intel_pm.c 189.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Copyright © 2012 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eugeni Dodonov <eugeni.dodonov@intel.com>
 *
 */

28
#include <linux/cpufreq.h>
29 30
#include "i915_drv.h"
#include "intel_drv.h"
31 32
#include "../../../platform/x86/intel_ips.h"
#include <linux/module.h>
33

B
Ben Widawsky 已提交
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
/**
 * RC6 is a special power stage which allows the GPU to enter an very
 * low-voltage mode when idle, using down to 0V while at this stage.  This
 * stage is entered automatically when the GPU is idle when RC6 support is
 * enabled, and as soon as new workload arises GPU wakes up automatically as well.
 *
 * There are different RC6 modes available in Intel GPU, which differentiate
 * among each other with the latency required to enter and leave RC6 and
 * voltage consumed by the GPU in different states.
 *
 * The combination of the following flags define which states GPU is allowed
 * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
 * RC6pp is deepest RC6. Their support by hardware varies according to the
 * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
 * which brings the most power savings; deeper states save more power, but
 * require higher latency to switch to and wake up.
 */
#define INTEL_RC6_ENABLE			(1<<0)
#define INTEL_RC6p_ENABLE			(1<<1)
#define INTEL_RC6pp_ENABLE			(1<<2)

55 56
static void gen9_init_clock_gating(struct drm_device *dev)
{
57 58
	struct drm_i915_private *dev_priv = dev->dev_private;

59 60 61 62
	/* WaEnableLbsSlaRetryTimerDecrement:skl */
	I915_WRITE(BDW_SCRATCH1, I915_READ(BDW_SCRATCH1) |
		   GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE);
}
63

64
static void skl_init_clock_gating(struct drm_device *dev)
65
{
66
	struct drm_i915_private *dev_priv = dev->dev_private;
67

68 69
	gen9_init_clock_gating(dev);

70 71 72
	if (INTEL_REVID(dev) == SKL_REVID_A0) {
		/*
		 * WaDisableSDEUnitClockGating:skl
73
		 * WaSetGAPSunitClckGateDisable:skl
74 75
		 */
		I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
76
			   GEN8_GAPSUNIT_CLOCK_GATE_DISABLE |
77 78
			   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
	}
79

80
	if (INTEL_REVID(dev) <= SKL_REVID_D0) {
81 82 83 84
		/* WaDisableHDCInvalidation:skl */
		I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
			   BDW_DISABLE_HDC_INVALIDATION);

85 86 87 88 89
		/* WaDisableChickenBitTSGBarrierAckForFFSliceCS:skl */
		I915_WRITE(FF_SLICE_CS_CHICKEN2,
			   I915_READ(FF_SLICE_CS_CHICKEN2) |
			   GEN9_TSG_BARRIER_ACK_DISABLE);
	}
90

91 92 93 94
	if (INTEL_REVID(dev) <= SKL_REVID_E0)
		/* WaDisableLSQCROPERFforOCL:skl */
		I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
			   GEN8_LQSC_RO_PERF_DIS);
95 96
}

97 98
static void bxt_init_clock_gating(struct drm_device *dev)
{
99 100
	struct drm_i915_private *dev_priv = dev->dev_private;

101
	gen9_init_clock_gating(dev);
102 103 104 105

	/*
	 * FIXME:
	 * GEN8_SDEUNIT_CLOCK_GATE_DISABLE applies on A0 only.
106
	 * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
107 108 109
	 */
	 /* WaDisableSDEUnitClockGating:bxt */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
110 111
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE |
		   GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
112

113 114
}

115 116
static void i915_pineview_get_mem_freq(struct drm_device *dev)
{
117
	struct drm_i915_private *dev_priv = dev->dev_private;
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
	u32 tmp;

	tmp = I915_READ(CLKCFG);

	switch (tmp & CLKCFG_FSB_MASK) {
	case CLKCFG_FSB_533:
		dev_priv->fsb_freq = 533; /* 133*4 */
		break;
	case CLKCFG_FSB_800:
		dev_priv->fsb_freq = 800; /* 200*4 */
		break;
	case CLKCFG_FSB_667:
		dev_priv->fsb_freq =  667; /* 167*4 */
		break;
	case CLKCFG_FSB_400:
		dev_priv->fsb_freq = 400; /* 100*4 */
		break;
	}

	switch (tmp & CLKCFG_MEM_MASK) {
	case CLKCFG_MEM_533:
		dev_priv->mem_freq = 533;
		break;
	case CLKCFG_MEM_667:
		dev_priv->mem_freq = 667;
		break;
	case CLKCFG_MEM_800:
		dev_priv->mem_freq = 800;
		break;
	}

	/* detect pineview DDR3 setting */
	tmp = I915_READ(CSHRDDR3CTL);
	dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
}

static void i915_ironlake_get_mem_freq(struct drm_device *dev)
{
156
	struct drm_i915_private *dev_priv = dev->dev_private;
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
	u16 ddrpll, csipll;

	ddrpll = I915_READ16(DDRMPLL1);
	csipll = I915_READ16(CSIPLL0);

	switch (ddrpll & 0xff) {
	case 0xc:
		dev_priv->mem_freq = 800;
		break;
	case 0x10:
		dev_priv->mem_freq = 1066;
		break;
	case 0x14:
		dev_priv->mem_freq = 1333;
		break;
	case 0x18:
		dev_priv->mem_freq = 1600;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
				 ddrpll & 0xff);
		dev_priv->mem_freq = 0;
		break;
	}

182
	dev_priv->ips.r_t = dev_priv->mem_freq;
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213

	switch (csipll & 0x3ff) {
	case 0x00c:
		dev_priv->fsb_freq = 3200;
		break;
	case 0x00e:
		dev_priv->fsb_freq = 3733;
		break;
	case 0x010:
		dev_priv->fsb_freq = 4266;
		break;
	case 0x012:
		dev_priv->fsb_freq = 4800;
		break;
	case 0x014:
		dev_priv->fsb_freq = 5333;
		break;
	case 0x016:
		dev_priv->fsb_freq = 5866;
		break;
	case 0x018:
		dev_priv->fsb_freq = 6400;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
				 csipll & 0x3ff);
		dev_priv->fsb_freq = 0;
		break;
	}

	if (dev_priv->fsb_freq == 3200) {
214
		dev_priv->ips.c_m = 0;
215
	} else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
216
		dev_priv->ips.c_m = 1;
217
	} else {
218
		dev_priv->ips.c_m = 2;
219 220 221
	}
}

222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
static const struct cxsr_latency cxsr_latency_table[] = {
	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */

	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */

	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */

	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */

	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */

	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
};

260
static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
							 int is_ddr3,
							 int fsb,
							 int mem)
{
	const struct cxsr_latency *latency;
	int i;

	if (fsb == 0 || mem == 0)
		return NULL;

	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
		latency = &cxsr_latency_table[i];
		if (is_desktop == latency->is_desktop &&
		    is_ddr3 == latency->is_ddr3 &&
		    fsb == latency->fsb_freq && mem == latency->mem_freq)
			return latency;
	}

	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");

	return NULL;
}

284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

	mutex_lock(&dev_priv->rps.hw_lock);

	val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
	if (enable)
		val &= ~FORCE_DDR_HIGH_FREQ;
	else
		val |= FORCE_DDR_HIGH_FREQ;
	val &= ~FORCE_DDR_LOW_FREQ;
	val |= FORCE_DDR_FREQ_REQ_ACK;
	vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

	if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
		      FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
		DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");

	mutex_unlock(&dev_priv->rps.hw_lock);
}

306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

	mutex_lock(&dev_priv->rps.hw_lock);

	val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
	if (enable)
		val |= DSP_MAXFIFO_PM5_ENABLE;
	else
		val &= ~DSP_MAXFIFO_PM5_ENABLE;
	vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);

	mutex_unlock(&dev_priv->rps.hw_lock);
}

322 323 324
#define FW_WM(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)

325
void intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
326
{
327 328
	struct drm_device *dev = dev_priv->dev;
	u32 val;
329

330 331
	if (IS_VALLEYVIEW(dev)) {
		I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
332 333
		if (IS_CHERRYVIEW(dev))
			chv_set_memory_pm5(dev_priv, enable);
334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
	} else if (IS_G4X(dev) || IS_CRESTLINE(dev)) {
		I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
	} else if (IS_PINEVIEW(dev)) {
		val = I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN;
		val |= enable ? PINEVIEW_SELF_REFRESH_EN : 0;
		I915_WRITE(DSPFW3, val);
	} else if (IS_I945G(dev) || IS_I945GM(dev)) {
		val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
			       _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
		I915_WRITE(FW_BLC_SELF, val);
	} else if (IS_I915GM(dev)) {
		val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
			       _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
		I915_WRITE(INSTPM, val);
	} else {
		return;
	}
351

352 353
	DRM_DEBUG_KMS("memory self-refresh is %s\n",
		      enable ? "enabled" : "disabled");
354 355
}

356

357 358 359 360 361 362 363 364 365 366 367 368 369 370
/*
 * Latency for FIFO fetches is dependent on several factors:
 *   - memory configuration (speed, channels)
 *   - chipset
 *   - current MCH state
 * It can be fairly high in some situations, so here we assume a fairly
 * pessimal value.  It's a tradeoff between extra memory fetches (if we
 * set this value too high, the FIFO will fetch frequently to stay full)
 * and power consumption (set it too low to save power and we might see
 * FIFO underruns and display "flicker").
 *
 * A value of 5us seems to be a good balance; safe for very low end
 * platforms but not overly aggressive on lower latency configs.
 */
371
static const int pessimal_latency_ns = 5000;
372

373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
#define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
	((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))

static int vlv_get_fifo_size(struct drm_device *dev,
			      enum pipe pipe, int plane)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int sprite0_start, sprite1_start, size;

	switch (pipe) {
		uint32_t dsparb, dsparb2, dsparb3;
	case PIPE_A:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
		break;
	case PIPE_B:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
		break;
	case PIPE_C:
		dsparb2 = I915_READ(DSPARB2);
		dsparb3 = I915_READ(DSPARB3);
		sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
		sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
		break;
	default:
		return 0;
	}

	switch (plane) {
	case 0:
		size = sprite0_start;
		break;
	case 1:
		size = sprite1_start - sprite0_start;
		break;
	case 2:
		size = 512 - 1 - sprite1_start;
		break;
	default:
		return 0;
	}

	DRM_DEBUG_KMS("Pipe %c %s %c FIFO size: %d\n",
		      pipe_name(pipe), plane == 0 ? "primary" : "sprite",
		      plane == 0 ? plane_name(pipe) : sprite_name(pipe, plane - 1),
		      size);

	return size;
}

428
static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	if (plane)
		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

444
static int i830_get_fifo_size(struct drm_device *dev, int plane)
445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x1ff;
	if (plane)
		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
	size >>= 1; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

461
static int i845_get_fifo_size(struct drm_device *dev, int plane)
462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	size >>= 2; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A",
		      size);

	return size;
}

/* Pineview has different values for various configs */
static const struct intel_watermark_params pineview_display_wm = {
479 480 481 482 483
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
484 485
};
static const struct intel_watermark_params pineview_display_hplloff_wm = {
486 487 488 489 490
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_HPLLOFF_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
491 492
};
static const struct intel_watermark_params pineview_cursor_wm = {
493 494 495 496 497
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
498 499
};
static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
500 501 502 503 504
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
505 506
};
static const struct intel_watermark_params g4x_wm_info = {
507 508 509 510 511
	.fifo_size = G4X_FIFO_SIZE,
	.max_wm = G4X_MAX_WM,
	.default_wm = G4X_MAX_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
512 513
};
static const struct intel_watermark_params g4x_cursor_wm_info = {
514 515 516 517 518
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
519 520
};
static const struct intel_watermark_params valleyview_wm_info = {
521 522 523 524 525
	.fifo_size = VALLEYVIEW_FIFO_SIZE,
	.max_wm = VALLEYVIEW_MAX_WM,
	.default_wm = VALLEYVIEW_MAX_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
526 527
};
static const struct intel_watermark_params valleyview_cursor_wm_info = {
528 529 530 531 532
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = VALLEYVIEW_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
533 534
};
static const struct intel_watermark_params i965_cursor_wm_info = {
535 536 537 538 539
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
540 541
};
static const struct intel_watermark_params i945_wm_info = {
542 543 544 545 546
	.fifo_size = I945_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
547 548
};
static const struct intel_watermark_params i915_wm_info = {
549 550 551 552 553
	.fifo_size = I915_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
554
};
555
static const struct intel_watermark_params i830_a_wm_info = {
556 557 558 559 560
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
561
};
562 563 564 565 566 567 568
static const struct intel_watermark_params i830_bc_wm_info = {
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM/2,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
};
569
static const struct intel_watermark_params i845_wm_info = {
570 571 572 573 574
	.fifo_size = I830_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623
};

/**
 * intel_calculate_wm - calculate watermark level
 * @clock_in_khz: pixel clock
 * @wm: chip FIFO params
 * @pixel_size: display pixel size
 * @latency_ns: memory latency for the platform
 *
 * Calculate the watermark level (the level at which the display plane will
 * start fetching from memory again).  Each chip has a different display
 * FIFO size and allocation, so the caller needs to figure that out and pass
 * in the correct intel_watermark_params structure.
 *
 * As the pixel clock runs, the FIFO will be drained at a rate that depends
 * on the pixel size.  When it reaches the watermark level, it'll start
 * fetching FIFO line sized based chunks from memory until the FIFO fills
 * past the watermark point.  If the FIFO drains completely, a FIFO underrun
 * will occur, and a display engine hang could result.
 */
static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
					const struct intel_watermark_params *wm,
					int fifo_size,
					int pixel_size,
					unsigned long latency_ns)
{
	long entries_required, wm_size;

	/*
	 * Note: we need to make sure we don't overflow for various clock &
	 * latency values.
	 * clocks go from a few thousand to several hundred thousand.
	 * latency is usually a few thousand
	 */
	entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
		1000;
	entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);

	DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);

	wm_size = fifo_size - (entries_required + wm->guard_size);

	DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);

	/* Don't promote wm_size to unsigned... */
	if (wm_size > (long)wm->max_wm)
		wm_size = wm->max_wm;
	if (wm_size <= 0)
		wm_size = wm->default_wm;
624 625 626 627 628 629 630 631 632 633 634

	/*
	 * Bspec seems to indicate that the value shouldn't be lower than
	 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
	 * Lets go for 8 which is the burst size since certain platforms
	 * already use a hardcoded 8 (which is what the spec says should be
	 * done).
	 */
	if (wm_size <= 8)
		wm_size = 8;

635 636 637 638 639 640 641
	return wm_size;
}

static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
{
	struct drm_crtc *crtc, *enabled = NULL;

642
	for_each_crtc(dev, crtc) {
643
		if (intel_crtc_active(crtc)) {
644 645 646 647 648 649 650 651 652
			if (enabled)
				return NULL;
			enabled = crtc;
		}
	}

	return enabled;
}

653
static void pineview_update_wm(struct drm_crtc *unused_crtc)
654
{
655
	struct drm_device *dev = unused_crtc->dev;
656 657 658 659 660 661 662 663 664 665
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_crtc *crtc;
	const struct cxsr_latency *latency;
	u32 reg;
	unsigned long wm;

	latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
					 dev_priv->fsb_freq, dev_priv->mem_freq);
	if (!latency) {
		DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
666
		intel_set_memory_cxsr(dev_priv, false);
667 668 669 670 671
		return;
	}

	crtc = single_enabled_crtc(dev);
	if (crtc) {
672
		const struct drm_display_mode *adjusted_mode;
673
		int pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
674 675
		int clock;

676
		adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
677
		clock = adjusted_mode->crtc_clock;
678 679 680 681 682 683 684

		/* Display SR */
		wm = intel_calculate_wm(clock, &pineview_display_wm,
					pineview_display_wm.fifo_size,
					pixel_size, latency->display_sr);
		reg = I915_READ(DSPFW1);
		reg &= ~DSPFW_SR_MASK;
685
		reg |= FW_WM(wm, SR);
686 687 688 689 690 691 692 693 694
		I915_WRITE(DSPFW1, reg);
		DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);

		/* cursor SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_wm,
					pineview_display_wm.fifo_size,
					pixel_size, latency->cursor_sr);
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_CURSOR_SR_MASK;
695
		reg |= FW_WM(wm, CURSOR_SR);
696 697 698 699 700 701 702 703
		I915_WRITE(DSPFW3, reg);

		/* Display HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
					pixel_size, latency->display_hpll_disable);
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_SR_MASK;
704
		reg |= FW_WM(wm, HPLL_SR);
705 706 707 708 709 710 711 712
		I915_WRITE(DSPFW3, reg);

		/* cursor HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
					pixel_size, latency->cursor_hpll_disable);
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_CURSOR_MASK;
713
		reg |= FW_WM(wm, HPLL_CURSOR);
714 715 716
		I915_WRITE(DSPFW3, reg);
		DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);

717
		intel_set_memory_cxsr(dev_priv, true);
718
	} else {
719
		intel_set_memory_cxsr(dev_priv, false);
720 721 722 723 724 725 726 727 728 729 730 731 732
	}
}

static bool g4x_compute_wm0(struct drm_device *dev,
			    int plane,
			    const struct intel_watermark_params *display,
			    int display_latency_ns,
			    const struct intel_watermark_params *cursor,
			    int cursor_latency_ns,
			    int *plane_wm,
			    int *cursor_wm)
{
	struct drm_crtc *crtc;
733
	const struct drm_display_mode *adjusted_mode;
734 735 736 737 738
	int htotal, hdisplay, clock, pixel_size;
	int line_time_us, line_count;
	int entries, tlb_miss;

	crtc = intel_get_crtc_for_plane(dev, plane);
739
	if (!intel_crtc_active(crtc)) {
740 741 742 743 744
		*cursor_wm = cursor->guard_size;
		*plane_wm = display->guard_size;
		return false;
	}

745
	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
746
	clock = adjusted_mode->crtc_clock;
747
	htotal = adjusted_mode->crtc_htotal;
748
	hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
749
	pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
750 751 752 753 754 755 756 757 758 759 760 761

	/* Use the small buffer method to calculate plane watermark */
	entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
	tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
	if (tlb_miss > 0)
		entries += tlb_miss;
	entries = DIV_ROUND_UP(entries, display->cacheline_size);
	*plane_wm = entries + display->guard_size;
	if (*plane_wm > (int)display->max_wm)
		*plane_wm = display->max_wm;

	/* Use the large buffer method to calculate cursor watermark */
762
	line_time_us = max(htotal * 1000 / clock, 1);
763
	line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
764
	entries = line_count * crtc->cursor->state->crtc_w * pixel_size;
765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818
	tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
	if (tlb_miss > 0)
		entries += tlb_miss;
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
	*cursor_wm = entries + cursor->guard_size;
	if (*cursor_wm > (int)cursor->max_wm)
		*cursor_wm = (int)cursor->max_wm;

	return true;
}

/*
 * Check the wm result.
 *
 * If any calculated watermark values is larger than the maximum value that
 * can be programmed into the associated watermark register, that watermark
 * must be disabled.
 */
static bool g4x_check_srwm(struct drm_device *dev,
			   int display_wm, int cursor_wm,
			   const struct intel_watermark_params *display,
			   const struct intel_watermark_params *cursor)
{
	DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
		      display_wm, cursor_wm);

	if (display_wm > display->max_wm) {
		DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
			      display_wm, display->max_wm);
		return false;
	}

	if (cursor_wm > cursor->max_wm) {
		DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
			      cursor_wm, cursor->max_wm);
		return false;
	}

	if (!(display_wm || cursor_wm)) {
		DRM_DEBUG_KMS("SR latency is 0, disabling\n");
		return false;
	}

	return true;
}

static bool g4x_compute_srwm(struct drm_device *dev,
			     int plane,
			     int latency_ns,
			     const struct intel_watermark_params *display,
			     const struct intel_watermark_params *cursor,
			     int *display_wm, int *cursor_wm)
{
	struct drm_crtc *crtc;
819
	const struct drm_display_mode *adjusted_mode;
820 821 822 823 824 825 826 827 828 829 830 831
	int hdisplay, htotal, pixel_size, clock;
	unsigned long line_time_us;
	int line_count, line_size;
	int small, large;
	int entries;

	if (!latency_ns) {
		*display_wm = *cursor_wm = 0;
		return false;
	}

	crtc = intel_get_crtc_for_plane(dev, plane);
832
	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
833
	clock = adjusted_mode->crtc_clock;
834
	htotal = adjusted_mode->crtc_htotal;
835
	hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
836
	pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
837

838
	line_time_us = max(htotal * 1000 / clock, 1);
839 840 841 842 843 844 845 846 847 848 849
	line_count = (latency_ns / line_time_us + 1000) / 1000;
	line_size = hdisplay * pixel_size;

	/* Use the minimum of the small and large buffer method for primary */
	small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
	large = line_count * line_size;

	entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
	*display_wm = entries + display->guard_size;

	/* calculate the self-refresh watermark for display cursor */
850
	entries = line_count * pixel_size * crtc->cursor->state->crtc_w;
851 852 853 854 855 856 857 858
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
	*cursor_wm = entries + cursor->guard_size;

	return g4x_check_srwm(dev,
			      *display_wm, *cursor_wm,
			      display, cursor);
}

859 860 861
#define FW_WM_VLV(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)

862 863 864 865 866 867 868 869 870 871 872 873
static void vlv_write_wm_values(struct intel_crtc *crtc,
				const struct vlv_wm_values *wm)
{
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	enum pipe pipe = crtc->pipe;

	I915_WRITE(VLV_DDL(pipe),
		   (wm->ddl[pipe].cursor << DDL_CURSOR_SHIFT) |
		   (wm->ddl[pipe].sprite[1] << DDL_SPRITE_SHIFT(1)) |
		   (wm->ddl[pipe].sprite[0] << DDL_SPRITE_SHIFT(0)) |
		   (wm->ddl[pipe].primary << DDL_PLANE_SHIFT));

874
	I915_WRITE(DSPFW1,
875 876 877 878
		   FW_WM(wm->sr.plane, SR) |
		   FW_WM(wm->pipe[PIPE_B].cursor, CURSORB) |
		   FW_WM_VLV(wm->pipe[PIPE_B].primary, PLANEB) |
		   FW_WM_VLV(wm->pipe[PIPE_A].primary, PLANEA));
879
	I915_WRITE(DSPFW2,
880 881 882
		   FW_WM_VLV(wm->pipe[PIPE_A].sprite[1], SPRITEB) |
		   FW_WM(wm->pipe[PIPE_A].cursor, CURSORA) |
		   FW_WM_VLV(wm->pipe[PIPE_A].sprite[0], SPRITEA));
883
	I915_WRITE(DSPFW3,
884
		   FW_WM(wm->sr.cursor, CURSOR_SR));
885 886 887

	if (IS_CHERRYVIEW(dev_priv)) {
		I915_WRITE(DSPFW7_CHV,
888 889
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
890
		I915_WRITE(DSPFW8_CHV,
891 892
			   FW_WM_VLV(wm->pipe[PIPE_C].sprite[1], SPRITEF) |
			   FW_WM_VLV(wm->pipe[PIPE_C].sprite[0], SPRITEE));
893
		I915_WRITE(DSPFW9_CHV,
894 895
			   FW_WM_VLV(wm->pipe[PIPE_C].primary, PLANEC) |
			   FW_WM(wm->pipe[PIPE_C].cursor, CURSORC));
896
		I915_WRITE(DSPHOWM,
897 898 899 900 901 902 903 904 905 906
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
			   FW_WM(wm->pipe[PIPE_C].sprite[1] >> 8, SPRITEF_HI) |
			   FW_WM(wm->pipe[PIPE_C].sprite[0] >> 8, SPRITEE_HI) |
			   FW_WM(wm->pipe[PIPE_C].primary >> 8, PLANEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
907 908
	} else {
		I915_WRITE(DSPFW7,
909 910
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
911
		I915_WRITE(DSPHOWM,
912 913 914 915 916 917 918
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
919 920 921 922
	}

	POSTING_READ(DSPFW1);

923 924 925
	dev_priv->wm.vlv = *wm;
}

926 927
#undef FW_WM_VLV

928
static uint8_t vlv_compute_drain_latency(struct drm_crtc *crtc,
929
					 struct drm_plane *plane)
930
{
931
	struct drm_device *dev = crtc->dev;
932 933 934
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	int entries, prec_mult, drain_latency, pixel_size;
	int clock = intel_crtc->config->base.adjusted_mode.crtc_clock;
935
	const int high_precision = IS_CHERRYVIEW(dev) ? 16 : 64;
936

937 938 939 940 941 942 943
	/*
	 * FIXME the plane might have an fb
	 * but be invisible (eg. due to clipping)
	 */
	if (!intel_crtc->active || !plane->state->fb)
		return 0;

944
	if (WARN(clock == 0, "Pixel clock is zero!\n"))
945
		return 0;
946

947 948
	pixel_size = drm_format_plane_cpp(plane->state->fb->pixel_format, 0);

949
	if (WARN(pixel_size == 0, "Pixel size is zero!\n"))
950
		return 0;
951

952
	entries = DIV_ROUND_UP(clock, 1000) * pixel_size;
953

954 955
	prec_mult = high_precision;
	drain_latency = 64 * prec_mult * 4 / entries;
956

957 958 959
	if (drain_latency > DRAIN_LATENCY_MASK) {
		prec_mult /= 2;
		drain_latency = 64 * prec_mult * 4 / entries;
960 961
	}

962 963
	if (drain_latency > DRAIN_LATENCY_MASK)
		drain_latency = DRAIN_LATENCY_MASK;
964

965 966
	return drain_latency | (prec_mult == high_precision ?
				DDL_PRECISION_HIGH : DDL_PRECISION_LOW);
967 968
}

969 970 971
static int vlv_compute_wm(struct intel_crtc *crtc,
			  struct intel_plane *plane,
			  int fifo_size)
972
{
973
	int clock, entries, pixel_size;
974

975 976 977 978 979 980
	/*
	 * FIXME the plane might have an fb
	 * but be invisible (eg. due to clipping)
	 */
	if (!crtc->active || !plane->base.state->fb)
		return 0;
981

982 983
	pixel_size = drm_format_plane_cpp(plane->base.state->fb->pixel_format, 0);
	clock = crtc->config->base.adjusted_mode.crtc_clock;
984

985
	entries = DIV_ROUND_UP(clock, 1000) * pixel_size;
986

987 988 989 990 991 992 993 994 995 996 997 998 999 1000
	/*
	 * Set up the watermark such that we don't start issuing memory
	 * requests until we are within PND's max deadline value (256us).
	 * Idea being to be idle as long as possible while still taking
	 * advatange of PND's deadline scheduling. The limit of 8
	 * cachelines (used when the FIFO will anyway drain in less time
	 * than 256us) should match what we would be done if trickle
	 * feed were enabled.
	 */
	return fifo_size - clamp(DIV_ROUND_UP(256 * entries, 64), 0, fifo_size - 8);
}

static bool vlv_compute_sr_wm(struct drm_device *dev,
			      struct vlv_wm_values *wm)
1001
{
1002 1003 1004 1005 1006 1007
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct drm_crtc *crtc;
	enum pipe pipe = INVALID_PIPE;
	int num_planes = 0;
	int fifo_size = 0;
	struct intel_plane *plane;
1008

1009
	wm->sr.cursor = wm->sr.plane = 0;
1010

1011 1012 1013 1014 1015 1016 1017 1018 1019
	crtc = single_enabled_crtc(dev);
	/* maxfifo not supported on pipe C */
	if (crtc && to_intel_crtc(crtc)->pipe != PIPE_C) {
		pipe = to_intel_crtc(crtc)->pipe;
		num_planes = !!wm->pipe[pipe].primary +
			!!wm->pipe[pipe].sprite[0] +
			!!wm->pipe[pipe].sprite[1];
		fifo_size = INTEL_INFO(dev_priv)->num_pipes * 512 - 1;
	}
1020

1021 1022
	if (fifo_size == 0 || num_planes > 1)
		return false;
1023

1024 1025
	wm->sr.cursor = vlv_compute_wm(to_intel_crtc(crtc),
				       to_intel_plane(crtc->cursor), 0x3f);
1026

1027 1028 1029
	list_for_each_entry(plane, &dev->mode_config.plane_list, base.head) {
		if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
			continue;
1030

1031 1032
		if (plane->pipe != pipe)
			continue;
1033

1034 1035 1036 1037 1038 1039 1040
		wm->sr.plane = vlv_compute_wm(to_intel_crtc(crtc),
					      plane, fifo_size);
		if (wm->sr.plane != 0)
			break;
	}

	return true;
1041 1042
}

1043
static void valleyview_update_wm(struct drm_crtc *crtc)
1044 1045 1046
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
1047 1048
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	enum pipe pipe = intel_crtc->pipe;
1049
	bool cxsr_enabled;
1050
	struct vlv_wm_values wm = dev_priv->wm.vlv;
1051

1052 1053 1054 1055
	wm.ddl[pipe].primary = vlv_compute_drain_latency(crtc, crtc->primary);
	wm.pipe[pipe].primary = vlv_compute_wm(intel_crtc,
					       to_intel_plane(crtc->primary),
					       vlv_get_fifo_size(dev, pipe, 0));
1056

1057 1058 1059 1060
	wm.ddl[pipe].cursor = vlv_compute_drain_latency(crtc, crtc->cursor);
	wm.pipe[pipe].cursor = vlv_compute_wm(intel_crtc,
					      to_intel_plane(crtc->cursor),
					      0x3f);
1061

1062
	cxsr_enabled = vlv_compute_sr_wm(dev, &wm);
1063

1064 1065
	if (memcmp(&wm, &dev_priv->wm.vlv, sizeof(wm)) == 0)
		return;
1066

1067 1068 1069 1070
	DRM_DEBUG_KMS("Setting FIFO watermarks - %c: plane=%d, cursor=%d, "
		      "SR: plane=%d, cursor=%d\n", pipe_name(pipe),
		      wm.pipe[pipe].primary, wm.pipe[pipe].cursor,
		      wm.sr.plane, wm.sr.cursor);
1071

1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
	/*
	 * FIXME DDR DVFS introduces massive memory latencies which
	 * are not known to system agent so any deadline specified
	 * by the display may not be respected. To support DDR DVFS
	 * the watermark code needs to be rewritten to essentially
	 * bypass deadline mechanism and rely solely on the
	 * watermarks. For now disable DDR DVFS.
	 */
	if (IS_CHERRYVIEW(dev_priv))
		chv_set_memory_dvfs(dev_priv, false);

1083 1084
	if (!cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, false);
1085

1086
	vlv_write_wm_values(intel_crtc, &wm);
1087 1088 1089 1090 1091

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
}

1092 1093 1094 1095 1096 1097 1098 1099 1100
static void valleyview_update_sprite_wm(struct drm_plane *plane,
					struct drm_crtc *crtc,
					uint32_t sprite_width,
					uint32_t sprite_height,
					int pixel_size,
					bool enabled, bool scaled)
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
1101 1102
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	enum pipe pipe = intel_crtc->pipe;
1103
	int sprite = to_intel_plane(plane)->plane;
1104
	bool cxsr_enabled;
1105
	struct vlv_wm_values wm = dev_priv->wm.vlv;
1106

1107
	if (enabled) {
1108
		wm.ddl[pipe].sprite[sprite] =
1109
			vlv_compute_drain_latency(crtc, plane);
1110 1111 1112 1113 1114 1115

		wm.pipe[pipe].sprite[sprite] =
			vlv_compute_wm(intel_crtc,
				       to_intel_plane(plane),
				       vlv_get_fifo_size(dev, pipe, sprite+1));
	} else {
1116
		wm.ddl[pipe].sprite[sprite] = 0;
1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132
		wm.pipe[pipe].sprite[sprite] = 0;
	}

	cxsr_enabled = vlv_compute_sr_wm(dev, &wm);

	if (memcmp(&wm, &dev_priv->wm.vlv, sizeof(wm)) == 0)
		return;

	DRM_DEBUG_KMS("Setting FIFO watermarks - %c: sprite %c=%d, "
		      "SR: plane=%d, cursor=%d\n", pipe_name(pipe),
		      sprite_name(pipe, sprite),
		      wm.pipe[pipe].sprite[sprite],
		      wm.sr.plane, wm.sr.cursor);

	if (!cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, false);
1133

1134
	vlv_write_wm_values(intel_crtc, &wm);
1135 1136 1137

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
1138 1139
}

1140 1141
#define single_plane_enabled(mask) is_power_of_2(mask)

1142
static void g4x_update_wm(struct drm_crtc *crtc)
1143
{
1144
	struct drm_device *dev = crtc->dev;
1145 1146 1147 1148 1149
	static const int sr_latency_ns = 12000;
	struct drm_i915_private *dev_priv = dev->dev_private;
	int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
	int plane_sr, cursor_sr;
	unsigned int enabled = 0;
1150
	bool cxsr_enabled;
1151

1152
	if (g4x_compute_wm0(dev, PIPE_A,
1153 1154
			    &g4x_wm_info, pessimal_latency_ns,
			    &g4x_cursor_wm_info, pessimal_latency_ns,
1155
			    &planea_wm, &cursora_wm))
1156
		enabled |= 1 << PIPE_A;
1157

1158
	if (g4x_compute_wm0(dev, PIPE_B,
1159 1160
			    &g4x_wm_info, pessimal_latency_ns,
			    &g4x_cursor_wm_info, pessimal_latency_ns,
1161
			    &planeb_wm, &cursorb_wm))
1162
		enabled |= 1 << PIPE_B;
1163 1164 1165 1166 1167 1168

	if (single_plane_enabled(enabled) &&
	    g4x_compute_srwm(dev, ffs(enabled) - 1,
			     sr_latency_ns,
			     &g4x_wm_info,
			     &g4x_cursor_wm_info,
1169
			     &plane_sr, &cursor_sr)) {
1170
		cxsr_enabled = true;
1171
	} else {
1172
		cxsr_enabled = false;
1173
		intel_set_memory_cxsr(dev_priv, false);
1174 1175
		plane_sr = cursor_sr = 0;
	}
1176

1177 1178
	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
		      "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1179 1180 1181 1182 1183
		      planea_wm, cursora_wm,
		      planeb_wm, cursorb_wm,
		      plane_sr, cursor_sr);

	I915_WRITE(DSPFW1,
1184 1185 1186 1187
		   FW_WM(plane_sr, SR) |
		   FW_WM(cursorb_wm, CURSORB) |
		   FW_WM(planeb_wm, PLANEB) |
		   FW_WM(planea_wm, PLANEA));
1188
	I915_WRITE(DSPFW2,
1189
		   (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1190
		   FW_WM(cursora_wm, CURSORA));
1191 1192
	/* HPLL off in SR has some issues on G4x... disable it */
	I915_WRITE(DSPFW3,
1193
		   (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1194
		   FW_WM(cursor_sr, CURSOR_SR));
1195 1196 1197

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
1198 1199
}

1200
static void i965_update_wm(struct drm_crtc *unused_crtc)
1201
{
1202
	struct drm_device *dev = unused_crtc->dev;
1203 1204 1205 1206
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_crtc *crtc;
	int srwm = 1;
	int cursor_sr = 16;
1207
	bool cxsr_enabled;
1208 1209 1210 1211 1212 1213

	/* Calc sr entries for one plane configs */
	crtc = single_enabled_crtc(dev);
	if (crtc) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 12000;
1214
		const struct drm_display_mode *adjusted_mode =
1215
			&to_intel_crtc(crtc)->config->base.adjusted_mode;
1216
		int clock = adjusted_mode->crtc_clock;
1217
		int htotal = adjusted_mode->crtc_htotal;
1218
		int hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
1219
		int pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
1220 1221 1222
		unsigned long line_time_us;
		int entries;

1223
		line_time_us = max(htotal * 1000 / clock, 1);
1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236

		/* Use ns/us then divide to preserve precision */
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
			pixel_size * hdisplay;
		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
		srwm = I965_FIFO_SIZE - entries;
		if (srwm < 0)
			srwm = 1;
		srwm &= 0x1ff;
		DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
			      entries, srwm);

		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1237
			pixel_size * crtc->cursor->state->crtc_w;
1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248
		entries = DIV_ROUND_UP(entries,
					  i965_cursor_wm_info.cacheline_size);
		cursor_sr = i965_cursor_wm_info.fifo_size -
			(entries + i965_cursor_wm_info.guard_size);

		if (cursor_sr > i965_cursor_wm_info.max_wm)
			cursor_sr = i965_cursor_wm_info.max_wm;

		DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
			      "cursor %d\n", srwm, cursor_sr);

1249
		cxsr_enabled = true;
1250
	} else {
1251
		cxsr_enabled = false;
1252
		/* Turn off self refresh if both pipes are enabled */
1253
		intel_set_memory_cxsr(dev_priv, false);
1254 1255 1256 1257 1258 1259
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
		      srwm);

	/* 965 has limitations... */
1260 1261 1262 1263 1264 1265
	I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
		   FW_WM(8, CURSORB) |
		   FW_WM(8, PLANEB) |
		   FW_WM(8, PLANEA));
	I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
		   FW_WM(8, PLANEC_OLD));
1266
	/* update cursor SR watermark */
1267
	I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
1268 1269 1270

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
1271 1272
}

1273 1274
#undef FW_WM

1275
static void i9xx_update_wm(struct drm_crtc *unused_crtc)
1276
{
1277
	struct drm_device *dev = unused_crtc->dev;
1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291
	struct drm_i915_private *dev_priv = dev->dev_private;
	const struct intel_watermark_params *wm_info;
	uint32_t fwater_lo;
	uint32_t fwater_hi;
	int cwm, srwm = 1;
	int fifo_size;
	int planea_wm, planeb_wm;
	struct drm_crtc *crtc, *enabled = NULL;

	if (IS_I945GM(dev))
		wm_info = &i945_wm_info;
	else if (!IS_GEN2(dev))
		wm_info = &i915_wm_info;
	else
1292
		wm_info = &i830_a_wm_info;
1293 1294 1295

	fifo_size = dev_priv->display.get_fifo_size(dev, 0);
	crtc = intel_get_crtc_for_plane(dev, 0);
1296
	if (intel_crtc_active(crtc)) {
1297
		const struct drm_display_mode *adjusted_mode;
1298
		int cpp = crtc->primary->state->fb->bits_per_pixel / 8;
1299 1300 1301
		if (IS_GEN2(dev))
			cpp = 4;

1302
		adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1303
		planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1304
					       wm_info, fifo_size, cpp,
1305
					       pessimal_latency_ns);
1306
		enabled = crtc;
1307
	} else {
1308
		planea_wm = fifo_size - wm_info->guard_size;
1309 1310 1311 1312 1313 1314
		if (planea_wm > (long)wm_info->max_wm)
			planea_wm = wm_info->max_wm;
	}

	if (IS_GEN2(dev))
		wm_info = &i830_bc_wm_info;
1315 1316 1317

	fifo_size = dev_priv->display.get_fifo_size(dev, 1);
	crtc = intel_get_crtc_for_plane(dev, 1);
1318
	if (intel_crtc_active(crtc)) {
1319
		const struct drm_display_mode *adjusted_mode;
1320
		int cpp = crtc->primary->state->fb->bits_per_pixel / 8;
1321 1322 1323
		if (IS_GEN2(dev))
			cpp = 4;

1324
		adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1325
		planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1326
					       wm_info, fifo_size, cpp,
1327
					       pessimal_latency_ns);
1328 1329 1330 1331
		if (enabled == NULL)
			enabled = crtc;
		else
			enabled = NULL;
1332
	} else {
1333
		planeb_wm = fifo_size - wm_info->guard_size;
1334 1335 1336
		if (planeb_wm > (long)wm_info->max_wm)
			planeb_wm = wm_info->max_wm;
	}
1337 1338 1339

	DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);

1340
	if (IS_I915GM(dev) && enabled) {
1341
		struct drm_i915_gem_object *obj;
1342

1343
		obj = intel_fb_obj(enabled->primary->state->fb);
1344 1345

		/* self-refresh seems busted with untiled */
1346
		if (obj->tiling_mode == I915_TILING_NONE)
1347 1348 1349
			enabled = NULL;
	}

1350 1351 1352 1353 1354 1355
	/*
	 * Overlay gets an aggressive default since video jitter is bad.
	 */
	cwm = 2;

	/* Play safe and disable self-refresh before adjusting watermarks. */
1356
	intel_set_memory_cxsr(dev_priv, false);
1357 1358 1359 1360 1361

	/* Calc sr entries for one plane configs */
	if (HAS_FW_BLC(dev) && enabled) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 6000;
1362
		const struct drm_display_mode *adjusted_mode =
1363
			&to_intel_crtc(enabled)->config->base.adjusted_mode;
1364
		int clock = adjusted_mode->crtc_clock;
1365
		int htotal = adjusted_mode->crtc_htotal;
1366
		int hdisplay = to_intel_crtc(enabled)->config->pipe_src_w;
1367
		int pixel_size = enabled->primary->state->fb->bits_per_pixel / 8;
1368 1369 1370
		unsigned long line_time_us;
		int entries;

1371
		line_time_us = max(htotal * 1000 / clock, 1);
1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401

		/* Use ns/us then divide to preserve precision */
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
			pixel_size * hdisplay;
		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
		DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
		srwm = wm_info->fifo_size - entries;
		if (srwm < 0)
			srwm = 1;

		if (IS_I945G(dev) || IS_I945GM(dev))
			I915_WRITE(FW_BLC_SELF,
				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
		else if (IS_I915GM(dev))
			I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
		      planea_wm, planeb_wm, cwm, srwm);

	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
	fwater_hi = (cwm & 0x1f);

	/* Set request length to 8 cachelines per fetch */
	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
	fwater_hi = fwater_hi | (1 << 8);

	I915_WRITE(FW_BLC, fwater_lo);
	I915_WRITE(FW_BLC2, fwater_hi);

1402 1403
	if (enabled)
		intel_set_memory_cxsr(dev_priv, true);
1404 1405
}

1406
static void i845_update_wm(struct drm_crtc *unused_crtc)
1407
{
1408
	struct drm_device *dev = unused_crtc->dev;
1409 1410
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_crtc *crtc;
1411
	const struct drm_display_mode *adjusted_mode;
1412 1413 1414 1415 1416 1417 1418
	uint32_t fwater_lo;
	int planea_wm;

	crtc = single_enabled_crtc(dev);
	if (crtc == NULL)
		return;

1419
	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1420
	planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1421
				       &i845_wm_info,
1422
				       dev_priv->display.get_fifo_size(dev, 0),
1423
				       4, pessimal_latency_ns);
1424 1425 1426 1427 1428 1429 1430 1431
	fwater_lo = I915_READ(FW_BLC) & ~0xfff;
	fwater_lo |= (3<<8) | planea_wm;

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);

	I915_WRITE(FW_BLC, fwater_lo);
}

1432 1433
static uint32_t ilk_pipe_pixel_rate(struct drm_device *dev,
				    struct drm_crtc *crtc)
1434 1435
{
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1436
	uint32_t pixel_rate;
1437

1438
	pixel_rate = intel_crtc->config->base.adjusted_mode.crtc_clock;
1439 1440 1441 1442

	/* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
	 * adjust the pixel_rate here. */

1443
	if (intel_crtc->config->pch_pfit.enabled) {
1444
		uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
1445
		uint32_t pfit_size = intel_crtc->config->pch_pfit.size;
1446

1447 1448
		pipe_w = intel_crtc->config->pipe_src_w;
		pipe_h = intel_crtc->config->pipe_src_h;
1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462
		pfit_w = (pfit_size >> 16) & 0xFFFF;
		pfit_h = pfit_size & 0xFFFF;
		if (pipe_w < pfit_w)
			pipe_w = pfit_w;
		if (pipe_h < pfit_h)
			pipe_h = pfit_h;

		pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
				     pfit_w * pfit_h);
	}

	return pixel_rate;
}

1463
/* latency must be in 0.1us units. */
1464
static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
1465 1466 1467 1468
			       uint32_t latency)
{
	uint64_t ret;

1469 1470 1471
	if (WARN(latency == 0, "Latency value missing\n"))
		return UINT_MAX;

1472 1473 1474 1475 1476 1477
	ret = (uint64_t) pixel_rate * bytes_per_pixel * latency;
	ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;

	return ret;
}

1478
/* latency must be in 0.1us units. */
1479
static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1480 1481 1482 1483 1484
			       uint32_t horiz_pixels, uint8_t bytes_per_pixel,
			       uint32_t latency)
{
	uint32_t ret;

1485 1486 1487
	if (WARN(latency == 0, "Latency value missing\n"))
		return UINT_MAX;

1488 1489 1490 1491 1492 1493
	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
	ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
	ret = DIV_ROUND_UP(ret, 64) + 2;
	return ret;
}

1494
static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1495 1496 1497 1498 1499
			   uint8_t bytes_per_pixel)
{
	return DIV_ROUND_UP(pri_val * 64, horiz_pixels * bytes_per_pixel) + 2;
}

1500 1501 1502 1503 1504 1505 1506 1507
struct skl_pipe_wm_parameters {
	bool active;
	uint32_t pipe_htotal;
	uint32_t pixel_rate; /* in KHz */
	struct intel_plane_wm_parameters plane[I915_MAX_PLANES];
	struct intel_plane_wm_parameters cursor;
};

1508
struct ilk_pipe_wm_parameters {
1509 1510 1511
	bool active;
	uint32_t pipe_htotal;
	uint32_t pixel_rate;
1512 1513 1514
	struct intel_plane_wm_parameters pri;
	struct intel_plane_wm_parameters spr;
	struct intel_plane_wm_parameters cur;
1515 1516
};

1517
struct ilk_wm_maximums {
1518 1519 1520 1521 1522 1523
	uint16_t pri;
	uint16_t spr;
	uint16_t cur;
	uint16_t fbc;
};

1524 1525 1526 1527 1528 1529 1530
/* used in computing the new watermarks state */
struct intel_wm_config {
	unsigned int num_pipes_active;
	bool sprites_enabled;
	bool sprites_scaled;
};

1531 1532 1533 1534
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1535
static uint32_t ilk_compute_pri_wm(const struct ilk_pipe_wm_parameters *params,
1536 1537
				   uint32_t mem_value,
				   bool is_lp)
1538
{
1539 1540
	uint32_t method1, method2;

1541
	if (!params->active || !params->pri.enabled)
1542 1543
		return 0;

1544
	method1 = ilk_wm_method1(params->pixel_rate,
1545
				 params->pri.bytes_per_pixel,
1546 1547 1548 1549 1550
				 mem_value);

	if (!is_lp)
		return method1;

1551
	method2 = ilk_wm_method2(params->pixel_rate,
1552
				 params->pipe_htotal,
1553 1554
				 params->pri.horiz_pixels,
				 params->pri.bytes_per_pixel,
1555 1556 1557
				 mem_value);

	return min(method1, method2);
1558 1559
}

1560 1561 1562 1563
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1564
static uint32_t ilk_compute_spr_wm(const struct ilk_pipe_wm_parameters *params,
1565 1566 1567 1568
				   uint32_t mem_value)
{
	uint32_t method1, method2;

1569
	if (!params->active || !params->spr.enabled)
1570 1571
		return 0;

1572
	method1 = ilk_wm_method1(params->pixel_rate,
1573
				 params->spr.bytes_per_pixel,
1574
				 mem_value);
1575
	method2 = ilk_wm_method2(params->pixel_rate,
1576
				 params->pipe_htotal,
1577 1578
				 params->spr.horiz_pixels,
				 params->spr.bytes_per_pixel,
1579 1580 1581 1582
				 mem_value);
	return min(method1, method2);
}

1583 1584 1585 1586
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1587
static uint32_t ilk_compute_cur_wm(const struct ilk_pipe_wm_parameters *params,
1588 1589
				   uint32_t mem_value)
{
1590
	if (!params->active || !params->cur.enabled)
1591 1592
		return 0;

1593
	return ilk_wm_method2(params->pixel_rate,
1594
			      params->pipe_htotal,
1595 1596
			      params->cur.horiz_pixels,
			      params->cur.bytes_per_pixel,
1597 1598 1599
			      mem_value);
}

1600
/* Only for WM_LP. */
1601
static uint32_t ilk_compute_fbc_wm(const struct ilk_pipe_wm_parameters *params,
1602
				   uint32_t pri_val)
1603
{
1604
	if (!params->active || !params->pri.enabled)
1605 1606
		return 0;

1607
	return ilk_wm_fbc(pri_val,
1608 1609
			  params->pri.horiz_pixels,
			  params->pri.bytes_per_pixel);
1610 1611
}

1612 1613
static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
{
1614 1615 1616
	if (INTEL_INFO(dev)->gen >= 8)
		return 3072;
	else if (INTEL_INFO(dev)->gen >= 7)
1617 1618 1619 1620 1621
		return 768;
	else
		return 512;
}

1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655
static unsigned int ilk_plane_wm_reg_max(const struct drm_device *dev,
					 int level, bool is_sprite)
{
	if (INTEL_INFO(dev)->gen >= 8)
		/* BDW primary/sprite plane watermarks */
		return level == 0 ? 255 : 2047;
	else if (INTEL_INFO(dev)->gen >= 7)
		/* IVB/HSW primary/sprite plane watermarks */
		return level == 0 ? 127 : 1023;
	else if (!is_sprite)
		/* ILK/SNB primary plane watermarks */
		return level == 0 ? 127 : 511;
	else
		/* ILK/SNB sprite plane watermarks */
		return level == 0 ? 63 : 255;
}

static unsigned int ilk_cursor_wm_reg_max(const struct drm_device *dev,
					  int level)
{
	if (INTEL_INFO(dev)->gen >= 7)
		return level == 0 ? 63 : 255;
	else
		return level == 0 ? 31 : 63;
}

static unsigned int ilk_fbc_wm_reg_max(const struct drm_device *dev)
{
	if (INTEL_INFO(dev)->gen >= 8)
		return 31;
	else
		return 15;
}

1656 1657 1658
/* Calculate the maximum primary/sprite plane watermark */
static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
				     int level,
1659
				     const struct intel_wm_config *config,
1660 1661 1662 1663 1664 1665
				     enum intel_ddb_partitioning ddb_partitioning,
				     bool is_sprite)
{
	unsigned int fifo_size = ilk_display_fifo_size(dev);

	/* if sprites aren't enabled, sprites get nothing */
1666
	if (is_sprite && !config->sprites_enabled)
1667 1668 1669
		return 0;

	/* HSW allows LP1+ watermarks even with multiple pipes */
1670
	if (level == 0 || config->num_pipes_active > 1) {
1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681
		fifo_size /= INTEL_INFO(dev)->num_pipes;

		/*
		 * For some reason the non self refresh
		 * FIFO size is only half of the self
		 * refresh FIFO size on ILK/SNB.
		 */
		if (INTEL_INFO(dev)->gen <= 6)
			fifo_size /= 2;
	}

1682
	if (config->sprites_enabled) {
1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693
		/* level 0 is always calculated with 1:1 split */
		if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
			if (is_sprite)
				fifo_size *= 5;
			fifo_size /= 6;
		} else {
			fifo_size /= 2;
		}
	}

	/* clamp to max that the registers can hold */
1694
	return min(fifo_size, ilk_plane_wm_reg_max(dev, level, is_sprite));
1695 1696 1697 1698
}

/* Calculate the maximum cursor plane watermark */
static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
1699 1700
				      int level,
				      const struct intel_wm_config *config)
1701 1702
{
	/* HSW LP1+ watermarks w/ multiple pipes */
1703
	if (level > 0 && config->num_pipes_active > 1)
1704 1705 1706
		return 64;

	/* otherwise just report max that registers can hold */
1707
	return ilk_cursor_wm_reg_max(dev, level);
1708 1709
}

1710
static void ilk_compute_wm_maximums(const struct drm_device *dev,
1711 1712 1713
				    int level,
				    const struct intel_wm_config *config,
				    enum intel_ddb_partitioning ddb_partitioning,
1714
				    struct ilk_wm_maximums *max)
1715
{
1716 1717 1718
	max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
	max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
	max->cur = ilk_cursor_wm_max(dev, level, config);
1719
	max->fbc = ilk_fbc_wm_reg_max(dev);
1720 1721
}

1722 1723 1724 1725 1726 1727 1728 1729 1730 1731
static void ilk_compute_wm_reg_maximums(struct drm_device *dev,
					int level,
					struct ilk_wm_maximums *max)
{
	max->pri = ilk_plane_wm_reg_max(dev, level, false);
	max->spr = ilk_plane_wm_reg_max(dev, level, true);
	max->cur = ilk_cursor_wm_reg_max(dev, level);
	max->fbc = ilk_fbc_wm_reg_max(dev);
}

1732
static bool ilk_validate_wm_level(int level,
1733
				  const struct ilk_wm_maximums *max,
1734
				  struct intel_wm_level *result)
1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772
{
	bool ret;

	/* already determined to be invalid? */
	if (!result->enable)
		return false;

	result->enable = result->pri_val <= max->pri &&
			 result->spr_val <= max->spr &&
			 result->cur_val <= max->cur;

	ret = result->enable;

	/*
	 * HACK until we can pre-compute everything,
	 * and thus fail gracefully if LP0 watermarks
	 * are exceeded...
	 */
	if (level == 0 && !result->enable) {
		if (result->pri_val > max->pri)
			DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
				      level, result->pri_val, max->pri);
		if (result->spr_val > max->spr)
			DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
				      level, result->spr_val, max->spr);
		if (result->cur_val > max->cur)
			DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
				      level, result->cur_val, max->cur);

		result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
		result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
		result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
		result->enable = true;
	}

	return ret;
}

1773
static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
1774
				 int level,
1775
				 const struct ilk_pipe_wm_parameters *p,
1776
				 struct intel_wm_level *result)
1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795
{
	uint16_t pri_latency = dev_priv->wm.pri_latency[level];
	uint16_t spr_latency = dev_priv->wm.spr_latency[level];
	uint16_t cur_latency = dev_priv->wm.cur_latency[level];

	/* WM1+ latency values stored in 0.5us units */
	if (level > 0) {
		pri_latency *= 5;
		spr_latency *= 5;
		cur_latency *= 5;
	}

	result->pri_val = ilk_compute_pri_wm(p, pri_latency, level);
	result->spr_val = ilk_compute_spr_wm(p, spr_latency);
	result->cur_val = ilk_compute_cur_wm(p, cur_latency);
	result->fbc_val = ilk_compute_fbc_wm(p, result->pri_val);
	result->enable = true;
}

1796 1797
static uint32_t
hsw_compute_linetime_wm(struct drm_device *dev, struct drm_crtc *crtc)
1798 1799
{
	struct drm_i915_private *dev_priv = dev->dev_private;
1800
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1801
	struct drm_display_mode *mode = &intel_crtc->config->base.adjusted_mode;
1802
	u32 linetime, ips_linetime;
1803

1804
	if (!intel_crtc->active)
1805
		return 0;
1806

1807 1808 1809
	/* The WM are computed with base on how long it takes to fill a single
	 * row at the given clock rate, multiplied by 8.
	 * */
1810 1811 1812
	linetime = DIV_ROUND_CLOSEST(mode->crtc_htotal * 1000 * 8,
				     mode->crtc_clock);
	ips_linetime = DIV_ROUND_CLOSEST(mode->crtc_htotal * 1000 * 8,
1813
					 intel_ddi_get_cdclk_freq(dev_priv));
1814

1815 1816
	return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
	       PIPE_WM_LINETIME_TIME(linetime);
1817 1818
}

1819
static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[8])
1820 1821 1822
{
	struct drm_i915_private *dev_priv = dev->dev_private;

1823 1824
	if (IS_GEN9(dev)) {
		uint32_t val;
1825
		int ret, i;
1826
		int level, max_level = ilk_wm_max_level(dev);
1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868

		/* read the first set of memory latencies[0:3] */
		val = 0; /* data0 to be programmed to 0 for first set */
		mutex_lock(&dev_priv->rps.hw_lock);
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
					     &val);
		mutex_unlock(&dev_priv->rps.hw_lock);

		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

		/* read the second set of memory latencies[4:7] */
		val = 1; /* data0 to be programmed to 1 for second set */
		mutex_lock(&dev_priv->rps.hw_lock);
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
					     &val);
		mutex_unlock(&dev_priv->rps.hw_lock);
		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

1869
		/*
1870 1871
		 * WaWmMemoryReadLatency:skl
		 *
1872 1873 1874 1875 1876 1877 1878 1879
		 * punit doesn't take into account the read latency so we need
		 * to add 2us to the various latency levels we retrieve from
		 * the punit.
		 *   - W0 is a bit special in that it's the only level that
		 *   can't be disabled if we want to have display working, so
		 *   we always add 2us there.
		 *   - For levels >=1, punit returns 0us latency when they are
		 *   disabled, so we respect that and don't add 2us then
1880 1881 1882 1883 1884
		 *
		 * Additionally, if a level n (n > 1) has a 0us latency, all
		 * levels m (m >= n) need to be disabled. We make sure to
		 * sanitize the values out of the punit to satisfy this
		 * requirement.
1885 1886 1887 1888 1889
		 */
		wm[0] += 2;
		for (level = 1; level <= max_level; level++)
			if (wm[level] != 0)
				wm[level] += 2;
1890 1891 1892
			else {
				for (i = level + 1; i <= max_level; i++)
					wm[i] = 0;
1893

1894 1895
				break;
			}
1896
	} else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
1897 1898 1899 1900 1901
		uint64_t sskpd = I915_READ64(MCH_SSKPD);

		wm[0] = (sskpd >> 56) & 0xFF;
		if (wm[0] == 0)
			wm[0] = sskpd & 0xF;
1902 1903 1904 1905
		wm[1] = (sskpd >> 4) & 0xFF;
		wm[2] = (sskpd >> 12) & 0xFF;
		wm[3] = (sskpd >> 20) & 0x1FF;
		wm[4] = (sskpd >> 32) & 0x1FF;
1906 1907 1908 1909 1910 1911 1912
	} else if (INTEL_INFO(dev)->gen >= 6) {
		uint32_t sskpd = I915_READ(MCH_SSKPD);

		wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
		wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
		wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
		wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
1913 1914 1915 1916 1917 1918 1919
	} else if (INTEL_INFO(dev)->gen >= 5) {
		uint32_t mltr = I915_READ(MLTR_ILK);

		/* ILK primary LP0 latency is 700 ns */
		wm[0] = 7;
		wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
		wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
1920 1921 1922
	}
}

1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940
static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
{
	/* ILK sprite LP0 latency is 1300 ns */
	if (INTEL_INFO(dev)->gen == 5)
		wm[0] = 13;
}

static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
{
	/* ILK cursor LP0 latency is 1300 ns */
	if (INTEL_INFO(dev)->gen == 5)
		wm[0] = 13;

	/* WaDoubleCursorLP3Latency:ivb */
	if (IS_IVYBRIDGE(dev))
		wm[3] *= 2;
}

1941
int ilk_wm_max_level(const struct drm_device *dev)
1942 1943
{
	/* how many WM levels are we expecting */
1944 1945 1946
	if (IS_GEN9(dev))
		return 7;
	else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1947
		return 4;
1948
	else if (INTEL_INFO(dev)->gen >= 6)
1949
		return 3;
1950
	else
1951 1952
		return 2;
}
1953

1954 1955
static void intel_print_wm_latency(struct drm_device *dev,
				   const char *name,
1956
				   const uint16_t wm[8])
1957 1958
{
	int level, max_level = ilk_wm_max_level(dev);
1959 1960 1961 1962 1963 1964 1965 1966 1967 1968

	for (level = 0; level <= max_level; level++) {
		unsigned int latency = wm[level];

		if (latency == 0) {
			DRM_ERROR("%s WM%d latency not provided\n",
				  name, level);
			continue;
		}

1969 1970 1971 1972 1973 1974 1975
		/*
		 * - latencies are in us on gen9.
		 * - before then, WM1+ latency values are in 0.5us units
		 */
		if (IS_GEN9(dev))
			latency *= 10;
		else if (level > 0)
1976 1977 1978 1979 1980 1981 1982 1983
			latency *= 5;

		DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
			      name, level, wm[level],
			      latency / 10, latency % 10);
	}
}

1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
				    uint16_t wm[5], uint16_t min)
{
	int level, max_level = ilk_wm_max_level(dev_priv->dev);

	if (wm[0] >= min)
		return false;

	wm[0] = max(wm[0], min);
	for (level = 1; level <= max_level; level++)
		wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));

	return true;
}

static void snb_wm_latency_quirk(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	bool changed;

	/*
	 * The BIOS provided WM memory latency values are often
	 * inadequate for high resolution displays. Adjust them.
	 */
	changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);

	if (!changed)
		return;

	DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
	intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
}

2021
static void ilk_setup_wm_latency(struct drm_device *dev)
2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	intel_read_wm_latency(dev, dev_priv->wm.pri_latency);

	memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));
	memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));

	intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
	intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
2034 2035 2036 2037

	intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2038 2039 2040

	if (IS_GEN6(dev))
		snb_wm_latency_quirk(dev);
2041 2042
}

2043 2044 2045 2046 2047 2048 2049 2050
static void skl_setup_wm_latency(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	intel_read_wm_latency(dev, dev_priv->wm.skl_latency);
	intel_print_wm_latency(dev, "Gen9 Plane", dev_priv->wm.skl_latency);
}

2051
static void ilk_compute_wm_parameters(struct drm_crtc *crtc,
2052
				      struct ilk_pipe_wm_parameters *p)
2053
{
2054 2055 2056 2057
	struct drm_device *dev = crtc->dev;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	enum pipe pipe = intel_crtc->pipe;
	struct drm_plane *plane;
2058

2059
	if (!intel_crtc->active)
2060
		return;
2061

2062
	p->active = true;
2063
	p->pipe_htotal = intel_crtc->config->base.adjusted_mode.crtc_htotal;
2064
	p->pixel_rate = ilk_pipe_pixel_rate(dev, crtc);
2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081

	if (crtc->primary->state->fb) {
		p->pri.enabled = true;
		p->pri.bytes_per_pixel =
			crtc->primary->state->fb->bits_per_pixel / 8;
	} else {
		p->pri.enabled = false;
		p->pri.bytes_per_pixel = 0;
	}

	if (crtc->cursor->state->fb) {
		p->cur.enabled = true;
		p->cur.bytes_per_pixel = 4;
	} else {
		p->cur.enabled = false;
		p->cur.bytes_per_pixel = 0;
	}
2082
	p->pri.horiz_pixels = intel_crtc->config->pipe_src_w;
2083
	p->cur.horiz_pixels = intel_crtc->base.cursor->state->crtc_w;
2084

2085
	drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
2086 2087
		struct intel_plane *intel_plane = to_intel_plane(plane);

2088
		if (intel_plane->pipe == pipe) {
2089
			p->spr = intel_plane->wm;
2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100
			break;
		}
	}
}

static void ilk_compute_wm_config(struct drm_device *dev,
				  struct intel_wm_config *config)
{
	struct intel_crtc *intel_crtc;

	/* Compute the currently _active_ config */
2101
	for_each_intel_crtc(dev, intel_crtc) {
2102
		const struct intel_pipe_wm *wm = &intel_crtc->wm.active;
2103

2104 2105
		if (!wm->pipe_enabled)
			continue;
2106

2107 2108 2109
		config->sprites_enabled |= wm->sprites_enabled;
		config->sprites_scaled |= wm->sprites_scaled;
		config->num_pipes_active++;
2110
	}
2111 2112
}

2113 2114
/* Compute new watermarks for the pipe */
static bool intel_compute_pipe_wm(struct drm_crtc *crtc,
2115
				  const struct ilk_pipe_wm_parameters *params,
2116 2117 2118
				  struct intel_pipe_wm *pipe_wm)
{
	struct drm_device *dev = crtc->dev;
2119
	const struct drm_i915_private *dev_priv = dev->dev_private;
2120 2121 2122 2123 2124 2125 2126
	int level, max_level = ilk_wm_max_level(dev);
	/* LP0 watermark maximums depend on this pipe alone */
	struct intel_wm_config config = {
		.num_pipes_active = 1,
		.sprites_enabled = params->spr.enabled,
		.sprites_scaled = params->spr.scaled,
	};
2127
	struct ilk_wm_maximums max;
2128

2129 2130 2131 2132
	pipe_wm->pipe_enabled = params->active;
	pipe_wm->sprites_enabled = params->spr.enabled;
	pipe_wm->sprites_scaled = params->spr.scaled;

2133 2134 2135 2136 2137 2138 2139 2140
	/* ILK/SNB: LP2+ watermarks only w/o sprites */
	if (INTEL_INFO(dev)->gen <= 6 && params->spr.enabled)
		max_level = 1;

	/* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
	if (params->spr.scaled)
		max_level = 0;

2141
	ilk_compute_wm_level(dev_priv, 0, params, &pipe_wm->wm[0]);
2142

2143
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2144
		pipe_wm->linetime = hsw_compute_linetime_wm(dev, crtc);
2145

2146 2147 2148
	/* LP0 watermarks always use 1/2 DDB partitioning */
	ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);

2149
	/* At least LP0 must be valid */
2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171
	if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0]))
		return false;

	ilk_compute_wm_reg_maximums(dev, 1, &max);

	for (level = 1; level <= max_level; level++) {
		struct intel_wm_level wm = {};

		ilk_compute_wm_level(dev_priv, level, params, &wm);

		/*
		 * Disable any watermark level that exceeds the
		 * register maximums since such watermarks are
		 * always invalid.
		 */
		if (!ilk_validate_wm_level(level, &max, &wm))
			break;

		pipe_wm->wm[level] = wm;
	}

	return true;
2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182
}

/*
 * Merge the watermarks from all active pipes for a specific level.
 */
static void ilk_merge_wm_level(struct drm_device *dev,
			       int level,
			       struct intel_wm_level *ret_wm)
{
	const struct intel_crtc *intel_crtc;

2183 2184
	ret_wm->enable = true;

2185
	for_each_intel_crtc(dev, intel_crtc) {
2186 2187 2188 2189 2190
		const struct intel_pipe_wm *active = &intel_crtc->wm.active;
		const struct intel_wm_level *wm = &active->wm[level];

		if (!active->pipe_enabled)
			continue;
2191

2192 2193 2194 2195 2196
		/*
		 * The watermark values may have been used in the past,
		 * so we must maintain them in the registers for some
		 * time even if the level is now disabled.
		 */
2197
		if (!wm->enable)
2198
			ret_wm->enable = false;
2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210

		ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
		ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
		ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
		ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
	}
}

/*
 * Merge all low power watermarks for all active pipes.
 */
static void ilk_wm_merge(struct drm_device *dev,
2211
			 const struct intel_wm_config *config,
2212
			 const struct ilk_wm_maximums *max,
2213 2214 2215
			 struct intel_pipe_wm *merged)
{
	int level, max_level = ilk_wm_max_level(dev);
2216
	int last_enabled_level = max_level;
2217

2218 2219 2220 2221 2222
	/* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
	if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
	    config->num_pipes_active > 1)
		return;

2223 2224
	/* ILK: FBC WM must be disabled always */
	merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
2225 2226 2227 2228 2229 2230 2231

	/* merge each WM1+ level */
	for (level = 1; level <= max_level; level++) {
		struct intel_wm_level *wm = &merged->wm[level];

		ilk_merge_wm_level(dev, level, wm);

2232 2233 2234 2235 2236
		if (level > last_enabled_level)
			wm->enable = false;
		else if (!ilk_validate_wm_level(level, max, wm))
			/* make sure all following levels get disabled */
			last_enabled_level = level - 1;
2237 2238 2239 2240 2241 2242

		/*
		 * The spec says it is preferred to disable
		 * FBC WMs instead of disabling a WM level.
		 */
		if (wm->fbc_val > max->fbc) {
2243 2244
			if (wm->enable)
				merged->fbc_wm_enabled = false;
2245 2246 2247
			wm->fbc_val = 0;
		}
	}
2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261

	/* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
	/*
	 * FIXME this is racy. FBC might get enabled later.
	 * What we should check here is whether FBC can be
	 * enabled sometime later.
	 */
	if (IS_GEN5(dev) && !merged->fbc_wm_enabled && intel_fbc_enabled(dev)) {
		for (level = 2; level <= max_level; level++) {
			struct intel_wm_level *wm = &merged->wm[level];

			wm->enable = false;
		}
	}
2262 2263
}

2264 2265 2266 2267 2268 2269
static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
{
	/* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
	return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
}

2270 2271 2272 2273 2274
/* The value we need to program into the WM_LPx latency field */
static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

2275
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2276 2277 2278 2279 2280
		return 2 * level;
	else
		return dev_priv->wm.pri_latency[level];
}

2281
static void ilk_compute_wm_results(struct drm_device *dev,
2282
				   const struct intel_pipe_wm *merged,
2283
				   enum intel_ddb_partitioning partitioning,
2284
				   struct ilk_wm_values *results)
2285
{
2286 2287
	struct intel_crtc *intel_crtc;
	int level, wm_lp;
2288

2289
	results->enable_fbc_wm = merged->fbc_wm_enabled;
2290
	results->partitioning = partitioning;
2291

2292
	/* LP1+ register values */
2293
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2294
		const struct intel_wm_level *r;
2295

2296
		level = ilk_wm_lp_to_level(wm_lp, merged);
2297

2298
		r = &merged->wm[level];
2299

2300 2301 2302 2303 2304
		/*
		 * Maintain the watermark values even if the level is
		 * disabled. Doing otherwise could cause underruns.
		 */
		results->wm_lp[wm_lp - 1] =
2305
			(ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2306 2307 2308
			(r->pri_val << WM1_LP_SR_SHIFT) |
			r->cur_val;

2309 2310 2311
		if (r->enable)
			results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;

2312 2313 2314 2315 2316 2317 2318
		if (INTEL_INFO(dev)->gen >= 8)
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
		else
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT;

2319 2320 2321 2322
		/*
		 * Always set WM1S_LP_EN when spr_val != 0, even if the
		 * level is disabled. Doing otherwise could cause underruns.
		 */
2323 2324 2325 2326 2327
		if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
			WARN_ON(wm_lp != 1);
			results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
		} else
			results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2328
	}
2329

2330
	/* LP0 register values */
2331
	for_each_intel_crtc(dev, intel_crtc) {
2332 2333 2334 2335 2336 2337 2338 2339
		enum pipe pipe = intel_crtc->pipe;
		const struct intel_wm_level *r =
			&intel_crtc->wm.active.wm[0];

		if (WARN_ON(!r->enable))
			continue;

		results->wm_linetime[pipe] = intel_crtc->wm.active.linetime;
2340

2341 2342 2343 2344
		results->wm_pipe[pipe] =
			(r->pri_val << WM0_PIPE_PLANE_SHIFT) |
			(r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
			r->cur_val;
2345 2346 2347
	}
}

2348 2349
/* Find the result with the highest level enabled. Check for enable_fbc_wm in
 * case both are at the same level. Prefer r1 in case they're the same. */
2350
static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2351 2352
						  struct intel_pipe_wm *r1,
						  struct intel_pipe_wm *r2)
2353
{
2354 2355
	int level, max_level = ilk_wm_max_level(dev);
	int level1 = 0, level2 = 0;
2356

2357 2358 2359 2360 2361
	for (level = 1; level <= max_level; level++) {
		if (r1->wm[level].enable)
			level1 = level;
		if (r2->wm[level].enable)
			level2 = level;
2362 2363
	}

2364 2365
	if (level1 == level2) {
		if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2366 2367 2368
			return r2;
		else
			return r1;
2369
	} else if (level1 > level2) {
2370 2371 2372 2373 2374 2375
		return r1;
	} else {
		return r2;
	}
}

2376 2377 2378 2379 2380 2381 2382 2383
/* dirty bits used to track which watermarks need changes */
#define WM_DIRTY_PIPE(pipe) (1 << (pipe))
#define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
#define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
#define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
#define WM_DIRTY_FBC (1 << 24)
#define WM_DIRTY_DDB (1 << 25)

2384
static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
2385 2386
					 const struct ilk_wm_values *old,
					 const struct ilk_wm_values *new)
2387 2388 2389 2390 2391
{
	unsigned int dirty = 0;
	enum pipe pipe;
	int wm_lp;

2392
	for_each_pipe(dev_priv, pipe) {
2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435
		if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
			dirty |= WM_DIRTY_LINETIME(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}

		if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
			dirty |= WM_DIRTY_PIPE(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}
	}

	if (old->enable_fbc_wm != new->enable_fbc_wm) {
		dirty |= WM_DIRTY_FBC;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	if (old->partitioning != new->partitioning) {
		dirty |= WM_DIRTY_DDB;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	/* LP1+ watermarks already deemed dirty, no need to continue */
	if (dirty & WM_DIRTY_LP_ALL)
		return dirty;

	/* Find the lowest numbered LP1+ watermark in need of an update... */
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
		if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
		    old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
			break;
	}

	/* ...and mark it and all higher numbered LP1+ watermarks as dirty */
	for (; wm_lp <= 3; wm_lp++)
		dirty |= WM_DIRTY_LP(wm_lp);

	return dirty;
}

2436 2437
static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
			       unsigned int dirty)
2438
{
2439
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2440
	bool changed = false;
2441

2442 2443 2444
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
		previous->wm_lp[2] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2445
		changed = true;
2446 2447 2448 2449
	}
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
		previous->wm_lp[1] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2450
		changed = true;
2451 2452 2453 2454
	}
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
		previous->wm_lp[0] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2455
		changed = true;
2456
	}
2457

2458 2459 2460 2461
	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
2462

2463 2464 2465 2466 2467 2468 2469
	return changed;
}

/*
 * The spec says we shouldn't write when we don't need, because every write
 * causes WMs to be re-evaluated, expending some power.
 */
2470 2471
static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
				struct ilk_wm_values *results)
2472 2473
{
	struct drm_device *dev = dev_priv->dev;
2474
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2475 2476 2477
	unsigned int dirty;
	uint32_t val;

2478
	dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
2479 2480 2481 2482 2483
	if (!dirty)
		return;

	_ilk_disable_lp_wm(dev_priv, dirty);

2484
	if (dirty & WM_DIRTY_PIPE(PIPE_A))
2485
		I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2486
	if (dirty & WM_DIRTY_PIPE(PIPE_B))
2487
		I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2488
	if (dirty & WM_DIRTY_PIPE(PIPE_C))
2489 2490
		I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);

2491
	if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2492
		I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2493
	if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2494
		I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2495
	if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2496 2497
		I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);

2498
	if (dirty & WM_DIRTY_DDB) {
2499
		if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513
			val = I915_READ(WM_MISC);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~WM_MISC_DATA_PARTITION_5_6;
			else
				val |= WM_MISC_DATA_PARTITION_5_6;
			I915_WRITE(WM_MISC, val);
		} else {
			val = I915_READ(DISP_ARB_CTL2);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~DISP_DATA_PARTITION_5_6;
			else
				val |= DISP_DATA_PARTITION_5_6;
			I915_WRITE(DISP_ARB_CTL2, val);
		}
2514 2515
	}

2516
	if (dirty & WM_DIRTY_FBC) {
2517 2518 2519 2520 2521 2522 2523 2524
		val = I915_READ(DISP_ARB_CTL);
		if (results->enable_fbc_wm)
			val &= ~DISP_FBC_WM_DIS;
		else
			val |= DISP_FBC_WM_DIS;
		I915_WRITE(DISP_ARB_CTL, val);
	}

2525 2526 2527 2528 2529
	if (dirty & WM_DIRTY_LP(1) &&
	    previous->wm_lp_spr[0] != results->wm_lp_spr[0])
		I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);

	if (INTEL_INFO(dev)->gen >= 7) {
2530 2531 2532 2533 2534
		if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
			I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
		if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
			I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
	}
2535

2536
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
2537
		I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2538
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
2539
		I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2540
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
2541
		I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2542 2543

	dev_priv->wm.hw = *results;
2544 2545
}

2546 2547 2548 2549 2550 2551 2552
static bool ilk_disable_lp_wm(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
}

2553 2554 2555 2556 2557 2558
/*
 * On gen9, we need to allocate Display Data Buffer (DDB) portions to the
 * different active planes.
 */

#define SKL_DDB_SIZE		896	/* in blocks */
2559
#define BXT_DDB_SIZE		512
2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577

static void
skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
				   struct drm_crtc *for_crtc,
				   const struct intel_wm_config *config,
				   const struct skl_pipe_wm_parameters *params,
				   struct skl_ddb_entry *alloc /* out */)
{
	struct drm_crtc *crtc;
	unsigned int pipe_size, ddb_size;
	int nth_active_pipe;

	if (!params->active) {
		alloc->start = 0;
		alloc->end = 0;
		return;
	}

2578 2579 2580 2581
	if (IS_BROXTON(dev))
		ddb_size = BXT_DDB_SIZE;
	else
		ddb_size = SKL_DDB_SIZE;
2582 2583 2584 2585 2586

	ddb_size -= 4; /* 4 blocks for bypass path allocation */

	nth_active_pipe = 0;
	for_each_crtc(dev, crtc) {
2587
		if (!to_intel_crtc(crtc)->active)
2588 2589 2590 2591 2592 2593 2594 2595 2596 2597
			continue;

		if (crtc == for_crtc)
			break;

		nth_active_pipe++;
	}

	pipe_size = ddb_size / config->num_pipes_active;
	alloc->start = nth_active_pipe * ddb_size / config->num_pipes_active;
2598
	alloc->end = alloc->start + pipe_size;
2599 2600 2601 2602 2603 2604 2605 2606 2607 2608
}

static unsigned int skl_cursor_allocation(const struct intel_wm_config *config)
{
	if (config->num_pipes_active == 1)
		return 32;

	return 8;
}

2609 2610 2611 2612
static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
{
	entry->start = reg & 0x3ff;
	entry->end = (reg >> 16) & 0x3ff;
2613 2614
	if (entry->end)
		entry->end += 1;
2615 2616
}

2617 2618
void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
			  struct skl_ddb_allocation *ddb /* out */)
2619 2620 2621 2622 2623 2624
{
	enum pipe pipe;
	int plane;
	u32 val;

	for_each_pipe(dev_priv, pipe) {
2625
		for_each_plane(dev_priv, pipe, plane) {
2626 2627 2628 2629 2630 2631 2632 2633 2634 2635
			val = I915_READ(PLANE_BUF_CFG(pipe, plane));
			skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane],
						   val);
		}

		val = I915_READ(CUR_BUF_CFG(pipe));
		skl_ddb_entry_init_from_hw(&ddb->cursor[pipe], val);
	}
}

2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673
static unsigned int
skl_plane_relative_data_rate(const struct intel_plane_wm_parameters *p)
{
	return p->horiz_pixels * p->vert_pixels * p->bytes_per_pixel;
}

/*
 * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
 * a 8192x4096@32bpp framebuffer:
 *   3 * 4096 * 8192  * 4 < 2^32
 */
static unsigned int
skl_get_total_relative_data_rate(struct intel_crtc *intel_crtc,
				 const struct skl_pipe_wm_parameters *params)
{
	unsigned int total_data_rate = 0;
	int plane;

	for (plane = 0; plane < intel_num_planes(intel_crtc); plane++) {
		const struct intel_plane_wm_parameters *p;

		p = &params->plane[plane];
		if (!p->enabled)
			continue;

		total_data_rate += skl_plane_relative_data_rate(p);
	}

	return total_data_rate;
}

static void
skl_allocate_pipe_ddb(struct drm_crtc *crtc,
		      const struct intel_wm_config *config,
		      const struct skl_pipe_wm_parameters *params,
		      struct skl_ddb_allocation *ddb /* out */)
{
	struct drm_device *dev = crtc->dev;
2674
	struct drm_i915_private *dev_priv = dev->dev_private;
2675 2676
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	enum pipe pipe = intel_crtc->pipe;
2677
	struct skl_ddb_entry *alloc = &ddb->pipe[pipe];
2678
	uint16_t alloc_size, start, cursor_blocks;
2679
	uint16_t minimum[I915_MAX_PLANES];
2680 2681 2682
	unsigned int total_data_rate;
	int plane;

2683 2684
	skl_ddb_get_pipe_allocation_limits(dev, crtc, config, params, alloc);
	alloc_size = skl_ddb_entry_size(alloc);
2685 2686 2687 2688 2689 2690 2691
	if (alloc_size == 0) {
		memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
		memset(&ddb->cursor[pipe], 0, sizeof(ddb->cursor[pipe]));
		return;
	}

	cursor_blocks = skl_cursor_allocation(config);
2692 2693
	ddb->cursor[pipe].start = alloc->end - cursor_blocks;
	ddb->cursor[pipe].end = alloc->end;
2694 2695

	alloc_size -= cursor_blocks;
2696
	alloc->end -= cursor_blocks;
2697

2698
	/* 1. Allocate the mininum required blocks for each active plane */
2699
	for_each_plane(dev_priv, pipe, plane) {
2700 2701 2702 2703 2704 2705 2706 2707 2708 2709
		const struct intel_plane_wm_parameters *p;

		p = &params->plane[plane];
		if (!p->enabled)
			continue;

		minimum[plane] = 8;
		alloc_size -= minimum[plane];
	}

2710
	/*
2711 2712
	 * 2. Distribute the remaining space in proportion to the amount of
	 * data each plane needs to fetch from memory.
2713 2714 2715 2716 2717
	 *
	 * FIXME: we may not allocate every single block here.
	 */
	total_data_rate = skl_get_total_relative_data_rate(intel_crtc, params);

2718
	start = alloc->start;
2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733
	for (plane = 0; plane < intel_num_planes(intel_crtc); plane++) {
		const struct intel_plane_wm_parameters *p;
		unsigned int data_rate;
		uint16_t plane_blocks;

		p = &params->plane[plane];
		if (!p->enabled)
			continue;

		data_rate = skl_plane_relative_data_rate(p);

		/*
		 * promote the expression to 64 bits to avoid overflowing, the
		 * result is < available as data_rate / total_data_rate < 1
		 */
2734 2735 2736
		plane_blocks = minimum[plane];
		plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
					total_data_rate);
2737 2738

		ddb->plane[pipe][plane].start = start;
2739
		ddb->plane[pipe][plane].end = start + plane_blocks;
2740 2741 2742 2743 2744 2745

		start += plane_blocks;
	}

}

2746
static uint32_t skl_pipe_pixel_rate(const struct intel_crtc_state *config)
2747 2748
{
	/* TODO: Take into account the scalers once we support them */
2749
	return config->base.adjusted_mode.crtc_clock;
2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765
}

/*
 * The max latency should be 257 (max the punit can code is 255 and we add 2us
 * for the read latency) and bytes_per_pixel should always be <= 8, so that
 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
*/
static uint32_t skl_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
			       uint32_t latency)
{
	uint32_t wm_intermediate_val, ret;

	if (latency == 0)
		return UINT_MAX;

2766
	wm_intermediate_val = latency * pixel_rate * bytes_per_pixel / 512;
2767 2768 2769 2770 2771 2772 2773
	ret = DIV_ROUND_UP(wm_intermediate_val, 1000);

	return ret;
}

static uint32_t skl_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
			       uint32_t horiz_pixels, uint8_t bytes_per_pixel,
2774
			       uint64_t tiling, uint32_t latency)
2775
{
2776 2777 2778
	uint32_t ret;
	uint32_t plane_bytes_per_line, plane_blocks_per_line;
	uint32_t wm_intermediate_val;
2779 2780 2781 2782 2783

	if (latency == 0)
		return UINT_MAX;

	plane_bytes_per_line = horiz_pixels * bytes_per_pixel;
2784 2785 2786 2787 2788 2789 2790 2791 2792 2793

	if (tiling == I915_FORMAT_MOD_Y_TILED ||
	    tiling == I915_FORMAT_MOD_Yf_TILED) {
		plane_bytes_per_line *= 4;
		plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
		plane_blocks_per_line /= 4;
	} else {
		plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
	}

2794 2795
	wm_intermediate_val = latency * pixel_rate;
	ret = DIV_ROUND_UP(wm_intermediate_val, pipe_htotal * 1000) *
2796
				plane_blocks_per_line;
2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826

	return ret;
}

static bool skl_ddb_allocation_changed(const struct skl_ddb_allocation *new_ddb,
				       const struct intel_crtc *intel_crtc)
{
	struct drm_device *dev = intel_crtc->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	const struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;
	enum pipe pipe = intel_crtc->pipe;

	if (memcmp(new_ddb->plane[pipe], cur_ddb->plane[pipe],
		   sizeof(new_ddb->plane[pipe])))
		return true;

	if (memcmp(&new_ddb->cursor[pipe], &cur_ddb->cursor[pipe],
		    sizeof(new_ddb->cursor[pipe])))
		return true;

	return false;
}

static void skl_compute_wm_global_parameters(struct drm_device *dev,
					     struct intel_wm_config *config)
{
	struct drm_crtc *crtc;
	struct drm_plane *plane;

	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
2827
		config->num_pipes_active += to_intel_crtc(crtc)->active;
2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844

	/* FIXME: I don't think we need those two global parameters on SKL */
	list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
		struct intel_plane *intel_plane = to_intel_plane(plane);

		config->sprites_enabled |= intel_plane->wm.enabled;
		config->sprites_scaled |= intel_plane->wm.scaled;
	}
}

static void skl_compute_wm_pipe_parameters(struct drm_crtc *crtc,
					   struct skl_pipe_wm_parameters *p)
{
	struct drm_device *dev = crtc->dev;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	enum pipe pipe = intel_crtc->pipe;
	struct drm_plane *plane;
2845
	struct drm_framebuffer *fb;
2846 2847
	int i = 1; /* Index for sprite planes start */

2848
	p->active = intel_crtc->active;
2849
	if (p->active) {
2850 2851
		p->pipe_htotal = intel_crtc->config->base.adjusted_mode.crtc_htotal;
		p->pixel_rate = skl_pipe_pixel_rate(intel_crtc->config);
2852

2853
		fb = crtc->primary->state->fb;
2854 2855 2856
		if (fb) {
			p->plane[0].enabled = true;
			p->plane[0].bytes_per_pixel = fb->bits_per_pixel / 8;
2857
			p->plane[0].tiling = fb->modifier[0];
2858 2859 2860 2861 2862 2863 2864
		} else {
			p->plane[0].enabled = false;
			p->plane[0].bytes_per_pixel = 0;
			p->plane[0].tiling = DRM_FORMAT_MOD_NONE;
		}
		p->plane[0].horiz_pixels = intel_crtc->config->pipe_src_w;
		p->plane[0].vert_pixels = intel_crtc->config->pipe_src_h;
2865
		p->plane[0].rotation = crtc->primary->state->rotation;
2866

2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878
		fb = crtc->cursor->state->fb;
		if (fb) {
			p->cursor.enabled = true;
			p->cursor.bytes_per_pixel = fb->bits_per_pixel / 8;
			p->cursor.horiz_pixels = crtc->cursor->state->crtc_w;
			p->cursor.vert_pixels = crtc->cursor->state->crtc_h;
		} else {
			p->cursor.enabled = false;
			p->cursor.bytes_per_pixel = 0;
			p->cursor.horiz_pixels = 64;
			p->cursor.vert_pixels = 64;
		}
2879 2880 2881 2882 2883
	}

	list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
		struct intel_plane *intel_plane = to_intel_plane(plane);

2884 2885
		if (intel_plane->pipe == pipe &&
			plane->type == DRM_PLANE_TYPE_OVERLAY)
2886 2887 2888 2889
			p->plane[i++] = intel_plane->wm;
	}
}

2890 2891
static bool skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
				 struct skl_pipe_wm_parameters *p,
2892 2893
				 struct intel_plane_wm_parameters *p_params,
				 uint16_t ddb_allocation,
2894
				 int level,
2895 2896
				 uint16_t *out_blocks, /* out */
				 uint8_t *out_lines /* out */)
2897
{
2898 2899 2900 2901 2902
	uint32_t latency = dev_priv->wm.skl_latency[level];
	uint32_t method1, method2;
	uint32_t plane_bytes_per_line, plane_blocks_per_line;
	uint32_t res_blocks, res_lines;
	uint32_t selected_result;
2903

2904
	if (latency == 0 || !p->active || !p_params->enabled)
2905 2906 2907 2908
		return false;

	method1 = skl_wm_method1(p->pixel_rate,
				 p_params->bytes_per_pixel,
2909
				 latency);
2910 2911 2912 2913
	method2 = skl_wm_method2(p->pixel_rate,
				 p->pipe_htotal,
				 p_params->horiz_pixels,
				 p_params->bytes_per_pixel,
2914
				 p_params->tiling,
2915
				 latency);
2916 2917 2918

	plane_bytes_per_line = p_params->horiz_pixels *
					p_params->bytes_per_pixel;
2919
	plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
2920

2921 2922
	if (p_params->tiling == I915_FORMAT_MOD_Y_TILED ||
	    p_params->tiling == I915_FORMAT_MOD_Yf_TILED) {
2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934
		uint32_t min_scanlines = 4;
		uint32_t y_tile_minimum;
		if (intel_rotation_90_or_270(p_params->rotation)) {
			switch (p_params->bytes_per_pixel) {
			case 1:
				min_scanlines = 16;
				break;
			case 2:
				min_scanlines = 8;
				break;
			case 8:
				WARN(1, "Unsupported pixel depth for rotation");
2935
			}
2936 2937
		}
		y_tile_minimum = plane_blocks_per_line * min_scanlines;
2938 2939 2940 2941 2942 2943 2944
		selected_result = max(method2, y_tile_minimum);
	} else {
		if ((ddb_allocation / plane_blocks_per_line) >= 1)
			selected_result = min(method1, method2);
		else
			selected_result = method1;
	}
2945

2946 2947
	res_blocks = selected_result + 1;
	res_lines = DIV_ROUND_UP(selected_result, plane_blocks_per_line);
2948

2949 2950 2951 2952 2953 2954 2955
	if (level >= 1 && level <= 7) {
		if (p_params->tiling == I915_FORMAT_MOD_Y_TILED ||
		    p_params->tiling == I915_FORMAT_MOD_Yf_TILED)
			res_lines += 4;
		else
			res_blocks++;
	}
2956

2957
	if (res_blocks >= ddb_allocation || res_lines > 31)
2958 2959 2960 2961
		return false;

	*out_blocks = res_blocks;
	*out_lines = res_lines;
2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979

	return true;
}

static void skl_compute_wm_level(const struct drm_i915_private *dev_priv,
				 struct skl_ddb_allocation *ddb,
				 struct skl_pipe_wm_parameters *p,
				 enum pipe pipe,
				 int level,
				 int num_planes,
				 struct skl_wm_level *result)
{
	uint16_t ddb_blocks;
	int i;

	for (i = 0; i < num_planes; i++) {
		ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][i]);

2980 2981
		result->plane_en[i] = skl_compute_plane_wm(dev_priv,
						p, &p->plane[i],
2982
						ddb_blocks,
2983
						level,
2984 2985 2986 2987 2988
						&result->plane_res_b[i],
						&result->plane_res_l[i]);
	}

	ddb_blocks = skl_ddb_entry_size(&ddb->cursor[pipe]);
2989 2990 2991
	result->cursor_en = skl_compute_plane_wm(dev_priv, p, &p->cursor,
						 ddb_blocks, level,
						 &result->cursor_res_b,
2992 2993 2994
						 &result->cursor_res_l);
}

2995 2996 2997
static uint32_t
skl_compute_linetime_wm(struct drm_crtc *crtc, struct skl_pipe_wm_parameters *p)
{
2998
	if (!to_intel_crtc(crtc)->active)
2999 3000 3001 3002 3003 3004 3005 3006
		return 0;

	return DIV_ROUND_UP(8 * p->pipe_htotal * 1000, p->pixel_rate);

}

static void skl_compute_transition_wm(struct drm_crtc *crtc,
				      struct skl_pipe_wm_parameters *params,
3007
				      struct skl_wm_level *trans_wm /* out */)
3008
{
3009 3010 3011
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	int i;

3012 3013
	if (!params->active)
		return;
3014 3015 3016 3017 3018

	/* Until we know more, just disable transition WMs */
	for (i = 0; i < intel_num_planes(intel_crtc); i++)
		trans_wm->plane_en[i] = false;
	trans_wm->cursor_en = false;
3019 3020
}

3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037
static void skl_compute_pipe_wm(struct drm_crtc *crtc,
				struct skl_ddb_allocation *ddb,
				struct skl_pipe_wm_parameters *params,
				struct skl_pipe_wm *pipe_wm)
{
	struct drm_device *dev = crtc->dev;
	const struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	int level, max_level = ilk_wm_max_level(dev);

	for (level = 0; level <= max_level; level++) {
		skl_compute_wm_level(dev_priv, ddb, params, intel_crtc->pipe,
				     level, intel_num_planes(intel_crtc),
				     &pipe_wm->wm[level]);
	}
	pipe_wm->linetime = skl_compute_linetime_wm(crtc, params);

3038
	skl_compute_transition_wm(crtc, params, &pipe_wm->trans_wm);
3039 3040 3041 3042 3043 3044 3045 3046 3047 3048
}

static void skl_compute_wm_results(struct drm_device *dev,
				   struct skl_pipe_wm_parameters *p,
				   struct skl_pipe_wm *p_wm,
				   struct skl_wm_values *r,
				   struct intel_crtc *intel_crtc)
{
	int level, max_level = ilk_wm_max_level(dev);
	enum pipe pipe = intel_crtc->pipe;
3049 3050
	uint32_t temp;
	int i;
3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076

	for (level = 0; level <= max_level; level++) {
		for (i = 0; i < intel_num_planes(intel_crtc); i++) {
			temp = 0;

			temp |= p_wm->wm[level].plane_res_l[i] <<
					PLANE_WM_LINES_SHIFT;
			temp |= p_wm->wm[level].plane_res_b[i];
			if (p_wm->wm[level].plane_en[i])
				temp |= PLANE_WM_EN;

			r->plane[pipe][i][level] = temp;
		}

		temp = 0;

		temp |= p_wm->wm[level].cursor_res_l << PLANE_WM_LINES_SHIFT;
		temp |= p_wm->wm[level].cursor_res_b;

		if (p_wm->wm[level].cursor_en)
			temp |= PLANE_WM_EN;

		r->cursor[pipe][level] = temp;

	}

3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095
	/* transition WMs */
	for (i = 0; i < intel_num_planes(intel_crtc); i++) {
		temp = 0;
		temp |= p_wm->trans_wm.plane_res_l[i] << PLANE_WM_LINES_SHIFT;
		temp |= p_wm->trans_wm.plane_res_b[i];
		if (p_wm->trans_wm.plane_en[i])
			temp |= PLANE_WM_EN;

		r->plane_trans[pipe][i] = temp;
	}

	temp = 0;
	temp |= p_wm->trans_wm.cursor_res_l << PLANE_WM_LINES_SHIFT;
	temp |= p_wm->trans_wm.cursor_res_b;
	if (p_wm->trans_wm.cursor_en)
		temp |= PLANE_WM_EN;

	r->cursor_trans[pipe] = temp;

3096 3097 3098
	r->wm_linetime[pipe] = p_wm->linetime;
}

3099 3100 3101 3102 3103 3104 3105 3106 3107
static void skl_ddb_entry_write(struct drm_i915_private *dev_priv, uint32_t reg,
				const struct skl_ddb_entry *entry)
{
	if (entry->end)
		I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
	else
		I915_WRITE(reg, 0);
}

3108 3109 3110 3111 3112 3113 3114 3115 3116 3117
static void skl_write_wm_values(struct drm_i915_private *dev_priv,
				const struct skl_wm_values *new)
{
	struct drm_device *dev = dev_priv->dev;
	struct intel_crtc *crtc;

	list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
		int i, level, max_level = ilk_wm_max_level(dev);
		enum pipe pipe = crtc->pipe;

3118 3119
		if (!new->dirty[pipe])
			continue;
3120

3121
		I915_WRITE(PIPE_WM_LINETIME(pipe), new->wm_linetime[pipe]);
3122

3123 3124 3125 3126 3127 3128
		for (level = 0; level <= max_level; level++) {
			for (i = 0; i < intel_num_planes(crtc); i++)
				I915_WRITE(PLANE_WM(pipe, i, level),
					   new->plane[pipe][i][level]);
			I915_WRITE(CUR_WM(pipe, level),
				   new->cursor[pipe][level]);
3129
		}
3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141
		for (i = 0; i < intel_num_planes(crtc); i++)
			I915_WRITE(PLANE_WM_TRANS(pipe, i),
				   new->plane_trans[pipe][i]);
		I915_WRITE(CUR_WM_TRANS(pipe), new->cursor_trans[pipe]);

		for (i = 0; i < intel_num_planes(crtc); i++)
			skl_ddb_entry_write(dev_priv,
					    PLANE_BUF_CFG(pipe, i),
					    &new->ddb.plane[pipe][i]);

		skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
				    &new->ddb.cursor[pipe]);
3142 3143 3144
	}
}

3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168
/*
 * When setting up a new DDB allocation arrangement, we need to correctly
 * sequence the times at which the new allocations for the pipes are taken into
 * account or we'll have pipes fetching from space previously allocated to
 * another pipe.
 *
 * Roughly the sequence looks like:
 *  1. re-allocate the pipe(s) with the allocation being reduced and not
 *     overlapping with a previous light-up pipe (another way to put it is:
 *     pipes with their new allocation strickly included into their old ones).
 *  2. re-allocate the other pipes that get their allocation reduced
 *  3. allocate the pipes having their allocation increased
 *
 * Steps 1. and 2. are here to take care of the following case:
 * - Initially DDB looks like this:
 *     |   B    |   C    |
 * - enable pipe A.
 * - pipe B has a reduced DDB allocation that overlaps with the old pipe C
 *   allocation
 *     |  A  |  B  |  C  |
 *
 * We need to sequence the re-allocation: C, B, A (and not B, C, A).
 */

3169 3170
static void
skl_wm_flush_pipe(struct drm_i915_private *dev_priv, enum pipe pipe, int pass)
3171 3172 3173
{
	int plane;

3174 3175
	DRM_DEBUG_KMS("flush pipe %c (pass %d)\n", pipe_name(pipe), pass);

3176
	for_each_plane(dev_priv, pipe, plane) {
3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225
		I915_WRITE(PLANE_SURF(pipe, plane),
			   I915_READ(PLANE_SURF(pipe, plane)));
	}
	I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
}

static bool
skl_ddb_allocation_included(const struct skl_ddb_allocation *old,
			    const struct skl_ddb_allocation *new,
			    enum pipe pipe)
{
	uint16_t old_size, new_size;

	old_size = skl_ddb_entry_size(&old->pipe[pipe]);
	new_size = skl_ddb_entry_size(&new->pipe[pipe]);

	return old_size != new_size &&
	       new->pipe[pipe].start >= old->pipe[pipe].start &&
	       new->pipe[pipe].end <= old->pipe[pipe].end;
}

static void skl_flush_wm_values(struct drm_i915_private *dev_priv,
				struct skl_wm_values *new_values)
{
	struct drm_device *dev = dev_priv->dev;
	struct skl_ddb_allocation *cur_ddb, *new_ddb;
	bool reallocated[I915_MAX_PIPES] = {false, false, false};
	struct intel_crtc *crtc;
	enum pipe pipe;

	new_ddb = &new_values->ddb;
	cur_ddb = &dev_priv->wm.skl_hw.ddb;

	/*
	 * First pass: flush the pipes with the new allocation contained into
	 * the old space.
	 *
	 * We'll wait for the vblank on those pipes to ensure we can safely
	 * re-allocate the freed space without this pipe fetching from it.
	 */
	for_each_intel_crtc(dev, crtc) {
		if (!crtc->active)
			continue;

		pipe = crtc->pipe;

		if (!skl_ddb_allocation_included(cur_ddb, new_ddb, pipe))
			continue;

3226
		skl_wm_flush_pipe(dev_priv, pipe, 1);
3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250
		intel_wait_for_vblank(dev, pipe);

		reallocated[pipe] = true;
	}


	/*
	 * Second pass: flush the pipes that are having their allocation
	 * reduced, but overlapping with a previous allocation.
	 *
	 * Here as well we need to wait for the vblank to make sure the freed
	 * space is not used anymore.
	 */
	for_each_intel_crtc(dev, crtc) {
		if (!crtc->active)
			continue;

		pipe = crtc->pipe;

		if (reallocated[pipe])
			continue;

		if (skl_ddb_entry_size(&new_ddb->pipe[pipe]) <
		    skl_ddb_entry_size(&cur_ddb->pipe[pipe])) {
3251
			skl_wm_flush_pipe(dev_priv, pipe, 2);
3252
			intel_wait_for_vblank(dev, pipe);
3253
			reallocated[pipe] = true;
3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275
		}
	}

	/*
	 * Third pass: flush the pipes that got more space allocated.
	 *
	 * We don't need to actively wait for the update here, next vblank
	 * will just get more DDB space with the correct WM values.
	 */
	for_each_intel_crtc(dev, crtc) {
		if (!crtc->active)
			continue;

		pipe = crtc->pipe;

		/*
		 * At this point, only the pipes more space than before are
		 * left to re-allocate.
		 */
		if (reallocated[pipe])
			continue;

3276
		skl_wm_flush_pipe(dev_priv, pipe, 3);
3277 3278 3279
	}
}

3280 3281 3282 3283 3284 3285 3286 3287 3288
static bool skl_update_pipe_wm(struct drm_crtc *crtc,
			       struct skl_pipe_wm_parameters *params,
			       struct intel_wm_config *config,
			       struct skl_ddb_allocation *ddb, /* out */
			       struct skl_pipe_wm *pipe_wm /* out */)
{
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);

	skl_compute_wm_pipe_parameters(crtc, params);
3289
	skl_allocate_pipe_ddb(crtc, config, params, ddb);
3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370
	skl_compute_pipe_wm(crtc, ddb, params, pipe_wm);

	if (!memcmp(&intel_crtc->wm.skl_active, pipe_wm, sizeof(*pipe_wm)))
		return false;

	intel_crtc->wm.skl_active = *pipe_wm;
	return true;
}

static void skl_update_other_pipe_wm(struct drm_device *dev,
				     struct drm_crtc *crtc,
				     struct intel_wm_config *config,
				     struct skl_wm_values *r)
{
	struct intel_crtc *intel_crtc;
	struct intel_crtc *this_crtc = to_intel_crtc(crtc);

	/*
	 * If the WM update hasn't changed the allocation for this_crtc (the
	 * crtc we are currently computing the new WM values for), other
	 * enabled crtcs will keep the same allocation and we don't need to
	 * recompute anything for them.
	 */
	if (!skl_ddb_allocation_changed(&r->ddb, this_crtc))
		return;

	/*
	 * Otherwise, because of this_crtc being freshly enabled/disabled, the
	 * other active pipes need new DDB allocation and WM values.
	 */
	list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
				base.head) {
		struct skl_pipe_wm_parameters params = {};
		struct skl_pipe_wm pipe_wm = {};
		bool wm_changed;

		if (this_crtc->pipe == intel_crtc->pipe)
			continue;

		if (!intel_crtc->active)
			continue;

		wm_changed = skl_update_pipe_wm(&intel_crtc->base,
						&params, config,
						&r->ddb, &pipe_wm);

		/*
		 * If we end up re-computing the other pipe WM values, it's
		 * because it was really needed, so we expect the WM values to
		 * be different.
		 */
		WARN_ON(!wm_changed);

		skl_compute_wm_results(dev, &params, &pipe_wm, r, intel_crtc);
		r->dirty[intel_crtc->pipe] = true;
	}
}

static void skl_update_wm(struct drm_crtc *crtc)
{
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct skl_pipe_wm_parameters params = {};
	struct skl_wm_values *results = &dev_priv->wm.skl_results;
	struct skl_pipe_wm pipe_wm = {};
	struct intel_wm_config config = {};

	memset(results, 0, sizeof(*results));

	skl_compute_wm_global_parameters(dev, &config);

	if (!skl_update_pipe_wm(crtc, &params, &config,
				&results->ddb, &pipe_wm))
		return;

	skl_compute_wm_results(dev, &params, &pipe_wm, results, intel_crtc);
	results->dirty[intel_crtc->pipe] = true;

	skl_update_other_pipe_wm(dev, crtc, &config, results);
	skl_write_wm_values(dev_priv, results);
3371
	skl_flush_wm_values(dev_priv, results);
3372 3373 3374

	/* store the new configuration */
	dev_priv->wm.skl_hw = *results;
3375 3376 3377 3378 3379 3380 3381 3382
}

static void
skl_update_sprite_wm(struct drm_plane *plane, struct drm_crtc *crtc,
		     uint32_t sprite_width, uint32_t sprite_height,
		     int pixel_size, bool enabled, bool scaled)
{
	struct intel_plane *intel_plane = to_intel_plane(plane);
3383
	struct drm_framebuffer *fb = plane->state->fb;
3384 3385 3386 3387 3388 3389

	intel_plane->wm.enabled = enabled;
	intel_plane->wm.scaled = scaled;
	intel_plane->wm.horiz_pixels = sprite_width;
	intel_plane->wm.vert_pixels = sprite_height;
	intel_plane->wm.bytes_per_pixel = pixel_size;
3390 3391 3392 3393 3394 3395 3396
	intel_plane->wm.tiling = DRM_FORMAT_MOD_NONE;
	/*
	 * Framebuffer can be NULL on plane disable, but it does not
	 * matter for watermarks if we assume no tiling in that case.
	 */
	if (fb)
		intel_plane->wm.tiling = fb->modifier[0];
3397
	intel_plane->wm.rotation = plane->state->rotation;
3398 3399 3400 3401

	skl_update_wm(crtc);
}

3402
static void ilk_update_wm(struct drm_crtc *crtc)
3403
{
3404
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3405
	struct drm_device *dev = crtc->dev;
3406
	struct drm_i915_private *dev_priv = dev->dev_private;
3407 3408 3409
	struct ilk_wm_maximums max;
	struct ilk_pipe_wm_parameters params = {};
	struct ilk_wm_values results = {};
3410
	enum intel_ddb_partitioning partitioning;
3411
	struct intel_pipe_wm pipe_wm = {};
3412
	struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
3413
	struct intel_wm_config config = {};
3414

3415
	ilk_compute_wm_parameters(crtc, &params);
3416 3417 3418 3419 3420

	intel_compute_pipe_wm(crtc, &params, &pipe_wm);

	if (!memcmp(&intel_crtc->wm.active, &pipe_wm, sizeof(pipe_wm)))
		return;
3421

3422
	intel_crtc->wm.active = pipe_wm;
3423

3424 3425
	ilk_compute_wm_config(dev, &config);

3426
	ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
3427
	ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
3428 3429

	/* 5/6 split only in single pipe config on IVB+ */
3430 3431
	if (INTEL_INFO(dev)->gen >= 7 &&
	    config.num_pipes_active == 1 && config.sprites_enabled) {
3432
		ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
3433
		ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
3434

3435
		best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
3436
	} else {
3437
		best_lp_wm = &lp_wm_1_2;
3438 3439
	}

3440
	partitioning = (best_lp_wm == &lp_wm_1_2) ?
3441
		       INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
3442

3443
	ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
3444

3445
	ilk_write_wm_values(dev_priv, &results);
3446 3447
}

3448 3449 3450 3451 3452
static void
ilk_update_sprite_wm(struct drm_plane *plane,
		     struct drm_crtc *crtc,
		     uint32_t sprite_width, uint32_t sprite_height,
		     int pixel_size, bool enabled, bool scaled)
3453
{
3454
	struct drm_device *dev = plane->dev;
3455
	struct intel_plane *intel_plane = to_intel_plane(plane);
3456

3457 3458 3459
	intel_plane->wm.enabled = enabled;
	intel_plane->wm.scaled = scaled;
	intel_plane->wm.horiz_pixels = sprite_width;
3460
	intel_plane->wm.vert_pixels = sprite_width;
3461
	intel_plane->wm.bytes_per_pixel = pixel_size;
3462

3463 3464 3465 3466 3467 3468 3469 3470 3471 3472
	/*
	 * IVB workaround: must disable low power watermarks for at least
	 * one frame before enabling scaling.  LP watermarks can be re-enabled
	 * when scaling is disabled.
	 *
	 * WaCxSRDisabledForSpriteScaling:ivb
	 */
	if (IS_IVYBRIDGE(dev) && scaled && ilk_disable_lp_wm(dev))
		intel_wait_for_vblank(dev, intel_plane->pipe);

3473
	ilk_update_wm(crtc);
3474 3475
}

3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545
static void skl_pipe_wm_active_state(uint32_t val,
				     struct skl_pipe_wm *active,
				     bool is_transwm,
				     bool is_cursor,
				     int i,
				     int level)
{
	bool is_enabled = (val & PLANE_WM_EN) != 0;

	if (!is_transwm) {
		if (!is_cursor) {
			active->wm[level].plane_en[i] = is_enabled;
			active->wm[level].plane_res_b[i] =
					val & PLANE_WM_BLOCKS_MASK;
			active->wm[level].plane_res_l[i] =
					(val >> PLANE_WM_LINES_SHIFT) &
						PLANE_WM_LINES_MASK;
		} else {
			active->wm[level].cursor_en = is_enabled;
			active->wm[level].cursor_res_b =
					val & PLANE_WM_BLOCKS_MASK;
			active->wm[level].cursor_res_l =
					(val >> PLANE_WM_LINES_SHIFT) &
						PLANE_WM_LINES_MASK;
		}
	} else {
		if (!is_cursor) {
			active->trans_wm.plane_en[i] = is_enabled;
			active->trans_wm.plane_res_b[i] =
					val & PLANE_WM_BLOCKS_MASK;
			active->trans_wm.plane_res_l[i] =
					(val >> PLANE_WM_LINES_SHIFT) &
						PLANE_WM_LINES_MASK;
		} else {
			active->trans_wm.cursor_en = is_enabled;
			active->trans_wm.cursor_res_b =
					val & PLANE_WM_BLOCKS_MASK;
			active->trans_wm.cursor_res_l =
					(val >> PLANE_WM_LINES_SHIFT) &
						PLANE_WM_LINES_MASK;
		}
	}
}

static void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct skl_pipe_wm *active = &intel_crtc->wm.skl_active;
	enum pipe pipe = intel_crtc->pipe;
	int level, i, max_level;
	uint32_t temp;

	max_level = ilk_wm_max_level(dev);

	hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));

	for (level = 0; level <= max_level; level++) {
		for (i = 0; i < intel_num_planes(intel_crtc); i++)
			hw->plane[pipe][i][level] =
					I915_READ(PLANE_WM(pipe, i, level));
		hw->cursor[pipe][level] = I915_READ(CUR_WM(pipe, level));
	}

	for (i = 0; i < intel_num_planes(intel_crtc); i++)
		hw->plane_trans[pipe][i] = I915_READ(PLANE_WM_TRANS(pipe, i));
	hw->cursor_trans[pipe] = I915_READ(CUR_WM_TRANS(pipe));

3546
	if (!intel_crtc->active)
3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573
		return;

	hw->dirty[pipe] = true;

	active->linetime = hw->wm_linetime[pipe];

	for (level = 0; level <= max_level; level++) {
		for (i = 0; i < intel_num_planes(intel_crtc); i++) {
			temp = hw->plane[pipe][i][level];
			skl_pipe_wm_active_state(temp, active, false,
						false, i, level);
		}
		temp = hw->cursor[pipe][level];
		skl_pipe_wm_active_state(temp, active, false, true, i, level);
	}

	for (i = 0; i < intel_num_planes(intel_crtc); i++) {
		temp = hw->plane_trans[pipe][i];
		skl_pipe_wm_active_state(temp, active, true, false, i, 0);
	}

	temp = hw->cursor_trans[pipe];
	skl_pipe_wm_active_state(temp, active, true, true, i, 0);
}

void skl_wm_get_hw_state(struct drm_device *dev)
{
3574 3575
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
3576 3577
	struct drm_crtc *crtc;

3578
	skl_ddb_get_hw_state(dev_priv, ddb);
3579 3580 3581 3582
	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
		skl_pipe_wm_get_hw_state(crtc);
}

3583 3584 3585 3586
static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
3587
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
3588 3589 3590 3591 3592 3593 3594 3595 3596 3597
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct intel_pipe_wm *active = &intel_crtc->wm.active;
	enum pipe pipe = intel_crtc->pipe;
	static const unsigned int wm0_pipe_reg[] = {
		[PIPE_A] = WM0_PIPEA_ILK,
		[PIPE_B] = WM0_PIPEB_ILK,
		[PIPE_C] = WM0_PIPEC_IVB,
	};

	hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
3598
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
3599
		hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
3600

3601
	active->pipe_enabled = intel_crtc->active;
3602 3603

	if (active->pipe_enabled) {
3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632
		u32 tmp = hw->wm_pipe[pipe];

		/*
		 * For active pipes LP0 watermark is marked as
		 * enabled, and LP1+ watermaks as disabled since
		 * we can't really reverse compute them in case
		 * multiple pipes are active.
		 */
		active->wm[0].enable = true;
		active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
		active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
		active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
		active->linetime = hw->wm_linetime[pipe];
	} else {
		int level, max_level = ilk_wm_max_level(dev);

		/*
		 * For inactive pipes, all watermark levels
		 * should be marked as enabled but zeroed,
		 * which is what we'd compute them to.
		 */
		for (level = 0; level <= max_level; level++)
			active->wm[level].enable = true;
	}
}

void ilk_wm_get_hw_state(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
3633
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
3634 3635
	struct drm_crtc *crtc;

3636
	for_each_crtc(dev, crtc)
3637 3638 3639 3640 3641 3642 3643
		ilk_pipe_wm_get_hw_state(crtc);

	hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
	hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
	hw->wm_lp[2] = I915_READ(WM3_LP_ILK);

	hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
3644 3645 3646 3647
	if (INTEL_INFO(dev)->gen >= 7) {
		hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
		hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
	}
3648

3649
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
3650 3651 3652 3653 3654
		hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
	else if (IS_IVYBRIDGE(dev))
		hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
3655 3656 3657 3658 3659

	hw->enable_fbc_wm =
		!(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
}

3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691
/**
 * intel_update_watermarks - update FIFO watermark values based on current modes
 *
 * Calculate watermark values for the various WM regs based on current mode
 * and plane configuration.
 *
 * There are several cases to deal with here:
 *   - normal (i.e. non-self-refresh)
 *   - self-refresh (SR) mode
 *   - lines are large relative to FIFO size (buffer can hold up to 2)
 *   - lines are small relative to FIFO size (buffer can hold more than 2
 *     lines), so need to account for TLB latency
 *
 *   The normal calculation is:
 *     watermark = dotclock * bytes per pixel * latency
 *   where latency is platform & configuration dependent (we assume pessimal
 *   values here).
 *
 *   The SR calculation is:
 *     watermark = (trunc(latency/line time)+1) * surface width *
 *       bytes per pixel
 *   where
 *     line time = htotal / dotclock
 *     surface width = hdisplay for normal plane and 64 for cursor
 *   and latency is assumed to be high, as above.
 *
 * The final value programmed to the register should always be rounded up,
 * and include an extra 2 entries to account for clock crossings.
 *
 * We don't use the sprite, so we can ignore that.  And on Crestline we have
 * to set the non-SR watermarks to 8.
 */
3692
void intel_update_watermarks(struct drm_crtc *crtc)
3693
{
3694
	struct drm_i915_private *dev_priv = crtc->dev->dev_private;
3695 3696

	if (dev_priv->display.update_wm)
3697
		dev_priv->display.update_wm(crtc);
3698 3699
}

3700 3701
void intel_update_sprite_watermarks(struct drm_plane *plane,
				    struct drm_crtc *crtc,
3702 3703 3704
				    uint32_t sprite_width,
				    uint32_t sprite_height,
				    int pixel_size,
3705
				    bool enabled, bool scaled)
3706
{
3707
	struct drm_i915_private *dev_priv = plane->dev->dev_private;
3708 3709

	if (dev_priv->display.update_sprite_wm)
3710 3711
		dev_priv->display.update_sprite_wm(plane, crtc,
						   sprite_width, sprite_height,
3712
						   pixel_size, enabled, scaled);
3713 3714
}

3715 3716 3717 3718 3719 3720 3721 3722 3723
/**
 * Lock protecting IPS related data structures
 */
DEFINE_SPINLOCK(mchdev_lock);

/* Global for IPS driver to get at the current i915 device. Protected by
 * mchdev_lock. */
static struct drm_i915_private *i915_mch_dev;

3724 3725 3726 3727 3728
bool ironlake_set_drps(struct drm_device *dev, u8 val)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u16 rgvswctl;

3729 3730
	assert_spin_locked(&mchdev_lock);

3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747
	rgvswctl = I915_READ16(MEMSWCTL);
	if (rgvswctl & MEMCTL_CMD_STS) {
		DRM_DEBUG("gpu busy, RCS change rejected\n");
		return false; /* still busy with another command */
	}

	rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
		(val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
	I915_WRITE16(MEMSWCTL, rgvswctl);
	POSTING_READ16(MEMSWCTL);

	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE16(MEMSWCTL, rgvswctl);

	return true;
}

3748
static void ironlake_enable_drps(struct drm_device *dev)
3749 3750 3751 3752 3753
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 rgvmodectl = I915_READ(MEMMODECTL);
	u8 fmax, fmin, fstart, vstart;

3754 3755
	spin_lock_irq(&mchdev_lock);

3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778
	/* Enable temp reporting */
	I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
	I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);

	/* 100ms RC evaluation intervals */
	I915_WRITE(RCUPEI, 100000);
	I915_WRITE(RCDNEI, 100000);

	/* Set max/min thresholds to 90ms and 80ms respectively */
	I915_WRITE(RCBMAXAVG, 90000);
	I915_WRITE(RCBMINAVG, 80000);

	I915_WRITE(MEMIHYST, 1);

	/* Set up min, max, and cur for interrupt handling */
	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
		MEMMODE_FSTART_SHIFT;

	vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
		PXVFREQ_PX_SHIFT;

3779 3780
	dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
	dev_priv->ips.fstart = fstart;
3781

3782 3783 3784
	dev_priv->ips.max_delay = fstart;
	dev_priv->ips.min_delay = fmin;
	dev_priv->ips.cur_delay = fstart;
3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800

	DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
			 fmax, fmin, fstart);

	I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);

	/*
	 * Interrupts will be enabled in ironlake_irq_postinstall
	 */

	I915_WRITE(VIDSTART, vstart);
	POSTING_READ(VIDSTART);

	rgvmodectl |= MEMMODE_SWMODE_EN;
	I915_WRITE(MEMMODECTL, rgvmodectl);

3801
	if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
3802
		DRM_ERROR("stuck trying to change perf mode\n");
3803
	mdelay(1);
3804 3805 3806

	ironlake_set_drps(dev, fstart);

3807
	dev_priv->ips.last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
3808
		I915_READ(0x112e0);
3809 3810
	dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
	dev_priv->ips.last_count2 = I915_READ(0x112f4);
3811
	dev_priv->ips.last_time2 = ktime_get_raw_ns();
3812 3813

	spin_unlock_irq(&mchdev_lock);
3814 3815
}

3816
static void ironlake_disable_drps(struct drm_device *dev)
3817 3818
{
	struct drm_i915_private *dev_priv = dev->dev_private;
3819 3820 3821 3822 3823
	u16 rgvswctl;

	spin_lock_irq(&mchdev_lock);

	rgvswctl = I915_READ16(MEMSWCTL);
3824 3825 3826 3827 3828 3829 3830 3831 3832

	/* Ack interrupts, disable EFC interrupt */
	I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
	I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
	I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
	I915_WRITE(DEIIR, DE_PCU_EVENT);
	I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);

	/* Go back to the starting frequency */
3833
	ironlake_set_drps(dev, dev_priv->ips.fstart);
3834
	mdelay(1);
3835 3836
	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE(MEMSWCTL, rgvswctl);
3837
	mdelay(1);
3838

3839
	spin_unlock_irq(&mchdev_lock);
3840 3841
}

3842 3843 3844 3845 3846
/* There's a funny hw issue where the hw returns all 0 when reading from
 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
 * ourselves, instead of doing a rmw cycle (which might result in us clearing
 * all limits and the gpu stuck at whatever frequency it is at atm).
 */
3847
static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
3848
{
3849
	u32 limits;
3850

3851 3852 3853 3854 3855 3856
	/* Only set the down limit when we've reached the lowest level to avoid
	 * getting more interrupts, otherwise leave this clear. This prevents a
	 * race in the hw when coming out of rc6: There's a tiny window where
	 * the hw runs at the minimal clock before selecting the desired
	 * frequency, if the down threshold expires in that window we will not
	 * receive a down interrupt. */
3857 3858 3859 3860 3861 3862 3863 3864 3865
	if (IS_GEN9(dev_priv->dev)) {
		limits = (dev_priv->rps.max_freq_softlimit) << 23;
		if (val <= dev_priv->rps.min_freq_softlimit)
			limits |= (dev_priv->rps.min_freq_softlimit) << 14;
	} else {
		limits = dev_priv->rps.max_freq_softlimit << 24;
		if (val <= dev_priv->rps.min_freq_softlimit)
			limits |= dev_priv->rps.min_freq_softlimit << 16;
	}
3866 3867 3868 3869

	return limits;
}

3870 3871 3872
static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
{
	int new_power;
3873 3874
	u32 threshold_up = 0, threshold_down = 0; /* in % */
	u32 ei_up = 0, ei_down = 0;
3875 3876 3877 3878

	new_power = dev_priv->rps.power;
	switch (dev_priv->rps.power) {
	case LOW_POWER:
3879
		if (val > dev_priv->rps.efficient_freq + 1 && val > dev_priv->rps.cur_freq)
3880 3881 3882 3883
			new_power = BETWEEN;
		break;

	case BETWEEN:
3884
		if (val <= dev_priv->rps.efficient_freq && val < dev_priv->rps.cur_freq)
3885
			new_power = LOW_POWER;
3886
		else if (val >= dev_priv->rps.rp0_freq && val > dev_priv->rps.cur_freq)
3887 3888 3889 3890
			new_power = HIGH_POWER;
		break;

	case HIGH_POWER:
3891
		if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 && val < dev_priv->rps.cur_freq)
3892 3893 3894 3895
			new_power = BETWEEN;
		break;
	}
	/* Max/min bins are special */
3896
	if (val <= dev_priv->rps.min_freq_softlimit)
3897
		new_power = LOW_POWER;
3898
	if (val >= dev_priv->rps.max_freq_softlimit)
3899 3900 3901 3902 3903 3904 3905 3906
		new_power = HIGH_POWER;
	if (new_power == dev_priv->rps.power)
		return;

	/* Note the units here are not exactly 1us, but 1280ns. */
	switch (new_power) {
	case LOW_POWER:
		/* Upclock if more than 95% busy over 16ms */
3907 3908
		ei_up = 16000;
		threshold_up = 95;
3909 3910

		/* Downclock if less than 85% busy over 32ms */
3911 3912
		ei_down = 32000;
		threshold_down = 85;
3913 3914 3915 3916
		break;

	case BETWEEN:
		/* Upclock if more than 90% busy over 13ms */
3917 3918
		ei_up = 13000;
		threshold_up = 90;
3919 3920

		/* Downclock if less than 75% busy over 32ms */
3921 3922
		ei_down = 32000;
		threshold_down = 75;
3923 3924 3925 3926
		break;

	case HIGH_POWER:
		/* Upclock if more than 85% busy over 10ms */
3927 3928
		ei_up = 10000;
		threshold_up = 85;
3929 3930

		/* Downclock if less than 60% busy over 32ms */
3931 3932
		ei_down = 32000;
		threshold_down = 60;
3933 3934 3935
		break;
	}

3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953
	I915_WRITE(GEN6_RP_UP_EI,
		GT_INTERVAL_FROM_US(dev_priv, ei_up));
	I915_WRITE(GEN6_RP_UP_THRESHOLD,
		GT_INTERVAL_FROM_US(dev_priv, (ei_up * threshold_up / 100)));

	I915_WRITE(GEN6_RP_DOWN_EI,
		GT_INTERVAL_FROM_US(dev_priv, ei_down));
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
		GT_INTERVAL_FROM_US(dev_priv, (ei_down * threshold_down / 100)));

	 I915_WRITE(GEN6_RP_CONTROL,
		    GEN6_RP_MEDIA_TURBO |
		    GEN6_RP_MEDIA_HW_NORMAL_MODE |
		    GEN6_RP_MEDIA_IS_GFX |
		    GEN6_RP_ENABLE |
		    GEN6_RP_UP_BUSY_AVG |
		    GEN6_RP_DOWN_IDLE_AVG);

3954 3955 3956 3957
	dev_priv->rps.power = new_power;
	dev_priv->rps.last_adj = 0;
}

3958 3959 3960 3961 3962
static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
{
	u32 mask = 0;

	if (val > dev_priv->rps.min_freq_softlimit)
3963
		mask |= GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
3964
	if (val < dev_priv->rps.max_freq_softlimit)
3965
		mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
3966

3967 3968
	mask &= dev_priv->pm_rps_events;

3969
	return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
3970 3971
}

3972 3973 3974
/* gen6_set_rps is called to update the frequency request, but should also be
 * called when the range (min_delay and max_delay) is modified so that we can
 * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
3975
static void gen6_set_rps(struct drm_device *dev, u8 val)
3976 3977
{
	struct drm_i915_private *dev_priv = dev->dev_private;
3978

3979
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3980 3981
	WARN_ON(val > dev_priv->rps.max_freq);
	WARN_ON(val < dev_priv->rps.min_freq);
3982

C
Chris Wilson 已提交
3983 3984 3985 3986 3987
	/* min/max delay may still have been modified so be sure to
	 * write the limits value.
	 */
	if (val != dev_priv->rps.cur_freq) {
		gen6_set_rps_thresholds(dev_priv, val);
3988

3989 3990 3991 3992
		if (IS_GEN9(dev))
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN9_FREQUENCY(val));
		else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
C
Chris Wilson 已提交
3993 3994 3995 3996 3997 3998 3999
			I915_WRITE(GEN6_RPNSWREQ,
				   HSW_FREQUENCY(val));
		else
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN6_FREQUENCY(val) |
				   GEN6_OFFSET(0) |
				   GEN6_AGGRESSIVE_TURBO);
4000
	}
4001 4002 4003 4004

	/* Make sure we continue to get interrupts
	 * until we hit the minimum or maximum frequencies.
	 */
4005
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
4006
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
4007

4008 4009
	POSTING_READ(GEN6_RPNSWREQ);

4010
	dev_priv->rps.cur_freq = val;
4011
	trace_intel_gpu_freq_change(val * 50);
4012 4013
}

4014 4015 4016 4017 4018
static void valleyview_set_rps(struct drm_device *dev, u8 val)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4019 4020
	WARN_ON(val > dev_priv->rps.max_freq);
	WARN_ON(val < dev_priv->rps.min_freq);
4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034

	if (WARN_ONCE(IS_CHERRYVIEW(dev) && (val & 1),
		      "Odd GPU freq value\n"))
		val &= ~1;

	if (val != dev_priv->rps.cur_freq)
		vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);

	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));

	dev_priv->rps.cur_freq = val;
	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
}

4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045
/* vlv_set_rps_idle: Set the frequency to Rpn if Gfx clocks are down
 *
 * * If Gfx is Idle, then
 * 1. Mask Turbo interrupts
 * 2. Bring up Gfx clock
 * 3. Change the freq to Rpn and wait till P-Unit updates freq
 * 4. Clear the Force GFX CLK ON bit so that Gfx can down
 * 5. Unmask Turbo interrupts
*/
static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
{
4046
	struct drm_device *dev = dev_priv->dev;
4047
	u32 val = dev_priv->rps.idle_freq;
4048

4049 4050
	/* CHV and latest VLV don't need to force the gfx clock */
	if (IS_CHERRYVIEW(dev) || dev->pdev->revision >= 0xd) {
4051
		valleyview_set_rps(dev_priv->dev, val);
4052 4053 4054
		return;
	}

4055 4056 4057 4058
	/*
	 * When we are idle.  Drop to min voltage state.
	 */

4059
	if (dev_priv->rps.cur_freq <= val)
4060 4061 4062
		return;

	/* Mask turbo interrupt so that they will not come in between */
4063 4064
	I915_WRITE(GEN6_PMINTRMSK,
		   gen6_sanitize_rps_pm_mask(dev_priv, ~0));
4065

4066
	vlv_force_gfx_clock(dev_priv, true);
4067

4068
	dev_priv->rps.cur_freq = val;
4069

4070
	vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
4071 4072

	if (wait_for(((vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS))
4073
				& GENFREQSTATUS) == 0, 100))
4074 4075
		DRM_ERROR("timed out waiting for Punit\n");

4076
	vlv_force_gfx_clock(dev_priv, false);
4077

4078
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
4079 4080
}

4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092
void gen6_rps_busy(struct drm_i915_private *dev_priv)
{
	mutex_lock(&dev_priv->rps.hw_lock);
	if (dev_priv->rps.enabled) {
		if (dev_priv->pm_rps_events & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED))
			gen6_rps_reset_ei(dev_priv);
		I915_WRITE(GEN6_PMINTRMSK,
			   gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
	}
	mutex_unlock(&dev_priv->rps.hw_lock);
}

4093 4094
void gen6_rps_idle(struct drm_i915_private *dev_priv)
{
4095 4096
	struct drm_device *dev = dev_priv->dev;

4097
	mutex_lock(&dev_priv->rps.hw_lock);
4098
	if (dev_priv->rps.enabled) {
4099
		if (IS_VALLEYVIEW(dev))
4100
			vlv_set_rps_idle(dev_priv);
4101
		else
4102
			gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
4103
		dev_priv->rps.last_adj = 0;
4104
		I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
4105
	}
4106 4107 4108 4109 4110
	mutex_unlock(&dev_priv->rps.hw_lock);
}

void gen6_rps_boost(struct drm_i915_private *dev_priv)
{
4111 4112
	u32 val;

4113
	mutex_lock(&dev_priv->rps.hw_lock);
4114 4115 4116 4117 4118
	val = dev_priv->rps.max_freq_softlimit;
	if (dev_priv->rps.enabled &&
	    dev_priv->mm.busy &&
	    dev_priv->rps.cur_freq < val) {
		intel_set_rps(dev_priv->dev, val);
4119 4120
		dev_priv->rps.last_adj = 0;
	}
4121 4122 4123
	mutex_unlock(&dev_priv->rps.hw_lock);
}

4124
void intel_set_rps(struct drm_device *dev, u8 val)
4125
{
4126 4127 4128 4129
	if (IS_VALLEYVIEW(dev))
		valleyview_set_rps(dev, val);
	else
		gen6_set_rps(dev, val);
4130 4131
}

Z
Zhe Wang 已提交
4132 4133 4134 4135 4136
static void gen9_disable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(GEN6_RC_CONTROL, 0);
4137
	I915_WRITE(GEN9_PG_ENABLE, 0);
Z
Zhe Wang 已提交
4138 4139
}

4140
static void gen6_disable_rps(struct drm_device *dev)
4141 4142 4143 4144
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(GEN6_RC_CONTROL, 0);
4145 4146 4147
	I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
}

4148 4149 4150 4151 4152 4153 4154
static void cherryview_disable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(GEN6_RC_CONTROL, 0);
}

4155 4156 4157 4158
static void valleyview_disable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

4159 4160
	/* we're doing forcewake before Disabling RC6,
	 * This what the BIOS expects when going into suspend */
4161
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4162

4163
	I915_WRITE(GEN6_RC_CONTROL, 0);
4164

4165
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4166 4167
}

B
Ben Widawsky 已提交
4168 4169
static void intel_print_rc6_info(struct drm_device *dev, u32 mode)
{
4170 4171 4172 4173 4174 4175
	if (IS_VALLEYVIEW(dev)) {
		if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
			mode = GEN6_RC_CTL_RC6_ENABLE;
		else
			mode = 0;
	}
4176 4177 4178 4179 4180 4181 4182 4183 4184
	if (HAS_RC6p(dev))
		DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s RC6p %s RC6pp %s\n",
			      (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
			      (mode & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
			      (mode & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");

	else
		DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s\n",
			      (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off");
B
Ben Widawsky 已提交
4185 4186
}

I
Imre Deak 已提交
4187
static int sanitize_rc6_option(const struct drm_device *dev, int enable_rc6)
4188
{
4189 4190 4191 4192
	/* No RC6 before Ironlake */
	if (INTEL_INFO(dev)->gen < 5)
		return 0;

I
Imre Deak 已提交
4193 4194 4195 4196
	/* RC6 is only on Ironlake mobile not on desktop */
	if (INTEL_INFO(dev)->gen == 5 && !IS_IRONLAKE_M(dev))
		return 0;

4197
	/* Respect the kernel parameter if it is set */
I
Imre Deak 已提交
4198 4199 4200
	if (enable_rc6 >= 0) {
		int mask;

4201
		if (HAS_RC6p(dev))
I
Imre Deak 已提交
4202 4203 4204 4205 4206 4207
			mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
			       INTEL_RC6pp_ENABLE;
		else
			mask = INTEL_RC6_ENABLE;

		if ((enable_rc6 & mask) != enable_rc6)
4208 4209
			DRM_DEBUG_KMS("Adjusting RC6 mask to %d (requested %d, valid %d)\n",
				      enable_rc6 & mask, enable_rc6, mask);
I
Imre Deak 已提交
4210 4211 4212

		return enable_rc6 & mask;
	}
4213

4214 4215 4216
	/* Disable RC6 on Ironlake */
	if (INTEL_INFO(dev)->gen == 5)
		return 0;
4217

4218
	if (IS_IVYBRIDGE(dev))
B
Ben Widawsky 已提交
4219
		return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
4220 4221

	return INTEL_RC6_ENABLE;
4222 4223
}

I
Imre Deak 已提交
4224 4225 4226 4227 4228
int intel_enable_rc6(const struct drm_device *dev)
{
	return i915.enable_rc6;
}

4229
static void gen6_init_rps_frequencies(struct drm_device *dev)
4230
{
4231 4232 4233 4234 4235 4236
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t rp_state_cap;
	u32 ddcc_status = 0;
	int ret;

	rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
4237 4238
	/* All of these values are in units of 50MHz */
	dev_priv->rps.cur_freq		= 0;
4239
	/* static values from HW: RP0 > RP1 > RPn (min_freq) */
4240
	dev_priv->rps.rp0_freq		= (rp_state_cap >>  0) & 0xff;
4241
	dev_priv->rps.rp1_freq		= (rp_state_cap >>  8) & 0xff;
4242
	dev_priv->rps.min_freq		= (rp_state_cap >> 16) & 0xff;
4243 4244 4245 4246 4247 4248 4249
	if (IS_SKYLAKE(dev)) {
		/* Store the frequency values in 16.66 MHZ units, which is
		   the natural hardware unit for SKL */
		dev_priv->rps.rp0_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.rp1_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.min_freq *= GEN9_FREQ_SCALER;
	}
4250 4251 4252
	/* hw_max = RP0 until we check for overclocking */
	dev_priv->rps.max_freq		= dev_priv->rps.rp0_freq;

4253 4254 4255 4256 4257 4258 4259
	dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
	if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
		ret = sandybridge_pcode_read(dev_priv,
					HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
					&ddcc_status);
		if (0 == ret)
			dev_priv->rps.efficient_freq =
4260 4261 4262 4263
				clamp_t(u8,
					((ddcc_status >> 8) & 0xff),
					dev_priv->rps.min_freq,
					dev_priv->rps.max_freq);
4264 4265
	}

4266 4267
	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;

4268 4269 4270 4271
	/* Preserve min/max settings in case of re-init */
	if (dev_priv->rps.max_freq_softlimit == 0)
		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;

4272 4273 4274
	if (dev_priv->rps.min_freq_softlimit == 0) {
		if (IS_HASWELL(dev) || IS_BROADWELL(dev))
			dev_priv->rps.min_freq_softlimit =
4275 4276
				/* max(RPe, 450 MHz) */
				max(dev_priv->rps.efficient_freq, (u8) 9);
4277 4278 4279 4280
		else
			dev_priv->rps.min_freq_softlimit =
				dev_priv->rps.min_freq;
	}
4281 4282
}

J
Jesse Barnes 已提交
4283
/* See the Gen9_GT_PM_Programming_Guide doc for the below */
Z
Zhe Wang 已提交
4284
static void gen9_enable_rps(struct drm_device *dev)
J
Jesse Barnes 已提交
4285 4286 4287 4288 4289
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4290 4291
	gen6_init_rps_frequencies(dev);

4292 4293 4294 4295 4296 4297 4298 4299
	/* Program defaults and thresholds for RPS*/
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
		GEN9_FREQUENCY(dev_priv->rps.rp1_freq));

	/* 1 second timeout*/
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
		GT_INTERVAL_FROM_US(dev_priv, 1000000));

J
Jesse Barnes 已提交
4300 4301
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);

4302 4303 4304 4305 4306
	/* Leaning on the below call to gen6_set_rps to program/setup the
	 * Up/Down EI & threshold registers, as well as the RP_CONTROL,
	 * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
	dev_priv->rps.power = HIGH_POWER; /* force a reset */
	gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
J
Jesse Barnes 已提交
4307 4308 4309 4310 4311

	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
}

static void gen9_enable_rc6(struct drm_device *dev)
Z
Zhe Wang 已提交
4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_engine_cs *ring;
	uint32_t rc6_mask = 0;
	int unused;

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4323
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
Z
Zhe Wang 已提交
4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	/* 2b: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
	for_each_ring(ring, dev_priv, unused)
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
	I915_WRITE(GEN6_RC_SLEEP, 0);
	I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */

4337 4338 4339 4340
	/* 2c: Program Coarse Power Gating Policies. */
	I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25);
	I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25);

Z
Zhe Wang 已提交
4341 4342 4343 4344 4345 4346 4347 4348 4349
	/* 3a: Enable RC6 */
	if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
	DRM_INFO("RC6 %s\n", (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
			"on" : "off");
	I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
				   GEN6_RC_CTL_EI_MODE(1) |
				   rc6_mask);

4350 4351 4352
	/* 3b: Enable Coarse Power Gating only when RC6 is enabled */
	I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ? 3 : 0);

4353
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
Z
Zhe Wang 已提交
4354 4355 4356

}

4357 4358 4359
static void gen8_enable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4360
	struct intel_engine_cs *ring;
4361
	uint32_t rc6_mask = 0;
4362 4363 4364 4365 4366 4367 4368
	int unused;

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* 1c & 1d: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4369
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4370 4371 4372 4373

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

4374 4375
	/* Initialize rps frequencies */
	gen6_init_rps_frequencies(dev);
4376 4377 4378 4379 4380 4381 4382 4383

	/* 2b: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
	for_each_ring(ring, dev_priv, unused)
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
	I915_WRITE(GEN6_RC_SLEEP, 0);
4384 4385 4386 4387
	if (IS_BROADWELL(dev))
		I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
	else
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
4388 4389 4390 4391

	/* 3: Enable RC6 */
	if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
4392
	intel_print_rc6_info(dev, rc6_mask);
4393 4394 4395 4396 4397 4398 4399 4400
	if (IS_BROADWELL(dev))
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
				GEN7_RC_CTL_TO_MODE |
				rc6_mask);
	else
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
				GEN6_RC_CTL_EI_MODE(1) |
				rc6_mask);
4401 4402

	/* 4 Program defaults and thresholds for RPS*/
4403 4404 4405 4406
	I915_WRITE(GEN6_RPNSWREQ,
		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420
	/* NB: Docs say 1s, and 1000000 - which aren't equivalent */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */

	/* Docs recommend 900MHz, and 300 MHz respectively */
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
		   dev_priv->rps.max_freq_softlimit << 24 |
		   dev_priv->rps.min_freq_softlimit << 16);

	I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
	I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
	I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
4421 4422

	/* 5: Enable RPS */
4423 4424 4425 4426 4427 4428 4429 4430 4431 4432
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

	/* 6: Ring frequency + overclocking (our driver does this later */

4433
	dev_priv->rps.power = HIGH_POWER; /* force a reset */
4434
	gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
4435

4436
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4437 4438
}

4439
static void gen6_enable_rps(struct drm_device *dev)
4440
{
4441
	struct drm_i915_private *dev_priv = dev->dev_private;
4442
	struct intel_engine_cs *ring;
4443
	u32 rc6vids, pcu_mbox = 0, rc6_mask = 0;
4444 4445
	u32 gtfifodbg;
	int rc6_mode;
B
Ben Widawsky 已提交
4446
	int i, ret;
4447

4448
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4449

4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463
	/* Here begins a magic sequence of register writes to enable
	 * auto-downclocking.
	 *
	 * Perhaps there might be some value in exposing these to
	 * userspace...
	 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* Clear the DBG now so we don't confuse earlier errors */
	if ((gtfifodbg = I915_READ(GTFIFODBG))) {
		DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

4464
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4465

4466 4467
	/* Initialize rps frequencies */
	gen6_init_rps_frequencies(dev);
J
Jeff McGee 已提交
4468

4469 4470 4471 4472 4473 4474 4475 4476 4477
	/* disable the counters and set deterministic thresholds */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
	I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

4478 4479
	for_each_ring(ring, dev_priv, i)
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4480 4481 4482

	I915_WRITE(GEN6_RC_SLEEP, 0);
	I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
4483
	if (IS_IVYBRIDGE(dev))
4484 4485 4486
		I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
	else
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
4487
	I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
4488 4489
	I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */

4490
	/* Check if we are enabling RC6 */
4491 4492 4493 4494
	rc6_mode = intel_enable_rc6(dev_priv->dev);
	if (rc6_mode & INTEL_RC6_ENABLE)
		rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;

4495 4496 4497 4498
	/* We don't use those on Haswell */
	if (!IS_HASWELL(dev)) {
		if (rc6_mode & INTEL_RC6p_ENABLE)
			rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
4499

4500 4501 4502
		if (rc6_mode & INTEL_RC6pp_ENABLE)
			rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
	}
4503

B
Ben Widawsky 已提交
4504
	intel_print_rc6_info(dev, rc6_mask);
4505 4506 4507 4508 4509 4510

	I915_WRITE(GEN6_RC_CONTROL,
		   rc6_mask |
		   GEN6_RC_CTL_EI_MODE(1) |
		   GEN6_RC_CTL_HW_ENABLE);

4511 4512
	/* Power down if completely idle for over 50ms */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
4513 4514
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

B
Ben Widawsky 已提交
4515
	ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
4516
	if (ret)
B
Ben Widawsky 已提交
4517
		DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
4518 4519 4520 4521

	ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
	if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
		DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
4522
				 (dev_priv->rps.max_freq_softlimit & 0xff) * 50,
4523
				 (pcu_mbox & 0xff) * 50);
4524
		dev_priv->rps.max_freq = pcu_mbox & 0xff;
4525 4526
	}

4527
	dev_priv->rps.power = HIGH_POWER; /* force a reset */
4528
	gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
4529

4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543
	rc6vids = 0;
	ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
	if (IS_GEN6(dev) && ret) {
		DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
	} else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
		DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
			  GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
		rc6vids &= 0xffff00;
		rc6vids |= GEN6_ENCODE_RC6_VID(450);
		ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
		if (ret)
			DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
	}

4544
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4545 4546
}

4547
static void __gen6_update_ring_freq(struct drm_device *dev)
4548
{
4549
	struct drm_i915_private *dev_priv = dev->dev_private;
4550
	int min_freq = 15;
4551 4552
	unsigned int gpu_freq;
	unsigned int max_ia_freq, min_ring_freq;
4553
	int scaling_factor = 180;
4554
	struct cpufreq_policy *policy;
4555

4556
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4557

4558 4559 4560 4561 4562 4563 4564 4565 4566
	policy = cpufreq_cpu_get(0);
	if (policy) {
		max_ia_freq = policy->cpuinfo.max_freq;
		cpufreq_cpu_put(policy);
	} else {
		/*
		 * Default to measured freq if none found, PCU will ensure we
		 * don't go over
		 */
4567
		max_ia_freq = tsc_khz;
4568
	}
4569 4570 4571 4572

	/* Convert from kHz to MHz */
	max_ia_freq /= 1000;

4573
	min_ring_freq = I915_READ(DCLK) & 0xf;
4574 4575
	/* convert DDR frequency from units of 266.6MHz to bandwidth */
	min_ring_freq = mult_frac(min_ring_freq, 8, 3);
4576

4577 4578 4579 4580 4581
	/*
	 * For each potential GPU frequency, load a ring frequency we'd like
	 * to use for memory access.  We do this by specifying the IA frequency
	 * the PCU should use as a reference to determine the ring frequency.
	 */
4582
	for (gpu_freq = dev_priv->rps.max_freq; gpu_freq >= dev_priv->rps.min_freq;
4583
	     gpu_freq--) {
4584
		int diff = dev_priv->rps.max_freq - gpu_freq;
4585 4586
		unsigned int ia_freq = 0, ring_freq = 0;

4587 4588 4589 4590
		if (INTEL_INFO(dev)->gen >= 8) {
			/* max(2 * GT, DDR). NB: GT is 50MHz units */
			ring_freq = max(min_ring_freq, gpu_freq);
		} else if (IS_HASWELL(dev)) {
4591
			ring_freq = mult_frac(gpu_freq, 5, 4);
4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607
			ring_freq = max(min_ring_freq, ring_freq);
			/* leave ia_freq as the default, chosen by cpufreq */
		} else {
			/* On older processors, there is no separate ring
			 * clock domain, so in order to boost the bandwidth
			 * of the ring, we need to upclock the CPU (ia_freq).
			 *
			 * For GPU frequencies less than 750MHz,
			 * just use the lowest ring freq.
			 */
			if (gpu_freq < min_freq)
				ia_freq = 800;
			else
				ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
			ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
		}
4608

B
Ben Widawsky 已提交
4609 4610
		sandybridge_pcode_write(dev_priv,
					GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
4611 4612 4613
					ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
					ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
					gpu_freq);
4614 4615 4616
	}
}

4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628
void gen6_update_ring_freq(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (INTEL_INFO(dev)->gen < 6 || IS_VALLEYVIEW(dev))
		return;

	mutex_lock(&dev_priv->rps.hw_lock);
	__gen6_update_ring_freq(dev);
	mutex_unlock(&dev_priv->rps.hw_lock);
}

4629
static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
4630
{
4631
	struct drm_device *dev = dev_priv->dev;
4632 4633
	u32 val, rp0;

4634 4635
	if (dev->pdev->revision >= 0x20) {
		val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
4636

4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659
		switch (INTEL_INFO(dev)->eu_total) {
		case 8:
				/* (2 * 4) config */
				rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
				break;
		case 12:
				/* (2 * 6) config */
				rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
				break;
		case 16:
				/* (2 * 8) config */
		default:
				/* Setting (2 * 8) Min RP0 for any other combination */
				rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
				break;
		}
		rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);
	} else {
		/* For pre-production hardware */
		val = vlv_punit_read(dev_priv, PUNIT_GPU_STATUS_REG);
		rp0 = (val >> PUNIT_GPU_STATUS_MAX_FREQ_SHIFT) &
		       PUNIT_GPU_STATUS_MAX_FREQ_MASK;
	}
4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672
	return rp0;
}

static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

	val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
	rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;

	return rpe;
}

4673 4674
static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
4675
	struct drm_device *dev = dev_priv->dev;
4676 4677
	u32 val, rp1;

4678 4679 4680 4681 4682 4683 4684 4685 4686
	if (dev->pdev->revision >= 0x20) {
		val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
		rp1 = (val & FB_GFX_FREQ_FUSE_MASK);
	} else {
		/* For pre-production hardware */
		val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
		rp1 = ((val >> PUNIT_GPU_STATUS_MAX_FREQ_SHIFT) &
		       PUNIT_GPU_STATUS_MAX_FREQ_MASK);
	}
4687 4688 4689
	return rp1;
}

4690
static int cherryview_rps_min_freq(struct drm_i915_private *dev_priv)
4691
{
4692
	struct drm_device *dev = dev_priv->dev;
4693 4694
	u32 val, rpn;

4695 4696 4697 4698 4699 4700 4701 4702 4703 4704
	if (dev->pdev->revision >= 0x20) {
		val = vlv_punit_read(dev_priv, FB_GFX_FMIN_AT_VMIN_FUSE);
		rpn = ((val >> FB_GFX_FMIN_AT_VMIN_FUSE_SHIFT) &
		       FB_GFX_FREQ_FUSE_MASK);
	} else { /* For pre-production hardware */
		val = vlv_punit_read(dev_priv, PUNIT_GPU_STATUS_REG);
		rpn = ((val >> PUNIT_GPU_STATIS_GFX_MIN_FREQ_SHIFT) &
		       PUNIT_GPU_STATUS_GFX_MIN_FREQ_MASK);
	}

4705 4706 4707
	return rpn;
}

4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718
static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);

	rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;

	return rp1;
}

4719
static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
4720 4721 4722
{
	u32 val, rp0;

4723
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735

	rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
	/* Clamp to max */
	rp0 = min_t(u32, rp0, 0xea);

	return rp0;
}

static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

4736
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
4737
	rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
4738
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
4739 4740 4741 4742 4743
	rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;

	return rpe;
}

4744
static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
4745
{
4746
	return vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
4747 4748
}

4749 4750 4751 4752 4753 4754 4755 4756 4757
/* Check that the pctx buffer wasn't move under us. */
static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

	WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
			     dev_priv->vlv_pctx->stolen->start);
}

4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778

/* Check that the pcbr address is not empty. */
static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

	WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
}

static void cherryview_setup_pctx(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	unsigned long pctx_paddr, paddr;
	struct i915_gtt *gtt = &dev_priv->gtt;
	u32 pcbr;
	int pctx_size = 32*1024;

	WARN_ON(!mutex_is_locked(&dev->struct_mutex));

	pcbr = I915_READ(VLV_PCBR);
	if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
4779
		DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
4780 4781 4782 4783 4784 4785
		paddr = (dev_priv->mm.stolen_base +
			 (gtt->stolen_size - pctx_size));

		pctx_paddr = (paddr & (~4095));
		I915_WRITE(VLV_PCBR, pctx_paddr);
	}
4786 4787

	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
4788 4789
}

4790 4791 4792 4793 4794 4795 4796 4797
static void valleyview_setup_pctx(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *pctx;
	unsigned long pctx_paddr;
	u32 pcbr;
	int pctx_size = 24*1024;

4798 4799
	WARN_ON(!mutex_is_locked(&dev->struct_mutex));

4800 4801 4802 4803 4804 4805 4806 4807
	pcbr = I915_READ(VLV_PCBR);
	if (pcbr) {
		/* BIOS set it up already, grab the pre-alloc'd space */
		int pcbr_offset;

		pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
		pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
								      pcbr_offset,
4808
								      I915_GTT_OFFSET_NONE,
4809 4810 4811 4812
								      pctx_size);
		goto out;
	}

4813 4814
	DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");

4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832
	/*
	 * From the Gunit register HAS:
	 * The Gfx driver is expected to program this register and ensure
	 * proper allocation within Gfx stolen memory.  For example, this
	 * register should be programmed such than the PCBR range does not
	 * overlap with other ranges, such as the frame buffer, protected
	 * memory, or any other relevant ranges.
	 */
	pctx = i915_gem_object_create_stolen(dev, pctx_size);
	if (!pctx) {
		DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
		return;
	}

	pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
	I915_WRITE(VLV_PCBR, pctx_paddr);

out:
4833
	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
4834 4835 4836
	dev_priv->vlv_pctx = pctx;
}

4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847
static void valleyview_cleanup_pctx(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (WARN_ON(!dev_priv->vlv_pctx))
		return;

	drm_gem_object_unreference(&dev_priv->vlv_pctx->base);
	dev_priv->vlv_pctx = NULL;
}

4848 4849 4850
static void valleyview_init_gt_powersave(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4851
	u32 val;
4852 4853 4854 4855 4856

	valleyview_setup_pctx(dev);

	mutex_lock(&dev_priv->rps.hw_lock);

4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
	switch ((val >> 6) & 3) {
	case 0:
	case 1:
		dev_priv->mem_freq = 800;
		break;
	case 2:
		dev_priv->mem_freq = 1066;
		break;
	case 3:
		dev_priv->mem_freq = 1333;
		break;
	}
4870
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
4871

4872 4873 4874
	dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
4875
			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
4876 4877 4878 4879
			 dev_priv->rps.max_freq);

	dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
4880
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
4881 4882
			 dev_priv->rps.efficient_freq);

4883 4884
	dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
	DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
4885
			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
4886 4887
			 dev_priv->rps.rp1_freq);

4888 4889
	dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
4890
			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
4891 4892
			 dev_priv->rps.min_freq);

4893 4894
	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;

4895 4896 4897 4898 4899 4900 4901 4902 4903 4904
	/* Preserve min/max settings in case of re-init */
	if (dev_priv->rps.max_freq_softlimit == 0)
		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;

	if (dev_priv->rps.min_freq_softlimit == 0)
		dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;

	mutex_unlock(&dev_priv->rps.hw_lock);
}

4905 4906
static void cherryview_init_gt_powersave(struct drm_device *dev)
{
4907
	struct drm_i915_private *dev_priv = dev->dev_private;
4908
	u32 val;
4909

4910
	cherryview_setup_pctx(dev);
4911 4912 4913

	mutex_lock(&dev_priv->rps.hw_lock);

4914 4915 4916 4917
	mutex_lock(&dev_priv->dpio_lock);
	val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
	mutex_unlock(&dev_priv->dpio_lock);

4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940
	switch ((val >> 2) & 0x7) {
	case 0:
	case 1:
		dev_priv->rps.cz_freq = 200;
		dev_priv->mem_freq = 1600;
		break;
	case 2:
		dev_priv->rps.cz_freq = 267;
		dev_priv->mem_freq = 1600;
		break;
	case 3:
		dev_priv->rps.cz_freq = 333;
		dev_priv->mem_freq = 2000;
		break;
	case 4:
		dev_priv->rps.cz_freq = 320;
		dev_priv->mem_freq = 1600;
		break;
	case 5:
		dev_priv->rps.cz_freq = 400;
		dev_priv->mem_freq = 1600;
		break;
	}
4941
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
4942

4943 4944 4945
	dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
4946
			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
4947 4948 4949 4950
			 dev_priv->rps.max_freq);

	dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
4951
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
4952 4953
			 dev_priv->rps.efficient_freq);

4954 4955
	dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
	DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
4956
			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
4957 4958
			 dev_priv->rps.rp1_freq);

4959 4960
	dev_priv->rps.min_freq = cherryview_rps_min_freq(dev_priv);
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
4961
			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
4962 4963
			 dev_priv->rps.min_freq);

4964 4965 4966 4967 4968 4969
	WARN_ONCE((dev_priv->rps.max_freq |
		   dev_priv->rps.efficient_freq |
		   dev_priv->rps.rp1_freq |
		   dev_priv->rps.min_freq) & 1,
		  "Odd GPU freq values\n");

4970 4971
	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;

4972 4973 4974 4975 4976 4977 4978 4979
	/* Preserve min/max settings in case of re-init */
	if (dev_priv->rps.max_freq_softlimit == 0)
		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;

	if (dev_priv->rps.min_freq_softlimit == 0)
		dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;

	mutex_unlock(&dev_priv->rps.hw_lock);
4980 4981
}

4982 4983 4984 4985 4986
static void valleyview_cleanup_gt_powersave(struct drm_device *dev)
{
	valleyview_cleanup_pctx(dev);
}

4987 4988 4989 4990
static void cherryview_enable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_engine_cs *ring;
4991
	u32 gtfifodbg, val, rc6_mode = 0, pcbr;
4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006
	int i;

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

	gtfifodbg = I915_READ(GTFIFODBG);
	if (gtfifodbg) {
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

	cherryview_check_pctx(dev_priv);

	/* 1a & 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5007
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5008

5009 5010 5011
	/*  Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

5012 5013 5014 5015 5016 5017 5018 5019 5020
	/* 2a: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */

	for_each_ring(ring, dev_priv, i)
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
	I915_WRITE(GEN6_RC_SLEEP, 0);

5021 5022
	/* TO threshold set to 1750 us ( 0x557 * 1.28 us) */
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035

	/* allows RC6 residency counter to work */
	I915_WRITE(VLV_COUNTER_CONTROL,
		   _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));

	/* For now we assume BIOS is allocating and populating the PCBR  */
	pcbr = I915_READ(VLV_PCBR);

	/* 3: Enable RC6 */
	if ((intel_enable_rc6(dev) & INTEL_RC6_ENABLE) &&
						(pcbr >> VLV_PCBR_ADDR_SHIFT))
5036
		rc6_mode = GEN7_RC_CTL_TO_MODE;
5037 5038 5039

	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);

5040
	/* 4 Program defaults and thresholds for RPS*/
5041
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
5042 5043 5044 5045 5046 5047 5048 5049 5050 5051
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	/* 5: Enable RPS */
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
5052
		   GEN6_RP_MEDIA_IS_GFX |
5053 5054 5055 5056 5057 5058
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);

5059 5060 5061
	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

5062
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & GPLLENABLE ? "yes" : "no");
5063 5064 5065 5066
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

	dev_priv->rps.cur_freq = (val >> 8) & 0xff;
	DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
5067
			 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
5068 5069 5070
			 dev_priv->rps.cur_freq);

	DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
5071
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5072 5073 5074 5075
			 dev_priv->rps.efficient_freq);

	valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);

5076
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5077 5078
}

5079 5080 5081
static void valleyview_enable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
5082
	struct intel_engine_cs *ring;
5083
	u32 gtfifodbg, val, rc6_mode = 0;
5084 5085 5086 5087
	int i;

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

5088 5089
	valleyview_check_pctx(dev_priv);

5090
	if ((gtfifodbg = I915_READ(GTFIFODBG))) {
5091 5092
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
5093 5094 5095
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

5096
	/* If VLV, Forcewake all wells, else re-direct to regular path */
5097
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5098

5099 5100 5101
	/*  Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

5102
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_CONT);

	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

	for_each_ring(ring, dev_priv, i)
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);

5125
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
5126 5127

	/* allows RC6 residency counter to work */
5128
	I915_WRITE(VLV_COUNTER_CONTROL,
5129 5130
		   _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
				      VLV_RENDER_RC0_COUNT_EN |
5131 5132
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));
5133

5134
	if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
5135
		rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
B
Ben Widawsky 已提交
5136 5137 5138

	intel_print_rc6_info(dev, rc6_mode);

5139
	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
5140

5141
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5142

5143 5144 5145
	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

5146
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & GPLLENABLE ? "yes" : "no");
5147 5148
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

5149
	dev_priv->rps.cur_freq = (val >> 8) & 0xff;
5150
	DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
5151
			 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
5152
			 dev_priv->rps.cur_freq);
5153

5154
	DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
5155
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5156
			 dev_priv->rps.efficient_freq);
5157

5158
	valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
5159

5160
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5161 5162
}

5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177
static unsigned long intel_pxfreq(u32 vidfreq)
{
	unsigned long freq;
	int div = (vidfreq & 0x3f0000) >> 16;
	int post = (vidfreq & 0x3000) >> 12;
	int pre = (vidfreq & 0x7);

	if (!pre)
		return 0;

	freq = ((div * 133333) / ((1<<post) * pre));

	return freq;
}

5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191
static const struct cparams {
	u16 i;
	u16 t;
	u16 m;
	u16 c;
} cparams[] = {
	{ 1, 1333, 301, 28664 },
	{ 1, 1066, 294, 24460 },
	{ 1, 800, 294, 25192 },
	{ 0, 1333, 276, 27605 },
	{ 0, 1066, 276, 27605 },
	{ 0, 800, 231, 23784 },
};

5192
static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
5193 5194 5195 5196 5197 5198
{
	u64 total_count, diff, ret;
	u32 count1, count2, count3, m = 0, c = 0;
	unsigned long now = jiffies_to_msecs(jiffies), diff1;
	int i;

5199 5200
	assert_spin_locked(&mchdev_lock);

5201
	diff1 = now - dev_priv->ips.last_time1;
5202 5203 5204 5205 5206 5207 5208

	/* Prevent division-by-zero if we are asking too fast.
	 * Also, we don't get interesting results if we are polling
	 * faster than once in 10ms, so just return the saved value
	 * in such cases.
	 */
	if (diff1 <= 10)
5209
		return dev_priv->ips.chipset_power;
5210 5211 5212 5213 5214 5215 5216 5217

	count1 = I915_READ(DMIEC);
	count2 = I915_READ(DDREC);
	count3 = I915_READ(CSIEC);

	total_count = count1 + count2 + count3;

	/* FIXME: handle per-counter overflow */
5218 5219
	if (total_count < dev_priv->ips.last_count1) {
		diff = ~0UL - dev_priv->ips.last_count1;
5220 5221
		diff += total_count;
	} else {
5222
		diff = total_count - dev_priv->ips.last_count1;
5223 5224 5225
	}

	for (i = 0; i < ARRAY_SIZE(cparams); i++) {
5226 5227
		if (cparams[i].i == dev_priv->ips.c_m &&
		    cparams[i].t == dev_priv->ips.r_t) {
5228 5229 5230 5231 5232 5233 5234 5235 5236 5237
			m = cparams[i].m;
			c = cparams[i].c;
			break;
		}
	}

	diff = div_u64(diff, diff1);
	ret = ((m * diff) + c);
	ret = div_u64(ret, 10);

5238 5239
	dev_priv->ips.last_count1 = total_count;
	dev_priv->ips.last_time1 = now;
5240

5241
	dev_priv->ips.chipset_power = ret;
5242 5243 5244 5245

	return ret;
}

5246 5247
unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
{
5248
	struct drm_device *dev = dev_priv->dev;
5249 5250
	unsigned long val;

5251
	if (INTEL_INFO(dev)->gen != 5)
5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_chipset_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277
unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
{
	unsigned long m, x, b;
	u32 tsfs;

	tsfs = I915_READ(TSFS);

	m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
	x = I915_READ8(TR1);

	b = tsfs & TSFS_INTR_MASK;

	return ((m * x) / 127) - b;
}

5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289
static int _pxvid_to_vd(u8 pxvid)
{
	if (pxvid == 0)
		return 0;

	if (pxvid >= 8 && pxvid < 31)
		pxvid = 31;

	return (pxvid + 2) * 125;
}

static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
5290
{
5291
	struct drm_device *dev = dev_priv->dev;
5292 5293 5294
	const int vd = _pxvid_to_vd(pxvid);
	const int vm = vd - 1125;

5295
	if (INTEL_INFO(dev)->is_mobile)
5296 5297 5298
		return vm > 0 ? vm : 0;

	return vd;
5299 5300
}

5301
static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
5302
{
5303
	u64 now, diff, diffms;
5304 5305
	u32 count;

5306
	assert_spin_locked(&mchdev_lock);
5307

5308 5309 5310
	now = ktime_get_raw_ns();
	diffms = now - dev_priv->ips.last_time2;
	do_div(diffms, NSEC_PER_MSEC);
5311 5312 5313 5314 5315 5316 5317

	/* Don't divide by 0 */
	if (!diffms)
		return;

	count = I915_READ(GFXEC);

5318 5319
	if (count < dev_priv->ips.last_count2) {
		diff = ~0UL - dev_priv->ips.last_count2;
5320 5321
		diff += count;
	} else {
5322
		diff = count - dev_priv->ips.last_count2;
5323 5324
	}

5325 5326
	dev_priv->ips.last_count2 = count;
	dev_priv->ips.last_time2 = now;
5327 5328 5329 5330

	/* More magic constants... */
	diff = diff * 1181;
	diff = div_u64(diff, diffms * 10);
5331
	dev_priv->ips.gfx_power = diff;
5332 5333
}

5334 5335
void i915_update_gfx_val(struct drm_i915_private *dev_priv)
{
5336 5337 5338
	struct drm_device *dev = dev_priv->dev;

	if (INTEL_INFO(dev)->gen != 5)
5339 5340
		return;

5341
	spin_lock_irq(&mchdev_lock);
5342 5343 5344

	__i915_update_gfx_val(dev_priv);

5345
	spin_unlock_irq(&mchdev_lock);
5346 5347
}

5348
static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
5349 5350 5351 5352
{
	unsigned long t, corr, state1, corr2, state2;
	u32 pxvid, ext_v;

5353 5354
	assert_spin_locked(&mchdev_lock);

5355
	pxvid = I915_READ(PXVFREQ_BASE + (dev_priv->rps.cur_freq * 4));
5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374
	pxvid = (pxvid >> 24) & 0x7f;
	ext_v = pvid_to_extvid(dev_priv, pxvid);

	state1 = ext_v;

	t = i915_mch_val(dev_priv);

	/* Revel in the empirically derived constants */

	/* Correction factor in 1/100000 units */
	if (t > 80)
		corr = ((t * 2349) + 135940);
	else if (t >= 50)
		corr = ((t * 964) + 29317);
	else /* < 50 */
		corr = ((t * 301) + 1004);

	corr = corr * ((150142 * state1) / 10000 - 78642);
	corr /= 100000;
5375
	corr2 = (corr * dev_priv->ips.corr);
5376 5377 5378 5379

	state2 = (corr2 * state1) / 10000;
	state2 /= 100; /* convert to mW */

5380
	__i915_update_gfx_val(dev_priv);
5381

5382
	return dev_priv->ips.gfx_power + state2;
5383 5384
}

5385 5386
unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
{
5387
	struct drm_device *dev = dev_priv->dev;
5388 5389
	unsigned long val;

5390
	if (INTEL_INFO(dev)->gen != 5)
5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_gfx_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412
/**
 * i915_read_mch_val - return value for IPS use
 *
 * Calculate and return a value for the IPS driver to use when deciding whether
 * we have thermal and power headroom to increase CPU or GPU power budget.
 */
unsigned long i915_read_mch_val(void)
{
	struct drm_i915_private *dev_priv;
	unsigned long chipset_val, graphics_val, ret = 0;

5413
	spin_lock_irq(&mchdev_lock);
5414 5415 5416 5417
	if (!i915_mch_dev)
		goto out_unlock;
	dev_priv = i915_mch_dev;

5418 5419
	chipset_val = __i915_chipset_val(dev_priv);
	graphics_val = __i915_gfx_val(dev_priv);
5420 5421 5422 5423

	ret = chipset_val + graphics_val;

out_unlock:
5424
	spin_unlock_irq(&mchdev_lock);
5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439

	return ret;
}
EXPORT_SYMBOL_GPL(i915_read_mch_val);

/**
 * i915_gpu_raise - raise GPU frequency limit
 *
 * Raise the limit; IPS indicates we have thermal headroom.
 */
bool i915_gpu_raise(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

5440
	spin_lock_irq(&mchdev_lock);
5441 5442 5443 5444 5445 5446
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

5447 5448
	if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
		dev_priv->ips.max_delay--;
5449 5450

out_unlock:
5451
	spin_unlock_irq(&mchdev_lock);
5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_raise);

/**
 * i915_gpu_lower - lower GPU frequency limit
 *
 * IPS indicates we're close to a thermal limit, so throttle back the GPU
 * frequency maximum.
 */
bool i915_gpu_lower(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

5468
	spin_lock_irq(&mchdev_lock);
5469 5470 5471 5472 5473 5474
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

5475 5476
	if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
		dev_priv->ips.max_delay++;
5477 5478

out_unlock:
5479
	spin_unlock_irq(&mchdev_lock);
5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_lower);

/**
 * i915_gpu_busy - indicate GPU business to IPS
 *
 * Tell the IPS driver whether or not the GPU is busy.
 */
bool i915_gpu_busy(void)
{
	struct drm_i915_private *dev_priv;
5493
	struct intel_engine_cs *ring;
5494
	bool ret = false;
5495
	int i;
5496

5497
	spin_lock_irq(&mchdev_lock);
5498 5499 5500 5501
	if (!i915_mch_dev)
		goto out_unlock;
	dev_priv = i915_mch_dev;

5502 5503
	for_each_ring(ring, dev_priv, i)
		ret |= !list_empty(&ring->request_list);
5504 5505

out_unlock:
5506
	spin_unlock_irq(&mchdev_lock);
5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_busy);

/**
 * i915_gpu_turbo_disable - disable graphics turbo
 *
 * Disable graphics turbo by resetting the max frequency and setting the
 * current frequency to the default.
 */
bool i915_gpu_turbo_disable(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

5523
	spin_lock_irq(&mchdev_lock);
5524 5525 5526 5527 5528 5529
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

5530
	dev_priv->ips.max_delay = dev_priv->ips.fstart;
5531

5532
	if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
5533 5534 5535
		ret = false;

out_unlock:
5536
	spin_unlock_irq(&mchdev_lock);
5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);

/**
 * Tells the intel_ips driver that the i915 driver is now loaded, if
 * IPS got loaded first.
 *
 * This awkward dance is so that neither module has to depend on the
 * other in order for IPS to do the appropriate communication of
 * GPU turbo limits to i915.
 */
static void
ips_ping_for_i915_load(void)
{
	void (*link)(void);

	link = symbol_get(ips_link_to_i915_driver);
	if (link) {
		link();
		symbol_put(ips_link_to_i915_driver);
	}
}

void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
{
5564 5565
	/* We only register the i915 ips part with intel-ips once everything is
	 * set up, to avoid intel-ips sneaking in and reading bogus values. */
5566
	spin_lock_irq(&mchdev_lock);
5567
	i915_mch_dev = dev_priv;
5568
	spin_unlock_irq(&mchdev_lock);
5569 5570 5571 5572 5573 5574

	ips_ping_for_i915_load();
}

void intel_gpu_ips_teardown(void)
{
5575
	spin_lock_irq(&mchdev_lock);
5576
	i915_mch_dev = NULL;
5577
	spin_unlock_irq(&mchdev_lock);
5578
}
5579

5580
static void intel_init_emon(struct drm_device *dev)
5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 lcfuse;
	u8 pxw[16];
	int i;

	/* Disable to program */
	I915_WRITE(ECR, 0);
	POSTING_READ(ECR);

	/* Program energy weights for various events */
	I915_WRITE(SDEW, 0x15040d00);
	I915_WRITE(CSIEW0, 0x007f0000);
	I915_WRITE(CSIEW1, 0x1e220004);
	I915_WRITE(CSIEW2, 0x04000004);

	for (i = 0; i < 5; i++)
		I915_WRITE(PEW + (i * 4), 0);
	for (i = 0; i < 3; i++)
		I915_WRITE(DEW + (i * 4), 0);

	/* Program P-state weights to account for frequency power adjustment */
	for (i = 0; i < 16; i++) {
		u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
		unsigned long freq = intel_pxfreq(pxvidfreq);
		unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
			PXVFREQ_PX_SHIFT;
		unsigned long val;

		val = vid * vid;
		val *= (freq / 1000);
		val *= 255;
		val /= (127*127*900);
		if (val > 0xff)
			DRM_ERROR("bad pxval: %ld\n", val);
		pxw[i] = val;
	}
	/* Render standby states get 0 weight */
	pxw[14] = 0;
	pxw[15] = 0;

	for (i = 0; i < 4; i++) {
		u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
			(pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
		I915_WRITE(PXW + (i * 4), val);
	}

	/* Adjust magic regs to magic values (more experimental results) */
	I915_WRITE(OGW0, 0);
	I915_WRITE(OGW1, 0);
	I915_WRITE(EG0, 0x00007f00);
	I915_WRITE(EG1, 0x0000000e);
	I915_WRITE(EG2, 0x000e0000);
	I915_WRITE(EG3, 0x68000300);
	I915_WRITE(EG4, 0x42000000);
	I915_WRITE(EG5, 0x00140031);
	I915_WRITE(EG6, 0);
	I915_WRITE(EG7, 0);

	for (i = 0; i < 8; i++)
		I915_WRITE(PXWL + (i * 4), 0);

	/* Enable PMON + select events */
	I915_WRITE(ECR, 0x80000019);

	lcfuse = I915_READ(LCFUSE02);

5648
	dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
5649 5650
}

5651 5652
void intel_init_gt_powersave(struct drm_device *dev)
{
I
Imre Deak 已提交
5653 5654
	i915.enable_rc6 = sanitize_rc6_option(dev, i915.enable_rc6);

5655 5656 5657
	if (IS_CHERRYVIEW(dev))
		cherryview_init_gt_powersave(dev);
	else if (IS_VALLEYVIEW(dev))
5658
		valleyview_init_gt_powersave(dev);
5659 5660 5661 5662
}

void intel_cleanup_gt_powersave(struct drm_device *dev)
{
5663 5664 5665
	if (IS_CHERRYVIEW(dev))
		return;
	else if (IS_VALLEYVIEW(dev))
5666
		valleyview_cleanup_gt_powersave(dev);
5667 5668
}

5669 5670 5671 5672 5673 5674
static void gen6_suspend_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	flush_delayed_work(&dev_priv->rps.delayed_resume_work);

5675
	gen6_disable_rps_interrupts(dev);
5676 5677
}

5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689
/**
 * intel_suspend_gt_powersave - suspend PM work and helper threads
 * @dev: drm device
 *
 * We don't want to disable RC6 or other features here, we just want
 * to make sure any work we've queued has finished and won't bother
 * us while we're suspended.
 */
void intel_suspend_gt_powersave(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

I
Imre Deak 已提交
5690 5691 5692
	if (INTEL_INFO(dev)->gen < 6)
		return;

5693
	gen6_suspend_rps(dev);
5694 5695 5696

	/* Force GPU to min freq during suspend */
	gen6_rps_idle(dev_priv);
5697 5698
}

5699 5700
void intel_disable_gt_powersave(struct drm_device *dev)
{
5701 5702
	struct drm_i915_private *dev_priv = dev->dev_private;

5703
	if (IS_IRONLAKE_M(dev)) {
5704
		ironlake_disable_drps(dev);
5705
	} else if (INTEL_INFO(dev)->gen >= 6) {
5706
		intel_suspend_gt_powersave(dev);
5707

5708
		mutex_lock(&dev_priv->rps.hw_lock);
Z
Zhe Wang 已提交
5709 5710 5711
		if (INTEL_INFO(dev)->gen >= 9)
			gen9_disable_rps(dev);
		else if (IS_CHERRYVIEW(dev))
5712 5713
			cherryview_disable_rps(dev);
		else if (IS_VALLEYVIEW(dev))
5714 5715 5716
			valleyview_disable_rps(dev);
		else
			gen6_disable_rps(dev);
5717

5718
		dev_priv->rps.enabled = false;
5719
		mutex_unlock(&dev_priv->rps.hw_lock);
5720
	}
5721 5722
}

5723 5724 5725 5726 5727 5728 5729
static void intel_gen6_powersave_work(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
		container_of(work, struct drm_i915_private,
			     rps.delayed_resume_work.work);
	struct drm_device *dev = dev_priv->dev;

5730
	mutex_lock(&dev_priv->rps.hw_lock);
5731

5732
	gen6_reset_rps_interrupts(dev);
I
Imre Deak 已提交
5733

5734 5735 5736
	if (IS_CHERRYVIEW(dev)) {
		cherryview_enable_rps(dev);
	} else if (IS_VALLEYVIEW(dev)) {
5737
		valleyview_enable_rps(dev);
Z
Zhe Wang 已提交
5738
	} else if (INTEL_INFO(dev)->gen >= 9) {
J
Jesse Barnes 已提交
5739
		gen9_enable_rc6(dev);
Z
Zhe Wang 已提交
5740
		gen9_enable_rps(dev);
J
Jesse Barnes 已提交
5741
		__gen6_update_ring_freq(dev);
5742 5743
	} else if (IS_BROADWELL(dev)) {
		gen8_enable_rps(dev);
5744
		__gen6_update_ring_freq(dev);
5745 5746
	} else {
		gen6_enable_rps(dev);
5747
		__gen6_update_ring_freq(dev);
5748
	}
5749 5750 5751 5752 5753 5754 5755

	WARN_ON(dev_priv->rps.max_freq < dev_priv->rps.min_freq);
	WARN_ON(dev_priv->rps.idle_freq > dev_priv->rps.max_freq);

	WARN_ON(dev_priv->rps.efficient_freq < dev_priv->rps.min_freq);
	WARN_ON(dev_priv->rps.efficient_freq > dev_priv->rps.max_freq);

5756
	dev_priv->rps.enabled = true;
I
Imre Deak 已提交
5757

5758
	gen6_enable_rps_interrupts(dev);
I
Imre Deak 已提交
5759

5760
	mutex_unlock(&dev_priv->rps.hw_lock);
5761 5762

	intel_runtime_pm_put(dev_priv);
5763 5764
}

5765 5766
void intel_enable_gt_powersave(struct drm_device *dev)
{
5767 5768
	struct drm_i915_private *dev_priv = dev->dev_private;

5769 5770 5771 5772
	/* Powersaving is controlled by the host when inside a VM */
	if (intel_vgpu_active(dev))
		return;

5773
	if (IS_IRONLAKE_M(dev)) {
5774
		mutex_lock(&dev->struct_mutex);
5775 5776
		ironlake_enable_drps(dev);
		intel_init_emon(dev);
5777
		mutex_unlock(&dev->struct_mutex);
5778
	} else if (INTEL_INFO(dev)->gen >= 6) {
5779 5780 5781 5782
		/*
		 * PCU communication is slow and this doesn't need to be
		 * done at any specific time, so do this out of our fast path
		 * to make resume and init faster.
5783 5784 5785 5786 5787 5788 5789
		 *
		 * We depend on the HW RC6 power context save/restore
		 * mechanism when entering D3 through runtime PM suspend. So
		 * disable RPM until RPS/RC6 is properly setup. We can only
		 * get here via the driver load/system resume/runtime resume
		 * paths, so the _noresume version is enough (and in case of
		 * runtime resume it's necessary).
5790
		 */
5791 5792 5793
		if (schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
					   round_jiffies_up_relative(HZ)))
			intel_runtime_pm_get_noresume(dev_priv);
5794 5795 5796
	}
}

5797 5798 5799 5800
void intel_reset_gt_powersave(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

5801 5802 5803 5804
	if (INTEL_INFO(dev)->gen < 6)
		return;

	gen6_suspend_rps(dev);
5805 5806 5807
	dev_priv->rps.enabled = false;
}

5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819
static void ibx_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
}

5820 5821 5822 5823 5824
static void g4x_disable_trickle_feed(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int pipe;

5825
	for_each_pipe(dev_priv, pipe) {
5826 5827 5828
		I915_WRITE(DSPCNTR(pipe),
			   I915_READ(DSPCNTR(pipe)) |
			   DISPPLANE_TRICKLE_FEED_DISABLE);
5829
		intel_flush_primary_plane(dev_priv, pipe);
5830 5831 5832
	}
}

5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846
static void ilk_init_lp_watermarks(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);

	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
}

5847
static void ironlake_init_clock_gating(struct drm_device *dev)
5848 5849
{
	struct drm_i915_private *dev_priv = dev->dev_private;
5850
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
5851

5852 5853 5854 5855
	/*
	 * Required for FBC
	 * WaFbcDisableDpfcClockGating:ilk
	 */
5856 5857 5858
	dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875

	I915_WRITE(PCH_3DCGDIS0,
		   MARIUNIT_CLOCK_GATE_DISABLE |
		   SVSMUNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(PCH_3DCGDIS1,
		   VFMUNIT_CLOCK_GATE_DISABLE);

	/*
	 * According to the spec the following bits should be set in
	 * order to enable memory self-refresh
	 * The bit 22/21 of 0x42004
	 * The bit 5 of 0x42020
	 * The bit 15 of 0x45000
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   (I915_READ(ILK_DISPLAY_CHICKEN2) |
		    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
5876
	dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
5877 5878 5879
	I915_WRITE(DISP_ARB_CTL,
		   (I915_READ(DISP_ARB_CTL) |
		    DISP_FBC_WM_DIS));
5880 5881

	ilk_init_lp_watermarks(dev);
5882 5883 5884 5885 5886 5887 5888 5889 5890

	/*
	 * Based on the document from hardware guys the following bits
	 * should be set unconditionally in order to enable FBC.
	 * The bit 22 of 0x42000
	 * The bit 22 of 0x42004
	 * The bit 7,8,9 of 0x42020.
	 */
	if (IS_IRONLAKE_M(dev)) {
5891
		/* WaFbcAsynchFlipDisableFbcQueue:ilk */
5892 5893 5894 5895 5896 5897 5898 5899
		I915_WRITE(ILK_DISPLAY_CHICKEN1,
			   I915_READ(ILK_DISPLAY_CHICKEN1) |
			   ILK_FBCQ_DIS);
		I915_WRITE(ILK_DISPLAY_CHICKEN2,
			   I915_READ(ILK_DISPLAY_CHICKEN2) |
			   ILK_DPARB_GATE);
	}

5900 5901
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);

5902 5903 5904 5905 5906 5907
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);
	I915_WRITE(_3D_CHICKEN2,
		   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
		   _3D_CHICKEN2_WM_READ_PIPELINED);
5908

5909
	/* WaDisableRenderCachePipelinedFlush:ilk */
5910 5911
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
5912

5913 5914 5915
	/* WaDisable_RenderCache_OperationalFlush:ilk */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

5916
	g4x_disable_trickle_feed(dev);
5917

5918 5919 5920 5921 5922 5923 5924
	ibx_init_clock_gating(dev);
}

static void cpt_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int pipe;
5925
	uint32_t val;
5926 5927 5928 5929 5930 5931

	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
5932 5933 5934
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
		   PCH_DPLUNIT_CLOCK_GATE_DISABLE |
		   PCH_CPUNIT_CLOCK_GATE_DISABLE);
5935 5936
	I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
		   DPLS_EDP_PPS_FIX_DIS);
5937 5938 5939
	/* The below fixes the weird display corruption, a few pixels shifted
	 * downward, on (only) LVDS of some HP laptops with IVY.
	 */
5940
	for_each_pipe(dev_priv, pipe) {
5941 5942 5943
		val = I915_READ(TRANS_CHICKEN2(pipe));
		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
		val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
5944
		if (dev_priv->vbt.fdi_rx_polarity_inverted)
5945
			val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
5946 5947 5948
		val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
5949 5950
		I915_WRITE(TRANS_CHICKEN2(pipe), val);
	}
5951
	/* WADP0ClockGatingDisable */
5952
	for_each_pipe(dev_priv, pipe) {
5953 5954 5955
		I915_WRITE(TRANS_CHICKEN1(pipe),
			   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
	}
5956 5957
}

5958 5959 5960 5961 5962 5963
static void gen6_check_mch_setup(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t tmp;

	tmp = I915_READ(MCH_SSKPD);
5964 5965 5966
	if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
		DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
			      tmp);
5967 5968
}

5969
static void gen6_init_clock_gating(struct drm_device *dev)
5970 5971
{
	struct drm_i915_private *dev_priv = dev->dev_private;
5972
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
5973

5974
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
5975 5976 5977 5978 5979

	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);

5980
	/* WaDisableHiZPlanesWhenMSAAEnabled:snb */
5981 5982 5983
	I915_WRITE(_3D_CHICKEN,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));

5984 5985 5986
	/* WaDisable_RenderCache_OperationalFlush:snb */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

5987 5988 5989
	/*
	 * BSpec recoomends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
5990 5991 5992 5993
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
5994 5995
	 */
	I915_WRITE(GEN6_GT_MODE,
5996
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
5997

5998
	ilk_init_lp_watermarks(dev);
5999 6000

	I915_WRITE(CACHE_MODE_0,
6001
		   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016

	I915_WRITE(GEN6_UCGCTL1,
		   I915_READ(GEN6_UCGCTL1) |
		   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);

	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
	 * gating disable must be set.  Failure to set it results in
	 * flickering pixels due to Z write ordering failures after
	 * some amount of runtime in the Mesa "fire" demo, and Unigine
	 * Sanctuary and Tropics, and apparently anything else with
	 * alpha test or pixel discard.
	 *
	 * According to the spec, bit 11 (RCCUNIT) must also be set,
	 * but we didn't debug actual testcases to find it out.
6017
	 *
6018 6019
	 * WaDisableRCCUnitClockGating:snb
	 * WaDisableRCPBUnitClockGating:snb
6020 6021 6022 6023 6024
	 */
	I915_WRITE(GEN6_UCGCTL2,
		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);

6025
	/* WaStripsFansDisableFastClipPerformanceFix:snb */
6026 6027
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
6028

6029 6030 6031 6032 6033 6034 6035 6036
	/*
	 * Bspec says:
	 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
	 * 3DSTATE_SF number of SF output attributes is more than 16."
	 */
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));

6037 6038 6039 6040 6041 6042 6043 6044
	/*
	 * According to the spec the following bits should be
	 * set in order to enable memory self-refresh and fbc:
	 * The bit21 and bit22 of 0x42000
	 * The bit21 and bit22 of 0x42004
	 * The bit5 and bit7 of 0x42020
	 * The bit14 of 0x70180
	 * The bit14 of 0x71180
6045 6046
	 *
	 * WaFbcAsynchFlipDisableFbcQueue:snb
6047 6048 6049 6050 6051 6052 6053
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN1,
		   I915_READ(ILK_DISPLAY_CHICKEN1) |
		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
6054 6055 6056 6057
	I915_WRITE(ILK_DSPCLK_GATE_D,
		   I915_READ(ILK_DSPCLK_GATE_D) |
		   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
6058

6059
	g4x_disable_trickle_feed(dev);
B
Ben Widawsky 已提交
6060

6061
	cpt_init_clock_gating(dev);
6062 6063

	gen6_check_mch_setup(dev);
6064 6065 6066 6067 6068 6069
}

static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
{
	uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);

6070
	/*
6071
	 * WaVSThreadDispatchOverride:ivb,vlv
6072 6073 6074 6075
	 *
	 * This actually overrides the dispatch
	 * mode for all thread types.
	 */
6076 6077 6078 6079 6080 6081 6082 6083
	reg &= ~GEN7_FF_SCHED_MASK;
	reg |= GEN7_FF_TS_SCHED_HW;
	reg |= GEN7_FF_VS_SCHED_HW;
	reg |= GEN7_FF_DS_SCHED_HW;

	I915_WRITE(GEN7_FF_THREAD_MODE, reg);
}

6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095
static void lpt_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	/*
	 * TODO: this bit should only be enabled when really needed, then
	 * disabled when not needed anymore in order to save power.
	 */
	if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
		I915_WRITE(SOUTH_DSPCLK_GATE_D,
			   I915_READ(SOUTH_DSPCLK_GATE_D) |
			   PCH_LP_PARTITION_LEVEL_DISABLE);
6096 6097 6098 6099 6100

	/* WADPOClockGatingDisable:hsw */
	I915_WRITE(_TRANSA_CHICKEN1,
		   I915_READ(_TRANSA_CHICKEN1) |
		   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
6101 6102
}

6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114
static void lpt_suspend_hw(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
		uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);

		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
	}
}

6115
static void broadwell_init_clock_gating(struct drm_device *dev)
B
Ben Widawsky 已提交
6116 6117
{
	struct drm_i915_private *dev_priv = dev->dev_private;
6118
	enum pipe pipe;
B
Ben Widawsky 已提交
6119 6120 6121 6122

	I915_WRITE(WM3_LP_ILK, 0);
	I915_WRITE(WM2_LP_ILK, 0);
	I915_WRITE(WM1_LP_ILK, 0);
6123

6124
	/* WaSwitchSolVfFArbitrationPriority:bdw */
6125
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
6126

6127
	/* WaPsrDPAMaskVBlankInSRD:bdw */
6128 6129 6130
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);

6131
	/* WaPsrDPRSUnmaskVBlankInSRD:bdw */
6132
	for_each_pipe(dev_priv, pipe) {
6133
		I915_WRITE(CHICKEN_PIPESL_1(pipe),
6134
			   I915_READ(CHICKEN_PIPESL_1(pipe)) |
6135
			   BDW_DPRS_MASK_VBLANK_SRD);
6136
	}
6137

6138 6139 6140 6141 6142
	/* WaVSRefCountFullforceMissDisable:bdw */
	/* WaDSRefCountFullforceMissDisable:bdw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
6143

6144 6145
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
6146 6147 6148 6149

	/* WaDisableSDEUnitClockGating:bdw */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6150

6151
	lpt_init_clock_gating(dev);
B
Ben Widawsky 已提交
6152 6153
}

6154 6155 6156 6157
static void haswell_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

6158
	ilk_init_lp_watermarks(dev);
6159

6160 6161 6162 6163 6164
	/* L3 caching of data atomics doesn't work -- disable it. */
	I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
	I915_WRITE(HSW_ROW_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));

6165
	/* This is required by WaCatErrorRejectionIssue:hsw */
6166 6167 6168 6169
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

6170 6171 6172
	/* WaVSRefCountFullforceMissDisable:hsw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
6173

6174 6175 6176
	/* WaDisable_RenderCache_OperationalFlush:hsw */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6177 6178 6179 6180
	/* enable HiZ Raw Stall Optimization */
	I915_WRITE(CACHE_MODE_0_GEN7,
		   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));

6181
	/* WaDisable4x2SubspanOptimization:hsw */
6182 6183
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6184

6185 6186 6187
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
6188 6189 6190 6191
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6192 6193
	 */
	I915_WRITE(GEN7_GT_MODE,
6194
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6195

6196 6197 6198 6199
	/* WaSampleCChickenBitEnable:hsw */
	I915_WRITE(HALF_SLICE_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));

6200
	/* WaSwitchSolVfFArbitrationPriority:hsw */
6201 6202
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);

6203 6204 6205
	/* WaRsPkgCStateDisplayPMReq:hsw */
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
6206

6207
	lpt_init_clock_gating(dev);
6208 6209
}

6210
static void ivybridge_init_clock_gating(struct drm_device *dev)
6211 6212
{
	struct drm_i915_private *dev_priv = dev->dev_private;
6213
	uint32_t snpcr;
6214

6215
	ilk_init_lp_watermarks(dev);
6216

6217
	I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
6218

6219
	/* WaDisableEarlyCull:ivb */
6220 6221 6222
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

6223
	/* WaDisableBackToBackFlipFix:ivb */
6224 6225 6226 6227
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

6228
	/* WaDisablePSDDualDispatchEnable:ivb */
6229 6230 6231 6232
	if (IS_IVB_GT1(dev))
		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));

6233 6234 6235
	/* WaDisable_RenderCache_OperationalFlush:ivb */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6236
	/* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
6237 6238 6239
	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);

6240
	/* WaApplyL3ControlAndL3ChickenMode:ivb */
6241 6242 6243
	I915_WRITE(GEN7_L3CNTLREG1,
			GEN7_WA_FOR_GEN7_L3_CONTROL);
	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
6244 6245 6246 6247
		   GEN7_WA_L3_CHICKEN_MODE);
	if (IS_IVB_GT1(dev))
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6248 6249 6250 6251
	else {
		/* must write both registers */
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6252 6253
		I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6254
	}
6255

6256
	/* WaForceL3Serialization:ivb */
6257 6258 6259
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

6260
	/*
6261
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
6262
	 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
6263 6264
	 */
	I915_WRITE(GEN6_UCGCTL2,
6265
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
6266

6267
	/* This is required by WaCatErrorRejectionIssue:ivb */
6268 6269 6270 6271
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

6272
	g4x_disable_trickle_feed(dev);
6273 6274

	gen7_setup_fixed_func_scheduler(dev_priv);
6275

6276 6277 6278 6279 6280
	if (0) { /* causes HiZ corruption on ivb:gt1 */
		/* enable HiZ Raw Stall Optimization */
		I915_WRITE(CACHE_MODE_0_GEN7,
			   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
	}
6281

6282
	/* WaDisable4x2SubspanOptimization:ivb */
6283 6284
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6285

6286 6287 6288
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
6289 6290 6291 6292
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6293 6294
	 */
	I915_WRITE(GEN7_GT_MODE,
6295
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6296

6297 6298 6299 6300
	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
	snpcr &= ~GEN6_MBC_SNPCR_MASK;
	snpcr |= GEN6_MBC_SNPCR_MED;
	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
6301

6302 6303
	if (!HAS_PCH_NOP(dev))
		cpt_init_clock_gating(dev);
6304 6305

	gen6_check_mch_setup(dev);
6306 6307
}

6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318
static void vlv_init_display_clock_gating(struct drm_i915_private *dev_priv)
{
	I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);

	/*
	 * Disable trickle feed and enable pnd deadline calculation
	 */
	I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
	I915_WRITE(CBR1_VLV, 0);
}

6319
static void valleyview_init_clock_gating(struct drm_device *dev)
6320 6321 6322
{
	struct drm_i915_private *dev_priv = dev->dev_private;

6323
	vlv_init_display_clock_gating(dev_priv);
6324

6325
	/* WaDisableEarlyCull:vlv */
6326 6327 6328
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

6329
	/* WaDisableBackToBackFlipFix:vlv */
6330 6331 6332 6333
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

6334
	/* WaPsdDispatchEnable:vlv */
6335
	/* WaDisablePSDDualDispatchEnable:vlv */
6336
	I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
6337 6338
		   _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
				      GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
6339

6340 6341 6342
	/* WaDisable_RenderCache_OperationalFlush:vlv */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6343
	/* WaForceL3Serialization:vlv */
6344 6345 6346
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

6347
	/* WaDisableDopClockGating:vlv */
6348 6349 6350
	I915_WRITE(GEN7_ROW_CHICKEN2,
		   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));

6351
	/* This is required by WaCatErrorRejectionIssue:vlv */
6352 6353 6354 6355
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
		   I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

6356 6357
	gen7_setup_fixed_func_scheduler(dev_priv);

6358
	/*
6359
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
6360
	 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
6361 6362
	 */
	I915_WRITE(GEN6_UCGCTL2,
6363
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
6364

6365 6366 6367 6368 6369
	/* WaDisableL3Bank2xClockGate:vlv
	 * Disabling L3 clock gating- MMIO 940c[25] = 1
	 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
	I915_WRITE(GEN7_UCGCTL4,
		   I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
6370

6371 6372 6373 6374
	/*
	 * BSpec says this must be set, even though
	 * WaDisable4x2SubspanOptimization isn't listed for VLV.
	 */
6375 6376
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6377

6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
	 */
	I915_WRITE(GEN7_GT_MODE,
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));

6389 6390 6391 6392 6393 6394
	/*
	 * WaIncreaseL3CreditsForVLVB0:vlv
	 * This is the hardware default actually.
	 */
	I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);

6395
	/*
6396
	 * WaDisableVLVClockGating_VBIIssue:vlv
6397 6398 6399
	 * Disable clock gating on th GCFG unit to prevent a delay
	 * in the reporting of vblank events.
	 */
6400
	I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
6401 6402
}

6403 6404 6405 6406
static void cherryview_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

6407
	vlv_init_display_clock_gating(dev_priv);
6408

6409 6410 6411 6412 6413
	/* WaVSRefCountFullforceMissDisable:chv */
	/* WaDSRefCountFullforceMissDisable:chv */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
6414 6415 6416 6417

	/* WaDisableSemaphoreAndSyncFlipWait:chv */
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
6418 6419 6420 6421

	/* WaDisableCSUnitClockGating:chv */
	I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
6422 6423 6424 6425

	/* WaDisableSDEUnitClockGating:chv */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6426 6427
}

6428
static void g4x_init_clock_gating(struct drm_device *dev)
6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dspclk_gate;

	I915_WRITE(RENCLK_GATE_D1, 0);
	I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
		   GS_UNIT_CLOCK_GATE_DISABLE |
		   CL_UNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(RAMCLK_GATE_D, 0);
	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
		OVRUNIT_CLOCK_GATE_DISABLE |
		OVCUNIT_CLOCK_GATE_DISABLE;
	if (IS_GM45(dev))
		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
	I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
6444 6445 6446 6447

	/* WaDisableRenderCachePipelinedFlush */
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6448

6449 6450 6451
	/* WaDisable_RenderCache_OperationalFlush:g4x */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6452
	g4x_disable_trickle_feed(dev);
6453 6454
}

6455
static void crestline_init_clock_gating(struct drm_device *dev)
6456 6457 6458 6459 6460 6461 6462 6463
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
	I915_WRITE(DSPCLK_GATE_D, 0);
	I915_WRITE(RAMCLK_GATE_D, 0);
	I915_WRITE16(DEUC, 0);
6464 6465
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
6466 6467 6468

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6469 6470
}

6471
static void broadwater_init_clock_gating(struct drm_device *dev)
6472 6473 6474 6475 6476 6477 6478 6479 6480
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
		   I965_RCC_CLOCK_GATE_DISABLE |
		   I965_RCPB_CLOCK_GATE_DISABLE |
		   I965_ISC_CLOCK_GATE_DISABLE |
		   I965_FBC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
6481 6482
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
6483 6484 6485

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6486 6487
}

6488
static void gen3_init_clock_gating(struct drm_device *dev)
6489 6490 6491 6492 6493 6494 6495
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 dstate = I915_READ(D_STATE);

	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
		DSTATE_DOT_CLOCK_GATING;
	I915_WRITE(D_STATE, dstate);
6496 6497 6498

	if (IS_PINEVIEW(dev))
		I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
6499 6500 6501

	/* IIR "flip pending" means done if this bit is set */
	I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
6502 6503

	/* interrupts should cause a wake up from C3 */
6504
	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
6505 6506 6507

	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
	I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
6508 6509 6510

	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
6511 6512
}

6513
static void i85x_init_clock_gating(struct drm_device *dev)
6514 6515 6516 6517
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
6518 6519 6520 6521

	/* interrupts should cause a wake up from C3 */
	I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
		   _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
6522 6523 6524

	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
6525 6526
}

6527
static void i830_init_clock_gating(struct drm_device *dev)
6528 6529 6530 6531
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
6532 6533 6534 6535

	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
6536 6537 6538 6539 6540 6541
}

void intel_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

6542 6543
	if (dev_priv->display.init_clock_gating)
		dev_priv->display.init_clock_gating(dev);
6544 6545
}

6546 6547 6548 6549 6550 6551
void intel_suspend_hw(struct drm_device *dev)
{
	if (HAS_PCH_LPT(dev))
		lpt_suspend_hw(dev);
}

6552 6553 6554 6555 6556
/* Set up chip specific power management-related functions */
void intel_init_pm(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

6557
	intel_fbc_init(dev_priv);
6558

6559 6560 6561 6562 6563 6564
	/* For cxsr */
	if (IS_PINEVIEW(dev))
		i915_pineview_get_mem_freq(dev);
	else if (IS_GEN5(dev))
		i915_ironlake_get_mem_freq(dev);

6565
	/* For FIFO watermark updates */
6566
	if (INTEL_INFO(dev)->gen >= 9) {
6567 6568
		skl_setup_wm_latency(dev);

6569 6570 6571 6572 6573 6574
		if (IS_BROXTON(dev))
			dev_priv->display.init_clock_gating =
				bxt_init_clock_gating;
		else if (IS_SKYLAKE(dev))
			dev_priv->display.init_clock_gating =
				skl_init_clock_gating;
6575 6576
		dev_priv->display.update_wm = skl_update_wm;
		dev_priv->display.update_sprite_wm = skl_update_sprite_wm;
6577
	} else if (HAS_PCH_SPLIT(dev)) {
6578
		ilk_setup_wm_latency(dev);
6579

6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591
		if ((IS_GEN5(dev) && dev_priv->wm.pri_latency[1] &&
		     dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
		    (!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
		     dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
			dev_priv->display.update_wm = ilk_update_wm;
			dev_priv->display.update_sprite_wm = ilk_update_sprite_wm;
		} else {
			DRM_DEBUG_KMS("Failed to read display plane latency. "
				      "Disable CxSR\n");
		}

		if (IS_GEN5(dev))
6592
			dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
6593
		else if (IS_GEN6(dev))
6594
			dev_priv->display.init_clock_gating = gen6_init_clock_gating;
6595
		else if (IS_IVYBRIDGE(dev))
6596
			dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
6597
		else if (IS_HASWELL(dev))
6598
			dev_priv->display.init_clock_gating = haswell_init_clock_gating;
6599
		else if (INTEL_INFO(dev)->gen == 8)
6600
			dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
6601
	} else if (IS_CHERRYVIEW(dev)) {
6602
		dev_priv->display.update_wm = valleyview_update_wm;
6603
		dev_priv->display.update_sprite_wm = valleyview_update_sprite_wm;
6604 6605
		dev_priv->display.init_clock_gating =
			cherryview_init_clock_gating;
6606 6607
	} else if (IS_VALLEYVIEW(dev)) {
		dev_priv->display.update_wm = valleyview_update_wm;
6608
		dev_priv->display.update_sprite_wm = valleyview_update_sprite_wm;
6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621
		dev_priv->display.init_clock_gating =
			valleyview_init_clock_gating;
	} else if (IS_PINEVIEW(dev)) {
		if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
					    dev_priv->is_ddr3,
					    dev_priv->fsb_freq,
					    dev_priv->mem_freq)) {
			DRM_INFO("failed to find known CxSR latency "
				 "(found ddr%s fsb freq %d, mem freq %d), "
				 "disabling CxSR\n",
				 (dev_priv->is_ddr3 == 1) ? "3" : "2",
				 dev_priv->fsb_freq, dev_priv->mem_freq);
			/* Disable CxSR and never update its watermark again */
6622
			intel_set_memory_cxsr(dev_priv, false);
6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639
			dev_priv->display.update_wm = NULL;
		} else
			dev_priv->display.update_wm = pineview_update_wm;
		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
	} else if (IS_G4X(dev)) {
		dev_priv->display.update_wm = g4x_update_wm;
		dev_priv->display.init_clock_gating = g4x_init_clock_gating;
	} else if (IS_GEN4(dev)) {
		dev_priv->display.update_wm = i965_update_wm;
		if (IS_CRESTLINE(dev))
			dev_priv->display.init_clock_gating = crestline_init_clock_gating;
		else if (IS_BROADWATER(dev))
			dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
	} else if (IS_GEN3(dev)) {
		dev_priv->display.update_wm = i9xx_update_wm;
		dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
6640 6641 6642
	} else if (IS_GEN2(dev)) {
		if (INTEL_INFO(dev)->num_pipes == 1) {
			dev_priv->display.update_wm = i845_update_wm;
6643
			dev_priv->display.get_fifo_size = i845_get_fifo_size;
6644 6645
		} else {
			dev_priv->display.update_wm = i9xx_update_wm;
6646
			dev_priv->display.get_fifo_size = i830_get_fifo_size;
6647 6648 6649 6650 6651 6652 6653 6654
		}

		if (IS_I85X(dev) || IS_I865G(dev))
			dev_priv->display.init_clock_gating = i85x_init_clock_gating;
		else
			dev_priv->display.init_clock_gating = i830_init_clock_gating;
	} else {
		DRM_ERROR("unexpected fall-through in intel_init_pm\n");
6655 6656 6657
	}
}

6658
int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
B
Ben Widawsky 已提交
6659
{
6660
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
B
Ben Widawsky 已提交
6661 6662 6663 6664 6665 6666 6667

	if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
		DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
		return -EAGAIN;
	}

	I915_WRITE(GEN6_PCODE_DATA, *val);
6668
	I915_WRITE(GEN6_PCODE_DATA1, 0);
B
Ben Widawsky 已提交
6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682
	I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);

	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
		     500)) {
		DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
		return -ETIMEDOUT;
	}

	*val = I915_READ(GEN6_PCODE_DATA);
	I915_WRITE(GEN6_PCODE_DATA, 0);

	return 0;
}

6683
int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u32 mbox, u32 val)
B
Ben Widawsky 已提交
6684
{
6685
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
B
Ben Widawsky 已提交
6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704

	if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
		DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
		return -EAGAIN;
	}

	I915_WRITE(GEN6_PCODE_DATA, val);
	I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);

	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
		     500)) {
		DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
		return -ETIMEDOUT;
	}

	I915_WRITE(GEN6_PCODE_DATA, 0);

	return 0;
}
6705

6706
static int vlv_gpu_freq_div(unsigned int czclk_freq)
6707
{
6708 6709 6710 6711 6712 6713 6714 6715
	switch (czclk_freq) {
	case 200:
		return 10;
	case 267:
		return 12;
	case 320:
	case 333:
		return 16;
6716 6717
	case 400:
		return 20;
6718 6719 6720
	default:
		return -1;
	}
6721
}
6722

6723 6724 6725 6726 6727 6728 6729 6730 6731
static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
{
	int div, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->mem_freq, 4);

	div = vlv_gpu_freq_div(czclk_freq);
	if (div < 0)
		return div;

	return DIV_ROUND_CLOSEST(czclk_freq * (val + 6 - 0xbd), div);
6732 6733
}

6734
static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
6735
{
6736
	int mul, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->mem_freq, 4);
6737

6738 6739 6740
	mul = vlv_gpu_freq_div(czclk_freq);
	if (mul < 0)
		return mul;
6741

6742
	return DIV_ROUND_CLOSEST(mul * val, czclk_freq) + 0xbd - 6;
6743 6744
}

6745
static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
6746
{
6747
	int div, czclk_freq = dev_priv->rps.cz_freq;
6748

6749 6750 6751
	div = vlv_gpu_freq_div(czclk_freq) / 2;
	if (div < 0)
		return div;
6752

6753
	return DIV_ROUND_CLOSEST(czclk_freq * val, 2 * div) / 2;
6754 6755
}

6756
static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
6757
{
6758
	int mul, czclk_freq = dev_priv->rps.cz_freq;
6759

6760 6761 6762
	mul = vlv_gpu_freq_div(czclk_freq) / 2;
	if (mul < 0)
		return mul;
6763

6764
	/* CHV needs even values */
6765
	return DIV_ROUND_CLOSEST(val * 2 * mul, czclk_freq) * 2;
6766 6767
}

6768
int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
6769
{
6770 6771 6772
	if (IS_GEN9(dev_priv->dev))
		return (val * GT_FREQUENCY_MULTIPLIER) / GEN9_FREQ_SCALER;
	else if (IS_CHERRYVIEW(dev_priv->dev))
6773
		return chv_gpu_freq(dev_priv, val);
6774
	else if (IS_VALLEYVIEW(dev_priv->dev))
6775 6776 6777
		return byt_gpu_freq(dev_priv, val);
	else
		return val * GT_FREQUENCY_MULTIPLIER;
6778 6779
}

6780 6781
int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
{
6782 6783 6784
	if (IS_GEN9(dev_priv->dev))
		return (val * GEN9_FREQ_SCALER) / GT_FREQUENCY_MULTIPLIER;
	else if (IS_CHERRYVIEW(dev_priv->dev))
6785
		return chv_freq_opcode(dev_priv, val);
6786
	else if (IS_VALLEYVIEW(dev_priv->dev))
6787 6788 6789 6790
		return byt_freq_opcode(dev_priv, val);
	else
		return val / GT_FREQUENCY_MULTIPLIER;
}
6791

D
Daniel Vetter 已提交
6792
void intel_pm_setup(struct drm_device *dev)
6793 6794 6795
{
	struct drm_i915_private *dev_priv = dev->dev_private;

D
Daniel Vetter 已提交
6796 6797
	mutex_init(&dev_priv->rps.hw_lock);

6798 6799
	INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
			  intel_gen6_powersave_work);
6800

6801
	dev_priv->pm.suspended = false;
6802
}