vmalloc.c 86.6 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
L
Linus Torvalds 已提交
2 3 4 5 6 7 8
/*
 *  linux/mm/vmalloc.c
 *
 *  Copyright (C) 1993  Linus Torvalds
 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
 *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
 *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
C
Christoph Lameter 已提交
9
 *  Numa awareness, Christoph Lameter, SGI, June 2005
L
Linus Torvalds 已提交
10 11
 */

N
Nick Piggin 已提交
12
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
13 14 15
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/highmem.h>
16
#include <linux/sched/signal.h>
L
Linus Torvalds 已提交
17 18 19
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/interrupt.h>
20
#include <linux/proc_fs.h>
21
#include <linux/seq_file.h>
22
#include <linux/set_memory.h>
23
#include <linux/debugobjects.h>
24
#include <linux/kallsyms.h>
N
Nick Piggin 已提交
25
#include <linux/list.h>
26
#include <linux/notifier.h>
N
Nick Piggin 已提交
27 28 29
#include <linux/rbtree.h>
#include <linux/radix-tree.h>
#include <linux/rcupdate.h>
30
#include <linux/pfn.h>
31
#include <linux/kmemleak.h>
A
Arun Sharma 已提交
32
#include <linux/atomic.h>
33
#include <linux/compiler.h>
34
#include <linux/llist.h>
35
#include <linux/bitops.h>
36
#include <linux/rbtree_augmented.h>
37

38
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
39
#include <asm/tlbflush.h>
40
#include <asm/shmparam.h>
L
Linus Torvalds 已提交
41

42 43
#include "internal.h"

44 45 46 47 48 49 50 51 52 53 54
struct vfree_deferred {
	struct llist_head list;
	struct work_struct wq;
};
static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);

static void __vunmap(const void *, int);

static void free_work(struct work_struct *w)
{
	struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
55 56 57 58
	struct llist_node *t, *llnode;

	llist_for_each_safe(llnode, t, llist_del_all(&p->list))
		__vunmap((void *)llnode, 1);
59 60
}

N
Nick Piggin 已提交
61
/*** Page table manipulation functions ***/
A
Adrian Bunk 已提交
62

L
Linus Torvalds 已提交
63 64 65 66 67 68 69 70 71 72 73
static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
{
	pte_t *pte;

	pte = pte_offset_kernel(pmd, addr);
	do {
		pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
		WARN_ON(!pte_none(ptent) && !pte_present(ptent));
	} while (pte++, addr += PAGE_SIZE, addr != end);
}

N
Nick Piggin 已提交
74
static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
L
Linus Torvalds 已提交
75 76 77 78 79 80 81
{
	pmd_t *pmd;
	unsigned long next;

	pmd = pmd_offset(pud, addr);
	do {
		next = pmd_addr_end(addr, end);
82 83
		if (pmd_clear_huge(pmd))
			continue;
L
Linus Torvalds 已提交
84 85 86 87 88 89
		if (pmd_none_or_clear_bad(pmd))
			continue;
		vunmap_pte_range(pmd, addr, next);
	} while (pmd++, addr = next, addr != end);
}

90
static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end)
L
Linus Torvalds 已提交
91 92 93 94
{
	pud_t *pud;
	unsigned long next;

95
	pud = pud_offset(p4d, addr);
L
Linus Torvalds 已提交
96 97
	do {
		next = pud_addr_end(addr, end);
98 99
		if (pud_clear_huge(pud))
			continue;
L
Linus Torvalds 已提交
100 101 102 103 104 105
		if (pud_none_or_clear_bad(pud))
			continue;
		vunmap_pmd_range(pud, addr, next);
	} while (pud++, addr = next, addr != end);
}

106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end)
{
	p4d_t *p4d;
	unsigned long next;

	p4d = p4d_offset(pgd, addr);
	do {
		next = p4d_addr_end(addr, end);
		if (p4d_clear_huge(p4d))
			continue;
		if (p4d_none_or_clear_bad(p4d))
			continue;
		vunmap_pud_range(p4d, addr, next);
	} while (p4d++, addr = next, addr != end);
}

N
Nick Piggin 已提交
122
static void vunmap_page_range(unsigned long addr, unsigned long end)
L
Linus Torvalds 已提交
123 124 125 126 127 128 129 130 131 132
{
	pgd_t *pgd;
	unsigned long next;

	BUG_ON(addr >= end);
	pgd = pgd_offset_k(addr);
	do {
		next = pgd_addr_end(addr, end);
		if (pgd_none_or_clear_bad(pgd))
			continue;
133
		vunmap_p4d_range(pgd, addr, next);
L
Linus Torvalds 已提交
134 135 136 137
	} while (pgd++, addr = next, addr != end);
}

static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
N
Nick Piggin 已提交
138
		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
L
Linus Torvalds 已提交
139 140 141
{
	pte_t *pte;

N
Nick Piggin 已提交
142 143 144 145 146
	/*
	 * nr is a running index into the array which helps higher level
	 * callers keep track of where we're up to.
	 */

H
Hugh Dickins 已提交
147
	pte = pte_alloc_kernel(pmd, addr);
L
Linus Torvalds 已提交
148 149 150
	if (!pte)
		return -ENOMEM;
	do {
N
Nick Piggin 已提交
151 152 153 154 155
		struct page *page = pages[*nr];

		if (WARN_ON(!pte_none(*pte)))
			return -EBUSY;
		if (WARN_ON(!page))
L
Linus Torvalds 已提交
156 157
			return -ENOMEM;
		set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
N
Nick Piggin 已提交
158
		(*nr)++;
L
Linus Torvalds 已提交
159 160 161 162
	} while (pte++, addr += PAGE_SIZE, addr != end);
	return 0;
}

N
Nick Piggin 已提交
163 164
static int vmap_pmd_range(pud_t *pud, unsigned long addr,
		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
L
Linus Torvalds 已提交
165 166 167 168 169 170 171 172 173
{
	pmd_t *pmd;
	unsigned long next;

	pmd = pmd_alloc(&init_mm, pud, addr);
	if (!pmd)
		return -ENOMEM;
	do {
		next = pmd_addr_end(addr, end);
N
Nick Piggin 已提交
174
		if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
L
Linus Torvalds 已提交
175 176 177 178 179
			return -ENOMEM;
	} while (pmd++, addr = next, addr != end);
	return 0;
}

180
static int vmap_pud_range(p4d_t *p4d, unsigned long addr,
N
Nick Piggin 已提交
181
		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
L
Linus Torvalds 已提交
182 183 184 185
{
	pud_t *pud;
	unsigned long next;

186
	pud = pud_alloc(&init_mm, p4d, addr);
L
Linus Torvalds 已提交
187 188 189 190
	if (!pud)
		return -ENOMEM;
	do {
		next = pud_addr_end(addr, end);
N
Nick Piggin 已提交
191
		if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
L
Linus Torvalds 已提交
192 193 194 195 196
			return -ENOMEM;
	} while (pud++, addr = next, addr != end);
	return 0;
}

197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
static int vmap_p4d_range(pgd_t *pgd, unsigned long addr,
		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
{
	p4d_t *p4d;
	unsigned long next;

	p4d = p4d_alloc(&init_mm, pgd, addr);
	if (!p4d)
		return -ENOMEM;
	do {
		next = p4d_addr_end(addr, end);
		if (vmap_pud_range(p4d, addr, next, prot, pages, nr))
			return -ENOMEM;
	} while (p4d++, addr = next, addr != end);
	return 0;
}

N
Nick Piggin 已提交
214 215 216 217 218 219
/*
 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
 * will have pfns corresponding to the "pages" array.
 *
 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
 */
220 221
static int vmap_page_range_noflush(unsigned long start, unsigned long end,
				   pgprot_t prot, struct page **pages)
L
Linus Torvalds 已提交
222 223 224
{
	pgd_t *pgd;
	unsigned long next;
225
	unsigned long addr = start;
N
Nick Piggin 已提交
226 227
	int err = 0;
	int nr = 0;
L
Linus Torvalds 已提交
228 229 230 231 232

	BUG_ON(addr >= end);
	pgd = pgd_offset_k(addr);
	do {
		next = pgd_addr_end(addr, end);
233
		err = vmap_p4d_range(pgd, addr, next, prot, pages, &nr);
L
Linus Torvalds 已提交
234
		if (err)
235
			return err;
L
Linus Torvalds 已提交
236
	} while (pgd++, addr = next, addr != end);
N
Nick Piggin 已提交
237 238

	return nr;
L
Linus Torvalds 已提交
239 240
}

241 242 243 244 245 246 247 248 249 250
static int vmap_page_range(unsigned long start, unsigned long end,
			   pgprot_t prot, struct page **pages)
{
	int ret;

	ret = vmap_page_range_noflush(start, end, prot, pages);
	flush_cache_vmap(start, end);
	return ret;
}

251
int is_vmalloc_or_module_addr(const void *x)
252 253
{
	/*
254
	 * ARM, x86-64 and sparc64 put modules in a special place,
255 256 257 258 259 260 261 262 263 264 265
	 * and fall back on vmalloc() if that fails. Others
	 * just put it in the vmalloc space.
	 */
#if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
	unsigned long addr = (unsigned long)x;
	if (addr >= MODULES_VADDR && addr < MODULES_END)
		return 1;
#endif
	return is_vmalloc_addr(x);
}

266
/*
267
 * Walk a vmap address to the struct page it maps.
268
 */
269
struct page *vmalloc_to_page(const void *vmalloc_addr)
270 271
{
	unsigned long addr = (unsigned long) vmalloc_addr;
272
	struct page *page = NULL;
273
	pgd_t *pgd = pgd_offset_k(addr);
274 275 276 277
	p4d_t *p4d;
	pud_t *pud;
	pmd_t *pmd;
	pte_t *ptep, pte;
278

279 280 281 282
	/*
	 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
	 * architectures that do not vmalloc module space
	 */
283
	VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
J
Jiri Slaby 已提交
284

285 286 287 288 289 290
	if (pgd_none(*pgd))
		return NULL;
	p4d = p4d_offset(pgd, addr);
	if (p4d_none(*p4d))
		return NULL;
	pud = pud_offset(p4d, addr);
291 292 293 294 295 296 297 298 299 300 301

	/*
	 * Don't dereference bad PUD or PMD (below) entries. This will also
	 * identify huge mappings, which we may encounter on architectures
	 * that define CONFIG_HAVE_ARCH_HUGE_VMAP=y. Such regions will be
	 * identified as vmalloc addresses by is_vmalloc_addr(), but are
	 * not [unambiguously] associated with a struct page, so there is
	 * no correct value to return for them.
	 */
	WARN_ON_ONCE(pud_bad(*pud));
	if (pud_none(*pud) || pud_bad(*pud))
302 303
		return NULL;
	pmd = pmd_offset(pud, addr);
304 305
	WARN_ON_ONCE(pmd_bad(*pmd));
	if (pmd_none(*pmd) || pmd_bad(*pmd))
306 307 308 309 310 311 312
		return NULL;

	ptep = pte_offset_map(pmd, addr);
	pte = *ptep;
	if (pte_present(pte))
		page = pte_page(pte);
	pte_unmap(ptep);
313
	return page;
314
}
315
EXPORT_SYMBOL(vmalloc_to_page);
316 317

/*
318
 * Map a vmalloc()-space virtual address to the physical page frame number.
319
 */
320
unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
321
{
322
	return page_to_pfn(vmalloc_to_page(vmalloc_addr));
323
}
324
EXPORT_SYMBOL(vmalloc_to_pfn);
325

N
Nick Piggin 已提交
326 327 328

/*** Global kva allocator ***/

329
#define DEBUG_AUGMENT_PROPAGATE_CHECK 0
330
#define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0
331

332
#define VM_LAZY_FREE	0x02
N
Nick Piggin 已提交
333 334 335
#define VM_VM_AREA	0x04

static DEFINE_SPINLOCK(vmap_area_lock);
336 337
/* Export for kexec only */
LIST_HEAD(vmap_area_list);
338
static LLIST_HEAD(vmap_purge_list);
N
Nick Piggin 已提交
339
static struct rb_root vmap_area_root = RB_ROOT;
340
static bool vmap_initialized __read_mostly;
N
Nick Piggin 已提交
341

342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
/*
 * This kmem_cache is used for vmap_area objects. Instead of
 * allocating from slab we reuse an object from this cache to
 * make things faster. Especially in "no edge" splitting of
 * free block.
 */
static struct kmem_cache *vmap_area_cachep;

/*
 * This linked list is used in pair with free_vmap_area_root.
 * It gives O(1) access to prev/next to perform fast coalescing.
 */
static LIST_HEAD(free_vmap_area_list);

/*
 * This augment red-black tree represents the free vmap space.
 * All vmap_area objects in this tree are sorted by va->va_start
 * address. It is used for allocation and merging when a vmap
 * object is released.
 *
 * Each vmap_area node contains a maximum available free block
 * of its sub-tree, right or left. Therefore it is possible to
 * find a lowest match of free area.
 */
static struct rb_root free_vmap_area_root = RB_ROOT;

static __always_inline unsigned long
va_size(struct vmap_area *va)
{
	return (va->va_end - va->va_start);
}

static __always_inline unsigned long
get_subtree_max_size(struct rb_node *node)
{
	struct vmap_area *va;

	va = rb_entry_safe(node, struct vmap_area, rb_node);
	return va ? va->subtree_max_size : 0;
}
N
Nick Piggin 已提交
382

383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
/*
 * Gets called when remove the node and rotate.
 */
static __always_inline unsigned long
compute_subtree_max_size(struct vmap_area *va)
{
	return max3(va_size(va),
		get_subtree_max_size(va->rb_node.rb_left),
		get_subtree_max_size(va->rb_node.rb_right));
}

RB_DECLARE_CALLBACKS(static, free_vmap_area_rb_augment_cb,
	struct vmap_area, rb_node, unsigned long, subtree_max_size,
	compute_subtree_max_size)

static void purge_vmap_area_lazy(void);
static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
static unsigned long lazy_max_pages(void);
N
Nick Piggin 已提交
401 402

static struct vmap_area *__find_vmap_area(unsigned long addr)
L
Linus Torvalds 已提交
403
{
N
Nick Piggin 已提交
404 405 406 407 408 409 410 411
	struct rb_node *n = vmap_area_root.rb_node;

	while (n) {
		struct vmap_area *va;

		va = rb_entry(n, struct vmap_area, rb_node);
		if (addr < va->va_start)
			n = n->rb_left;
412
		else if (addr >= va->va_end)
N
Nick Piggin 已提交
413 414 415 416 417 418 419 420
			n = n->rb_right;
		else
			return va;
	}

	return NULL;
}

421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441
/*
 * This function returns back addresses of parent node
 * and its left or right link for further processing.
 */
static __always_inline struct rb_node **
find_va_links(struct vmap_area *va,
	struct rb_root *root, struct rb_node *from,
	struct rb_node **parent)
{
	struct vmap_area *tmp_va;
	struct rb_node **link;

	if (root) {
		link = &root->rb_node;
		if (unlikely(!*link)) {
			*parent = NULL;
			return link;
		}
	} else {
		link = &from;
	}
N
Nick Piggin 已提交
442

443 444 445 446 447 448 449
	/*
	 * Go to the bottom of the tree. When we hit the last point
	 * we end up with parent rb_node and correct direction, i name
	 * it link, where the new va->rb_node will be attached to.
	 */
	do {
		tmp_va = rb_entry(*link, struct vmap_area, rb_node);
N
Nick Piggin 已提交
450

451 452 453 454 455 456 457 458 459 460 461
		/*
		 * During the traversal we also do some sanity check.
		 * Trigger the BUG() if there are sides(left/right)
		 * or full overlaps.
		 */
		if (va->va_start < tmp_va->va_end &&
				va->va_end <= tmp_va->va_start)
			link = &(*link)->rb_left;
		else if (va->va_end > tmp_va->va_start &&
				va->va_start >= tmp_va->va_end)
			link = &(*link)->rb_right;
N
Nick Piggin 已提交
462 463
		else
			BUG();
464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499
	} while (*link);

	*parent = &tmp_va->rb_node;
	return link;
}

static __always_inline struct list_head *
get_va_next_sibling(struct rb_node *parent, struct rb_node **link)
{
	struct list_head *list;

	if (unlikely(!parent))
		/*
		 * The red-black tree where we try to find VA neighbors
		 * before merging or inserting is empty, i.e. it means
		 * there is no free vmap space. Normally it does not
		 * happen but we handle this case anyway.
		 */
		return NULL;

	list = &rb_entry(parent, struct vmap_area, rb_node)->list;
	return (&parent->rb_right == link ? list->next : list);
}

static __always_inline void
link_va(struct vmap_area *va, struct rb_root *root,
	struct rb_node *parent, struct rb_node **link, struct list_head *head)
{
	/*
	 * VA is still not in the list, but we can
	 * identify its future previous list_head node.
	 */
	if (likely(parent)) {
		head = &rb_entry(parent, struct vmap_area, rb_node)->list;
		if (&parent->rb_right != link)
			head = head->prev;
N
Nick Piggin 已提交
500 501
	}

502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
	/* Insert to the rb-tree */
	rb_link_node(&va->rb_node, parent, link);
	if (root == &free_vmap_area_root) {
		/*
		 * Some explanation here. Just perform simple insertion
		 * to the tree. We do not set va->subtree_max_size to
		 * its current size before calling rb_insert_augmented().
		 * It is because of we populate the tree from the bottom
		 * to parent levels when the node _is_ in the tree.
		 *
		 * Therefore we set subtree_max_size to zero after insertion,
		 * to let __augment_tree_propagate_from() puts everything to
		 * the correct order later on.
		 */
		rb_insert_augmented(&va->rb_node,
			root, &free_vmap_area_rb_augment_cb);
		va->subtree_max_size = 0;
	} else {
		rb_insert_color(&va->rb_node, root);
	}
N
Nick Piggin 已提交
522

523 524
	/* Address-sort this list */
	list_add(&va->list, head);
N
Nick Piggin 已提交
525 526
}

527 528 529 530 531 532 533 534 535 536 537 538 539
static __always_inline void
unlink_va(struct vmap_area *va, struct rb_root *root)
{
	/*
	 * During merging a VA node can be empty, therefore
	 * not linked with the tree nor list. Just check it.
	 */
	if (!RB_EMPTY_NODE(&va->rb_node)) {
		if (root == &free_vmap_area_root)
			rb_erase_augmented(&va->rb_node,
				root, &free_vmap_area_rb_augment_cb);
		else
			rb_erase(&va->rb_node, root);
N
Nick Piggin 已提交
540

541 542 543 544 545
		list_del(&va->list);
		RB_CLEAR_NODE(&va->rb_node);
	}
}

546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587
#if DEBUG_AUGMENT_PROPAGATE_CHECK
static void
augment_tree_propagate_check(struct rb_node *n)
{
	struct vmap_area *va;
	struct rb_node *node;
	unsigned long size;
	bool found = false;

	if (n == NULL)
		return;

	va = rb_entry(n, struct vmap_area, rb_node);
	size = va->subtree_max_size;
	node = n;

	while (node) {
		va = rb_entry(node, struct vmap_area, rb_node);

		if (get_subtree_max_size(node->rb_left) == size) {
			node = node->rb_left;
		} else {
			if (va_size(va) == size) {
				found = true;
				break;
			}

			node = node->rb_right;
		}
	}

	if (!found) {
		va = rb_entry(n, struct vmap_area, rb_node);
		pr_emerg("tree is corrupted: %lu, %lu\n",
			va_size(va), va->subtree_max_size);
	}

	augment_tree_propagate_check(n->rb_left);
	augment_tree_propagate_check(n->rb_right);
}
#endif

588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636
/*
 * This function populates subtree_max_size from bottom to upper
 * levels starting from VA point. The propagation must be done
 * when VA size is modified by changing its va_start/va_end. Or
 * in case of newly inserting of VA to the tree.
 *
 * It means that __augment_tree_propagate_from() must be called:
 * - After VA has been inserted to the tree(free path);
 * - After VA has been shrunk(allocation path);
 * - After VA has been increased(merging path).
 *
 * Please note that, it does not mean that upper parent nodes
 * and their subtree_max_size are recalculated all the time up
 * to the root node.
 *
 *       4--8
 *        /\
 *       /  \
 *      /    \
 *    2--2  8--8
 *
 * For example if we modify the node 4, shrinking it to 2, then
 * no any modification is required. If we shrink the node 2 to 1
 * its subtree_max_size is updated only, and set to 1. If we shrink
 * the node 8 to 6, then its subtree_max_size is set to 6 and parent
 * node becomes 4--6.
 */
static __always_inline void
augment_tree_propagate_from(struct vmap_area *va)
{
	struct rb_node *node = &va->rb_node;
	unsigned long new_va_sub_max_size;

	while (node) {
		va = rb_entry(node, struct vmap_area, rb_node);
		new_va_sub_max_size = compute_subtree_max_size(va);

		/*
		 * If the newly calculated maximum available size of the
		 * subtree is equal to the current one, then it means that
		 * the tree is propagated correctly. So we have to stop at
		 * this point to save cycles.
		 */
		if (va->subtree_max_size == new_va_sub_max_size)
			break;

		va->subtree_max_size = new_va_sub_max_size;
		node = rb_parent(&va->rb_node);
	}
637 638 639 640

#if DEBUG_AUGMENT_PROPAGATE_CHECK
	augment_tree_propagate_check(free_vmap_area_root.rb_node);
#endif
641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817
}

static void
insert_vmap_area(struct vmap_area *va,
	struct rb_root *root, struct list_head *head)
{
	struct rb_node **link;
	struct rb_node *parent;

	link = find_va_links(va, root, NULL, &parent);
	link_va(va, root, parent, link, head);
}

static void
insert_vmap_area_augment(struct vmap_area *va,
	struct rb_node *from, struct rb_root *root,
	struct list_head *head)
{
	struct rb_node **link;
	struct rb_node *parent;

	if (from)
		link = find_va_links(va, NULL, from, &parent);
	else
		link = find_va_links(va, root, NULL, &parent);

	link_va(va, root, parent, link, head);
	augment_tree_propagate_from(va);
}

/*
 * Merge de-allocated chunk of VA memory with previous
 * and next free blocks. If coalesce is not done a new
 * free area is inserted. If VA has been merged, it is
 * freed.
 */
static __always_inline void
merge_or_add_vmap_area(struct vmap_area *va,
	struct rb_root *root, struct list_head *head)
{
	struct vmap_area *sibling;
	struct list_head *next;
	struct rb_node **link;
	struct rb_node *parent;
	bool merged = false;

	/*
	 * Find a place in the tree where VA potentially will be
	 * inserted, unless it is merged with its sibling/siblings.
	 */
	link = find_va_links(va, root, NULL, &parent);

	/*
	 * Get next node of VA to check if merging can be done.
	 */
	next = get_va_next_sibling(parent, link);
	if (unlikely(next == NULL))
		goto insert;

	/*
	 * start            end
	 * |                |
	 * |<------VA------>|<-----Next----->|
	 *                  |                |
	 *                  start            end
	 */
	if (next != head) {
		sibling = list_entry(next, struct vmap_area, list);
		if (sibling->va_start == va->va_end) {
			sibling->va_start = va->va_start;

			/* Check and update the tree if needed. */
			augment_tree_propagate_from(sibling);

			/* Remove this VA, it has been merged. */
			unlink_va(va, root);

			/* Free vmap_area object. */
			kmem_cache_free(vmap_area_cachep, va);

			/* Point to the new merged area. */
			va = sibling;
			merged = true;
		}
	}

	/*
	 * start            end
	 * |                |
	 * |<-----Prev----->|<------VA------>|
	 *                  |                |
	 *                  start            end
	 */
	if (next->prev != head) {
		sibling = list_entry(next->prev, struct vmap_area, list);
		if (sibling->va_end == va->va_start) {
			sibling->va_end = va->va_end;

			/* Check and update the tree if needed. */
			augment_tree_propagate_from(sibling);

			/* Remove this VA, it has been merged. */
			unlink_va(va, root);

			/* Free vmap_area object. */
			kmem_cache_free(vmap_area_cachep, va);

			return;
		}
	}

insert:
	if (!merged) {
		link_va(va, root, parent, link, head);
		augment_tree_propagate_from(va);
	}
}

static __always_inline bool
is_within_this_va(struct vmap_area *va, unsigned long size,
	unsigned long align, unsigned long vstart)
{
	unsigned long nva_start_addr;

	if (va->va_start > vstart)
		nva_start_addr = ALIGN(va->va_start, align);
	else
		nva_start_addr = ALIGN(vstart, align);

	/* Can be overflowed due to big size or alignment. */
	if (nva_start_addr + size < nva_start_addr ||
			nva_start_addr < vstart)
		return false;

	return (nva_start_addr + size <= va->va_end);
}

/*
 * Find the first free block(lowest start address) in the tree,
 * that will accomplish the request corresponding to passing
 * parameters.
 */
static __always_inline struct vmap_area *
find_vmap_lowest_match(unsigned long size,
	unsigned long align, unsigned long vstart)
{
	struct vmap_area *va;
	struct rb_node *node;
	unsigned long length;

	/* Start from the root. */
	node = free_vmap_area_root.rb_node;

	/* Adjust the search size for alignment overhead. */
	length = size + align - 1;

	while (node) {
		va = rb_entry(node, struct vmap_area, rb_node);

		if (get_subtree_max_size(node->rb_left) >= length &&
				vstart < va->va_start) {
			node = node->rb_left;
		} else {
			if (is_within_this_va(va, size, align, vstart))
				return va;

			/*
			 * Does not make sense to go deeper towards the right
			 * sub-tree if it does not have a free block that is
			 * equal or bigger to the requested search length.
			 */
			if (get_subtree_max_size(node->rb_right) >= length) {
				node = node->rb_right;
				continue;
			}

			/*
818
			 * OK. We roll back and find the first right sub-tree,
819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838
			 * that will satisfy the search criteria. It can happen
			 * only once due to "vstart" restriction.
			 */
			while ((node = rb_parent(node))) {
				va = rb_entry(node, struct vmap_area, rb_node);
				if (is_within_this_va(va, size, align, vstart))
					return va;

				if (get_subtree_max_size(node->rb_right) >= length &&
						vstart <= va->va_start) {
					node = node->rb_right;
					break;
				}
			}
		}
	}

	return NULL;
}

839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876
#if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
#include <linux/random.h>

static struct vmap_area *
find_vmap_lowest_linear_match(unsigned long size,
	unsigned long align, unsigned long vstart)
{
	struct vmap_area *va;

	list_for_each_entry(va, &free_vmap_area_list, list) {
		if (!is_within_this_va(va, size, align, vstart))
			continue;

		return va;
	}

	return NULL;
}

static void
find_vmap_lowest_match_check(unsigned long size)
{
	struct vmap_area *va_1, *va_2;
	unsigned long vstart;
	unsigned int rnd;

	get_random_bytes(&rnd, sizeof(rnd));
	vstart = VMALLOC_START + rnd;

	va_1 = find_vmap_lowest_match(size, 1, vstart);
	va_2 = find_vmap_lowest_linear_match(size, 1, vstart);

	if (va_1 != va_2)
		pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n",
			va_1, va_2, vstart);
}
#endif

877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915
enum fit_type {
	NOTHING_FIT = 0,
	FL_FIT_TYPE = 1,	/* full fit */
	LE_FIT_TYPE = 2,	/* left edge fit */
	RE_FIT_TYPE = 3,	/* right edge fit */
	NE_FIT_TYPE = 4		/* no edge fit */
};

static __always_inline enum fit_type
classify_va_fit_type(struct vmap_area *va,
	unsigned long nva_start_addr, unsigned long size)
{
	enum fit_type type;

	/* Check if it is within VA. */
	if (nva_start_addr < va->va_start ||
			nva_start_addr + size > va->va_end)
		return NOTHING_FIT;

	/* Now classify. */
	if (va->va_start == nva_start_addr) {
		if (va->va_end == nva_start_addr + size)
			type = FL_FIT_TYPE;
		else
			type = LE_FIT_TYPE;
	} else if (va->va_end == nva_start_addr + size) {
		type = RE_FIT_TYPE;
	} else {
		type = NE_FIT_TYPE;
	}

	return type;
}

static __always_inline int
adjust_va_to_fit_type(struct vmap_area *va,
	unsigned long nva_start_addr, unsigned long size,
	enum fit_type type)
{
916
	struct vmap_area *lva = NULL;
917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974

	if (type == FL_FIT_TYPE) {
		/*
		 * No need to split VA, it fully fits.
		 *
		 * |               |
		 * V      NVA      V
		 * |---------------|
		 */
		unlink_va(va, &free_vmap_area_root);
		kmem_cache_free(vmap_area_cachep, va);
	} else if (type == LE_FIT_TYPE) {
		/*
		 * Split left edge of fit VA.
		 *
		 * |       |
		 * V  NVA  V   R
		 * |-------|-------|
		 */
		va->va_start += size;
	} else if (type == RE_FIT_TYPE) {
		/*
		 * Split right edge of fit VA.
		 *
		 *         |       |
		 *     L   V  NVA  V
		 * |-------|-------|
		 */
		va->va_end = nva_start_addr;
	} else if (type == NE_FIT_TYPE) {
		/*
		 * Split no edge of fit VA.
		 *
		 *     |       |
		 *   L V  NVA  V R
		 * |---|-------|---|
		 */
		lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT);
		if (unlikely(!lva))
			return -1;

		/*
		 * Build the remainder.
		 */
		lva->va_start = va->va_start;
		lva->va_end = nva_start_addr;

		/*
		 * Shrink this VA to remaining size.
		 */
		va->va_start = nva_start_addr + size;
	} else {
		return -1;
	}

	if (type != FL_FIT_TYPE) {
		augment_tree_propagate_from(va);

975
		if (lva)	/* type == NE_FIT_TYPE */
976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018
			insert_vmap_area_augment(lva, &va->rb_node,
				&free_vmap_area_root, &free_vmap_area_list);
	}

	return 0;
}

/*
 * Returns a start address of the newly allocated area, if success.
 * Otherwise a vend is returned that indicates failure.
 */
static __always_inline unsigned long
__alloc_vmap_area(unsigned long size, unsigned long align,
	unsigned long vstart, unsigned long vend, int node)
{
	unsigned long nva_start_addr;
	struct vmap_area *va;
	enum fit_type type;
	int ret;

	va = find_vmap_lowest_match(size, align, vstart);
	if (unlikely(!va))
		return vend;

	if (va->va_start > vstart)
		nva_start_addr = ALIGN(va->va_start, align);
	else
		nva_start_addr = ALIGN(vstart, align);

	/* Check the "vend" restriction. */
	if (nva_start_addr + size > vend)
		return vend;

	/* Classify what we have found. */
	type = classify_va_fit_type(va, nva_start_addr, size);
	if (WARN_ON_ONCE(type == NOTHING_FIT))
		return vend;

	/* Update the free vmap_area. */
	ret = adjust_va_to_fit_type(va, nva_start_addr, size, type);
	if (ret)
		return vend;

1019 1020 1021 1022
#if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
	find_vmap_lowest_match_check(size);
#endif

1023 1024
	return nva_start_addr;
}
1025

N
Nick Piggin 已提交
1026 1027 1028 1029 1030 1031 1032 1033 1034 1035
/*
 * Allocate a region of KVA of the specified size and alignment, within the
 * vstart and vend.
 */
static struct vmap_area *alloc_vmap_area(unsigned long size,
				unsigned long align,
				unsigned long vstart, unsigned long vend,
				int node, gfp_t gfp_mask)
{
	struct vmap_area *va;
L
Linus Torvalds 已提交
1036
	unsigned long addr;
N
Nick Piggin 已提交
1037 1038
	int purged = 0;

N
Nick Piggin 已提交
1039
	BUG_ON(!size);
1040
	BUG_ON(offset_in_page(size));
N
Nick Piggin 已提交
1041
	BUG_ON(!is_power_of_2(align));
N
Nick Piggin 已提交
1042

1043 1044 1045
	if (unlikely(!vmap_initialized))
		return ERR_PTR(-EBUSY);

1046
	might_sleep();
1047

1048
	va = kmem_cache_alloc_node(vmap_area_cachep,
N
Nick Piggin 已提交
1049 1050 1051 1052
			gfp_mask & GFP_RECLAIM_MASK, node);
	if (unlikely(!va))
		return ERR_PTR(-ENOMEM);

1053 1054 1055 1056 1057 1058
	/*
	 * Only scan the relevant parts containing pointers to other objects
	 * to avoid false negatives.
	 */
	kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask & GFP_RECLAIM_MASK);

N
Nick Piggin 已提交
1059 1060
retry:
	spin_lock(&vmap_area_lock);
N
Nick Piggin 已提交
1061

1062
	/*
1063 1064
	 * If an allocation fails, the "vend" address is
	 * returned. Therefore trigger the overflow path.
1065
	 */
1066 1067
	addr = __alloc_vmap_area(size, align, vstart, vend, node);
	if (unlikely(addr == vend))
N
Nick Piggin 已提交
1068
		goto overflow;
N
Nick Piggin 已提交
1069 1070 1071 1072

	va->va_start = addr;
	va->va_end = addr + size;
	va->flags = 0;
1073 1074
	insert_vmap_area(va, &vmap_area_root, &vmap_area_list);

N
Nick Piggin 已提交
1075 1076
	spin_unlock(&vmap_area_lock);

1077
	BUG_ON(!IS_ALIGNED(va->va_start, align));
N
Nick Piggin 已提交
1078 1079 1080
	BUG_ON(va->va_start < vstart);
	BUG_ON(va->va_end > vend);

N
Nick Piggin 已提交
1081
	return va;
N
Nick Piggin 已提交
1082 1083 1084 1085 1086 1087 1088 1089

overflow:
	spin_unlock(&vmap_area_lock);
	if (!purged) {
		purge_vmap_area_lazy();
		purged = 1;
		goto retry;
	}
1090 1091 1092 1093 1094 1095 1096 1097 1098 1099

	if (gfpflags_allow_blocking(gfp_mask)) {
		unsigned long freed = 0;
		blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
		if (freed > 0) {
			purged = 0;
			goto retry;
		}
	}

1100
	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
J
Joe Perches 已提交
1101 1102
		pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
			size);
1103 1104

	kmem_cache_free(vmap_area_cachep, va);
N
Nick Piggin 已提交
1105
	return ERR_PTR(-EBUSY);
N
Nick Piggin 已提交
1106 1107
}

1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
int register_vmap_purge_notifier(struct notifier_block *nb)
{
	return blocking_notifier_chain_register(&vmap_notify_list, nb);
}
EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);

int unregister_vmap_purge_notifier(struct notifier_block *nb)
{
	return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
}
EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);

N
Nick Piggin 已提交
1120 1121 1122
static void __free_vmap_area(struct vmap_area *va)
{
	BUG_ON(RB_EMPTY_NODE(&va->rb_node));
N
Nick Piggin 已提交
1123

1124
	/*
1125
	 * Remove from the busy tree/list.
1126
	 */
1127
	unlink_va(va, &vmap_area_root);
1128

1129 1130 1131 1132 1133
	/*
	 * Merge VA with its neighbors, otherwise just add it.
	 */
	merge_or_add_vmap_area(va,
		&free_vmap_area_root, &free_vmap_area_list);
N
Nick Piggin 已提交
1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178
}

/*
 * Free a region of KVA allocated by alloc_vmap_area
 */
static void free_vmap_area(struct vmap_area *va)
{
	spin_lock(&vmap_area_lock);
	__free_vmap_area(va);
	spin_unlock(&vmap_area_lock);
}

/*
 * Clear the pagetable entries of a given vmap_area
 */
static void unmap_vmap_area(struct vmap_area *va)
{
	vunmap_page_range(va->va_start, va->va_end);
}

/*
 * lazy_max_pages is the maximum amount of virtual address space we gather up
 * before attempting to purge with a TLB flush.
 *
 * There is a tradeoff here: a larger number will cover more kernel page tables
 * and take slightly longer to purge, but it will linearly reduce the number of
 * global TLB flushes that must be performed. It would seem natural to scale
 * this number up linearly with the number of CPUs (because vmapping activity
 * could also scale linearly with the number of CPUs), however it is likely
 * that in practice, workloads might be constrained in other ways that mean
 * vmap activity will not scale linearly with CPUs. Also, I want to be
 * conservative and not introduce a big latency on huge systems, so go with
 * a less aggressive log scale. It will still be an improvement over the old
 * code, and it will be simple to change the scale factor if we find that it
 * becomes a problem on bigger systems.
 */
static unsigned long lazy_max_pages(void)
{
	unsigned int log;

	log = fls(num_online_cpus());

	return log * (32UL * 1024 * 1024 / PAGE_SIZE);
}

1179
static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0);
N
Nick Piggin 已提交
1180

1181 1182 1183 1184 1185
/*
 * Serialize vmap purging.  There is no actual criticial section protected
 * by this look, but we want to avoid concurrent calls for performance
 * reasons and to make the pcpu_get_vm_areas more deterministic.
 */
1186
static DEFINE_MUTEX(vmap_purge_lock);
1187

1188 1189 1190
/* for per-CPU blocks */
static void purge_fragmented_blocks_allcpus(void);

1191 1192 1193 1194 1195 1196
/*
 * called before a call to iounmap() if the caller wants vm_area_struct's
 * immediately freed.
 */
void set_iounmap_nonlazy(void)
{
1197
	atomic_long_set(&vmap_lazy_nr, lazy_max_pages()+1);
1198 1199
}

N
Nick Piggin 已提交
1200 1201 1202
/*
 * Purges all lazily-freed vmap areas.
 */
1203
static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end)
N
Nick Piggin 已提交
1204
{
1205
	unsigned long resched_threshold;
1206
	struct llist_node *valist;
N
Nick Piggin 已提交
1207
	struct vmap_area *va;
1208
	struct vmap_area *n_va;
N
Nick Piggin 已提交
1209

1210
	lockdep_assert_held(&vmap_purge_lock);
1211

1212
	valist = llist_del_all(&vmap_purge_list);
1213 1214 1215 1216 1217 1218 1219
	if (unlikely(valist == NULL))
		return false;

	/*
	 * TODO: to calculate a flush range without looping.
	 * The list can be up to lazy_max_pages() elements.
	 */
1220
	llist_for_each_entry(va, valist, purge_list) {
1221 1222 1223 1224
		if (va->va_start < start)
			start = va->va_start;
		if (va->va_end > end)
			end = va->va_end;
N
Nick Piggin 已提交
1225 1226
	}

1227
	flush_tlb_kernel_range(start, end);
1228
	resched_threshold = lazy_max_pages() << 1;
N
Nick Piggin 已提交
1229

1230
	spin_lock(&vmap_area_lock);
1231
	llist_for_each_entry_safe(va, n_va, valist, purge_list) {
1232
		unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
1233

1234
		__free_vmap_area(va);
1235
		atomic_long_sub(nr, &vmap_lazy_nr);
1236

1237
		if (atomic_long_read(&vmap_lazy_nr) < resched_threshold)
1238
			cond_resched_lock(&vmap_area_lock);
1239
	}
1240 1241
	spin_unlock(&vmap_area_lock);
	return true;
N
Nick Piggin 已提交
1242 1243
}

N
Nick Piggin 已提交
1244 1245 1246 1247 1248 1249
/*
 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
 * is already purging.
 */
static void try_purge_vmap_area_lazy(void)
{
1250
	if (mutex_trylock(&vmap_purge_lock)) {
1251
		__purge_vmap_area_lazy(ULONG_MAX, 0);
1252
		mutex_unlock(&vmap_purge_lock);
1253
	}
N
Nick Piggin 已提交
1254 1255
}

N
Nick Piggin 已提交
1256 1257 1258 1259 1260
/*
 * Kick off a purge of the outstanding lazy areas.
 */
static void purge_vmap_area_lazy(void)
{
1261
	mutex_lock(&vmap_purge_lock);
1262 1263
	purge_fragmented_blocks_allcpus();
	__purge_vmap_area_lazy(ULONG_MAX, 0);
1264
	mutex_unlock(&vmap_purge_lock);
N
Nick Piggin 已提交
1265 1266 1267
}

/*
1268 1269 1270
 * Free a vmap area, caller ensuring that the area has been unmapped
 * and flush_cache_vunmap had been called for the correct range
 * previously.
N
Nick Piggin 已提交
1271
 */
1272
static void free_vmap_area_noflush(struct vmap_area *va)
N
Nick Piggin 已提交
1273
{
1274
	unsigned long nr_lazy;
1275

1276 1277
	nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >>
				PAGE_SHIFT, &vmap_lazy_nr);
1278 1279 1280 1281 1282

	/* After this point, we may free va at any time */
	llist_add(&va->purge_list, &vmap_purge_list);

	if (unlikely(nr_lazy > lazy_max_pages()))
N
Nick Piggin 已提交
1283
		try_purge_vmap_area_lazy();
N
Nick Piggin 已提交
1284 1285
}

1286 1287 1288 1289 1290 1291
/*
 * Free and unmap a vmap area
 */
static void free_unmap_vmap_area(struct vmap_area *va)
{
	flush_cache_vunmap(va->va_start, va->va_end);
1292
	unmap_vmap_area(va);
1293 1294 1295
	if (debug_pagealloc_enabled())
		flush_tlb_kernel_range(va->va_start, va->va_end);

1296
	free_vmap_area_noflush(va);
1297 1298
}

N
Nick Piggin 已提交
1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332
static struct vmap_area *find_vmap_area(unsigned long addr)
{
	struct vmap_area *va;

	spin_lock(&vmap_area_lock);
	va = __find_vmap_area(addr);
	spin_unlock(&vmap_area_lock);

	return va;
}

/*** Per cpu kva allocator ***/

/*
 * vmap space is limited especially on 32 bit architectures. Ensure there is
 * room for at least 16 percpu vmap blocks per CPU.
 */
/*
 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
 * to #define VMALLOC_SPACE		(VMALLOC_END-VMALLOC_START). Guess
 * instead (we just need a rough idea)
 */
#if BITS_PER_LONG == 32
#define VMALLOC_SPACE		(128UL*1024*1024)
#else
#define VMALLOC_SPACE		(128UL*1024*1024*1024)
#endif

#define VMALLOC_PAGES		(VMALLOC_SPACE / PAGE_SIZE)
#define VMAP_MAX_ALLOC		BITS_PER_LONG	/* 256K with 4K pages */
#define VMAP_BBMAP_BITS_MAX	1024	/* 4MB with 4K pages */
#define VMAP_BBMAP_BITS_MIN	(VMAP_MAX_ALLOC*2)
#define VMAP_MIN(x, y)		((x) < (y) ? (x) : (y)) /* can't use min() */
#define VMAP_MAX(x, y)		((x) > (y) ? (x) : (y)) /* can't use max() */
1333 1334 1335 1336
#define VMAP_BBMAP_BITS		\
		VMAP_MIN(VMAP_BBMAP_BITS_MAX,	\
		VMAP_MAX(VMAP_BBMAP_BITS_MIN,	\
			VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
N
Nick Piggin 已提交
1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348

#define VMAP_BLOCK_SIZE		(VMAP_BBMAP_BITS * PAGE_SIZE)

struct vmap_block_queue {
	spinlock_t lock;
	struct list_head free;
};

struct vmap_block {
	spinlock_t lock;
	struct vmap_area *va;
	unsigned long free, dirty;
1349
	unsigned long dirty_min, dirty_max; /*< dirty range */
1350 1351
	struct list_head free_list;
	struct rcu_head rcu_head;
1352
	struct list_head purge;
N
Nick Piggin 已提交
1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379
};

/* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);

/*
 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
 * in the free path. Could get rid of this if we change the API to return a
 * "cookie" from alloc, to be passed to free. But no big deal yet.
 */
static DEFINE_SPINLOCK(vmap_block_tree_lock);
static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);

/*
 * We should probably have a fallback mechanism to allocate virtual memory
 * out of partially filled vmap blocks. However vmap block sizing should be
 * fairly reasonable according to the vmalloc size, so it shouldn't be a
 * big problem.
 */

static unsigned long addr_to_vb_idx(unsigned long addr)
{
	addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
	addr /= VMAP_BLOCK_SIZE;
	return addr;
}

1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394
static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
{
	unsigned long addr;

	addr = va_start + (pages_off << PAGE_SHIFT);
	BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
	return (void *)addr;
}

/**
 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
 *                  block. Of course pages number can't exceed VMAP_BBMAP_BITS
 * @order:    how many 2^order pages should be occupied in newly allocated block
 * @gfp_mask: flags for the page level allocator
 *
1395
 * Return: virtual address in a newly allocated block or ERR_PTR(-errno)
1396 1397
 */
static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
N
Nick Piggin 已提交
1398 1399 1400 1401 1402 1403
{
	struct vmap_block_queue *vbq;
	struct vmap_block *vb;
	struct vmap_area *va;
	unsigned long vb_idx;
	int node, err;
1404
	void *vaddr;
N
Nick Piggin 已提交
1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415

	node = numa_node_id();

	vb = kmalloc_node(sizeof(struct vmap_block),
			gfp_mask & GFP_RECLAIM_MASK, node);
	if (unlikely(!vb))
		return ERR_PTR(-ENOMEM);

	va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
					VMALLOC_START, VMALLOC_END,
					node, gfp_mask);
1416
	if (IS_ERR(va)) {
N
Nick Piggin 已提交
1417
		kfree(vb);
J
Julia Lawall 已提交
1418
		return ERR_CAST(va);
N
Nick Piggin 已提交
1419 1420 1421 1422 1423 1424 1425 1426 1427
	}

	err = radix_tree_preload(gfp_mask);
	if (unlikely(err)) {
		kfree(vb);
		free_vmap_area(va);
		return ERR_PTR(err);
	}

1428
	vaddr = vmap_block_vaddr(va->va_start, 0);
N
Nick Piggin 已提交
1429 1430
	spin_lock_init(&vb->lock);
	vb->va = va;
1431 1432 1433
	/* At least something should be left free */
	BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
	vb->free = VMAP_BBMAP_BITS - (1UL << order);
N
Nick Piggin 已提交
1434
	vb->dirty = 0;
1435 1436
	vb->dirty_min = VMAP_BBMAP_BITS;
	vb->dirty_max = 0;
N
Nick Piggin 已提交
1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447
	INIT_LIST_HEAD(&vb->free_list);

	vb_idx = addr_to_vb_idx(va->va_start);
	spin_lock(&vmap_block_tree_lock);
	err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
	spin_unlock(&vmap_block_tree_lock);
	BUG_ON(err);
	radix_tree_preload_end();

	vbq = &get_cpu_var(vmap_block_queue);
	spin_lock(&vbq->lock);
1448
	list_add_tail_rcu(&vb->free_list, &vbq->free);
N
Nick Piggin 已提交
1449
	spin_unlock(&vbq->lock);
1450
	put_cpu_var(vmap_block_queue);
N
Nick Piggin 已提交
1451

1452
	return vaddr;
N
Nick Piggin 已提交
1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465
}

static void free_vmap_block(struct vmap_block *vb)
{
	struct vmap_block *tmp;
	unsigned long vb_idx;

	vb_idx = addr_to_vb_idx(vb->va->va_start);
	spin_lock(&vmap_block_tree_lock);
	tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
	spin_unlock(&vmap_block_tree_lock);
	BUG_ON(tmp != vb);

1466
	free_vmap_area_noflush(vb->va);
1467
	kfree_rcu(vb, rcu_head);
N
Nick Piggin 已提交
1468 1469
}

1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486
static void purge_fragmented_blocks(int cpu)
{
	LIST_HEAD(purge);
	struct vmap_block *vb;
	struct vmap_block *n_vb;
	struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);

	rcu_read_lock();
	list_for_each_entry_rcu(vb, &vbq->free, free_list) {

		if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
			continue;

		spin_lock(&vb->lock);
		if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
			vb->free = 0; /* prevent further allocs after releasing lock */
			vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
1487 1488
			vb->dirty_min = 0;
			vb->dirty_max = VMAP_BBMAP_BITS;
1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512
			spin_lock(&vbq->lock);
			list_del_rcu(&vb->free_list);
			spin_unlock(&vbq->lock);
			spin_unlock(&vb->lock);
			list_add_tail(&vb->purge, &purge);
		} else
			spin_unlock(&vb->lock);
	}
	rcu_read_unlock();

	list_for_each_entry_safe(vb, n_vb, &purge, purge) {
		list_del(&vb->purge);
		free_vmap_block(vb);
	}
}

static void purge_fragmented_blocks_allcpus(void)
{
	int cpu;

	for_each_possible_cpu(cpu)
		purge_fragmented_blocks(cpu);
}

N
Nick Piggin 已提交
1513 1514 1515 1516
static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
{
	struct vmap_block_queue *vbq;
	struct vmap_block *vb;
1517
	void *vaddr = NULL;
N
Nick Piggin 已提交
1518 1519
	unsigned int order;

1520
	BUG_ON(offset_in_page(size));
N
Nick Piggin 已提交
1521
	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
J
Jan Kara 已提交
1522 1523 1524 1525 1526 1527 1528 1529
	if (WARN_ON(size == 0)) {
		/*
		 * Allocating 0 bytes isn't what caller wants since
		 * get_order(0) returns funny result. Just warn and terminate
		 * early.
		 */
		return NULL;
	}
N
Nick Piggin 已提交
1530 1531 1532 1533 1534
	order = get_order(size);

	rcu_read_lock();
	vbq = &get_cpu_var(vmap_block_queue);
	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1535
		unsigned long pages_off;
N
Nick Piggin 已提交
1536 1537

		spin_lock(&vb->lock);
1538 1539 1540 1541
		if (vb->free < (1UL << order)) {
			spin_unlock(&vb->lock);
			continue;
		}
1542

1543 1544
		pages_off = VMAP_BBMAP_BITS - vb->free;
		vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
1545 1546 1547 1548 1549 1550
		vb->free -= 1UL << order;
		if (vb->free == 0) {
			spin_lock(&vbq->lock);
			list_del_rcu(&vb->free_list);
			spin_unlock(&vbq->lock);
		}
1551

1552 1553
		spin_unlock(&vb->lock);
		break;
N
Nick Piggin 已提交
1554
	}
1555

1556
	put_cpu_var(vmap_block_queue);
N
Nick Piggin 已提交
1557 1558
	rcu_read_unlock();

1559 1560 1561
	/* Allocate new block if nothing was found */
	if (!vaddr)
		vaddr = new_vmap_block(order, gfp_mask);
N
Nick Piggin 已提交
1562

1563
	return vaddr;
N
Nick Piggin 已提交
1564 1565 1566 1567 1568 1569 1570 1571 1572
}

static void vb_free(const void *addr, unsigned long size)
{
	unsigned long offset;
	unsigned long vb_idx;
	unsigned int order;
	struct vmap_block *vb;

1573
	BUG_ON(offset_in_page(size));
N
Nick Piggin 已提交
1574
	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
1575 1576 1577

	flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);

N
Nick Piggin 已提交
1578 1579 1580
	order = get_order(size);

	offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
1581
	offset >>= PAGE_SHIFT;
N
Nick Piggin 已提交
1582 1583 1584 1585 1586 1587 1588

	vb_idx = addr_to_vb_idx((unsigned long)addr);
	rcu_read_lock();
	vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
	rcu_read_unlock();
	BUG_ON(!vb);

1589 1590
	vunmap_page_range((unsigned long)addr, (unsigned long)addr + size);

1591 1592 1593 1594
	if (debug_pagealloc_enabled())
		flush_tlb_kernel_range((unsigned long)addr,
					(unsigned long)addr + size);

N
Nick Piggin 已提交
1595
	spin_lock(&vb->lock);
1596 1597 1598 1599

	/* Expand dirty range */
	vb->dirty_min = min(vb->dirty_min, offset);
	vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
1600

N
Nick Piggin 已提交
1601 1602
	vb->dirty += 1UL << order;
	if (vb->dirty == VMAP_BBMAP_BITS) {
1603
		BUG_ON(vb->free);
N
Nick Piggin 已提交
1604 1605 1606 1607 1608 1609
		spin_unlock(&vb->lock);
		free_vmap_block(vb);
	} else
		spin_unlock(&vb->lock);
}

1610
static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush)
N
Nick Piggin 已提交
1611 1612 1613
{
	int cpu;

1614 1615 1616
	if (unlikely(!vmap_initialized))
		return;

1617 1618
	might_sleep();

N
Nick Piggin 已提交
1619 1620 1621 1622 1623 1624 1625
	for_each_possible_cpu(cpu) {
		struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
		struct vmap_block *vb;

		rcu_read_lock();
		list_for_each_entry_rcu(vb, &vbq->free, free_list) {
			spin_lock(&vb->lock);
1626 1627
			if (vb->dirty) {
				unsigned long va_start = vb->va->va_start;
N
Nick Piggin 已提交
1628
				unsigned long s, e;
1629

1630 1631
				s = va_start + (vb->dirty_min << PAGE_SHIFT);
				e = va_start + (vb->dirty_max << PAGE_SHIFT);
N
Nick Piggin 已提交
1632

1633 1634
				start = min(s, start);
				end   = max(e, end);
N
Nick Piggin 已提交
1635

1636
				flush = 1;
N
Nick Piggin 已提交
1637 1638 1639 1640 1641 1642
			}
			spin_unlock(&vb->lock);
		}
		rcu_read_unlock();
	}

1643
	mutex_lock(&vmap_purge_lock);
1644 1645 1646
	purge_fragmented_blocks_allcpus();
	if (!__purge_vmap_area_lazy(start, end) && flush)
		flush_tlb_kernel_range(start, end);
1647
	mutex_unlock(&vmap_purge_lock);
N
Nick Piggin 已提交
1648
}
1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669

/**
 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
 *
 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
 * to amortize TLB flushing overheads. What this means is that any page you
 * have now, may, in a former life, have been mapped into kernel virtual
 * address by the vmap layer and so there might be some CPUs with TLB entries
 * still referencing that page (additional to the regular 1:1 kernel mapping).
 *
 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
 * be sure that none of the pages we have control over will have any aliases
 * from the vmap layer.
 */
void vm_unmap_aliases(void)
{
	unsigned long start = ULONG_MAX, end = 0;
	int flush = 0;

	_vm_unmap_aliases(start, end, flush);
}
N
Nick Piggin 已提交
1670 1671 1672 1673 1674 1675 1676 1677 1678
EXPORT_SYMBOL_GPL(vm_unmap_aliases);

/**
 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
 * @mem: the pointer returned by vm_map_ram
 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
 */
void vm_unmap_ram(const void *mem, unsigned int count)
{
1679
	unsigned long size = (unsigned long)count << PAGE_SHIFT;
N
Nick Piggin 已提交
1680
	unsigned long addr = (unsigned long)mem;
1681
	struct vmap_area *va;
N
Nick Piggin 已提交
1682

1683
	might_sleep();
N
Nick Piggin 已提交
1684 1685 1686
	BUG_ON(!addr);
	BUG_ON(addr < VMALLOC_START);
	BUG_ON(addr > VMALLOC_END);
1687
	BUG_ON(!PAGE_ALIGNED(addr));
N
Nick Piggin 已提交
1688

1689
	if (likely(count <= VMAP_MAX_ALLOC)) {
1690
		debug_check_no_locks_freed(mem, size);
N
Nick Piggin 已提交
1691
		vb_free(mem, size);
1692 1693 1694 1695 1696
		return;
	}

	va = find_vmap_area(addr);
	BUG_ON(!va);
1697 1698
	debug_check_no_locks_freed((void *)va->va_start,
				    (va->va_end - va->va_start));
1699
	free_unmap_vmap_area(va);
N
Nick Piggin 已提交
1700 1701 1702 1703 1704 1705 1706 1707 1708
}
EXPORT_SYMBOL(vm_unmap_ram);

/**
 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
 * @pages: an array of pointers to the pages to be mapped
 * @count: number of pages
 * @node: prefer to allocate data structures on this node
 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
1709
 *
1710 1711 1712 1713 1714 1715
 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
 * faster than vmap so it's good.  But if you mix long-life and short-life
 * objects with vm_map_ram(), it could consume lots of address space through
 * fragmentation (especially on a 32bit machine).  You could see failures in
 * the end.  Please use this function for short-lived objects.
 *
1716
 * Returns: a pointer to the address that has been mapped, or %NULL on failure
N
Nick Piggin 已提交
1717 1718 1719
 */
void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
{
1720
	unsigned long size = (unsigned long)count << PAGE_SHIFT;
N
Nick Piggin 已提交
1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746
	unsigned long addr;
	void *mem;

	if (likely(count <= VMAP_MAX_ALLOC)) {
		mem = vb_alloc(size, GFP_KERNEL);
		if (IS_ERR(mem))
			return NULL;
		addr = (unsigned long)mem;
	} else {
		struct vmap_area *va;
		va = alloc_vmap_area(size, PAGE_SIZE,
				VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
		if (IS_ERR(va))
			return NULL;

		addr = va->va_start;
		mem = (void *)addr;
	}
	if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
		vm_unmap_ram(mem, count);
		return NULL;
	}
	return mem;
}
EXPORT_SYMBOL(vm_map_ram);

1747
static struct vm_struct *vmlist __initdata;
1748

N
Nicolas Pitre 已提交
1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774
/**
 * vm_area_add_early - add vmap area early during boot
 * @vm: vm_struct to add
 *
 * This function is used to add fixed kernel vm area to vmlist before
 * vmalloc_init() is called.  @vm->addr, @vm->size, and @vm->flags
 * should contain proper values and the other fields should be zero.
 *
 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
 */
void __init vm_area_add_early(struct vm_struct *vm)
{
	struct vm_struct *tmp, **p;

	BUG_ON(vmap_initialized);
	for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
		if (tmp->addr >= vm->addr) {
			BUG_ON(tmp->addr < vm->addr + vm->size);
			break;
		} else
			BUG_ON(tmp->addr + tmp->size > vm->addr);
	}
	vm->next = *p;
	*p = vm;
}

1775 1776 1777
/**
 * vm_area_register_early - register vmap area early during boot
 * @vm: vm_struct to register
1778
 * @align: requested alignment
1779 1780 1781 1782 1783 1784 1785 1786
 *
 * This function is used to register kernel vm area before
 * vmalloc_init() is called.  @vm->size and @vm->flags should contain
 * proper values on entry and other fields should be zero.  On return,
 * vm->addr contains the allocated address.
 *
 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
 */
1787
void __init vm_area_register_early(struct vm_struct *vm, size_t align)
1788 1789
{
	static size_t vm_init_off __initdata;
1790 1791 1792 1793
	unsigned long addr;

	addr = ALIGN(VMALLOC_START + vm_init_off, align);
	vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
1794

1795
	vm->addr = (void *)addr;
1796

N
Nicolas Pitre 已提交
1797
	vm_area_add_early(vm);
1798 1799
}

1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840
static void vmap_init_free_space(void)
{
	unsigned long vmap_start = 1;
	const unsigned long vmap_end = ULONG_MAX;
	struct vmap_area *busy, *free;

	/*
	 *     B     F     B     B     B     F
	 * -|-----|.....|-----|-----|-----|.....|-
	 *  |           The KVA space           |
	 *  |<--------------------------------->|
	 */
	list_for_each_entry(busy, &vmap_area_list, list) {
		if (busy->va_start - vmap_start > 0) {
			free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
			if (!WARN_ON_ONCE(!free)) {
				free->va_start = vmap_start;
				free->va_end = busy->va_start;

				insert_vmap_area_augment(free, NULL,
					&free_vmap_area_root,
						&free_vmap_area_list);
			}
		}

		vmap_start = busy->va_end;
	}

	if (vmap_end - vmap_start > 0) {
		free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
		if (!WARN_ON_ONCE(!free)) {
			free->va_start = vmap_start;
			free->va_end = vmap_end;

			insert_vmap_area_augment(free, NULL,
				&free_vmap_area_root,
					&free_vmap_area_list);
		}
	}
}

N
Nick Piggin 已提交
1841 1842
void __init vmalloc_init(void)
{
I
Ivan Kokshaysky 已提交
1843 1844
	struct vmap_area *va;
	struct vm_struct *tmp;
N
Nick Piggin 已提交
1845 1846
	int i;

1847 1848 1849 1850 1851
	/*
	 * Create the cache for vmap_area objects.
	 */
	vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC);

N
Nick Piggin 已提交
1852 1853
	for_each_possible_cpu(i) {
		struct vmap_block_queue *vbq;
1854
		struct vfree_deferred *p;
N
Nick Piggin 已提交
1855 1856 1857 1858

		vbq = &per_cpu(vmap_block_queue, i);
		spin_lock_init(&vbq->lock);
		INIT_LIST_HEAD(&vbq->free);
1859 1860 1861
		p = &per_cpu(vfree_deferred, i);
		init_llist_head(&p->list);
		INIT_WORK(&p->wq, free_work);
N
Nick Piggin 已提交
1862
	}
1863

I
Ivan Kokshaysky 已提交
1864 1865
	/* Import existing vmlist entries. */
	for (tmp = vmlist; tmp; tmp = tmp->next) {
1866 1867 1868 1869
		va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
		if (WARN_ON_ONCE(!va))
			continue;

1870
		va->flags = VM_VM_AREA;
I
Ivan Kokshaysky 已提交
1871 1872
		va->va_start = (unsigned long)tmp->addr;
		va->va_end = va->va_start + tmp->size;
1873
		va->vm = tmp;
1874
		insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
I
Ivan Kokshaysky 已提交
1875
	}
1876

1877 1878 1879 1880
	/*
	 * Now we can initialize a free vmap space.
	 */
	vmap_init_free_space();
1881
	vmap_initialized = true;
N
Nick Piggin 已提交
1882 1883
}

1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926
/**
 * map_kernel_range_noflush - map kernel VM area with the specified pages
 * @addr: start of the VM area to map
 * @size: size of the VM area to map
 * @prot: page protection flags to use
 * @pages: pages to map
 *
 * Map PFN_UP(@size) pages at @addr.  The VM area @addr and @size
 * specify should have been allocated using get_vm_area() and its
 * friends.
 *
 * NOTE:
 * This function does NOT do any cache flushing.  The caller is
 * responsible for calling flush_cache_vmap() on to-be-mapped areas
 * before calling this function.
 *
 * RETURNS:
 * The number of pages mapped on success, -errno on failure.
 */
int map_kernel_range_noflush(unsigned long addr, unsigned long size,
			     pgprot_t prot, struct page **pages)
{
	return vmap_page_range_noflush(addr, addr + size, prot, pages);
}

/**
 * unmap_kernel_range_noflush - unmap kernel VM area
 * @addr: start of the VM area to unmap
 * @size: size of the VM area to unmap
 *
 * Unmap PFN_UP(@size) pages at @addr.  The VM area @addr and @size
 * specify should have been allocated using get_vm_area() and its
 * friends.
 *
 * NOTE:
 * This function does NOT do any cache flushing.  The caller is
 * responsible for calling flush_cache_vunmap() on to-be-mapped areas
 * before calling this function and flush_tlb_kernel_range() after.
 */
void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
{
	vunmap_page_range(addr, addr + size);
}
1927
EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush);
1928 1929 1930 1931 1932 1933 1934 1935 1936

/**
 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
 * @addr: start of the VM area to unmap
 * @size: size of the VM area to unmap
 *
 * Similar to unmap_kernel_range_noflush() but flushes vcache before
 * the unmapping and tlb after.
 */
N
Nick Piggin 已提交
1937 1938 1939
void unmap_kernel_range(unsigned long addr, unsigned long size)
{
	unsigned long end = addr + size;
1940 1941

	flush_cache_vunmap(addr, end);
N
Nick Piggin 已提交
1942 1943 1944
	vunmap_page_range(addr, end);
	flush_tlb_kernel_range(addr, end);
}
1945
EXPORT_SYMBOL_GPL(unmap_kernel_range);
N
Nick Piggin 已提交
1946

1947
int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page **pages)
N
Nick Piggin 已提交
1948 1949
{
	unsigned long addr = (unsigned long)area->addr;
1950
	unsigned long end = addr + get_vm_area_size(area);
N
Nick Piggin 已提交
1951 1952
	int err;

1953
	err = vmap_page_range(addr, end, prot, pages);
N
Nick Piggin 已提交
1954

1955
	return err > 0 ? 0 : err;
N
Nick Piggin 已提交
1956 1957 1958
}
EXPORT_SYMBOL_GPL(map_vm_area);

1959
static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
1960
			      unsigned long flags, const void *caller)
1961
{
1962
	spin_lock(&vmap_area_lock);
1963 1964 1965 1966
	vm->flags = flags;
	vm->addr = (void *)va->va_start;
	vm->size = va->va_end - va->va_start;
	vm->caller = caller;
1967
	va->vm = vm;
1968
	va->flags |= VM_VM_AREA;
1969
	spin_unlock(&vmap_area_lock);
1970
}
1971

1972
static void clear_vm_uninitialized_flag(struct vm_struct *vm)
1973
{
1974
	/*
1975
	 * Before removing VM_UNINITIALIZED,
1976 1977 1978 1979
	 * we should make sure that vm has proper values.
	 * Pair with smp_rmb() in show_numa_info().
	 */
	smp_wmb();
1980
	vm->flags &= ~VM_UNINITIALIZED;
1981 1982
}

N
Nick Piggin 已提交
1983
static struct vm_struct *__get_vm_area_node(unsigned long size,
1984
		unsigned long align, unsigned long flags, unsigned long start,
1985
		unsigned long end, int node, gfp_t gfp_mask, const void *caller)
N
Nick Piggin 已提交
1986
{
1987
	struct vmap_area *va;
N
Nick Piggin 已提交
1988
	struct vm_struct *area;
L
Linus Torvalds 已提交
1989

1990
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
1991
	size = PAGE_ALIGN(size);
1992 1993
	if (unlikely(!size))
		return NULL;
L
Linus Torvalds 已提交
1994

1995 1996 1997 1998
	if (flags & VM_IOREMAP)
		align = 1ul << clamp_t(int, get_count_order_long(size),
				       PAGE_SHIFT, IOREMAP_MAX_ORDER);

1999
	area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
L
Linus Torvalds 已提交
2000 2001 2002
	if (unlikely(!area))
		return NULL;

2003 2004
	if (!(flags & VM_NO_GUARD))
		size += PAGE_SIZE;
L
Linus Torvalds 已提交
2005

N
Nick Piggin 已提交
2006 2007 2008 2009
	va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
	if (IS_ERR(va)) {
		kfree(area);
		return NULL;
L
Linus Torvalds 已提交
2010 2011
	}

2012
	setup_vmalloc_vm(area, va, flags, caller);
2013

L
Linus Torvalds 已提交
2014 2015 2016
	return area;
}

C
Christoph Lameter 已提交
2017 2018 2019
struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
				unsigned long start, unsigned long end)
{
D
David Rientjes 已提交
2020 2021
	return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
				  GFP_KERNEL, __builtin_return_address(0));
C
Christoph Lameter 已提交
2022
}
2023
EXPORT_SYMBOL_GPL(__get_vm_area);
C
Christoph Lameter 已提交
2024

2025 2026
struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
				       unsigned long start, unsigned long end,
2027
				       const void *caller)
2028
{
D
David Rientjes 已提交
2029 2030
	return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
				  GFP_KERNEL, caller);
2031 2032
}

L
Linus Torvalds 已提交
2033
/**
2034 2035 2036
 * get_vm_area - reserve a contiguous kernel virtual area
 * @size:	 size of the area
 * @flags:	 %VM_IOREMAP for I/O mappings or VM_ALLOC
L
Linus Torvalds 已提交
2037
 *
2038 2039 2040
 * Search an area of @size in the kernel virtual mapping area,
 * and reserved it for out purposes.  Returns the area descriptor
 * on success or %NULL on failure.
2041 2042
 *
 * Return: the area descriptor on success or %NULL on failure.
L
Linus Torvalds 已提交
2043 2044 2045
 */
struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
{
2046
	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
D
David Rientjes 已提交
2047 2048
				  NUMA_NO_NODE, GFP_KERNEL,
				  __builtin_return_address(0));
2049 2050 2051
}

struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
2052
				const void *caller)
2053
{
2054
	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
D
David Rientjes 已提交
2055
				  NUMA_NO_NODE, GFP_KERNEL, caller);
L
Linus Torvalds 已提交
2056 2057
}

2058
/**
2059 2060
 * find_vm_area - find a continuous kernel virtual area
 * @addr:	  base address
2061
 *
2062 2063 2064
 * Search for the kernel VM area starting at @addr, and return it.
 * It is up to the caller to do all required locking to keep the returned
 * pointer valid.
2065 2066
 *
 * Return: pointer to the found area or %NULL on faulure
2067 2068
 */
struct vm_struct *find_vm_area(const void *addr)
2069
{
N
Nick Piggin 已提交
2070
	struct vmap_area *va;
2071

N
Nick Piggin 已提交
2072 2073
	va = find_vmap_area((unsigned long)addr);
	if (va && va->flags & VM_VM_AREA)
2074
		return va->vm;
L
Linus Torvalds 已提交
2075 2076 2077 2078

	return NULL;
}

2079
/**
2080 2081
 * remove_vm_area - find and remove a continuous kernel virtual area
 * @addr:	    base address
2082
 *
2083 2084 2085
 * Search for the kernel VM area starting at @addr, and remove it.
 * This function returns the found VM area, but using it is NOT safe
 * on SMP machines, except for its size or flags.
2086 2087
 *
 * Return: pointer to the found area or %NULL on faulure
2088
 */
2089
struct vm_struct *remove_vm_area(const void *addr)
2090
{
N
Nick Piggin 已提交
2091 2092
	struct vmap_area *va;

2093 2094
	might_sleep();

N
Nick Piggin 已提交
2095 2096
	va = find_vmap_area((unsigned long)addr);
	if (va && va->flags & VM_VM_AREA) {
2097
		struct vm_struct *vm = va->vm;
2098

2099 2100 2101
		spin_lock(&vmap_area_lock);
		va->vm = NULL;
		va->flags &= ~VM_VM_AREA;
2102
		va->flags |= VM_LAZY_FREE;
2103 2104
		spin_unlock(&vmap_area_lock);

2105
		kasan_free_shadow(vm);
2106 2107
		free_unmap_vmap_area(va);

N
Nick Piggin 已提交
2108 2109 2110
		return vm;
	}
	return NULL;
2111 2112
}

2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127
static inline void set_area_direct_map(const struct vm_struct *area,
				       int (*set_direct_map)(struct page *page))
{
	int i;

	for (i = 0; i < area->nr_pages; i++)
		if (page_address(area->pages[i]))
			set_direct_map(area->pages[i]);
}

/* Handle removing and resetting vm mappings related to the vm_struct. */
static void vm_remove_mappings(struct vm_struct *area, int deallocate_pages)
{
	unsigned long start = ULONG_MAX, end = 0;
	int flush_reset = area->flags & VM_FLUSH_RESET_PERMS;
2128
	int flush_dmap = 0;
2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151
	int i;

	remove_vm_area(area->addr);

	/* If this is not VM_FLUSH_RESET_PERMS memory, no need for the below. */
	if (!flush_reset)
		return;

	/*
	 * If not deallocating pages, just do the flush of the VM area and
	 * return.
	 */
	if (!deallocate_pages) {
		vm_unmap_aliases();
		return;
	}

	/*
	 * If execution gets here, flush the vm mapping and reset the direct
	 * map. Find the start and end range of the direct mappings to make sure
	 * the vm_unmap_aliases() flush includes the direct map.
	 */
	for (i = 0; i < area->nr_pages; i++) {
2152 2153
		unsigned long addr = (unsigned long)page_address(area->pages[i]);
		if (addr) {
2154
			start = min(addr, start);
2155
			end = max(addr + PAGE_SIZE, end);
2156
			flush_dmap = 1;
2157 2158 2159 2160 2161 2162 2163 2164 2165
		}
	}

	/*
	 * Set direct map to something invalid so that it won't be cached if
	 * there are any accesses after the TLB flush, then flush the TLB and
	 * reset the direct map permissions to the default.
	 */
	set_area_direct_map(area, set_direct_map_invalid_noflush);
2166
	_vm_unmap_aliases(start, end, flush_dmap);
2167 2168 2169
	set_area_direct_map(area, set_direct_map_default_noflush);
}

2170
static void __vunmap(const void *addr, int deallocate_pages)
L
Linus Torvalds 已提交
2171 2172 2173 2174 2175 2176
{
	struct vm_struct *area;

	if (!addr)
		return;

2177
	if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
D
Dan Carpenter 已提交
2178
			addr))
L
Linus Torvalds 已提交
2179 2180
		return;

2181
	area = find_vm_area(addr);
L
Linus Torvalds 已提交
2182
	if (unlikely(!area)) {
A
Arjan van de Ven 已提交
2183
		WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
L
Linus Torvalds 已提交
2184 2185 2186 2187
				addr);
		return;
	}

2188 2189
	debug_check_no_locks_freed(area->addr, get_vm_area_size(area));
	debug_check_no_obj_freed(area->addr, get_vm_area_size(area));
2190

2191 2192
	vm_remove_mappings(area, deallocate_pages);

L
Linus Torvalds 已提交
2193 2194 2195 2196
	if (deallocate_pages) {
		int i;

		for (i = 0; i < area->nr_pages; i++) {
2197 2198 2199
			struct page *page = area->pages[i];

			BUG_ON(!page);
2200
			__free_pages(page, 0);
L
Linus Torvalds 已提交
2201 2202
		}

D
David Rientjes 已提交
2203
		kvfree(area->pages);
L
Linus Torvalds 已提交
2204 2205 2206 2207 2208
	}

	kfree(area);
	return;
}
A
Andrey Ryabinin 已提交
2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224

static inline void __vfree_deferred(const void *addr)
{
	/*
	 * Use raw_cpu_ptr() because this can be called from preemptible
	 * context. Preemption is absolutely fine here, because the llist_add()
	 * implementation is lockless, so it works even if we are adding to
	 * nother cpu's list.  schedule_work() should be fine with this too.
	 */
	struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);

	if (llist_add((struct llist_node *)addr, &p->list))
		schedule_work(&p->wq);
}

/**
2225 2226
 * vfree_atomic - release memory allocated by vmalloc()
 * @addr:	  memory base address
A
Andrey Ryabinin 已提交
2227
 *
2228 2229
 * This one is just like vfree() but can be called in any atomic context
 * except NMIs.
A
Andrey Ryabinin 已提交
2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241
 */
void vfree_atomic(const void *addr)
{
	BUG_ON(in_nmi());

	kmemleak_free(addr);

	if (!addr)
		return;
	__vfree_deferred(addr);
}

2242 2243 2244 2245 2246 2247 2248 2249
static void __vfree(const void *addr)
{
	if (unlikely(in_interrupt()))
		__vfree_deferred(addr);
	else
		__vunmap(addr, 1);
}

L
Linus Torvalds 已提交
2250
/**
2251 2252
 * vfree - release memory allocated by vmalloc()
 * @addr:  memory base address
L
Linus Torvalds 已提交
2253
 *
2254 2255 2256
 * Free the virtually continuous memory area starting at @addr, as
 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
 * NULL, no operation is performed.
L
Linus Torvalds 已提交
2257
 *
2258 2259 2260
 * Must not be called in NMI context (strictly speaking, only if we don't
 * have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
 * conventions for vfree() arch-depenedent would be a really bad idea)
A
Andrew Morton 已提交
2261
 *
2262
 * May sleep if called *not* from interrupt context.
2263
 *
2264
 * NOTE: assumes that the object at @addr has a size >= sizeof(llist_node)
L
Linus Torvalds 已提交
2265
 */
2266
void vfree(const void *addr)
L
Linus Torvalds 已提交
2267
{
2268
	BUG_ON(in_nmi());
2269 2270 2271

	kmemleak_free(addr);

A
Andrey Ryabinin 已提交
2272 2273
	might_sleep_if(!in_interrupt());

2274 2275
	if (!addr)
		return;
2276 2277

	__vfree(addr);
L
Linus Torvalds 已提交
2278 2279 2280 2281
}
EXPORT_SYMBOL(vfree);

/**
2282 2283
 * vunmap - release virtual mapping obtained by vmap()
 * @addr:   memory base address
L
Linus Torvalds 已提交
2284
 *
2285 2286
 * Free the virtually contiguous memory area starting at @addr,
 * which was created from the page array passed to vmap().
L
Linus Torvalds 已提交
2287
 *
2288
 * Must not be called in interrupt context.
L
Linus Torvalds 已提交
2289
 */
2290
void vunmap(const void *addr)
L
Linus Torvalds 已提交
2291 2292
{
	BUG_ON(in_interrupt());
2293
	might_sleep();
2294 2295
	if (addr)
		__vunmap(addr, 0);
L
Linus Torvalds 已提交
2296 2297 2298 2299
}
EXPORT_SYMBOL(vunmap);

/**
2300 2301 2302 2303 2304 2305 2306 2307
 * vmap - map an array of pages into virtually contiguous space
 * @pages: array of page pointers
 * @count: number of pages to map
 * @flags: vm_area->flags
 * @prot: page protection for the mapping
 *
 * Maps @count pages from @pages into contiguous kernel virtual
 * space.
2308 2309
 *
 * Return: the address of the area or %NULL on failure
L
Linus Torvalds 已提交
2310 2311
 */
void *vmap(struct page **pages, unsigned int count,
2312
	   unsigned long flags, pgprot_t prot)
L
Linus Torvalds 已提交
2313 2314
{
	struct vm_struct *area;
2315
	unsigned long size;		/* In bytes */
L
Linus Torvalds 已提交
2316

2317 2318
	might_sleep();

2319
	if (count > totalram_pages())
L
Linus Torvalds 已提交
2320 2321
		return NULL;

2322 2323
	size = (unsigned long)count << PAGE_SHIFT;
	area = get_vm_area_caller(size, flags, __builtin_return_address(0));
L
Linus Torvalds 已提交
2324 2325
	if (!area)
		return NULL;
2326

2327
	if (map_vm_area(area, prot, pages)) {
L
Linus Torvalds 已提交
2328 2329 2330 2331 2332 2333 2334 2335
		vunmap(area->addr);
		return NULL;
	}

	return area->addr;
}
EXPORT_SYMBOL(vmap);

2336 2337 2338
static void *__vmalloc_node(unsigned long size, unsigned long align,
			    gfp_t gfp_mask, pgprot_t prot,
			    int node, const void *caller);
A
Adrian Bunk 已提交
2339
static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
2340
				 pgprot_t prot, int node)
L
Linus Torvalds 已提交
2341 2342 2343
{
	struct page **pages;
	unsigned int nr_pages, array_size, i;
2344
	const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
2345 2346 2347 2348
	const gfp_t alloc_mask = gfp_mask | __GFP_NOWARN;
	const gfp_t highmem_mask = (gfp_mask & (GFP_DMA | GFP_DMA32)) ?
					0 :
					__GFP_HIGHMEM;
L
Linus Torvalds 已提交
2349

2350
	nr_pages = get_vm_area_size(area) >> PAGE_SHIFT;
L
Linus Torvalds 已提交
2351 2352 2353 2354
	array_size = (nr_pages * sizeof(struct page *));

	area->nr_pages = nr_pages;
	/* Please note that the recursion is strictly bounded. */
2355
	if (array_size > PAGE_SIZE) {
2356
		pages = __vmalloc_node(array_size, 1, nested_gfp|highmem_mask,
2357
				PAGE_KERNEL, node, area->caller);
2358
	} else {
2359
		pages = kmalloc_node(array_size, nested_gfp, node);
2360
	}
L
Linus Torvalds 已提交
2361 2362 2363 2364 2365 2366 2367 2368
	area->pages = pages;
	if (!area->pages) {
		remove_vm_area(area->addr);
		kfree(area);
		return NULL;
	}

	for (i = 0; i < area->nr_pages; i++) {
2369 2370
		struct page *page;

J
Jianguo Wu 已提交
2371
		if (node == NUMA_NO_NODE)
2372
			page = alloc_page(alloc_mask|highmem_mask);
C
Christoph Lameter 已提交
2373
		else
2374
			page = alloc_pages_node(node, alloc_mask|highmem_mask, 0);
2375 2376

		if (unlikely(!page)) {
L
Linus Torvalds 已提交
2377 2378 2379 2380
			/* Successfully allocated i pages, free them in __vunmap() */
			area->nr_pages = i;
			goto fail;
		}
2381
		area->pages[i] = page;
2382
		if (gfpflags_allow_blocking(gfp_mask|highmem_mask))
2383
			cond_resched();
L
Linus Torvalds 已提交
2384 2385
	}

2386
	if (map_vm_area(area, prot, pages))
L
Linus Torvalds 已提交
2387 2388 2389 2390
		goto fail;
	return area->addr;

fail:
2391
	warn_alloc(gfp_mask, NULL,
2392
			  "vmalloc: allocation failure, allocated %ld of %ld bytes",
2393
			  (area->nr_pages*PAGE_SIZE), area->size);
2394
	__vfree(area->addr);
L
Linus Torvalds 已提交
2395 2396 2397 2398
	return NULL;
}

/**
2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412
 * __vmalloc_node_range - allocate virtually contiguous memory
 * @size:		  allocation size
 * @align:		  desired alignment
 * @start:		  vm area range start
 * @end:		  vm area range end
 * @gfp_mask:		  flags for the page level allocator
 * @prot:		  protection mask for the allocated pages
 * @vm_flags:		  additional vm area flags (e.g. %VM_NO_GUARD)
 * @node:		  node to use for allocation or NUMA_NO_NODE
 * @caller:		  caller's return address
 *
 * Allocate enough pages to cover @size from the page level
 * allocator with @gfp_mask flags.  Map them into contiguous
 * kernel virtual space, using a pagetable protection of @prot.
2413 2414
 *
 * Return: the address of the area or %NULL on failure
L
Linus Torvalds 已提交
2415
 */
2416 2417
void *__vmalloc_node_range(unsigned long size, unsigned long align,
			unsigned long start, unsigned long end, gfp_t gfp_mask,
2418 2419
			pgprot_t prot, unsigned long vm_flags, int node,
			const void *caller)
L
Linus Torvalds 已提交
2420 2421
{
	struct vm_struct *area;
2422 2423
	void *addr;
	unsigned long real_size = size;
L
Linus Torvalds 已提交
2424 2425

	size = PAGE_ALIGN(size);
2426
	if (!size || (size >> PAGE_SHIFT) > totalram_pages())
2427
		goto fail;
L
Linus Torvalds 已提交
2428

2429 2430
	area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNINITIALIZED |
				vm_flags, start, end, node, gfp_mask, caller);
L
Linus Torvalds 已提交
2431
	if (!area)
2432
		goto fail;
L
Linus Torvalds 已提交
2433

2434
	addr = __vmalloc_area_node(area, gfp_mask, prot, node);
2435
	if (!addr)
2436
		return NULL;
2437

2438
	/*
2439 2440
	 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
	 * flag. It means that vm_struct is not fully initialized.
2441
	 * Now, it is fully initialized, so remove this flag here.
2442
	 */
2443
	clear_vm_uninitialized_flag(area);
2444

2445
	kmemleak_vmalloc(area, size, gfp_mask);
2446 2447

	return addr;
2448 2449

fail:
2450
	warn_alloc(gfp_mask, NULL,
2451
			  "vmalloc: allocation failure: %lu bytes", real_size);
2452
	return NULL;
L
Linus Torvalds 已提交
2453 2454
}

2455 2456 2457 2458 2459 2460 2461 2462 2463
/*
 * This is only for performance analysis of vmalloc and stress purpose.
 * It is required by vmalloc test module, therefore do not use it other
 * than that.
 */
#ifdef CONFIG_TEST_VMALLOC_MODULE
EXPORT_SYMBOL_GPL(__vmalloc_node_range);
#endif

2464
/**
2465 2466 2467 2468 2469 2470 2471
 * __vmalloc_node - allocate virtually contiguous memory
 * @size:	    allocation size
 * @align:	    desired alignment
 * @gfp_mask:	    flags for the page level allocator
 * @prot:	    protection mask for the allocated pages
 * @node:	    node to use for allocation or NUMA_NO_NODE
 * @caller:	    caller's return address
M
Michal Hocko 已提交
2472
 *
2473 2474 2475
 * Allocate enough pages to cover @size from the page level
 * allocator with @gfp_mask flags.  Map them into contiguous
 * kernel virtual space, using a pagetable protection of @prot.
M
Michal Hocko 已提交
2476
 *
2477 2478
 * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
 * and __GFP_NOFAIL are not supported
M
Michal Hocko 已提交
2479
 *
2480 2481
 * Any use of gfp flags outside of GFP_KERNEL should be consulted
 * with mm people.
2482 2483
 *
 * Return: pointer to the allocated memory or %NULL on error
2484
 */
2485
static void *__vmalloc_node(unsigned long size, unsigned long align,
2486
			    gfp_t gfp_mask, pgprot_t prot,
2487
			    int node, const void *caller)
2488 2489
{
	return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
2490
				gfp_mask, prot, 0, node, caller);
2491 2492
}

C
Christoph Lameter 已提交
2493 2494
void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
{
D
David Rientjes 已提交
2495
	return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE,
2496
				__builtin_return_address(0));
C
Christoph Lameter 已提交
2497
}
L
Linus Torvalds 已提交
2498 2499
EXPORT_SYMBOL(__vmalloc);

2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513
static inline void *__vmalloc_node_flags(unsigned long size,
					int node, gfp_t flags)
{
	return __vmalloc_node(size, 1, flags, PAGE_KERNEL,
					node, __builtin_return_address(0));
}


void *__vmalloc_node_flags_caller(unsigned long size, int node, gfp_t flags,
				  void *caller)
{
	return __vmalloc_node(size, 1, flags, PAGE_KERNEL, node, caller);
}

L
Linus Torvalds 已提交
2514
/**
2515 2516 2517 2518 2519
 * vmalloc - allocate virtually contiguous memory
 * @size:    allocation size
 *
 * Allocate enough pages to cover @size from the page level
 * allocator and map them into contiguous kernel virtual space.
L
Linus Torvalds 已提交
2520
 *
2521 2522
 * For tight control over page level allocator and protection flags
 * use __vmalloc() instead.
2523 2524
 *
 * Return: pointer to the allocated memory or %NULL on error
L
Linus Torvalds 已提交
2525 2526 2527
 */
void *vmalloc(unsigned long size)
{
D
David Rientjes 已提交
2528
	return __vmalloc_node_flags(size, NUMA_NO_NODE,
2529
				    GFP_KERNEL);
L
Linus Torvalds 已提交
2530 2531 2532
}
EXPORT_SYMBOL(vmalloc);

2533
/**
2534 2535 2536 2537 2538 2539 2540 2541 2542
 * vzalloc - allocate virtually contiguous memory with zero fill
 * @size:    allocation size
 *
 * Allocate enough pages to cover @size from the page level
 * allocator and map them into contiguous kernel virtual space.
 * The memory allocated is set to zero.
 *
 * For tight control over page level allocator and protection flags
 * use __vmalloc() instead.
2543 2544
 *
 * Return: pointer to the allocated memory or %NULL on error
2545 2546 2547
 */
void *vzalloc(unsigned long size)
{
D
David Rientjes 已提交
2548
	return __vmalloc_node_flags(size, NUMA_NO_NODE,
2549
				GFP_KERNEL | __GFP_ZERO);
2550 2551 2552
}
EXPORT_SYMBOL(vzalloc);

2553
/**
2554 2555
 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
 * @size: allocation size
2556
 *
2557 2558
 * The resulting memory area is zeroed so it can be mapped to userspace
 * without leaking data.
2559 2560
 *
 * Return: pointer to the allocated memory or %NULL on error
2561 2562 2563
 */
void *vmalloc_user(unsigned long size)
{
2564 2565 2566 2567
	return __vmalloc_node_range(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
				    GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL,
				    VM_USERMAP, NUMA_NO_NODE,
				    __builtin_return_address(0));
2568 2569 2570
}
EXPORT_SYMBOL(vmalloc_user);

C
Christoph Lameter 已提交
2571
/**
2572 2573 2574
 * vmalloc_node - allocate memory on a specific node
 * @size:	  allocation size
 * @node:	  numa node
C
Christoph Lameter 已提交
2575
 *
2576 2577
 * Allocate enough pages to cover @size from the page level
 * allocator and map them into contiguous kernel virtual space.
C
Christoph Lameter 已提交
2578
 *
2579 2580
 * For tight control over page level allocator and protection flags
 * use __vmalloc() instead.
2581 2582
 *
 * Return: pointer to the allocated memory or %NULL on error
C
Christoph Lameter 已提交
2583 2584 2585
 */
void *vmalloc_node(unsigned long size, int node)
{
2586
	return __vmalloc_node(size, 1, GFP_KERNEL, PAGE_KERNEL,
2587
					node, __builtin_return_address(0));
C
Christoph Lameter 已提交
2588 2589 2590
}
EXPORT_SYMBOL(vmalloc_node);

2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601
/**
 * vzalloc_node - allocate memory on a specific node with zero fill
 * @size:	allocation size
 * @node:	numa node
 *
 * Allocate enough pages to cover @size from the page level
 * allocator and map them into contiguous kernel virtual space.
 * The memory allocated is set to zero.
 *
 * For tight control over page level allocator and protection flags
 * use __vmalloc_node() instead.
2602 2603
 *
 * Return: pointer to the allocated memory or %NULL on error
2604 2605 2606 2607
 */
void *vzalloc_node(unsigned long size, int node)
{
	return __vmalloc_node_flags(size, node,
2608
			 GFP_KERNEL | __GFP_ZERO);
2609 2610 2611
}
EXPORT_SYMBOL(vzalloc_node);

L
Linus Torvalds 已提交
2612
/**
2613 2614
 * vmalloc_exec - allocate virtually contiguous, executable memory
 * @size:	  allocation size
L
Linus Torvalds 已提交
2615
 *
2616 2617 2618
 * Kernel-internal function to allocate enough pages to cover @size
 * the page level allocator and map them into contiguous and
 * executable kernel virtual space.
L
Linus Torvalds 已提交
2619
 *
2620 2621
 * For tight control over page level allocator and protection flags
 * use __vmalloc() instead.
2622 2623
 *
 * Return: pointer to the allocated memory or %NULL on error
L
Linus Torvalds 已提交
2624 2625 2626
 */
void *vmalloc_exec(unsigned long size)
{
2627 2628 2629
	return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END,
			GFP_KERNEL, PAGE_KERNEL_EXEC, VM_FLUSH_RESET_PERMS,
			NUMA_NO_NODE, __builtin_return_address(0));
L
Linus Torvalds 已提交
2630 2631
}

2632
#if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
2633
#define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
2634
#elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
2635
#define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
2636
#else
2637 2638 2639 2640 2641
/*
 * 64b systems should always have either DMA or DMA32 zones. For others
 * GFP_DMA32 should do the right thing and use the normal zone.
 */
#define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
2642 2643
#endif

L
Linus Torvalds 已提交
2644
/**
2645 2646
 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
 * @size:	allocation size
L
Linus Torvalds 已提交
2647
 *
2648 2649
 * Allocate enough 32bit PA addressable pages to cover @size from the
 * page level allocator and map them into contiguous kernel virtual space.
2650 2651
 *
 * Return: pointer to the allocated memory or %NULL on error
L
Linus Torvalds 已提交
2652 2653 2654
 */
void *vmalloc_32(unsigned long size)
{
2655
	return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
D
David Rientjes 已提交
2656
			      NUMA_NO_NODE, __builtin_return_address(0));
L
Linus Torvalds 已提交
2657 2658 2659
}
EXPORT_SYMBOL(vmalloc_32);

2660
/**
2661
 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
2662
 * @size:	     allocation size
2663 2664 2665
 *
 * The resulting memory area is 32bit addressable and zeroed so it can be
 * mapped to userspace without leaking data.
2666 2667
 *
 * Return: pointer to the allocated memory or %NULL on error
2668 2669 2670
 */
void *vmalloc_32_user(unsigned long size)
{
2671 2672 2673 2674
	return __vmalloc_node_range(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
				    GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
				    VM_USERMAP, NUMA_NO_NODE,
				    __builtin_return_address(0));
2675 2676 2677
}
EXPORT_SYMBOL(vmalloc_32_user);

2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690
/*
 * small helper routine , copy contents to buf from addr.
 * If the page is not present, fill zero.
 */

static int aligned_vread(char *buf, char *addr, unsigned long count)
{
	struct page *p;
	int copied = 0;

	while (count) {
		unsigned long offset, length;

2691
		offset = offset_in_page(addr);
2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707
		length = PAGE_SIZE - offset;
		if (length > count)
			length = count;
		p = vmalloc_to_page(addr);
		/*
		 * To do safe access to this _mapped_ area, we need
		 * lock. But adding lock here means that we need to add
		 * overhead of vmalloc()/vfree() calles for this _debug_
		 * interface, rarely used. Instead of that, we'll use
		 * kmap() and get small overhead in this access function.
		 */
		if (p) {
			/*
			 * we can expect USER0 is not used (see vread/vwrite's
			 * function description)
			 */
2708
			void *map = kmap_atomic(p);
2709
			memcpy(buf, map + offset, length);
2710
			kunmap_atomic(map);
2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729
		} else
			memset(buf, 0, length);

		addr += length;
		buf += length;
		copied += length;
		count -= length;
	}
	return copied;
}

static int aligned_vwrite(char *buf, char *addr, unsigned long count)
{
	struct page *p;
	int copied = 0;

	while (count) {
		unsigned long offset, length;

2730
		offset = offset_in_page(addr);
2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746
		length = PAGE_SIZE - offset;
		if (length > count)
			length = count;
		p = vmalloc_to_page(addr);
		/*
		 * To do safe access to this _mapped_ area, we need
		 * lock. But adding lock here means that we need to add
		 * overhead of vmalloc()/vfree() calles for this _debug_
		 * interface, rarely used. Instead of that, we'll use
		 * kmap() and get small overhead in this access function.
		 */
		if (p) {
			/*
			 * we can expect USER0 is not used (see vread/vwrite's
			 * function description)
			 */
2747
			void *map = kmap_atomic(p);
2748
			memcpy(map + offset, buf, length);
2749
			kunmap_atomic(map);
2750 2751 2752 2753 2754 2755 2756 2757 2758 2759
		}
		addr += length;
		buf += length;
		copied += length;
		count -= length;
	}
	return copied;
}

/**
2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777
 * vread() - read vmalloc area in a safe way.
 * @buf:     buffer for reading data
 * @addr:    vm address.
 * @count:   number of bytes to be read.
 *
 * This function checks that addr is a valid vmalloc'ed area, and
 * copy data from that area to a given buffer. If the given memory range
 * of [addr...addr+count) includes some valid address, data is copied to
 * proper area of @buf. If there are memory holes, they'll be zero-filled.
 * IOREMAP area is treated as memory hole and no copy is done.
 *
 * If [addr...addr+count) doesn't includes any intersects with alive
 * vm_struct area, returns 0. @buf should be kernel's buffer.
 *
 * Note: In usual ops, vread() is never necessary because the caller
 * should know vmalloc() area is valid and can use memcpy().
 * This is for routines which have to access vmalloc area without
 * any informaion, as /dev/kmem.
2778 2779 2780 2781
 *
 * Return: number of bytes for which addr and buf should be increased
 * (same number as @count) or %0 if [addr...addr+count) doesn't
 * include any intersection with valid vmalloc area
2782
 */
L
Linus Torvalds 已提交
2783 2784
long vread(char *buf, char *addr, unsigned long count)
{
2785 2786
	struct vmap_area *va;
	struct vm_struct *vm;
L
Linus Torvalds 已提交
2787
	char *vaddr, *buf_start = buf;
2788
	unsigned long buflen = count;
L
Linus Torvalds 已提交
2789 2790 2791 2792 2793 2794
	unsigned long n;

	/* Don't allow overflow */
	if ((unsigned long) addr + count < count)
		count = -(unsigned long) addr;

2795 2796 2797 2798 2799 2800 2801 2802 2803 2804
	spin_lock(&vmap_area_lock);
	list_for_each_entry(va, &vmap_area_list, list) {
		if (!count)
			break;

		if (!(va->flags & VM_VM_AREA))
			continue;

		vm = va->vm;
		vaddr = (char *) vm->addr;
2805
		if (addr >= vaddr + get_vm_area_size(vm))
L
Linus Torvalds 已提交
2806 2807 2808 2809 2810 2811 2812 2813 2814
			continue;
		while (addr < vaddr) {
			if (count == 0)
				goto finished;
			*buf = '\0';
			buf++;
			addr++;
			count--;
		}
2815
		n = vaddr + get_vm_area_size(vm) - addr;
2816 2817
		if (n > count)
			n = count;
2818
		if (!(vm->flags & VM_IOREMAP))
2819 2820 2821 2822 2823 2824
			aligned_vread(buf, addr, n);
		else /* IOREMAP area is treated as memory hole */
			memset(buf, 0, n);
		buf += n;
		addr += n;
		count -= n;
L
Linus Torvalds 已提交
2825 2826
	}
finished:
2827
	spin_unlock(&vmap_area_lock);
2828 2829 2830 2831 2832 2833 2834 2835

	if (buf == buf_start)
		return 0;
	/* zero-fill memory holes */
	if (buf != buf_start + buflen)
		memset(buf, 0, buflen - (buf - buf_start));

	return buflen;
L
Linus Torvalds 已提交
2836 2837
}

2838
/**
2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856
 * vwrite() - write vmalloc area in a safe way.
 * @buf:      buffer for source data
 * @addr:     vm address.
 * @count:    number of bytes to be read.
 *
 * This function checks that addr is a valid vmalloc'ed area, and
 * copy data from a buffer to the given addr. If specified range of
 * [addr...addr+count) includes some valid address, data is copied from
 * proper area of @buf. If there are memory holes, no copy to hole.
 * IOREMAP area is treated as memory hole and no copy is done.
 *
 * If [addr...addr+count) doesn't includes any intersects with alive
 * vm_struct area, returns 0. @buf should be kernel's buffer.
 *
 * Note: In usual ops, vwrite() is never necessary because the caller
 * should know vmalloc() area is valid and can use memcpy().
 * This is for routines which have to access vmalloc area without
 * any informaion, as /dev/kmem.
2857 2858 2859 2860
 *
 * Return: number of bytes for which addr and buf should be
 * increased (same number as @count) or %0 if [addr...addr+count)
 * doesn't include any intersection with valid vmalloc area
2861
 */
L
Linus Torvalds 已提交
2862 2863
long vwrite(char *buf, char *addr, unsigned long count)
{
2864 2865
	struct vmap_area *va;
	struct vm_struct *vm;
2866 2867 2868
	char *vaddr;
	unsigned long n, buflen;
	int copied = 0;
L
Linus Torvalds 已提交
2869 2870 2871 2872

	/* Don't allow overflow */
	if ((unsigned long) addr + count < count)
		count = -(unsigned long) addr;
2873
	buflen = count;
L
Linus Torvalds 已提交
2874

2875 2876 2877 2878 2879 2880 2881 2882 2883 2884
	spin_lock(&vmap_area_lock);
	list_for_each_entry(va, &vmap_area_list, list) {
		if (!count)
			break;

		if (!(va->flags & VM_VM_AREA))
			continue;

		vm = va->vm;
		vaddr = (char *) vm->addr;
2885
		if (addr >= vaddr + get_vm_area_size(vm))
L
Linus Torvalds 已提交
2886 2887 2888 2889 2890 2891 2892 2893
			continue;
		while (addr < vaddr) {
			if (count == 0)
				goto finished;
			buf++;
			addr++;
			count--;
		}
2894
		n = vaddr + get_vm_area_size(vm) - addr;
2895 2896
		if (n > count)
			n = count;
2897
		if (!(vm->flags & VM_IOREMAP)) {
2898 2899 2900 2901 2902 2903
			aligned_vwrite(buf, addr, n);
			copied++;
		}
		buf += n;
		addr += n;
		count -= n;
L
Linus Torvalds 已提交
2904 2905
	}
finished:
2906
	spin_unlock(&vmap_area_lock);
2907 2908 2909
	if (!copied)
		return 0;
	return buflen;
L
Linus Torvalds 已提交
2910
}
2911 2912

/**
2913 2914 2915 2916 2917
 * remap_vmalloc_range_partial - map vmalloc pages to userspace
 * @vma:		vma to cover
 * @uaddr:		target user address to start at
 * @kaddr:		virtual address of vmalloc kernel memory
 * @size:		size of map area
2918
 *
2919
 * Returns:	0 for success, -Exxx on failure
2920
 *
2921 2922 2923 2924
 * This function checks that @kaddr is a valid vmalloc'ed area,
 * and that it is big enough to cover the range starting at
 * @uaddr in @vma. Will return failure if that criteria isn't
 * met.
2925
 *
2926
 * Similar to remap_pfn_range() (see mm/memory.c)
2927
 */
2928 2929
int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
				void *kaddr, unsigned long size)
2930 2931 2932
{
	struct vm_struct *area;

2933 2934 2935
	size = PAGE_ALIGN(size);

	if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
2936 2937
		return -EINVAL;

2938
	area = find_vm_area(kaddr);
2939
	if (!area)
N
Nick Piggin 已提交
2940
		return -EINVAL;
2941 2942

	if (!(area->flags & VM_USERMAP))
N
Nick Piggin 已提交
2943
		return -EINVAL;
2944

2945
	if (kaddr + size > area->addr + get_vm_area_size(area))
N
Nick Piggin 已提交
2946
		return -EINVAL;
2947 2948

	do {
2949
		struct page *page = vmalloc_to_page(kaddr);
N
Nick Piggin 已提交
2950 2951
		int ret;

2952 2953 2954 2955 2956
		ret = vm_insert_page(vma, uaddr, page);
		if (ret)
			return ret;

		uaddr += PAGE_SIZE;
2957 2958 2959
		kaddr += PAGE_SIZE;
		size -= PAGE_SIZE;
	} while (size > 0);
2960

2961
	vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
2962

N
Nick Piggin 已提交
2963
	return 0;
2964
}
2965 2966 2967
EXPORT_SYMBOL(remap_vmalloc_range_partial);

/**
2968 2969 2970 2971
 * remap_vmalloc_range - map vmalloc pages to userspace
 * @vma:		vma to cover (map full range of vma)
 * @addr:		vmalloc memory
 * @pgoff:		number of pages into addr before first page to map
2972
 *
2973
 * Returns:	0 for success, -Exxx on failure
2974
 *
2975 2976 2977
 * This function checks that addr is a valid vmalloc'ed area, and
 * that it is big enough to cover the vma. Will return failure if
 * that criteria isn't met.
2978
 *
2979
 * Similar to remap_pfn_range() (see mm/memory.c)
2980 2981 2982 2983 2984 2985 2986 2987
 */
int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
						unsigned long pgoff)
{
	return remap_vmalloc_range_partial(vma, vma->vm_start,
					   addr + (pgoff << PAGE_SHIFT),
					   vma->vm_end - vma->vm_start);
}
2988 2989
EXPORT_SYMBOL(remap_vmalloc_range);

2990 2991 2992 2993
/*
 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
 * have one.
 */
2994
void __weak vmalloc_sync_all(void)
2995 2996
{
}
2997 2998


2999
static int f(pte_t *pte, unsigned long addr, void *data)
3000
{
3001 3002 3003 3004 3005 3006
	pte_t ***p = data;

	if (p) {
		*(*p) = pte;
		(*p)++;
	}
3007 3008 3009 3010
	return 0;
}

/**
3011 3012 3013
 * alloc_vm_area - allocate a range of kernel address space
 * @size:	   size of the area
 * @ptes:	   returns the PTEs for the address space
3014
 *
3015
 * Returns:	NULL on failure, vm_struct on success
3016
 *
3017 3018 3019
 * This function reserves a range of kernel address space, and
 * allocates pagetables to map that range.  No actual mappings
 * are created.
3020
 *
3021 3022
 * If @ptes is non-NULL, pointers to the PTEs (in init_mm)
 * allocated for the VM area are returned.
3023
 */
3024
struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
3025 3026 3027
{
	struct vm_struct *area;

3028 3029
	area = get_vm_area_caller(size, VM_IOREMAP,
				__builtin_return_address(0));
3030 3031 3032 3033 3034 3035 3036 3037
	if (area == NULL)
		return NULL;

	/*
	 * This ensures that page tables are constructed for this region
	 * of kernel virtual address space and mapped into init_mm.
	 */
	if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
3038
				size, f, ptes ? &ptes : NULL)) {
3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054
		free_vm_area(area);
		return NULL;
	}

	return area;
}
EXPORT_SYMBOL_GPL(alloc_vm_area);

void free_vm_area(struct vm_struct *area)
{
	struct vm_struct *ret;
	ret = remove_vm_area(area->addr);
	BUG_ON(ret != area);
	kfree(area);
}
EXPORT_SYMBOL_GPL(free_vm_area);
3055

3056
#ifdef CONFIG_SMP
3057 3058
static struct vmap_area *node_to_va(struct rb_node *n)
{
G
Geliang Tang 已提交
3059
	return rb_entry_safe(n, struct vmap_area, rb_node);
3060 3061 3062
}

/**
3063 3064
 * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to
 * @addr: target address
3065
 *
3066 3067 3068 3069
 * Returns: vmap_area if it is found. If there is no such area
 *   the first highest(reverse order) vmap_area is returned
 *   i.e. va->va_start < addr && va->va_end < addr or NULL
 *   if there are no any areas before @addr.
3070
 */
3071 3072
static struct vmap_area *
pvm_find_va_enclose_addr(unsigned long addr)
3073
{
3074 3075 3076 3077 3078
	struct vmap_area *va, *tmp;
	struct rb_node *n;

	n = free_vmap_area_root.rb_node;
	va = NULL;
3079 3080

	while (n) {
3081 3082 3083 3084 3085 3086
		tmp = rb_entry(n, struct vmap_area, rb_node);
		if (tmp->va_start <= addr) {
			va = tmp;
			if (tmp->va_end >= addr)
				break;

3087
			n = n->rb_right;
3088 3089 3090
		} else {
			n = n->rb_left;
		}
3091 3092
	}

3093
	return va;
3094 3095 3096
}

/**
3097 3098 3099 3100 3101
 * pvm_determine_end_from_reverse - find the highest aligned address
 * of free block below VMALLOC_END
 * @va:
 *   in - the VA we start the search(reverse order);
 *   out - the VA with the highest aligned end address.
3102
 *
3103
 * Returns: determined end address within vmap_area
3104
 */
3105 3106
static unsigned long
pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align)
3107
{
3108
	unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3109 3110
	unsigned long addr;

3111 3112 3113 3114 3115 3116 3117
	if (likely(*va)) {
		list_for_each_entry_from_reverse((*va),
				&free_vmap_area_list, list) {
			addr = min((*va)->va_end & ~(align - 1), vmalloc_end);
			if ((*va)->va_start < addr)
				return addr;
		}
3118 3119
	}

3120
	return 0;
3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134
}

/**
 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
 * @offsets: array containing offset of each area
 * @sizes: array containing size of each area
 * @nr_vms: the number of areas to allocate
 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
 *
 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
 *	    vm_structs on success, %NULL on failure
 *
 * Percpu allocator wants to use congruent vm areas so that it can
 * maintain the offsets among percpu areas.  This function allocates
3135 3136 3137 3138
 * congruent vmalloc areas for it with GFP_KERNEL.  These areas tend to
 * be scattered pretty far, distance between two areas easily going up
 * to gigabytes.  To avoid interacting with regular vmallocs, these
 * areas are allocated from top.
3139
 *
3140 3141 3142 3143 3144 3145
 * Despite its complicated look, this allocator is rather simple. It
 * does everything top-down and scans free blocks from the end looking
 * for matching base. While scanning, if any of the areas do not fit the
 * base address is pulled down to fit the area. Scanning is repeated till
 * all the areas fit and then all necessary data structures are inserted
 * and the result is returned.
3146 3147 3148
 */
struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
				     const size_t *sizes, int nr_vms,
3149
				     size_t align)
3150 3151 3152
{
	const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3153
	struct vmap_area **vas, *va;
3154 3155
	struct vm_struct **vms;
	int area, area2, last_area, term_area;
3156
	unsigned long base, start, size, end, last_end;
3157
	bool purged = false;
3158
	enum fit_type type;
3159 3160

	/* verify parameters and allocate data structures */
3161
	BUG_ON(offset_in_page(align) || !is_power_of_2(align));
3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173
	for (last_area = 0, area = 0; area < nr_vms; area++) {
		start = offsets[area];
		end = start + sizes[area];

		/* is everything aligned properly? */
		BUG_ON(!IS_ALIGNED(offsets[area], align));
		BUG_ON(!IS_ALIGNED(sizes[area], align));

		/* detect the area with the highest address */
		if (start > offsets[last_area])
			last_area = area;

3174
		for (area2 = area + 1; area2 < nr_vms; area2++) {
3175 3176 3177
			unsigned long start2 = offsets[area2];
			unsigned long end2 = start2 + sizes[area2];

3178
			BUG_ON(start2 < end && start < end2);
3179 3180 3181 3182 3183 3184 3185 3186 3187
		}
	}
	last_end = offsets[last_area] + sizes[last_area];

	if (vmalloc_end - vmalloc_start < last_end) {
		WARN_ON(true);
		return NULL;
	}

3188 3189
	vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
	vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
3190
	if (!vas || !vms)
3191
		goto err_free2;
3192 3193

	for (area = 0; area < nr_vms; area++) {
3194
		vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL);
3195
		vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206
		if (!vas[area] || !vms[area])
			goto err_free;
	}
retry:
	spin_lock(&vmap_area_lock);

	/* start scanning - we scan from the top, begin with the last area */
	area = term_area = last_area;
	start = offsets[area];
	end = start + sizes[area];

3207 3208
	va = pvm_find_va_enclose_addr(vmalloc_end);
	base = pvm_determine_end_from_reverse(&va, align) - end;
3209 3210 3211 3212 3213 3214

	while (true) {
		/*
		 * base might have underflowed, add last_end before
		 * comparing.
		 */
3215 3216
		if (base + last_end < vmalloc_start + last_end)
			goto overflow;
3217 3218

		/*
3219
		 * Fitting base has not been found.
3220
		 */
3221 3222
		if (va == NULL)
			goto overflow;
3223 3224

		/*
3225
		 * If this VA does not fit, move base downwards and recheck.
3226
		 */
3227 3228 3229
		if (base + start < va->va_start || base + end > va->va_end) {
			va = node_to_va(rb_prev(&va->rb_node));
			base = pvm_determine_end_from_reverse(&va, align) - end;
3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240
			term_area = area;
			continue;
		}

		/*
		 * This area fits, move on to the previous one.  If
		 * the previous one is the terminal one, we're done.
		 */
		area = (area + nr_vms - 1) % nr_vms;
		if (area == term_area)
			break;
3241

3242 3243
		start = offsets[area];
		end = start + sizes[area];
3244
		va = pvm_find_va_enclose_addr(base + end);
3245
	}
3246

3247 3248
	/* we've found a fitting base, insert all va's */
	for (area = 0; area < nr_vms; area++) {
3249
		int ret;
3250

3251 3252
		start = base + offsets[area];
		size = sizes[area];
3253

3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274
		va = pvm_find_va_enclose_addr(start);
		if (WARN_ON_ONCE(va == NULL))
			/* It is a BUG(), but trigger recovery instead. */
			goto recovery;

		type = classify_va_fit_type(va, start, size);
		if (WARN_ON_ONCE(type == NOTHING_FIT))
			/* It is a BUG(), but trigger recovery instead. */
			goto recovery;

		ret = adjust_va_to_fit_type(va, start, size, type);
		if (unlikely(ret))
			goto recovery;

		/* Allocated area. */
		va = vas[area];
		va->va_start = start;
		va->va_end = start + size;

		insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
	}
3275 3276 3277 3278 3279

	spin_unlock(&vmap_area_lock);

	/* insert all vm's */
	for (area = 0; area < nr_vms; area++)
3280 3281
		setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
				 pcpu_get_vm_areas);
3282 3283 3284 3285

	kfree(vas);
	return vms;

3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312
recovery:
	/* Remove previously inserted areas. */
	while (area--) {
		__free_vmap_area(vas[area]);
		vas[area] = NULL;
	}

overflow:
	spin_unlock(&vmap_area_lock);
	if (!purged) {
		purge_vmap_area_lazy();
		purged = true;

		/* Before "retry", check if we recover. */
		for (area = 0; area < nr_vms; area++) {
			if (vas[area])
				continue;

			vas[area] = kmem_cache_zalloc(
				vmap_area_cachep, GFP_KERNEL);
			if (!vas[area])
				goto err_free;
		}

		goto retry;
	}

3313 3314
err_free:
	for (area = 0; area < nr_vms; area++) {
3315 3316 3317
		if (vas[area])
			kmem_cache_free(vmap_area_cachep, vas[area]);

3318
		kfree(vms[area]);
3319
	}
3320
err_free2:
3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340
	kfree(vas);
	kfree(vms);
	return NULL;
}

/**
 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
 * @nr_vms: the number of allocated areas
 *
 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
 */
void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
{
	int i;

	for (i = 0; i < nr_vms; i++)
		free_vm_area(vms[i]);
	kfree(vms);
}
3341
#endif	/* CONFIG_SMP */
3342 3343 3344

#ifdef CONFIG_PROC_FS
static void *s_start(struct seq_file *m, loff_t *pos)
3345
	__acquires(&vmap_area_lock)
3346
{
3347
	spin_lock(&vmap_area_lock);
3348
	return seq_list_start(&vmap_area_list, *pos);
3349 3350 3351 3352
}

static void *s_next(struct seq_file *m, void *p, loff_t *pos)
{
3353
	return seq_list_next(p, &vmap_area_list, pos);
3354 3355 3356
}

static void s_stop(struct seq_file *m, void *p)
3357
	__releases(&vmap_area_lock)
3358
{
3359
	spin_unlock(&vmap_area_lock);
3360 3361
}

E
Eric Dumazet 已提交
3362 3363
static void show_numa_info(struct seq_file *m, struct vm_struct *v)
{
3364
	if (IS_ENABLED(CONFIG_NUMA)) {
E
Eric Dumazet 已提交
3365 3366 3367 3368 3369
		unsigned int nr, *counters = m->private;

		if (!counters)
			return;

3370 3371
		if (v->flags & VM_UNINITIALIZED)
			return;
3372 3373
		/* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
		smp_rmb();
3374

E
Eric Dumazet 已提交
3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385
		memset(counters, 0, nr_node_ids * sizeof(unsigned int));

		for (nr = 0; nr < v->nr_pages; nr++)
			counters[page_to_nid(v->pages[nr])]++;

		for_each_node_state(nr, N_HIGH_MEMORY)
			if (counters[nr])
				seq_printf(m, " N%u=%u", nr, counters[nr]);
	}
}

3386 3387
static int s_show(struct seq_file *m, void *p)
{
3388
	struct vmap_area *va;
3389 3390
	struct vm_struct *v;

3391 3392
	va = list_entry(p, struct vmap_area, list);

3393 3394 3395 3396
	/*
	 * s_show can encounter race with remove_vm_area, !VM_VM_AREA on
	 * behalf of vmap area is being tear down or vm_map_ram allocation.
	 */
3397 3398 3399 3400 3401 3402
	if (!(va->flags & VM_VM_AREA)) {
		seq_printf(m, "0x%pK-0x%pK %7ld %s\n",
			(void *)va->va_start, (void *)va->va_end,
			va->va_end - va->va_start,
			va->flags & VM_LAZY_FREE ? "unpurged vm_area" : "vm_map_ram");

3403
		return 0;
3404
	}
3405 3406

	v = va->vm;
3407

K
Kees Cook 已提交
3408
	seq_printf(m, "0x%pK-0x%pK %7ld",
3409 3410
		v->addr, v->addr + v->size, v->size);

J
Joe Perches 已提交
3411 3412
	if (v->caller)
		seq_printf(m, " %pS", v->caller);
3413

3414 3415 3416 3417
	if (v->nr_pages)
		seq_printf(m, " pages=%d", v->nr_pages);

	if (v->phys_addr)
3418
		seq_printf(m, " phys=%pa", &v->phys_addr);
3419 3420

	if (v->flags & VM_IOREMAP)
3421
		seq_puts(m, " ioremap");
3422 3423

	if (v->flags & VM_ALLOC)
3424
		seq_puts(m, " vmalloc");
3425 3426

	if (v->flags & VM_MAP)
3427
		seq_puts(m, " vmap");
3428 3429

	if (v->flags & VM_USERMAP)
3430
		seq_puts(m, " user");
3431

D
David Rientjes 已提交
3432
	if (is_vmalloc_addr(v->pages))
3433
		seq_puts(m, " vpages");
3434

E
Eric Dumazet 已提交
3435
	show_numa_info(m, v);
3436 3437 3438 3439
	seq_putc(m, '\n');
	return 0;
}

3440
static const struct seq_operations vmalloc_op = {
3441 3442 3443 3444 3445
	.start = s_start,
	.next = s_next,
	.stop = s_stop,
	.show = s_show,
};
3446 3447 3448

static int __init proc_vmalloc_init(void)
{
3449
	if (IS_ENABLED(CONFIG_NUMA))
3450
		proc_create_seq_private("vmallocinfo", 0400, NULL,
3451 3452
				&vmalloc_op,
				nr_node_ids * sizeof(unsigned int), NULL);
3453
	else
3454
		proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op);
3455 3456 3457
	return 0;
}
module_init(proc_vmalloc_init);
3458

3459
#endif