	}

256
	/* Since we are waiting on a request, the GPU should be busy
257 258 259 260
	 * and should have its own rpm reference. This is tracked
	 * by i915->gt.awake, we can forgo holding our own wakref
	 * for the interrupt as before i915->gt.awake is released (when
	 * the driver is idle) we disarm the breadcrumbs.
261 262 263 264
	 */

	/* No interrupts? Kick the waiter every jiffie! */
	if (intel_irqs_enabled(i915)) {
265
		if (!test_bit(engine->id, &i915->gpu_error.test_irq_rings))
266 267 268 269
			irq_enable(engine);
		b->irq_enabled = true;
	}

270
	enable_fake_irq(b);
271 272 273 274
}

static inline struct intel_wait *to_wait(struct rb_node *node)
{
275
	return rb_entry(node, struct intel_wait, node);
276 277 278 279 280
}

static inline void __intel_breadcrumbs_finish(struct intel_breadcrumbs *b,
					      struct intel_wait *wait)
{
281
	lockdep_assert_held(&b->rb_lock);
282 283 284 285 286 287 288 289 290 291

	/* This request is completed, so remove it from the tree, mark it as
	 * complete, and *then* wake up the associated task.
	 */
	rb_erase(&wait->node, &b->waiters);
	RB_CLEAR_NODE(&wait->node);

	wake_up_process(wait->tsk); /* implicit smp_wmb() */
}

292 293 294 295 296
static inline void __intel_breadcrumbs_next(struct intel_engine_cs *engine,
					    struct rb_node *next)
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;

297
	spin_lock(&b->irq_lock);
298
	GEM_BUG_ON(!b->irq_armed);
299 300
	b->irq_wait = to_wait(next);
	spin_unlock(&b->irq_lock);
301 302 303 304 305 306 307 308 309

	/* We always wake up the next waiter that takes over as the bottom-half
	 * as we may delegate not only the irq-seqno barrier to the next waiter
	 * but also the task of waking up concurrent waiters.
	 */
	if (next)
		wake_up_process(to_wait(next)->tsk);
}

310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
static bool __intel_engine_add_wait(struct intel_engine_cs *engine,
				    struct intel_wait *wait)
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;
	struct rb_node **p, *parent, *completed;
	bool first;
	u32 seqno;

	/* Insert the request into the retirement ordered list
	 * of waiters by walking the rbtree. If we are the oldest
	 * seqno in the tree (the first to be retired), then
	 * set ourselves as the bottom-half.
	 *
	 * As we descend the tree, prune completed branches since we hold the
	 * spinlock we know that the first_waiter must be delayed and can
	 * reduce some of the sequential wake up latency if we take action
	 * ourselves and wake up the completed tasks in parallel. Also, by
	 * removing stale elements in the tree, we may be able to reduce the
	 * ping-pong between the old bottom-half and ourselves as first-waiter.
	 */
	first = true;
	parent = NULL;
	completed = NULL;
333
	seqno = intel_engine_get_seqno(engine);
334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379

	 /* If the request completed before we managed to grab the spinlock,
	  * return now before adding ourselves to the rbtree. We let the
	  * current bottom-half handle any pending wakeups and instead
	  * try and get out of the way quickly.
	  */
	if (i915_seqno_passed(seqno, wait->seqno)) {
		RB_CLEAR_NODE(&wait->node);
		return first;
	}

	p = &b->waiters.rb_node;
	while (*p) {
		parent = *p;
		if (wait->seqno == to_wait(parent)->seqno) {
			/* We have multiple waiters on the same seqno, select
			 * the highest priority task (that with the smallest
			 * task->prio) to serve as the bottom-half for this
			 * group.
			 */
			if (wait->tsk->prio > to_wait(parent)->tsk->prio) {
				p = &parent->rb_right;
				first = false;
			} else {
				p = &parent->rb_left;
			}
		} else if (i915_seqno_passed(wait->seqno,
					     to_wait(parent)->seqno)) {
			p = &parent->rb_right;
			if (i915_seqno_passed(seqno, to_wait(parent)->seqno))
				completed = parent;
			else
				first = false;
		} else {
			p = &parent->rb_left;
		}
	}
	rb_link_node(&wait->node, parent, p);
	rb_insert_color(&wait->node, &b->waiters);

	if (completed) {
		struct rb_node *next = rb_next(completed);

		GEM_BUG_ON(!next && !first);
		if (next && next != &wait->node) {
			GEM_BUG_ON(first);
380
			__intel_breadcrumbs_next(engine, next);
381 382 383 384 385 386 387 388 389 390
		}

		do {
			struct intel_wait *crumb = to_wait(completed);
			completed = rb_prev(completed);
			__intel_breadcrumbs_finish(b, crumb);
		} while (completed);
	}

	if (first) {
391
		spin_lock(&b->irq_lock);
392
		GEM_BUG_ON(rb_first(&b->waiters) != &wait->node);
393
		b->irq_wait = wait;
394 395 396 397 398
		/* After assigning ourselves as the new bottom-half, we must
		 * perform a cursory check to prevent a missed interrupt.
		 * Either we miss the interrupt whilst programming the hardware,
		 * or if there was a previous waiter (for a later seqno) they
		 * may be woken instead of us (due to the inherent race
399 400
		 * in the unlocked read of b->irq_seqno_bh in the irq handler)
		 * and so we miss the wake up.
401 402
		 */
		__intel_breadcrumbs_enable_irq(b);
403
		spin_unlock(&b->irq_lock);
404
	}
405 406
	GEM_BUG_ON(!b->irq_wait);
	GEM_BUG_ON(rb_first(&b->waiters) != &b->irq_wait->node);
407 408 409 410 411 412 413 414 415 416

	return first;
}

bool intel_engine_add_wait(struct intel_engine_cs *engine,
			   struct intel_wait *wait)
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;
	bool first;

417
	spin_lock_irq(&b->rb_lock);
418
	first = __intel_engine_add_wait(engine, wait);
419
	spin_unlock_irq(&b->rb_lock);
420 421 422 423 424 425 426 427 428

	return first;
}

static inline bool chain_wakeup(struct rb_node *rb, int priority)
{
	return rb && to_wait(rb)->tsk->prio <= priority;
}

429 430 431 432 433 434 435 436 437
static inline int wakeup_priority(struct intel_breadcrumbs *b,
				  struct task_struct *tsk)
{
	if (tsk == b->signaler)
		return INT_MIN;
	else
		return tsk->prio;
}

438 439
static void __intel_engine_remove_wait(struct intel_engine_cs *engine,
				       struct intel_wait *wait)
440 441 442
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;

443
	lockdep_assert_held(&b->rb_lock);
444 445

	if (RB_EMPTY_NODE(&wait->node))
446
		goto out;
447

448
	if (b->irq_wait == wait) {
449
		const int priority = wakeup_priority(b, wait->tsk);
450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
		struct rb_node *next;

		/* We are the current bottom-half. Find the next candidate,
		 * the first waiter in the queue on the remaining oldest
		 * request. As multiple seqnos may complete in the time it
		 * takes us to wake up and find the next waiter, we have to
		 * wake up that waiter for it to perform its own coherent
		 * completion check.
		 */
		next = rb_next(&wait->node);
		if (chain_wakeup(next, priority)) {
			/* If the next waiter is already complete,
			 * wake it up and continue onto the next waiter. So
			 * if have a small herd, they will wake up in parallel
			 * rather than sequentially, which should reduce
			 * the overall latency in waking all the completed
			 * clients.
			 *
			 * However, waking up a chain adds extra latency to
			 * the first_waiter. This is undesirable if that
			 * waiter is a high priority task.
			 */
472
			u32 seqno = intel_engine_get_seqno(engine);
473 474 475 476 477 478 479 480 481 482 483

			while (i915_seqno_passed(seqno, to_wait(next)->seqno)) {
				struct rb_node *n = rb_next(next);

				__intel_breadcrumbs_finish(b, to_wait(next));
				next = n;
				if (!chain_wakeup(next, priority))
					break;
			}
		}

484
		__intel_breadcrumbs_next(engine, next);
485 486 487 488 489 490 491
	} else {
		GEM_BUG_ON(rb_first(&b->waiters) == &wait->node);
	}

	GEM_BUG_ON(RB_EMPTY_NODE(&wait->node));
	rb_erase(&wait->node, &b->waiters);

492
out:
493
	GEM_BUG_ON(b->irq_wait == wait);
494
	GEM_BUG_ON(rb_first(&b->waiters) !=
495
		   (b->irq_wait ? &b->irq_wait->node : NULL));
496 497 498 499 500 501 502 503 504 505 506 507 508 509
}

void intel_engine_remove_wait(struct intel_engine_cs *engine,
			      struct intel_wait *wait)
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;

	/* Quick check to see if this waiter was already decoupled from
	 * the tree by the bottom-half to avoid contention on the spinlock
	 * by the herd.
	 */
	if (RB_EMPTY_NODE(&wait->node))
		return;

510
	spin_lock_irq(&b->rb_lock);
511
	__intel_engine_remove_wait(engine, wait);
512
	spin_unlock_irq(&b->rb_lock);
513 514
}

515 516 517 518 519 520
static bool signal_valid(const struct drm_i915_gem_request *request)
{
	return intel_wait_check_request(&request->signaling.wait, request);
}

static bool signal_complete(const struct drm_i915_gem_request *request)
521
{
522
	if (!request)
523 524 525 526 527
		return false;

	/* If another process served as the bottom-half it may have already
	 * signalled that this wait is already completed.
	 */
528
	if (intel_wait_complete(&request->signaling.wait))
529
		return signal_valid(request);
530 531 532 533

	/* Carefully check if the request is complete, giving time for the
	 * seqno to be visible or if the GPU hung.
	 */
534
	if (__i915_request_irq_complete(request))
535 536 537 538 539
		return true;

	return false;
}

540
static struct drm_i915_gem_request *to_signaler(struct rb_node *rb)
541
{
542
	return rb_entry(rb, struct drm_i915_gem_request, signaling.node);
543 544 545 546 547 548 549 550 551 552 553 554 555
}

static void signaler_set_rtpriority(void)
{
	 struct sched_param param = { .sched_priority = 1 };

	 sched_setscheduler_nocheck(current, SCHED_FIFO, &param);
}

static int intel_breadcrumbs_signaler(void *arg)
{
	struct intel_engine_cs *engine = arg;
	struct intel_breadcrumbs *b = &engine->breadcrumbs;
556
	struct drm_i915_gem_request *request;
557 558 559 560 561 562 563 564 565 566 567 568 569 570 571

	/* Install ourselves with high priority to reduce signalling latency */
	signaler_set_rtpriority();

	do {
		set_current_state(TASK_INTERRUPTIBLE);

		/* We are either woken up by the interrupt bottom-half,
		 * or by a client adding a new signaller. In both cases,
		 * the GPU seqno may have advanced beyond our oldest signal.
		 * If it has, propagate the signal, remove the waiter and
		 * check again with the next oldest signal. Otherwise we
		 * need to wait for a new interrupt from the GPU or for
		 * a new client.
		 */
572 573 574 575 576
		rcu_read_lock();
		request = rcu_dereference(b->first_signal);
		if (request)
			request = i915_gem_request_get_rcu(request);
		rcu_read_unlock();
577
		if (signal_complete(request)) {
578 579 580 581
			local_bh_disable();
			dma_fence_signal(&request->fence);
			local_bh_enable(); /* kick start the tasklets */

582
			spin_lock_irq(&b->rb_lock);
583

584 585 586
			/* Wake up all other completed waiters and select the
			 * next bottom-half for the next user interrupt.
			 */
587 588
			__intel_engine_remove_wait(engine,
						   &request->signaling.wait);
589

590 591 592 593 594 595
			/* Find the next oldest signal. Note that as we have
			 * not been holding the lock, another client may
			 * have installed an even older signal than the one
			 * we just completed - so double check we are still
			 * the oldest before picking the next one.
			 */
596
			if (request == rcu_access_pointer(b->first_signal)) {
597 598
				struct rb_node *rb =
					rb_next(&request->signaling.node);
599 600
				rcu_assign_pointer(b->first_signal,
						   rb ? to_signaler(rb) : NULL);
601 602
			}
			rb_erase(&request->signaling.node, &b->signals);
603 604
			RB_CLEAR_NODE(&request->signaling.node);

605
			spin_unlock_irq(&b->rb_lock);
606

607
			i915_gem_request_put(request);
608
		} else {
609 610
			DEFINE_WAIT(exec);

611 612
			if (kthread_should_stop()) {
				GEM_BUG_ON(request);
613
				break;
614
			}
615

616 617 618
			if (request)
				add_wait_queue(&request->execute, &exec);

619
			schedule();
620

621 622 623
			if (request)
				remove_wait_queue(&request->execute, &exec);

624 625
			if (kthread_should_park())
				kthread_parkme();
626
		}
627
		i915_gem_request_put(request);
628 629 630 631 632 633
	} while (1);
	__set_current_state(TASK_RUNNING);

	return 0;
}

634
void intel_engine_enable_signaling(struct drm_i915_gem_request *request)
635 636 637 638 639
{
	struct intel_engine_cs *engine = request->engine;
	struct intel_breadcrumbs *b = &engine->breadcrumbs;
	struct rb_node *parent, **p;
	bool first, wakeup;
640
	u32 seqno;
641

642 643 644 645 646 647 648 649
	/* Note that we may be called from an interrupt handler on another
	 * device (e.g. nouveau signaling a fence completion causing us
	 * to submit a request, and so enable signaling). As such,
	 * we need to make sure that all other users of b->lock protect
	 * against interrupts, i.e. use spin_lock_irqsave.
	 */

	/* locked by dma_fence_enable_sw_signaling() (irqsafe fence->lock) */
650
	GEM_BUG_ON(!irqs_disabled());
651
	lockdep_assert_held(&request->lock);
652 653 654

	seqno = i915_gem_request_global_seqno(request);
	if (!seqno)
655
		return;
656

657
	request->signaling.wait.tsk = b->signaler;
658
	request->signaling.wait.request = request;
659
	request->signaling.wait.seqno = seqno;
660
	i915_gem_request_get(request);
661

662
	spin_lock(&b->rb_lock);
663

664 665 666 667 668 669 670 671
	/* First add ourselves into the list of waiters, but register our
	 * bottom-half as the signaller thread. As per usual, only the oldest
	 * waiter (not just signaller) is tasked as the bottom-half waking
	 * up all completed waiters after the user interrupt.
	 *
	 * If we are the oldest waiter, enable the irq (after which we
	 * must double check that the seqno did not complete).
	 */
672
	wakeup = __intel_engine_add_wait(engine, &request->signaling.wait);
673 674 675 676 677 678 679 680 681 682

	/* Now insert ourselves into the retirement ordered list of signals
	 * on this engine. We track the oldest seqno as that will be the
	 * first signal to complete.
	 */
	parent = NULL;
	first = true;
	p = &b->signals.rb_node;
	while (*p) {
		parent = *p;
683 684
		if (i915_seqno_passed(seqno,
				      to_signaler(parent)->signaling.wait.seqno)) {
685 686 687 688 689 690
			p = &parent->rb_right;
			first = false;
		} else {
			p = &parent->rb_left;
		}
	}
691 692
	rb_link_node(&request->signaling.node, parent, p);
	rb_insert_color(&request->signaling.node, &b->signals);
693
	if (first)
694
		rcu_assign_pointer(b->first_signal, request);
695

696
	spin_unlock(&b->rb_lock);
697 698 699 700 701

	if (wakeup)
		wake_up_process(b->signaler);
}

702 703 704 705 706
void intel_engine_cancel_signaling(struct drm_i915_gem_request *request)
{
	struct intel_engine_cs *engine = request->engine;
	struct intel_breadcrumbs *b = &engine->breadcrumbs;

707
	GEM_BUG_ON(!irqs_disabled());
708
	lockdep_assert_held(&request->lock);
709 710
	GEM_BUG_ON(!request->signaling.wait.seqno);

711
	spin_lock(&b->rb_lock);
712 713 714 715 716 717 718 719 720 721 722 723 724 725 726

	if (!RB_EMPTY_NODE(&request->signaling.node)) {
		if (request == rcu_access_pointer(b->first_signal)) {
			struct rb_node *rb =
				rb_next(&request->signaling.node);
			rcu_assign_pointer(b->first_signal,
					   rb ? to_signaler(rb) : NULL);
		}
		rb_erase(&request->signaling.node, &b->signals);
		RB_CLEAR_NODE(&request->signaling.node);
		i915_gem_request_put(request);
	}

	__intel_engine_remove_wait(engine, &request->signaling.wait);

727
	spin_unlock(&b->rb_lock);
728 729 730 731

	request->signaling.wait.seqno = 0;
}

732 733 734
int intel_engine_init_breadcrumbs(struct intel_engine_cs *engine)
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;
735
	struct task_struct *tsk;
736

737 738 739
	spin_lock_init(&b->rb_lock);
	spin_lock_init(&b->irq_lock);

740 741 742
	setup_timer(&b->fake_irq,
		    intel_breadcrumbs_fake_irq,
		    (unsigned long)engine);
743 744 745
	setup_timer(&b->hangcheck,
		    intel_breadcrumbs_hangcheck,
		    (unsigned long)engine);
746

747 748 749 750 751 752 753 754 755 756 757 758 759
	/* Spawn a thread to provide a common bottom-half for all signals.
	 * As this is an asynchronous interface we cannot steal the current
	 * task for handling the bottom-half to the user interrupt, therefore
	 * we create a thread to do the coherent seqno dance after the
	 * interrupt and then signal the waitqueue (via the dma-buf/fence).
	 */
	tsk = kthread_run(intel_breadcrumbs_signaler, engine,
			  "i915/signal:%d", engine->id);
	if (IS_ERR(tsk))
		return PTR_ERR(tsk);

	b->signaler = tsk;

760 761 762
	return 0;
}

763 764 765 766 767 768 769 770 771 772 773 774 775 776
static void cancel_fake_irq(struct intel_engine_cs *engine)
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;

	del_timer_sync(&b->hangcheck);
	del_timer_sync(&b->fake_irq);
	clear_bit(engine->id, &engine->i915->gpu_error.missed_irq_rings);
}

void intel_engine_reset_breadcrumbs(struct intel_engine_cs *engine)
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;

	cancel_fake_irq(engine);
777
	spin_lock_irq(&b->irq_lock);
778

779 780 781
	if (b->irq_enabled)
		irq_enable(engine);
	else
782
		irq_disable(engine);
783 784 785 786 787 788 789 790 791 792 793 794

	/* We set the IRQ_BREADCRUMB bit when we enable the irq presuming the
	 * GPU is active and may have already executed the MI_USER_INTERRUPT
	 * before the CPU is ready to receive. However, the engine is currently
	 * idle (we haven't started it yet), there is no possibility for a
	 * missed interrupt as we enabled the irq and so we can clear the
	 * immediate wakeup (until a real interrupt arrives for the waiter).
	 */
	clear_bit(ENGINE_IRQ_BREADCRUMB, &engine->irq_posted);

	if (b->irq_armed)
		enable_fake_irq(b);
795

796
	spin_unlock_irq(&b->irq_lock);
797 798
}

799 800 801 802
void intel_engine_fini_breadcrumbs(struct intel_engine_cs *engine)
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;

803
	/* The engines should be idle and all requests accounted for! */
804
	WARN_ON(READ_ONCE(b->irq_wait));
805
	WARN_ON(!RB_EMPTY_ROOT(&b->waiters));
806
	WARN_ON(rcu_access_pointer(b->first_signal));
807 808
	WARN_ON(!RB_EMPTY_ROOT(&b->signals));

809 810 811
	if (!IS_ERR_OR_NULL(b->signaler))
		kthread_stop(b->signaler);

812
	cancel_fake_irq(engine);
813 814
}

815
bool intel_breadcrumbs_busy(struct intel_engine_cs *engine)
816
{
817 818
	struct intel_breadcrumbs *b = &engine->breadcrumbs;
	bool busy = false;
819

820
	spin_lock_irq(&b->rb_lock);
821

822 823
	if (b->irq_wait) {
		wake_up_process(b->irq_wait->tsk);
824 825
		busy |= intel_engine_flag(engine);
	}
826

827
	if (rcu_access_pointer(b->first_signal)) {
828 829
		wake_up_process(b->signaler);
		busy |= intel_engine_flag(engine);
830 831
	}

832
	spin_unlock_irq(&b->rb_lock);
833 834

	return busy;
835
}
836 837 838 839

#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/intel_breadcrumbs.c"
#endif