migrate.c 76.3 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
C
Christoph Lameter 已提交
2
/*
3
 * Memory Migration functionality - linux/mm/migrate.c
C
Christoph Lameter 已提交
4 5 6 7 8 9 10 11 12
 *
 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
 *
 * Page migration was first developed in the context of the memory hotplug
 * project. The main authors of the migration code are:
 *
 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
 * Hirokazu Takahashi <taka@valinux.co.jp>
 * Dave Hansen <haveblue@us.ibm.com>
C
Christoph Lameter 已提交
13
 * Christoph Lameter
C
Christoph Lameter 已提交
14 15 16
 */

#include <linux/migrate.h>
17
#include <linux/export.h>
C
Christoph Lameter 已提交
18
#include <linux/swap.h>
19
#include <linux/swapops.h>
C
Christoph Lameter 已提交
20
#include <linux/pagemap.h>
21
#include <linux/buffer_head.h>
C
Christoph Lameter 已提交
22
#include <linux/mm_inline.h>
23
#include <linux/nsproxy.h>
C
Christoph Lameter 已提交
24
#include <linux/pagevec.h>
25
#include <linux/ksm.h>
C
Christoph Lameter 已提交
26 27 28 29
#include <linux/rmap.h>
#include <linux/topology.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
30
#include <linux/writeback.h>
31 32
#include <linux/mempolicy.h>
#include <linux/vmalloc.h>
33
#include <linux/security.h>
34
#include <linux/backing-dev.h>
35
#include <linux/compaction.h>
36
#include <linux/syscalls.h>
37
#include <linux/compat.h>
N
Naoya Horiguchi 已提交
38
#include <linux/hugetlb.h>
39
#include <linux/hugetlb_cgroup.h>
40
#include <linux/gfp.h>
41
#include <linux/pfn_t.h>
42
#include <linux/memremap.h>
43
#include <linux/userfaultfd_k.h>
44
#include <linux/balloon_compaction.h>
45
#include <linux/mmu_notifier.h>
46
#include <linux/page_idle.h>
47
#include <linux/page_owner.h>
48
#include <linux/sched/mm.h>
49
#include <linux/ptrace.h>
C
Christoph Lameter 已提交
50

51 52
#include <asm/tlbflush.h>

53 54 55
#define CREATE_TRACE_POINTS
#include <trace/events/migrate.h>

C
Christoph Lameter 已提交
56 57 58
#include "internal.h"

/*
59
 * migrate_prep() needs to be called before we start compiling a list of pages
60 61
 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
 * undesirable, use migrate_prep_local()
C
Christoph Lameter 已提交
62 63 64 65 66 67 68 69 70 71 72 73 74 75
 */
int migrate_prep(void)
{
	/*
	 * Clear the LRU lists so pages can be isolated.
	 * Note that pages may be moved off the LRU after we have
	 * drained them. Those pages will fail to migrate like other
	 * pages that may be busy.
	 */
	lru_add_drain_all();

	return 0;
}

76 77 78 79 80 81 82 83
/* Do the necessary work of migrate_prep but not if it involves other CPUs */
int migrate_prep_local(void)
{
	lru_add_drain();

	return 0;
}

84
int isolate_movable_page(struct page *page, isolate_mode_t mode)
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
{
	struct address_space *mapping;

	/*
	 * Avoid burning cycles with pages that are yet under __free_pages(),
	 * or just got freed under us.
	 *
	 * In case we 'win' a race for a movable page being freed under us and
	 * raise its refcount preventing __free_pages() from doing its job
	 * the put_page() at the end of this block will take care of
	 * release this page, thus avoiding a nasty leakage.
	 */
	if (unlikely(!get_page_unless_zero(page)))
		goto out;

	/*
	 * Check PageMovable before holding a PG_lock because page's owner
	 * assumes anybody doesn't touch PG_lock of newly allocated page
W
Wei Yang 已提交
103
	 * so unconditionally grabbing the lock ruins page's owner side.
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
	 */
	if (unlikely(!__PageMovable(page)))
		goto out_putpage;
	/*
	 * As movable pages are not isolated from LRU lists, concurrent
	 * compaction threads can race against page migration functions
	 * as well as race against the releasing a page.
	 *
	 * In order to avoid having an already isolated movable page
	 * being (wrongly) re-isolated while it is under migration,
	 * or to avoid attempting to isolate pages being released,
	 * lets be sure we have the page lock
	 * before proceeding with the movable page isolation steps.
	 */
	if (unlikely(!trylock_page(page)))
		goto out_putpage;

	if (!PageMovable(page) || PageIsolated(page))
		goto out_no_isolated;

	mapping = page_mapping(page);
	VM_BUG_ON_PAGE(!mapping, page);

	if (!mapping->a_ops->isolate_page(page, mode))
		goto out_no_isolated;

	/* Driver shouldn't use PG_isolated bit of page->flags */
	WARN_ON_ONCE(PageIsolated(page));
	__SetPageIsolated(page);
	unlock_page(page);

135
	return 0;
136 137 138 139 140 141

out_no_isolated:
	unlock_page(page);
out_putpage:
	put_page(page);
out:
142
	return -EBUSY;
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
}

/* It should be called on page which is PG_movable */
void putback_movable_page(struct page *page)
{
	struct address_space *mapping;

	VM_BUG_ON_PAGE(!PageLocked(page), page);
	VM_BUG_ON_PAGE(!PageMovable(page), page);
	VM_BUG_ON_PAGE(!PageIsolated(page), page);

	mapping = page_mapping(page);
	mapping->a_ops->putback_page(page);
	__ClearPageIsolated(page);
}

159 160 161 162
/*
 * Put previously isolated pages back onto the appropriate lists
 * from where they were once taken off for compaction/migration.
 *
163 164 165
 * This function shall be used whenever the isolated pageset has been
 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
 * and isolate_huge_page().
166 167 168 169 170 171
 */
void putback_movable_pages(struct list_head *l)
{
	struct page *page;
	struct page *page2;

C
Christoph Lameter 已提交
172
	list_for_each_entry_safe(page, page2, l, lru) {
173 174 175 176
		if (unlikely(PageHuge(page))) {
			putback_active_hugepage(page);
			continue;
		}
177
		list_del(&page->lru);
178 179 180 181 182
		/*
		 * We isolated non-lru movable page so here we can use
		 * __PageMovable because LRU page's mapping cannot have
		 * PAGE_MAPPING_MOVABLE.
		 */
183
		if (unlikely(__PageMovable(page))) {
184 185 186 187 188 189 190 191 192
			VM_BUG_ON_PAGE(!PageIsolated(page), page);
			lock_page(page);
			if (PageMovable(page))
				putback_movable_page(page);
			else
				__ClearPageIsolated(page);
			unlock_page(page);
			put_page(page);
		} else {
193 194
			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
					page_is_file_cache(page), -hpage_nr_pages(page));
195
			putback_lru_page(page);
196
		}
C
Christoph Lameter 已提交
197 198 199
	}
}

200 201 202
/*
 * Restore a potential migration pte to a working pte entry
 */
M
Minchan Kim 已提交
203
static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
204
				 unsigned long addr, void *old)
205
{
206 207 208 209 210 211 212 213
	struct page_vma_mapped_walk pvmw = {
		.page = old,
		.vma = vma,
		.address = addr,
		.flags = PVMW_SYNC | PVMW_MIGRATION,
	};
	struct page *new;
	pte_t pte;
214 215
	swp_entry_t entry;

216 217
	VM_BUG_ON_PAGE(PageTail(page), page);
	while (page_vma_mapped_walk(&pvmw)) {
218 219 220 221 222
		if (PageKsm(page))
			new = page;
		else
			new = page - pvmw.page->index +
				linear_page_index(vma, pvmw.address);
223

224 225 226 227 228 229 230 231 232
#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
		/* PMD-mapped THP migration entry */
		if (!pvmw.pte) {
			VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
			remove_migration_pmd(&pvmw, new);
			continue;
		}
#endif

233 234 235 236
		get_page(new);
		pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
		if (pte_swp_soft_dirty(*pvmw.pte))
			pte = pte_mksoft_dirty(pte);
237

238 239 240 241 242 243
		/*
		 * Recheck VMA as permissions can change since migration started
		 */
		entry = pte_to_swp_entry(*pvmw.pte);
		if (is_write_migration_entry(entry))
			pte = maybe_mkwrite(pte, vma);
244

245 246 247 248 249
		if (unlikely(is_zone_device_page(new))) {
			if (is_device_private_page(new)) {
				entry = make_device_private_entry(new, pte_write(pte));
				pte = swp_entry_to_pte(entry);
			}
250
		}
251

A
Andi Kleen 已提交
252
#ifdef CONFIG_HUGETLB_PAGE
253 254 255
		if (PageHuge(new)) {
			pte = pte_mkhuge(pte);
			pte = arch_make_huge_pte(pte, vma, new, 0);
256
			set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
257 258 259 260
			if (PageAnon(new))
				hugepage_add_anon_rmap(new, vma, pvmw.address);
			else
				page_dup_rmap(new, true);
261 262 263 264
		} else
#endif
		{
			set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
265

266 267 268 269 270
			if (PageAnon(new))
				page_add_anon_rmap(new, vma, pvmw.address, false);
			else
				page_add_file_rmap(new, false);
		}
271 272 273
		if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
			mlock_vma_page(new);

274 275 276
		if (PageTransHuge(page) && PageMlocked(page))
			clear_page_mlock(page);

277 278 279
		/* No need to invalidate - it was non-present before */
		update_mmu_cache(vma, pvmw.address, pvmw.pte);
	}
280

M
Minchan Kim 已提交
281
	return true;
282 283
}

284 285 286 287
/*
 * Get rid of all migration entries and replace them by
 * references to the indicated page.
 */
288
void remove_migration_ptes(struct page *old, struct page *new, bool locked)
289
{
290 291 292 293 294
	struct rmap_walk_control rwc = {
		.rmap_one = remove_migration_pte,
		.arg = old,
	};

295 296 297 298
	if (locked)
		rmap_walk_locked(new, &rwc);
	else
		rmap_walk(new, &rwc);
299 300
}

301 302 303 304 305
/*
 * Something used the pte of a page under migration. We need to
 * get to the page and wait until migration is finished.
 * When we return from this function the fault will be retried.
 */
306
void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
307
				spinlock_t *ptl)
308
{
309
	pte_t pte;
310 311 312
	swp_entry_t entry;
	struct page *page;

313
	spin_lock(ptl);
314 315 316 317 318 319 320 321 322 323
	pte = *ptep;
	if (!is_swap_pte(pte))
		goto out;

	entry = pte_to_swp_entry(pte);
	if (!is_migration_entry(entry))
		goto out;

	page = migration_entry_to_page(entry);

N
Nick Piggin 已提交
324
	/*
325
	 * Once page cache replacement of page migration started, page_count
326 327
	 * is zero; but we must not call put_and_wait_on_page_locked() without
	 * a ref. Use get_page_unless_zero(), and just fault again if it fails.
N
Nick Piggin 已提交
328 329 330
	 */
	if (!get_page_unless_zero(page))
		goto out;
331
	pte_unmap_unlock(ptep, ptl);
332
	put_and_wait_on_page_locked(page);
333 334 335 336 337
	return;
out:
	pte_unmap_unlock(ptep, ptl);
}

338 339 340 341 342 343 344 345
void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
				unsigned long address)
{
	spinlock_t *ptl = pte_lockptr(mm, pmd);
	pte_t *ptep = pte_offset_map(pmd, address);
	__migration_entry_wait(mm, ptep, ptl);
}

346 347
void migration_entry_wait_huge(struct vm_area_struct *vma,
		struct mm_struct *mm, pte_t *pte)
348
{
349
	spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
350 351 352
	__migration_entry_wait(mm, pte, ptl);
}

353 354 355 356 357 358 359 360 361 362 363 364 365
#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
{
	spinlock_t *ptl;
	struct page *page;

	ptl = pmd_lock(mm, pmd);
	if (!is_pmd_migration_entry(*pmd))
		goto unlock;
	page = migration_entry_to_page(pmd_to_swp_entry(*pmd));
	if (!get_page_unless_zero(page))
		goto unlock;
	spin_unlock(ptl);
366
	put_and_wait_on_page_locked(page);
367 368 369 370 371 372
	return;
unlock:
	spin_unlock(ptl);
}
#endif

373
static int expected_page_refs(struct address_space *mapping, struct page *page)
374 375 376 377 378 379 380 381
{
	int expected_count = 1;

	/*
	 * Device public or private pages have an extra refcount as they are
	 * ZONE_DEVICE pages.
	 */
	expected_count += is_device_private_page(page);
382
	if (mapping)
383 384 385 386 387
		expected_count += hpage_nr_pages(page) + page_has_private(page);

	return expected_count;
}

C
Christoph Lameter 已提交
388
/*
389
 * Replace the page in the mapping.
390 391 392 393
 *
 * The number of remaining references must be:
 * 1 for anonymous pages without a mapping
 * 2 for pages with a mapping
394
 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
C
Christoph Lameter 已提交
395
 */
396
int migrate_page_move_mapping(struct address_space *mapping,
397
		struct page *newpage, struct page *page, int extra_count)
C
Christoph Lameter 已提交
398
{
399
	XA_STATE(xas, &mapping->i_pages, page_index(page));
400 401
	struct zone *oldzone, *newzone;
	int dirty;
402
	int expected_count = expected_page_refs(mapping, page) + extra_count;
403

404
	if (!mapping) {
405
		/* Anonymous page without mapping */
406
		if (page_count(page) != expected_count)
407
			return -EAGAIN;
408 409 410 411 412

		/* No turning back from here */
		newpage->index = page->index;
		newpage->mapping = page->mapping;
		if (PageSwapBacked(page))
413
			__SetPageSwapBacked(newpage);
414

415
		return MIGRATEPAGE_SUCCESS;
416 417
	}

418 419 420
	oldzone = page_zone(page);
	newzone = page_zone(newpage);

421 422 423
	xas_lock_irq(&xas);
	if (page_count(page) != expected_count || xas_load(&xas) != page) {
		xas_unlock_irq(&xas);
424
		return -EAGAIN;
C
Christoph Lameter 已提交
425 426
	}

427
	if (!page_ref_freeze(page, expected_count)) {
428
		xas_unlock_irq(&xas);
N
Nick Piggin 已提交
429 430 431
		return -EAGAIN;
	}

C
Christoph Lameter 已提交
432
	/*
433 434
	 * Now we know that no one else is looking at the page:
	 * no turning back from here.
C
Christoph Lameter 已提交
435
	 */
436 437
	newpage->index = page->index;
	newpage->mapping = page->mapping;
438
	page_ref_add(newpage, hpage_nr_pages(page)); /* add cache reference */
439 440 441 442 443 444 445 446
	if (PageSwapBacked(page)) {
		__SetPageSwapBacked(newpage);
		if (PageSwapCache(page)) {
			SetPageSwapCache(newpage);
			set_page_private(newpage, page_private(page));
		}
	} else {
		VM_BUG_ON_PAGE(PageSwapCache(page), page);
C
Christoph Lameter 已提交
447 448
	}

449 450 451 452 453 454 455
	/* Move dirty while page refs frozen and newpage not yet exposed */
	dirty = PageDirty(page);
	if (dirty) {
		ClearPageDirty(page);
		SetPageDirty(newpage);
	}

456
	xas_store(&xas, newpage);
457 458 459
	if (PageTransHuge(page)) {
		int i;

460
		for (i = 1; i < HPAGE_PMD_NR; i++) {
461
			xas_next(&xas);
462
			xas_store(&xas, newpage + i);
463 464
		}
	}
465 466

	/*
467 468
	 * Drop cache reference from old page by unfreezing
	 * to one less reference.
469 470
	 * We know this isn't the last reference.
	 */
471
	page_ref_unfreeze(page, expected_count - hpage_nr_pages(page));
472

473
	xas_unlock(&xas);
474 475
	/* Leave irq disabled to prevent preemption while updating stats */

476 477 478 479 480 481 482
	/*
	 * If moved to a different zone then also account
	 * the page for that zone. Other VM counters will be
	 * taken care of when we establish references to the
	 * new page and drop references to the old page.
	 *
	 * Note that anonymous pages are accounted for
483
	 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
484 485
	 * are mapped to swap space.
	 */
486
	if (newzone != oldzone) {
487 488
		__dec_node_state(oldzone->zone_pgdat, NR_FILE_PAGES);
		__inc_node_state(newzone->zone_pgdat, NR_FILE_PAGES);
489
		if (PageSwapBacked(page) && !PageSwapCache(page)) {
490 491
			__dec_node_state(oldzone->zone_pgdat, NR_SHMEM);
			__inc_node_state(newzone->zone_pgdat, NR_SHMEM);
492 493
		}
		if (dirty && mapping_cap_account_dirty(mapping)) {
494
			__dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY);
495
			__dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING);
496
			__inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY);
497
			__inc_zone_state(newzone, NR_ZONE_WRITE_PENDING);
498
		}
499
	}
500
	local_irq_enable();
C
Christoph Lameter 已提交
501

502
	return MIGRATEPAGE_SUCCESS;
C
Christoph Lameter 已提交
503
}
504
EXPORT_SYMBOL(migrate_page_move_mapping);
C
Christoph Lameter 已提交
505

N
Naoya Horiguchi 已提交
506 507 508 509 510 511 512
/*
 * The expected number of remaining references is the same as that
 * of migrate_page_move_mapping().
 */
int migrate_huge_page_move_mapping(struct address_space *mapping,
				   struct page *newpage, struct page *page)
{
513
	XA_STATE(xas, &mapping->i_pages, page_index(page));
N
Naoya Horiguchi 已提交
514 515
	int expected_count;

516
	xas_lock_irq(&xas);
N
Naoya Horiguchi 已提交
517
	expected_count = 2 + page_has_private(page);
518 519
	if (page_count(page) != expected_count || xas_load(&xas) != page) {
		xas_unlock_irq(&xas);
N
Naoya Horiguchi 已提交
520 521 522
		return -EAGAIN;
	}

523
	if (!page_ref_freeze(page, expected_count)) {
524
		xas_unlock_irq(&xas);
N
Naoya Horiguchi 已提交
525 526 527
		return -EAGAIN;
	}

528 529
	newpage->index = page->index;
	newpage->mapping = page->mapping;
530

N
Naoya Horiguchi 已提交
531 532
	get_page(newpage);

533
	xas_store(&xas, newpage);
N
Naoya Horiguchi 已提交
534

535
	page_ref_unfreeze(page, expected_count - 1);
N
Naoya Horiguchi 已提交
536

537
	xas_unlock_irq(&xas);
538

539
	return MIGRATEPAGE_SUCCESS;
N
Naoya Horiguchi 已提交
540 541
}

542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589
/*
 * Gigantic pages are so large that we do not guarantee that page++ pointer
 * arithmetic will work across the entire page.  We need something more
 * specialized.
 */
static void __copy_gigantic_page(struct page *dst, struct page *src,
				int nr_pages)
{
	int i;
	struct page *dst_base = dst;
	struct page *src_base = src;

	for (i = 0; i < nr_pages; ) {
		cond_resched();
		copy_highpage(dst, src);

		i++;
		dst = mem_map_next(dst, dst_base, i);
		src = mem_map_next(src, src_base, i);
	}
}

static void copy_huge_page(struct page *dst, struct page *src)
{
	int i;
	int nr_pages;

	if (PageHuge(src)) {
		/* hugetlbfs page */
		struct hstate *h = page_hstate(src);
		nr_pages = pages_per_huge_page(h);

		if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
			__copy_gigantic_page(dst, src, nr_pages);
			return;
		}
	} else {
		/* thp page */
		BUG_ON(!PageTransHuge(src));
		nr_pages = hpage_nr_pages(src);
	}

	for (i = 0; i < nr_pages; i++) {
		cond_resched();
		copy_highpage(dst + i, src + i);
	}
}

C
Christoph Lameter 已提交
590 591 592
/*
 * Copy the page to its new location
 */
593
void migrate_page_states(struct page *newpage, struct page *page)
C
Christoph Lameter 已提交
594
{
595 596
	int cpupid;

C
Christoph Lameter 已提交
597 598 599 600 601 602
	if (PageError(page))
		SetPageError(newpage);
	if (PageReferenced(page))
		SetPageReferenced(newpage);
	if (PageUptodate(page))
		SetPageUptodate(newpage);
L
Lee Schermerhorn 已提交
603
	if (TestClearPageActive(page)) {
604
		VM_BUG_ON_PAGE(PageUnevictable(page), page);
C
Christoph Lameter 已提交
605
		SetPageActive(newpage);
606 607
	} else if (TestClearPageUnevictable(page))
		SetPageUnevictable(newpage);
608 609
	if (PageWorkingset(page))
		SetPageWorkingset(newpage);
C
Christoph Lameter 已提交
610 611 612 613 614
	if (PageChecked(page))
		SetPageChecked(newpage);
	if (PageMappedToDisk(page))
		SetPageMappedToDisk(newpage);

615 616 617
	/* Move dirty on pages not done by migrate_page_move_mapping() */
	if (PageDirty(page))
		SetPageDirty(newpage);
C
Christoph Lameter 已提交
618

619 620 621 622 623
	if (page_is_young(page))
		set_page_young(newpage);
	if (page_is_idle(page))
		set_page_idle(newpage);

624 625 626 627 628 629 630
	/*
	 * Copy NUMA information to the new page, to prevent over-eager
	 * future migrations of this same page.
	 */
	cpupid = page_cpupid_xchg_last(page, -1);
	page_cpupid_xchg_last(newpage, cpupid);

631
	ksm_migrate_page(newpage, page);
632 633 634 635
	/*
	 * Please do not reorder this without considering how mm/ksm.c's
	 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
	 */
636 637
	if (PageSwapCache(page))
		ClearPageSwapCache(page);
C
Christoph Lameter 已提交
638 639 640 641 642 643 644 645 646
	ClearPagePrivate(page);
	set_page_private(page, 0);

	/*
	 * If any waiters have accumulated on the new page then
	 * wake them up.
	 */
	if (PageWriteback(newpage))
		end_page_writeback(newpage);
647 648

	copy_page_owner(page, newpage);
649 650

	mem_cgroup_migrate(page, newpage);
C
Christoph Lameter 已提交
651
}
652 653 654 655 656 657 658 659 660 661 662
EXPORT_SYMBOL(migrate_page_states);

void migrate_page_copy(struct page *newpage, struct page *page)
{
	if (PageHuge(page) || PageTransHuge(page))
		copy_huge_page(newpage, page);
	else
		copy_highpage(newpage, page);

	migrate_page_states(newpage, page);
}
663
EXPORT_SYMBOL(migrate_page_copy);
C
Christoph Lameter 已提交
664

665 666 667 668
/************************************************************
 *                    Migration functions
 ***********************************************************/

C
Christoph Lameter 已提交
669
/*
670
 * Common logic to directly migrate a single LRU page suitable for
671
 * pages that do not use PagePrivate/PagePrivate2.
C
Christoph Lameter 已提交
672 673 674
 *
 * Pages are locked upon entry and exit.
 */
675
int migrate_page(struct address_space *mapping,
676 677
		struct page *newpage, struct page *page,
		enum migrate_mode mode)
C
Christoph Lameter 已提交
678 679 680 681 682
{
	int rc;

	BUG_ON(PageWriteback(page));	/* Writeback must be complete */

683
	rc = migrate_page_move_mapping(mapping, newpage, page, 0);
C
Christoph Lameter 已提交
684

685
	if (rc != MIGRATEPAGE_SUCCESS)
C
Christoph Lameter 已提交
686 687
		return rc;

688 689 690 691
	if (mode != MIGRATE_SYNC_NO_COPY)
		migrate_page_copy(newpage, page);
	else
		migrate_page_states(newpage, page);
692
	return MIGRATEPAGE_SUCCESS;
C
Christoph Lameter 已提交
693 694 695
}
EXPORT_SYMBOL(migrate_page);

696
#ifdef CONFIG_BLOCK
697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734
/* Returns true if all buffers are successfully locked */
static bool buffer_migrate_lock_buffers(struct buffer_head *head,
							enum migrate_mode mode)
{
	struct buffer_head *bh = head;

	/* Simple case, sync compaction */
	if (mode != MIGRATE_ASYNC) {
		do {
			lock_buffer(bh);
			bh = bh->b_this_page;

		} while (bh != head);

		return true;
	}

	/* async case, we cannot block on lock_buffer so use trylock_buffer */
	do {
		if (!trylock_buffer(bh)) {
			/*
			 * We failed to lock the buffer and cannot stall in
			 * async migration. Release the taken locks
			 */
			struct buffer_head *failed_bh = bh;
			bh = head;
			while (bh != failed_bh) {
				unlock_buffer(bh);
				bh = bh->b_this_page;
			}
			return false;
		}

		bh = bh->b_this_page;
	} while (bh != head);
	return true;
}

735 736 737
static int __buffer_migrate_page(struct address_space *mapping,
		struct page *newpage, struct page *page, enum migrate_mode mode,
		bool check_refs)
738 739 740
{
	struct buffer_head *bh, *head;
	int rc;
741
	int expected_count;
742 743

	if (!page_has_buffers(page))
744
		return migrate_page(mapping, newpage, page, mode);
745

746
	/* Check whether page does not have extra refs before we do more work */
747
	expected_count = expected_page_refs(mapping, page);
748 749
	if (page_count(page) != expected_count)
		return -EAGAIN;
750

751 752 753
	head = page_buffers(page);
	if (!buffer_migrate_lock_buffers(head, mode))
		return -EAGAIN;
754

755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781
	if (check_refs) {
		bool busy;
		bool invalidated = false;

recheck_buffers:
		busy = false;
		spin_lock(&mapping->private_lock);
		bh = head;
		do {
			if (atomic_read(&bh->b_count)) {
				busy = true;
				break;
			}
			bh = bh->b_this_page;
		} while (bh != head);
		spin_unlock(&mapping->private_lock);
		if (busy) {
			if (invalidated) {
				rc = -EAGAIN;
				goto unlock_buffers;
			}
			invalidate_bh_lrus();
			invalidated = true;
			goto recheck_buffers;
		}
	}

782
	rc = migrate_page_move_mapping(mapping, newpage, page, 0);
783
	if (rc != MIGRATEPAGE_SUCCESS)
784
		goto unlock_buffers;
785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800

	ClearPagePrivate(page);
	set_page_private(newpage, page_private(page));
	set_page_private(page, 0);
	put_page(page);
	get_page(newpage);

	bh = head;
	do {
		set_bh_page(bh, newpage, bh_offset(bh));
		bh = bh->b_this_page;

	} while (bh != head);

	SetPagePrivate(newpage);

801 802 803 804
	if (mode != MIGRATE_SYNC_NO_COPY)
		migrate_page_copy(newpage, page);
	else
		migrate_page_states(newpage, page);
805

806 807
	rc = MIGRATEPAGE_SUCCESS;
unlock_buffers:
808 809 810 811 812 813 814
	bh = head;
	do {
		unlock_buffer(bh);
		bh = bh->b_this_page;

	} while (bh != head);

815
	return rc;
816
}
817 818 819 820 821 822 823 824 825 826 827

/*
 * Migration function for pages with buffers. This function can only be used
 * if the underlying filesystem guarantees that no other references to "page"
 * exist. For example attached buffer heads are accessed only under page lock.
 */
int buffer_migrate_page(struct address_space *mapping,
		struct page *newpage, struct page *page, enum migrate_mode mode)
{
	return __buffer_migrate_page(mapping, newpage, page, mode, false);
}
828
EXPORT_SYMBOL(buffer_migrate_page);
829 830 831 832 833 834 835 836 837 838 839 840

/*
 * Same as above except that this variant is more careful and checks that there
 * are also no buffer head references. This function is the right one for
 * mappings where buffer heads are directly looked up and referenced (such as
 * block device mappings).
 */
int buffer_migrate_page_norefs(struct address_space *mapping,
		struct page *newpage, struct page *page, enum migrate_mode mode)
{
	return __buffer_migrate_page(mapping, newpage, page, mode, true);
}
841
#endif
842

843 844 845 846
/*
 * Writeback a page to clean the dirty state
 */
static int writeout(struct address_space *mapping, struct page *page)
847
{
848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864
	struct writeback_control wbc = {
		.sync_mode = WB_SYNC_NONE,
		.nr_to_write = 1,
		.range_start = 0,
		.range_end = LLONG_MAX,
		.for_reclaim = 1
	};
	int rc;

	if (!mapping->a_ops->writepage)
		/* No write method for the address space */
		return -EINVAL;

	if (!clear_page_dirty_for_io(page))
		/* Someone else already triggered a write */
		return -EAGAIN;

865
	/*
866 867 868 869 870 871
	 * A dirty page may imply that the underlying filesystem has
	 * the page on some queue. So the page must be clean for
	 * migration. Writeout may mean we loose the lock and the
	 * page state is no longer what we checked for earlier.
	 * At this point we know that the migration attempt cannot
	 * be successful.
872
	 */
873
	remove_migration_ptes(page, page, false);
874

875
	rc = mapping->a_ops->writepage(page, &wbc);
876

877 878 879 880
	if (rc != AOP_WRITEPAGE_ACTIVATE)
		/* unlocked. Relock */
		lock_page(page);

H
Hugh Dickins 已提交
881
	return (rc < 0) ? -EIO : -EAGAIN;
882 883 884 885 886 887
}

/*
 * Default handling if a filesystem does not provide a migration function.
 */
static int fallback_migrate_page(struct address_space *mapping,
888
	struct page *newpage, struct page *page, enum migrate_mode mode)
889
{
890
	if (PageDirty(page)) {
891
		/* Only writeback pages in full synchronous migration */
892 893 894 895 896
		switch (mode) {
		case MIGRATE_SYNC:
		case MIGRATE_SYNC_NO_COPY:
			break;
		default:
897
			return -EBUSY;
898
		}
899
		return writeout(mapping, page);
900
	}
901 902 903 904 905

	/*
	 * Buffers may be managed in a filesystem specific way.
	 * We must have no buffers or drop them.
	 */
906
	if (page_has_private(page) &&
907
	    !try_to_release_page(page, GFP_KERNEL))
908
		return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY;
909

910
	return migrate_page(mapping, newpage, page, mode);
911 912
}

913 914 915 916 917 918
/*
 * Move a page to a newly allocated page
 * The page is locked and all ptes have been successfully removed.
 *
 * The new page will have replaced the old page if this function
 * is successful.
L
Lee Schermerhorn 已提交
919 920 921
 *
 * Return value:
 *   < 0 - error code
922
 *  MIGRATEPAGE_SUCCESS - success
923
 */
924
static int move_to_new_page(struct page *newpage, struct page *page,
925
				enum migrate_mode mode)
926 927
{
	struct address_space *mapping;
928 929
	int rc = -EAGAIN;
	bool is_lru = !__PageMovable(page);
930

931 932
	VM_BUG_ON_PAGE(!PageLocked(page), page);
	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
933 934

	mapping = page_mapping(page);
935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952

	if (likely(is_lru)) {
		if (!mapping)
			rc = migrate_page(mapping, newpage, page, mode);
		else if (mapping->a_ops->migratepage)
			/*
			 * Most pages have a mapping and most filesystems
			 * provide a migratepage callback. Anonymous pages
			 * are part of swap space which also has its own
			 * migratepage callback. This is the most common path
			 * for page migration.
			 */
			rc = mapping->a_ops->migratepage(mapping, newpage,
							page, mode);
		else
			rc = fallback_migrate_page(mapping, newpage,
							page, mode);
	} else {
953
		/*
954 955
		 * In case of non-lru page, it could be released after
		 * isolation step. In that case, we shouldn't try migration.
956
		 */
957 958 959 960 961 962 963 964 965 966 967 968
		VM_BUG_ON_PAGE(!PageIsolated(page), page);
		if (!PageMovable(page)) {
			rc = MIGRATEPAGE_SUCCESS;
			__ClearPageIsolated(page);
			goto out;
		}

		rc = mapping->a_ops->migratepage(mapping, newpage,
						page, mode);
		WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
			!PageIsolated(page));
	}
969

970 971 972 973 974
	/*
	 * When successful, old pagecache page->mapping must be cleared before
	 * page is freed; but stats require that PageAnon be left as PageAnon.
	 */
	if (rc == MIGRATEPAGE_SUCCESS) {
975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990
		if (__PageMovable(page)) {
			VM_BUG_ON_PAGE(!PageIsolated(page), page);

			/*
			 * We clear PG_movable under page_lock so any compactor
			 * cannot try to migrate this page.
			 */
			__ClearPageIsolated(page);
		}

		/*
		 * Anonymous and movable page->mapping will be cleard by
		 * free_pages_prepare so don't reset it here for keeping
		 * the type to work PageAnon, for example.
		 */
		if (!PageMappingFlags(page))
991
			page->mapping = NULL;
992

993
		if (likely(!is_zone_device_page(newpage)))
994 995
			flush_dcache_page(newpage);

996
	}
997
out:
998 999 1000
	return rc;
}

1001
static int __unmap_and_move(struct page *page, struct page *newpage,
1002
				int force, enum migrate_mode mode)
1003
{
1004
	int rc = -EAGAIN;
1005
	int page_was_mapped = 0;
1006
	struct anon_vma *anon_vma = NULL;
1007
	bool is_lru = !__PageMovable(page);
1008

N
Nick Piggin 已提交
1009
	if (!trylock_page(page)) {
1010
		if (!force || mode == MIGRATE_ASYNC)
1011
			goto out;
1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026

		/*
		 * It's not safe for direct compaction to call lock_page.
		 * For example, during page readahead pages are added locked
		 * to the LRU. Later, when the IO completes the pages are
		 * marked uptodate and unlocked. However, the queueing
		 * could be merging multiple pages for one bio (e.g.
		 * mpage_readpages). If an allocation happens for the
		 * second or third page, the process can end up locking
		 * the same page twice and deadlocking. Rather than
		 * trying to be clever about what pages can be locked,
		 * avoid the use of lock_page for direct compaction
		 * altogether.
		 */
		if (current->flags & PF_MEMALLOC)
1027
			goto out;
1028

1029 1030 1031 1032
		lock_page(page);
	}

	if (PageWriteback(page)) {
1033
		/*
1034
		 * Only in the case of a full synchronous migration is it
1035 1036 1037
		 * necessary to wait for PageWriteback. In the async case,
		 * the retry loop is too short and in the sync-light case,
		 * the overhead of stalling is too much
1038
		 */
1039 1040 1041 1042 1043
		switch (mode) {
		case MIGRATE_SYNC:
		case MIGRATE_SYNC_NO_COPY:
			break;
		default:
1044
			rc = -EBUSY;
1045
			goto out_unlock;
1046 1047
		}
		if (!force)
1048
			goto out_unlock;
1049 1050
		wait_on_page_writeback(page);
	}
1051

1052
	/*
1053 1054
	 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
	 * we cannot notice that anon_vma is freed while we migrates a page.
1055
	 * This get_anon_vma() delays freeing anon_vma pointer until the end
1056
	 * of migration. File cache pages are no problem because of page_lock()
1057 1058
	 * File Caches may use write_page() or lock_page() in migration, then,
	 * just care Anon page here.
1059 1060 1061 1062 1063 1064
	 *
	 * Only page_get_anon_vma() understands the subtleties of
	 * getting a hold on an anon_vma from outside one of its mms.
	 * But if we cannot get anon_vma, then we won't need it anyway,
	 * because that implies that the anon page is no longer mapped
	 * (and cannot be remapped so long as we hold the page lock).
1065
	 */
1066
	if (PageAnon(page) && !PageKsm(page))
1067
		anon_vma = page_get_anon_vma(page);
1068

1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
	/*
	 * Block others from accessing the new page when we get around to
	 * establishing additional references. We are usually the only one
	 * holding a reference to newpage at this point. We used to have a BUG
	 * here if trylock_page(newpage) fails, but would like to allow for
	 * cases where there might be a race with the previous use of newpage.
	 * This is much like races on refcount of oldpage: just don't BUG().
	 */
	if (unlikely(!trylock_page(newpage)))
		goto out_unlock;

1080 1081 1082 1083 1084
	if (unlikely(!is_lru)) {
		rc = move_to_new_page(newpage, page, mode);
		goto out_unlock_both;
	}

1085
	/*
1086 1087 1088 1089 1090 1091 1092 1093 1094 1095
	 * Corner case handling:
	 * 1. When a new swap-cache page is read into, it is added to the LRU
	 * and treated as swapcache but it has no rmap yet.
	 * Calling try_to_unmap() against a page->mapping==NULL page will
	 * trigger a BUG.  So handle it here.
	 * 2. An orphaned page (see truncate_complete_page) might have
	 * fs-private metadata. The page can be picked up due to memory
	 * offlining.  Everywhere else except page reclaim, the page is
	 * invisible to the vm, so the page can not be migrated.  So try to
	 * free the metadata, so the page can be freed.
1096
	 */
1097
	if (!page->mapping) {
1098
		VM_BUG_ON_PAGE(PageAnon(page), page);
1099
		if (page_has_private(page)) {
1100
			try_to_free_buffers(page);
1101
			goto out_unlock_both;
1102
		}
1103 1104
	} else if (page_mapped(page)) {
		/* Establish migration ptes */
1105 1106
		VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
				page);
1107
		try_to_unmap(page,
1108
			TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1109 1110
		page_was_mapped = 1;
	}
1111

1112
	if (!page_mapped(page))
1113
		rc = move_to_new_page(newpage, page, mode);
1114

1115 1116
	if (page_was_mapped)
		remove_migration_ptes(page,
1117
			rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1118

1119 1120 1121
out_unlock_both:
	unlock_page(newpage);
out_unlock:
1122
	/* Drop an anon_vma reference if we took one */
1123
	if (anon_vma)
1124
		put_anon_vma(anon_vma);
1125
	unlock_page(page);
1126
out:
1127 1128 1129 1130
	/*
	 * If migration is successful, decrease refcount of the newpage
	 * which will not free the page because new page owner increased
	 * refcounter. As well, if it is LRU page, add the page to LRU
1131 1132 1133 1134
	 * list in here. Use the old state of the isolated source page to
	 * determine if we migrated a LRU page. newpage was already unlocked
	 * and possibly modified by its owner - don't rely on the page
	 * state.
1135 1136
	 */
	if (rc == MIGRATEPAGE_SUCCESS) {
1137
		if (unlikely(!is_lru))
1138 1139 1140 1141 1142
			put_page(newpage);
		else
			putback_lru_page(newpage);
	}

1143 1144
	return rc;
}
1145

1146 1147 1148 1149
/*
 * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move().  Work
 * around it.
 */
1150 1151
#if defined(CONFIG_ARM) && \
	defined(GCC_VERSION) && GCC_VERSION < 40900 && GCC_VERSION >= 40700
1152 1153 1154 1155 1156
#define ICE_noinline noinline
#else
#define ICE_noinline
#endif

1157 1158 1159 1160
/*
 * Obtain the lock on page, remove all ptes and migrate the page
 * to the newly allocated page in newpage.
 */
1161 1162 1163
static ICE_noinline int unmap_and_move(new_page_t get_new_page,
				   free_page_t put_new_page,
				   unsigned long private, struct page *page,
1164 1165
				   int force, enum migrate_mode mode,
				   enum migrate_reason reason)
1166
{
1167 1168
	int rc = MIGRATEPAGE_SUCCESS;
	struct page *newpage;
1169

M
Michal Hocko 已提交
1170 1171 1172
	if (!thp_migration_supported() && PageTransHuge(page))
		return -ENOMEM;

1173
	newpage = get_new_page(page, private);
1174 1175 1176 1177 1178
	if (!newpage)
		return -ENOMEM;

	if (page_count(page) == 1) {
		/* page was freed from under us. So we are done. */
1179 1180
		ClearPageActive(page);
		ClearPageUnevictable(page);
1181 1182 1183 1184 1185 1186
		if (unlikely(__PageMovable(page))) {
			lock_page(page);
			if (!PageMovable(page))
				__ClearPageIsolated(page);
			unlock_page(page);
		}
1187 1188 1189 1190
		if (put_new_page)
			put_new_page(newpage, private);
		else
			put_page(newpage);
1191 1192 1193
		goto out;
	}

1194
	rc = __unmap_and_move(page, newpage, force, mode);
1195
	if (rc == MIGRATEPAGE_SUCCESS)
1196
		set_page_owner_migrate_reason(newpage, reason);
1197

1198
out:
1199
	if (rc != -EAGAIN) {
1200 1201 1202 1203 1204 1205 1206
		/*
		 * A page that has been migrated has all references
		 * removed and will be freed. A page that has not been
		 * migrated will have kepts its references and be
		 * restored.
		 */
		list_del(&page->lru);
1207 1208 1209 1210 1211 1212 1213

		/*
		 * Compaction can migrate also non-LRU pages which are
		 * not accounted to NR_ISOLATED_*. They can be recognized
		 * as __PageMovable
		 */
		if (likely(!__PageMovable(page)))
1214 1215
			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
					page_is_file_cache(page), -hpage_nr_pages(page));
1216 1217 1218 1219 1220 1221 1222 1223 1224 1225
	}

	/*
	 * If migration is successful, releases reference grabbed during
	 * isolation. Otherwise, restore the page to right list unless
	 * we want to retry.
	 */
	if (rc == MIGRATEPAGE_SUCCESS) {
		put_page(page);
		if (reason == MR_MEMORY_FAILURE) {
1226
			/*
1227 1228 1229
			 * Set PG_HWPoison on just freed page
			 * intentionally. Although it's rather weird,
			 * it's how HWPoison flag works at the moment.
1230
			 */
1231
			if (set_hwpoison_free_buddy_page(page))
1232
				num_poisoned_pages_inc();
1233 1234
		}
	} else {
1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249
		if (rc != -EAGAIN) {
			if (likely(!__PageMovable(page))) {
				putback_lru_page(page);
				goto put_new;
			}

			lock_page(page);
			if (PageMovable(page))
				putback_movable_page(page);
			else
				__ClearPageIsolated(page);
			unlock_page(page);
			put_page(page);
		}
put_new:
1250 1251 1252 1253
		if (put_new_page)
			put_new_page(newpage, private);
		else
			put_page(newpage);
1254
	}
1255

1256 1257 1258
	return rc;
}

N
Naoya Horiguchi 已提交
1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277
/*
 * Counterpart of unmap_and_move_page() for hugepage migration.
 *
 * This function doesn't wait the completion of hugepage I/O
 * because there is no race between I/O and migration for hugepage.
 * Note that currently hugepage I/O occurs only in direct I/O
 * where no lock is held and PG_writeback is irrelevant,
 * and writeback status of all subpages are counted in the reference
 * count of the head page (i.e. if all subpages of a 2MB hugepage are
 * under direct I/O, the reference of the head page is 512 and a bit more.)
 * This means that when we try to migrate hugepage whose subpages are
 * doing direct I/O, some references remain after try_to_unmap() and
 * hugepage migration fails without data corruption.
 *
 * There is also no race when direct I/O is issued on the page under migration,
 * because then pte is replaced with migration swap entry and direct I/O code
 * will wait in the page fault for migration to complete.
 */
static int unmap_and_move_huge_page(new_page_t get_new_page,
1278 1279
				free_page_t put_new_page, unsigned long private,
				struct page *hpage, int force,
1280
				enum migrate_mode mode, int reason)
N
Naoya Horiguchi 已提交
1281
{
1282
	int rc = -EAGAIN;
1283
	int page_was_mapped = 0;
1284
	struct page *new_hpage;
N
Naoya Horiguchi 已提交
1285 1286
	struct anon_vma *anon_vma = NULL;

1287
	/*
1288
	 * Migratability of hugepages depends on architectures and their size.
1289 1290 1291 1292 1293
	 * This check is necessary because some callers of hugepage migration
	 * like soft offline and memory hotremove don't walk through page
	 * tables or check whether the hugepage is pmd-based or not before
	 * kicking migration.
	 */
1294
	if (!hugepage_migration_supported(page_hstate(hpage))) {
1295
		putback_active_hugepage(hpage);
1296
		return -ENOSYS;
1297
	}
1298

1299
	new_hpage = get_new_page(hpage, private);
N
Naoya Horiguchi 已提交
1300 1301 1302 1303
	if (!new_hpage)
		return -ENOMEM;

	if (!trylock_page(hpage)) {
1304
		if (!force)
N
Naoya Horiguchi 已提交
1305
			goto out;
1306 1307 1308 1309 1310 1311 1312
		switch (mode) {
		case MIGRATE_SYNC:
		case MIGRATE_SYNC_NO_COPY:
			break;
		default:
			goto out;
		}
N
Naoya Horiguchi 已提交
1313 1314 1315
		lock_page(hpage);
	}

1316 1317 1318 1319 1320 1321 1322 1323 1324 1325
	/*
	 * Check for pages which are in the process of being freed.  Without
	 * page_mapping() set, hugetlbfs specific move page routine will not
	 * be called and we could leak usage counts for subpools.
	 */
	if (page_private(hpage) && !page_mapping(hpage)) {
		rc = -EBUSY;
		goto out_unlock;
	}

1326 1327
	if (PageAnon(hpage))
		anon_vma = page_get_anon_vma(hpage);
N
Naoya Horiguchi 已提交
1328

1329 1330 1331
	if (unlikely(!trylock_page(new_hpage)))
		goto put_anon;

1332 1333
	if (page_mapped(hpage)) {
		try_to_unmap(hpage,
1334
			TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1335 1336
		page_was_mapped = 1;
	}
N
Naoya Horiguchi 已提交
1337 1338

	if (!page_mapped(hpage))
1339
		rc = move_to_new_page(new_hpage, hpage, mode);
N
Naoya Horiguchi 已提交
1340

1341 1342
	if (page_was_mapped)
		remove_migration_ptes(hpage,
1343
			rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
N
Naoya Horiguchi 已提交
1344

1345 1346 1347
	unlock_page(new_hpage);

put_anon:
H
Hugh Dickins 已提交
1348
	if (anon_vma)
1349
		put_anon_vma(anon_vma);
1350

1351
	if (rc == MIGRATEPAGE_SUCCESS) {
1352
		move_hugetlb_state(hpage, new_hpage, reason);
1353 1354
		put_new_page = NULL;
	}
1355

1356
out_unlock:
N
Naoya Horiguchi 已提交
1357
	unlock_page(hpage);
1358
out:
1359 1360
	if (rc != -EAGAIN)
		putback_active_hugepage(hpage);
1361 1362 1363 1364 1365 1366

	/*
	 * If migration was not successful and there's a freeing callback, use
	 * it.  Otherwise, put_page() will drop the reference grabbed during
	 * isolation.
	 */
1367
	if (put_new_page)
1368 1369
		put_new_page(new_hpage, private);
	else
1370
		putback_active_hugepage(new_hpage);
1371

N
Naoya Horiguchi 已提交
1372 1373 1374
	return rc;
}

C
Christoph Lameter 已提交
1375
/*
1376 1377
 * migrate_pages - migrate the pages specified in a list, to the free pages
 *		   supplied as the target for the page migration
C
Christoph Lameter 已提交
1378
 *
1379 1380 1381
 * @from:		The list of pages to be migrated.
 * @get_new_page:	The function used to allocate free pages to be used
 *			as the target of the page migration.
1382 1383
 * @put_new_page:	The function used to free target pages if migration
 *			fails, or NULL if no special handling is necessary.
1384 1385 1386 1387
 * @private:		Private data to be passed on to get_new_page()
 * @mode:		The migration mode that specifies the constraints for
 *			page migration, if any.
 * @reason:		The reason for page migration.
C
Christoph Lameter 已提交
1388
 *
1389 1390
 * The function returns after 10 attempts or if no pages are movable any more
 * because the list has become empty or no retryable pages exist any more.
1391
 * The caller should call putback_movable_pages() to return pages to the LRU
1392
 * or free list only if ret != 0.
C
Christoph Lameter 已提交
1393
 *
1394
 * Returns the number of pages that were not migrated, or an error code.
C
Christoph Lameter 已提交
1395
 */
1396
int migrate_pages(struct list_head *from, new_page_t get_new_page,
1397 1398
		free_page_t put_new_page, unsigned long private,
		enum migrate_mode mode, int reason)
C
Christoph Lameter 已提交
1399
{
1400
	int retry = 1;
C
Christoph Lameter 已提交
1401
	int nr_failed = 0;
1402
	int nr_succeeded = 0;
C
Christoph Lameter 已提交
1403 1404 1405 1406 1407 1408 1409 1410 1411
	int pass = 0;
	struct page *page;
	struct page *page2;
	int swapwrite = current->flags & PF_SWAPWRITE;
	int rc;

	if (!swapwrite)
		current->flags |= PF_SWAPWRITE;

1412 1413
	for(pass = 0; pass < 10 && retry; pass++) {
		retry = 0;
C
Christoph Lameter 已提交
1414

1415
		list_for_each_entry_safe(page, page2, from, lru) {
M
Michal Hocko 已提交
1416
retry:
1417
			cond_resched();
1418

1419 1420
			if (PageHuge(page))
				rc = unmap_and_move_huge_page(get_new_page,
1421
						put_new_page, private, page,
1422
						pass > 2, mode, reason);
1423
			else
1424
				rc = unmap_and_move(get_new_page, put_new_page,
1425 1426
						private, page, pass > 2, mode,
						reason);
1427

1428
			switch(rc) {
1429
			case -ENOMEM:
M
Michal Hocko 已提交
1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440
				/*
				 * THP migration might be unsupported or the
				 * allocation could've failed so we should
				 * retry on the same page with the THP split
				 * to base pages.
				 *
				 * Head page is retried immediately and tail
				 * pages are added to the tail of the list so
				 * we encounter them after the rest of the list
				 * is processed.
				 */
1441
				if (PageTransHuge(page) && !PageHuge(page)) {
M
Michal Hocko 已提交
1442 1443 1444 1445 1446 1447 1448 1449
					lock_page(page);
					rc = split_huge_page_to_list(page, from);
					unlock_page(page);
					if (!rc) {
						list_safe_reset_next(page, page2, lru);
						goto retry;
					}
				}
1450
				nr_failed++;
1451
				goto out;
1452
			case -EAGAIN:
1453
				retry++;
1454
				break;
1455
			case MIGRATEPAGE_SUCCESS:
1456
				nr_succeeded++;
1457 1458
				break;
			default:
1459 1460 1461 1462 1463 1464
				/*
				 * Permanent failure (-EBUSY, -ENOSYS, etc.):
				 * unlike -EAGAIN case, the failed page is
				 * removed from migration page list and not
				 * retried in the next outer loop.
				 */
1465
				nr_failed++;
1466
				break;
1467
			}
C
Christoph Lameter 已提交
1468 1469
		}
	}
1470 1471
	nr_failed += retry;
	rc = nr_failed;
1472
out:
1473 1474 1475 1476
	if (nr_succeeded)
		count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
	if (nr_failed)
		count_vm_events(PGMIGRATE_FAIL, nr_failed);
1477 1478
	trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);

C
Christoph Lameter 已提交
1479 1480 1481
	if (!swapwrite)
		current->flags &= ~PF_SWAPWRITE;

1482
	return rc;
C
Christoph Lameter 已提交
1483
}
1484

1485 1486
#ifdef CONFIG_NUMA

M
Michal Hocko 已提交
1487
static int store_status(int __user *status, int start, int value, int nr)
1488
{
M
Michal Hocko 已提交
1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510
	while (nr-- > 0) {
		if (put_user(value, status + start))
			return -EFAULT;
		start++;
	}

	return 0;
}

static int do_move_pages_to_node(struct mm_struct *mm,
		struct list_head *pagelist, int node)
{
	int err;

	if (list_empty(pagelist))
		return 0;

	err = migrate_pages(pagelist, alloc_new_node_page, NULL, node,
			MIGRATE_SYNC, MR_SYSCALL);
	if (err)
		putback_movable_pages(pagelist);
	return err;
1511 1512 1513
}

/*
M
Michal Hocko 已提交
1514 1515 1516 1517 1518
 * Resolves the given address to a struct page, isolates it from the LRU and
 * puts it to the given pagelist.
 * Returns -errno if the page cannot be found/isolated or 0 when it has been
 * queued or the page doesn't need to be migrated because it is already on
 * the target node
1519
 */
M
Michal Hocko 已提交
1520 1521
static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
		int node, struct list_head *pagelist, bool migrate_all)
1522
{
M
Michal Hocko 已提交
1523 1524 1525
	struct vm_area_struct *vma;
	struct page *page;
	unsigned int follflags;
1526 1527 1528
	int err;

	down_read(&mm->mmap_sem);
M
Michal Hocko 已提交
1529 1530 1531 1532
	err = -EFAULT;
	vma = find_vma(mm, addr);
	if (!vma || addr < vma->vm_start || !vma_migratable(vma))
		goto out;
1533

M
Michal Hocko 已提交
1534 1535 1536
	/* FOLL_DUMP to ignore special (like zero) pages */
	follflags = FOLL_GET | FOLL_DUMP;
	page = follow_page(vma, addr, follflags);
1537

M
Michal Hocko 已提交
1538 1539 1540
	err = PTR_ERR(page);
	if (IS_ERR(page))
		goto out;
1541

M
Michal Hocko 已提交
1542 1543 1544
	err = -ENOENT;
	if (!page)
		goto out;
1545

M
Michal Hocko 已提交
1546 1547 1548
	err = 0;
	if (page_to_nid(page) == node)
		goto out_putpage;
1549

M
Michal Hocko 已提交
1550 1551 1552
	err = -EACCES;
	if (page_mapcount(page) > 1 && !migrate_all)
		goto out_putpage;
1553

M
Michal Hocko 已提交
1554 1555 1556 1557
	if (PageHuge(page)) {
		if (PageHead(page)) {
			isolate_huge_page(page, pagelist);
			err = 0;
1558
		}
M
Michal Hocko 已提交
1559 1560
	} else {
		struct page *head;
1561

1562 1563
		head = compound_head(page);
		err = isolate_lru_page(head);
1564
		if (err)
M
Michal Hocko 已提交
1565
			goto out_putpage;
1566

M
Michal Hocko 已提交
1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580
		err = 0;
		list_add_tail(&head->lru, pagelist);
		mod_node_page_state(page_pgdat(head),
			NR_ISOLATED_ANON + page_is_file_cache(head),
			hpage_nr_pages(head));
	}
out_putpage:
	/*
	 * Either remove the duplicate refcount from
	 * isolate_lru_page() or drop the page ref if it was
	 * not isolated.
	 */
	put_page(page);
out:
1581 1582 1583 1584
	up_read(&mm->mmap_sem);
	return err;
}

1585 1586 1587 1588
/*
 * Migrate an array of page address onto an array of nodes and fill
 * the corresponding array of status.
 */
1589
static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1590 1591 1592 1593 1594
			 unsigned long nr_pages,
			 const void __user * __user *pages,
			 const int __user *nodes,
			 int __user *status, int flags)
{
M
Michal Hocko 已提交
1595 1596 1597 1598
	int current_node = NUMA_NO_NODE;
	LIST_HEAD(pagelist);
	int start, i;
	int err = 0, err1;
1599 1600 1601

	migrate_prep();

M
Michal Hocko 已提交
1602 1603 1604 1605
	for (i = start = 0; i < nr_pages; i++) {
		const void __user *p;
		unsigned long addr;
		int node;
1606

M
Michal Hocko 已提交
1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618
		err = -EFAULT;
		if (get_user(p, pages + i))
			goto out_flush;
		if (get_user(node, nodes + i))
			goto out_flush;
		addr = (unsigned long)p;

		err = -ENODEV;
		if (node < 0 || node >= MAX_NUMNODES)
			goto out_flush;
		if (!node_state(node, N_MEMORY))
			goto out_flush;
1619

M
Michal Hocko 已提交
1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635
		err = -EACCES;
		if (!node_isset(node, task_nodes))
			goto out_flush;

		if (current_node == NUMA_NO_NODE) {
			current_node = node;
			start = i;
		} else if (node != current_node) {
			err = do_move_pages_to_node(mm, &pagelist, current_node);
			if (err)
				goto out;
			err = store_status(status, start, current_node, i - start);
			if (err)
				goto out;
			start = i;
			current_node = node;
1636 1637
		}

M
Michal Hocko 已提交
1638 1639 1640 1641 1642 1643 1644 1645
		/*
		 * Errors in the page lookup or isolation are not fatal and we simply
		 * report them via status
		 */
		err = add_page_for_migration(mm, addr, current_node,
				&pagelist, flags & MPOL_MF_MOVE_ALL);
		if (!err)
			continue;
1646

M
Michal Hocko 已提交
1647 1648 1649
		err = store_status(status, i, err, 1);
		if (err)
			goto out_flush;
1650

M
Michal Hocko 已提交
1651 1652 1653 1654 1655 1656 1657 1658 1659
		err = do_move_pages_to_node(mm, &pagelist, current_node);
		if (err)
			goto out;
		if (i > start) {
			err = store_status(status, start, current_node, i - start);
			if (err)
				goto out;
		}
		current_node = NUMA_NO_NODE;
1660
	}
M
Michal Hocko 已提交
1661
out_flush:
1662 1663 1664
	if (list_empty(&pagelist))
		return err;

M
Michal Hocko 已提交
1665 1666 1667 1668 1669 1670
	/* Make sure we do not overwrite the existing error */
	err1 = do_move_pages_to_node(mm, &pagelist, current_node);
	if (!err1)
		err1 = store_status(status, start, current_node, i - start);
	if (!err)
		err = err1;
1671 1672 1673 1674
out:
	return err;
}

1675
/*
1676
 * Determine the nodes of an array of pages and store it in an array of status.
1677
 */
1678 1679
static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
				const void __user **pages, int *status)
1680
{
1681 1682
	unsigned long i;

1683 1684
	down_read(&mm->mmap_sem);

1685
	for (i = 0; i < nr_pages; i++) {
1686
		unsigned long addr = (unsigned long)(*pages);
1687 1688
		struct vm_area_struct *vma;
		struct page *page;
1689
		int err = -EFAULT;
1690 1691

		vma = find_vma(mm, addr);
1692
		if (!vma || addr < vma->vm_start)
1693 1694
			goto set_status;

1695 1696
		/* FOLL_DUMP to ignore special (like zero) pages */
		page = follow_page(vma, addr, FOLL_DUMP);
1697 1698 1699 1700 1701

		err = PTR_ERR(page);
		if (IS_ERR(page))
			goto set_status;

1702
		err = page ? page_to_nid(page) : -ENOENT;
1703
set_status:
1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724
		*status = err;

		pages++;
		status++;
	}

	up_read(&mm->mmap_sem);
}

/*
 * Determine the nodes of a user array of pages and store it in
 * a user array of status.
 */
static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
			 const void __user * __user *pages,
			 int __user *status)
{
#define DO_PAGES_STAT_CHUNK_NR 16
	const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
	int chunk_status[DO_PAGES_STAT_CHUNK_NR];

1725 1726
	while (nr_pages) {
		unsigned long chunk_nr;
1727

1728 1729 1730 1731 1732 1733
		chunk_nr = nr_pages;
		if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
			chunk_nr = DO_PAGES_STAT_CHUNK_NR;

		if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
			break;
1734 1735 1736

		do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);

1737 1738
		if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
			break;
1739

1740 1741 1742 1743 1744
		pages += chunk_nr;
		status += chunk_nr;
		nr_pages -= chunk_nr;
	}
	return nr_pages ? -EFAULT : 0;
1745 1746 1747 1748 1749 1750
}

/*
 * Move a list of pages in the address space of the currently executing
 * process.
 */
1751 1752 1753 1754
static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
			     const void __user * __user *pages,
			     const int __user *nodes,
			     int __user *status, int flags)
1755 1756 1757
{
	struct task_struct *task;
	struct mm_struct *mm;
1758
	int err;
1759
	nodemask_t task_nodes;
1760 1761 1762 1763 1764 1765 1766 1767 1768

	/* Check flags */
	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
		return -EINVAL;

	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
		return -EPERM;

	/* Find the mm_struct */
1769
	rcu_read_lock();
1770
	task = pid ? find_task_by_vpid(pid) : current;
1771
	if (!task) {
1772
		rcu_read_unlock();
1773 1774
		return -ESRCH;
	}
1775
	get_task_struct(task);
1776 1777 1778

	/*
	 * Check if this process has the right to modify the specified
1779
	 * process. Use the regular "ptrace_may_access()" checks.
1780
	 */
1781
	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1782
		rcu_read_unlock();
1783
		err = -EPERM;
1784
		goto out;
1785
	}
1786
	rcu_read_unlock();
1787

1788 1789
 	err = security_task_movememory(task);
 	if (err)
1790
		goto out;
1791

1792 1793 1794 1795
	task_nodes = cpuset_mems_allowed(task);
	mm = get_task_mm(task);
	put_task_struct(task);

1796 1797 1798 1799 1800 1801 1802 1803
	if (!mm)
		return -EINVAL;

	if (nodes)
		err = do_pages_move(mm, task_nodes, nr_pages, pages,
				    nodes, status, flags);
	else
		err = do_pages_stat(mm, nr_pages, pages, status);
1804 1805 1806

	mmput(mm);
	return err;
1807 1808 1809 1810

out:
	put_task_struct(task);
	return err;
1811 1812
}

1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842
SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
		const void __user * __user *, pages,
		const int __user *, nodes,
		int __user *, status, int, flags)
{
	return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
}

#ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages,
		       compat_uptr_t __user *, pages32,
		       const int __user *, nodes,
		       int __user *, status,
		       int, flags)
{
	const void __user * __user *pages;
	int i;

	pages = compat_alloc_user_space(nr_pages * sizeof(void *));
	for (i = 0; i < nr_pages; i++) {
		compat_uptr_t p;

		if (get_user(p, pages32 + i) ||
			put_user(compat_ptr(p), pages + i))
			return -EFAULT;
	}
	return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
}
#endif /* CONFIG_COMPAT */

1843 1844 1845 1846 1847 1848
#ifdef CONFIG_NUMA_BALANCING
/*
 * Returns true if this is a safe migration target node for misplaced NUMA
 * pages. Currently it only checks the watermarks which crude
 */
static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1849
				   unsigned long nr_migrate_pages)
1850 1851
{
	int z;
M
Mel Gorman 已提交
1852

1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870
	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
		struct zone *zone = pgdat->node_zones + z;

		if (!populated_zone(zone))
			continue;

		/* Avoid waking kswapd by allocating pages_to_migrate pages. */
		if (!zone_watermark_ok(zone, 0,
				       high_wmark_pages(zone) +
				       nr_migrate_pages,
				       0, 0))
			continue;
		return true;
	}
	return false;
}

static struct page *alloc_misplaced_dst_page(struct page *page,
1871
					   unsigned long data)
1872 1873 1874 1875
{
	int nid = (int) data;
	struct page *newpage;

1876
	newpage = __alloc_pages_node(nid,
1877 1878 1879
					 (GFP_HIGHUSER_MOVABLE |
					  __GFP_THISNODE | __GFP_NOMEMALLOC |
					  __GFP_NORETRY | __GFP_NOWARN) &
1880
					 ~__GFP_RECLAIM, 0);
1881

1882 1883 1884
	return newpage;
}

1885
static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1886
{
1887
	int page_lru;
1888

1889
	VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1890

1891
	/* Avoid migrating to a node that is nearly full */
1892 1893
	if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
		return 0;
1894

1895 1896
	if (isolate_lru_page(page))
		return 0;
1897

1898 1899 1900 1901 1902 1903 1904 1905 1906 1907
	/*
	 * migrate_misplaced_transhuge_page() skips page migration's usual
	 * check on page_count(), so we must do it here, now that the page
	 * has been isolated: a GUP pin, or any other pin, prevents migration.
	 * The expected page count is 3: 1 for page's mapcount and 1 for the
	 * caller's pin and 1 for the reference taken by isolate_lru_page().
	 */
	if (PageTransHuge(page) && page_count(page) != 3) {
		putback_lru_page(page);
		return 0;
1908 1909
	}

1910
	page_lru = page_is_file_cache(page);
M
Mel Gorman 已提交
1911
	mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
1912 1913
				hpage_nr_pages(page));

1914
	/*
1915 1916 1917
	 * Isolating the page has taken another reference, so the
	 * caller's reference can be safely dropped without the page
	 * disappearing underneath us during migration.
1918 1919
	 */
	put_page(page);
1920
	return 1;
1921 1922
}

1923 1924 1925 1926 1927 1928
bool pmd_trans_migrating(pmd_t pmd)
{
	struct page *page = pmd_page(pmd);
	return PageLocked(page);
}

1929 1930 1931 1932 1933
/*
 * Attempt to migrate a misplaced page to the specified destination
 * node. Caller is expected to have an elevated reference count on
 * the page that will be dropped by this function before returning.
 */
1934 1935
int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
			   int node)
1936 1937
{
	pg_data_t *pgdat = NODE_DATA(node);
1938
	int isolated;
1939 1940 1941 1942
	int nr_remaining;
	LIST_HEAD(migratepages);

	/*
1943 1944
	 * Don't migrate file pages that are mapped in multiple processes
	 * with execute permissions as they are probably shared libraries.
1945
	 */
1946 1947
	if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
	    (vma->vm_flags & VM_EXEC))
1948 1949
		goto out;

1950 1951 1952 1953 1954 1955 1956
	/*
	 * Also do not migrate dirty pages as not all filesystems can move
	 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
	 */
	if (page_is_file_cache(page) && PageDirty(page))
		goto out;

1957 1958 1959 1960 1961
	isolated = numamigrate_isolate_page(pgdat, page);
	if (!isolated)
		goto out;

	list_add(&page->lru, &migratepages);
1962
	nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1963 1964
				     NULL, node, MIGRATE_ASYNC,
				     MR_NUMA_MISPLACED);
1965
	if (nr_remaining) {
1966 1967
		if (!list_empty(&migratepages)) {
			list_del(&page->lru);
M
Mel Gorman 已提交
1968
			dec_node_page_state(page, NR_ISOLATED_ANON +
1969 1970 1971
					page_is_file_cache(page));
			putback_lru_page(page);
		}
1972 1973 1974
		isolated = 0;
	} else
		count_vm_numa_event(NUMA_PAGE_MIGRATE);
1975 1976
	BUG_ON(!list_empty(&migratepages));
	return isolated;
1977 1978 1979 1980

out:
	put_page(page);
	return 0;
1981
}
1982
#endif /* CONFIG_NUMA_BALANCING */
1983

1984
#if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1985 1986 1987 1988
/*
 * Migrates a THP to a given target node. page must be locked and is unlocked
 * before returning.
 */
1989 1990 1991 1992 1993 1994
int migrate_misplaced_transhuge_page(struct mm_struct *mm,
				struct vm_area_struct *vma,
				pmd_t *pmd, pmd_t entry,
				unsigned long address,
				struct page *page, int node)
{
1995
	spinlock_t *ptl;
1996 1997 1998 1999
	pg_data_t *pgdat = NODE_DATA(node);
	int isolated = 0;
	struct page *new_page = NULL;
	int page_lru = page_is_file_cache(page);
2000
	unsigned long start = address & HPAGE_PMD_MASK;
2001 2002

	new_page = alloc_pages_node(node,
2003
		(GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
2004
		HPAGE_PMD_ORDER);
2005 2006
	if (!new_page)
		goto out_fail;
2007
	prep_transhuge_page(new_page);
2008

2009
	isolated = numamigrate_isolate_page(pgdat, page);
2010
	if (!isolated) {
2011
		put_page(new_page);
2012
		goto out_fail;
2013
	}
2014

2015
	/* Prepare a page as a migration target */
2016
	__SetPageLocked(new_page);
2017 2018
	if (PageSwapBacked(page))
		__SetPageSwapBacked(new_page);
2019 2020 2021 2022

	/* anon mapping, we can simply copy page->mapping to the new page: */
	new_page->mapping = page->mapping;
	new_page->index = page->index;
2023 2024
	/* flush the cache before copying using the kernel virtual address */
	flush_cache_range(vma, start, start + HPAGE_PMD_SIZE);
2025 2026 2027 2028
	migrate_page_copy(new_page, page);
	WARN_ON(PageLRU(new_page));

	/* Recheck the target PMD */
2029
	ptl = pmd_lock(mm, pmd);
2030
	if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) {
2031
		spin_unlock(ptl);
2032 2033 2034 2035 2036 2037 2038 2039 2040 2041

		/* Reverse changes made by migrate_page_copy() */
		if (TestClearPageActive(new_page))
			SetPageActive(page);
		if (TestClearPageUnevictable(new_page))
			SetPageUnevictable(page);

		unlock_page(new_page);
		put_page(new_page);		/* Free it */

2042 2043
		/* Retake the callers reference and putback on LRU */
		get_page(page);
2044
		putback_lru_page(page);
M
Mel Gorman 已提交
2045
		mod_node_page_state(page_pgdat(page),
2046
			 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
2047 2048

		goto out_unlock;
2049 2050
	}

K
Kirill A. Shutemov 已提交
2051
	entry = mk_huge_pmd(new_page, vma->vm_page_prot);
2052
	entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2053

2054
	/*
2055 2056 2057 2058 2059 2060
	 * Overwrite the old entry under pagetable lock and establish
	 * the new PTE. Any parallel GUP will either observe the old
	 * page blocking on the page lock, block on the page table
	 * lock or observe the new page. The SetPageUptodate on the
	 * new page and page_add_new_anon_rmap guarantee the copy is
	 * visible before the pagetable update.
2061
	 */
2062
	page_add_anon_rmap(new_page, vma, start, true);
2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073
	/*
	 * At this point the pmd is numa/protnone (i.e. non present) and the TLB
	 * has already been flushed globally.  So no TLB can be currently
	 * caching this non present pmd mapping.  There's no need to clear the
	 * pmd before doing set_pmd_at(), nor to flush the TLB after
	 * set_pmd_at().  Clearing the pmd here would introduce a race
	 * condition against MADV_DONTNEED, because MADV_DONTNEED only holds the
	 * mmap_sem for reading.  If the pmd is set to NULL at any given time,
	 * MADV_DONTNEED won't wait on the pmd lock and it'll skip clearing this
	 * pmd.
	 */
2074
	set_pmd_at(mm, start, pmd, entry);
2075
	update_mmu_cache_pmd(vma, address, &entry);
2076

2077
	page_ref_unfreeze(page, 2);
2078
	mlock_migrate_page(new_page, page);
2079
	page_remove_rmap(page, true);
2080
	set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2081

2082
	spin_unlock(ptl);
2083

2084 2085 2086 2087
	/* Take an "isolate" reference and put new page on the LRU. */
	get_page(new_page);
	putback_lru_page(new_page);

2088 2089 2090 2091 2092 2093 2094 2095
	unlock_page(new_page);
	unlock_page(page);
	put_page(page);			/* Drop the rmap reference */
	put_page(page);			/* Drop the LRU isolation reference */

	count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
	count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);

M
Mel Gorman 已提交
2096
	mod_node_page_state(page_pgdat(page),
2097 2098 2099 2100
			NR_ISOLATED_ANON + page_lru,
			-HPAGE_PMD_NR);
	return isolated;

2101 2102
out_fail:
	count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2103 2104
	ptl = pmd_lock(mm, pmd);
	if (pmd_same(*pmd, entry)) {
2105
		entry = pmd_modify(entry, vma->vm_page_prot);
2106
		set_pmd_at(mm, start, pmd, entry);
2107 2108 2109
		update_mmu_cache_pmd(vma, address, &entry);
	}
	spin_unlock(ptl);
2110

2111
out_unlock:
2112
	unlock_page(page);
2113 2114 2115
	put_page(page);
	return 0;
}
2116 2117 2118
#endif /* CONFIG_NUMA_BALANCING */

#endif /* CONFIG_NUMA */
2119

2120
#if defined(CONFIG_MIGRATE_VMA_HELPER)
2121 2122 2123 2124 2125 2126 2127
static int migrate_vma_collect_hole(unsigned long start,
				    unsigned long end,
				    struct mm_walk *walk)
{
	struct migrate_vma *migrate = walk->private;
	unsigned long addr;

2128
	for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
2129
		migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
2130
		migrate->dst[migrate->npages] = 0;
2131
		migrate->npages++;
2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144
		migrate->cpages++;
	}

	return 0;
}

static int migrate_vma_collect_skip(unsigned long start,
				    unsigned long end,
				    struct mm_walk *walk)
{
	struct migrate_vma *migrate = walk->private;
	unsigned long addr;

2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160
	for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
		migrate->dst[migrate->npages] = 0;
		migrate->src[migrate->npages++] = 0;
	}

	return 0;
}

static int migrate_vma_collect_pmd(pmd_t *pmdp,
				   unsigned long start,
				   unsigned long end,
				   struct mm_walk *walk)
{
	struct migrate_vma *migrate = walk->private;
	struct vm_area_struct *vma = walk->vma;
	struct mm_struct *mm = vma->vm_mm;
2161
	unsigned long addr = start, unmapped = 0;
2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182
	spinlock_t *ptl;
	pte_t *ptep;

again:
	if (pmd_none(*pmdp))
		return migrate_vma_collect_hole(start, end, walk);

	if (pmd_trans_huge(*pmdp)) {
		struct page *page;

		ptl = pmd_lock(mm, pmdp);
		if (unlikely(!pmd_trans_huge(*pmdp))) {
			spin_unlock(ptl);
			goto again;
		}

		page = pmd_page(*pmdp);
		if (is_huge_zero_page(page)) {
			spin_unlock(ptl);
			split_huge_pmd(vma, pmdp, addr);
			if (pmd_trans_unstable(pmdp))
2183
				return migrate_vma_collect_skip(start, end,
2184 2185 2186 2187 2188 2189 2190
								walk);
		} else {
			int ret;

			get_page(page);
			spin_unlock(ptl);
			if (unlikely(!trylock_page(page)))
2191
				return migrate_vma_collect_skip(start, end,
2192 2193 2194 2195
								walk);
			ret = split_huge_page(page);
			unlock_page(page);
			put_page(page);
2196 2197 2198 2199
			if (ret)
				return migrate_vma_collect_skip(start, end,
								walk);
			if (pmd_none(*pmdp))
2200 2201 2202 2203 2204 2205
				return migrate_vma_collect_hole(start, end,
								walk);
		}
	}

	if (unlikely(pmd_bad(*pmdp)))
2206
		return migrate_vma_collect_skip(start, end, walk);
2207 2208

	ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2209 2210
	arch_enter_lazy_mmu_mode();

2211 2212 2213
	for (; addr < end; addr += PAGE_SIZE, ptep++) {
		unsigned long mpfn, pfn;
		struct page *page;
2214
		swp_entry_t entry;
2215 2216 2217 2218 2219
		pte_t pte;

		pte = *ptep;
		pfn = pte_pfn(pte);

2220
		if (pte_none(pte)) {
2221 2222 2223
			mpfn = MIGRATE_PFN_MIGRATE;
			migrate->cpages++;
			pfn = 0;
2224 2225 2226
			goto next;
		}

2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239
		if (!pte_present(pte)) {
			mpfn = pfn = 0;

			/*
			 * Only care about unaddressable device page special
			 * page table entry. Other special swap entries are not
			 * migratable, and we ignore regular swapped page.
			 */
			entry = pte_to_swp_entry(pte);
			if (!is_device_private_entry(entry))
				goto next;

			page = device_private_entry_to_page(entry);
2240 2241
			mpfn = migrate_pfn(page_to_pfn(page)) |
					MIGRATE_PFN_MIGRATE;
2242 2243 2244
			if (is_write_device_private_entry(entry))
				mpfn |= MIGRATE_PFN_WRITE;
		} else {
2245 2246 2247 2248 2249 2250
			if (is_zero_pfn(pfn)) {
				mpfn = MIGRATE_PFN_MIGRATE;
				migrate->cpages++;
				pfn = 0;
				goto next;
			}
2251
			page = vm_normal_page(migrate->vma, addr, pte);
2252 2253 2254 2255
			mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
			mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
		}

2256 2257 2258 2259 2260
		/* FIXME support THP */
		if (!page || !page->mapping || PageTransCompound(page)) {
			mpfn = pfn = 0;
			goto next;
		}
2261
		pfn = page_to_pfn(page);
2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274

		/*
		 * By getting a reference on the page we pin it and that blocks
		 * any kind of migration. Side effect is that it "freezes" the
		 * pte.
		 *
		 * We drop this reference after isolating the page from the lru
		 * for non device page (device page are not on the lru and thus
		 * can't be dropped from it).
		 */
		get_page(page);
		migrate->cpages++;

2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286
		/*
		 * Optimize for the common case where page is only mapped once
		 * in one process. If we can lock the page, then we can safely
		 * set up a special migration page table entry now.
		 */
		if (trylock_page(page)) {
			pte_t swp_pte;

			mpfn |= MIGRATE_PFN_LOCKED;
			ptep_get_and_clear(mm, addr, ptep);

			/* Setup special migration page table entry */
2287 2288
			entry = make_migration_entry(page, mpfn &
						     MIGRATE_PFN_WRITE);
2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300
			swp_pte = swp_entry_to_pte(entry);
			if (pte_soft_dirty(pte))
				swp_pte = pte_swp_mksoft_dirty(swp_pte);
			set_pte_at(mm, addr, ptep, swp_pte);

			/*
			 * This is like regular unmap: we remove the rmap and
			 * drop page refcount. Page won't be freed, as we took
			 * a reference just above.
			 */
			page_remove_rmap(page, false);
			put_page(page);
2301 2302 2303

			if (pte_present(pte))
				unmapped++;
2304 2305
		}

2306
next:
2307
		migrate->dst[migrate->npages] = 0;
2308 2309
		migrate->src[migrate->npages++] = mpfn;
	}
2310
	arch_leave_lazy_mmu_mode();
2311 2312
	pte_unmap_unlock(ptep - 1, ptl);

2313 2314 2315 2316
	/* Only flush the TLB if we actually modified any entries */
	if (unmapped)
		flush_tlb_range(walk->vma, start, end);

2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329
	return 0;
}

/*
 * migrate_vma_collect() - collect pages over a range of virtual addresses
 * @migrate: migrate struct containing all migration information
 *
 * This will walk the CPU page table. For each virtual address backed by a
 * valid page, it updates the src array and takes a reference on the page, in
 * order to pin the page until we lock it and unmap it.
 */
static void migrate_vma_collect(struct migrate_vma *migrate)
{
2330
	struct mmu_notifier_range range;
2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341
	struct mm_walk mm_walk;

	mm_walk.pmd_entry = migrate_vma_collect_pmd;
	mm_walk.pte_entry = NULL;
	mm_walk.pte_hole = migrate_vma_collect_hole;
	mm_walk.hugetlb_entry = NULL;
	mm_walk.test_walk = NULL;
	mm_walk.vma = migrate->vma;
	mm_walk.mm = migrate->vma->vm_mm;
	mm_walk.private = migrate;

2342
	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, NULL, mm_walk.mm,
2343
				migrate->start,
2344 2345
				migrate->end);
	mmu_notifier_invalidate_range_start(&range);
2346
	walk_page_range(migrate->start, migrate->end, &mm_walk);
2347
	mmu_notifier_invalidate_range_end(&range);
2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376

	migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
}

/*
 * migrate_vma_check_page() - check if page is pinned or not
 * @page: struct page to check
 *
 * Pinned pages cannot be migrated. This is the same test as in
 * migrate_page_move_mapping(), except that here we allow migration of a
 * ZONE_DEVICE page.
 */
static bool migrate_vma_check_page(struct page *page)
{
	/*
	 * One extra ref because caller holds an extra reference, either from
	 * isolate_lru_page() for a regular page, or migrate_vma_collect() for
	 * a device page.
	 */
	int extra = 1;

	/*
	 * FIXME support THP (transparent huge page), it is bit more complex to
	 * check them than regular pages, because they can be mapped with a pmd
	 * or with a pte (split pte mapping).
	 */
	if (PageCompound(page))
		return false;

2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391
	/* Page from ZONE_DEVICE have one extra reference */
	if (is_zone_device_page(page)) {
		/*
		 * Private page can never be pin as they have no valid pte and
		 * GUP will fail for those. Yet if there is a pending migration
		 * a thread might try to wait on the pte migration entry and
		 * will bump the page reference count. Sadly there is no way to
		 * differentiate a regular pin from migration wait. Hence to
		 * avoid 2 racing thread trying to migrate back to CPU to enter
		 * infinite loop (one stoping migration because the other is
		 * waiting on pte migration entry). We always return true here.
		 *
		 * FIXME proper solution is to rework migration_entry_wait() so
		 * it does not need to take a reference on page.
		 */
2392
		return is_device_private_page(page);
2393 2394
	}

2395 2396 2397 2398
	/* For file back page */
	if (page_mapping(page))
		extra += 1 + page_has_private(page);

2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416
	if ((page_count(page) - extra) > page_mapcount(page))
		return false;

	return true;
}

/*
 * migrate_vma_prepare() - lock pages and isolate them from the lru
 * @migrate: migrate struct containing all migration information
 *
 * This locks pages that have been collected by migrate_vma_collect(). Once each
 * page is locked it is isolated from the lru (for non-device pages). Finally,
 * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
 * migrated by concurrent kernel threads.
 */
static void migrate_vma_prepare(struct migrate_vma *migrate)
{
	const unsigned long npages = migrate->npages;
2417 2418
	const unsigned long start = migrate->start;
	unsigned long addr, i, restore = 0;
2419 2420 2421 2422 2423 2424
	bool allow_drain = true;

	lru_add_drain();

	for (i = 0; (i < npages) && migrate->cpages; i++) {
		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2425
		bool remap = true;
2426 2427 2428 2429

		if (!page)
			continue;

2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446
		if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
			/*
			 * Because we are migrating several pages there can be
			 * a deadlock between 2 concurrent migration where each
			 * are waiting on each other page lock.
			 *
			 * Make migrate_vma() a best effort thing and backoff
			 * for any page we can not lock right away.
			 */
			if (!trylock_page(page)) {
				migrate->src[i] = 0;
				migrate->cpages--;
				put_page(page);
				continue;
			}
			remap = false;
			migrate->src[i] |= MIGRATE_PFN_LOCKED;
2447 2448
		}

2449 2450 2451 2452 2453 2454 2455
		/* ZONE_DEVICE pages are not on LRU */
		if (!is_zone_device_page(page)) {
			if (!PageLRU(page) && allow_drain) {
				/* Drain CPU's pagevec */
				lru_add_drain_all();
				allow_drain = false;
			}
2456

2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468
			if (isolate_lru_page(page)) {
				if (remap) {
					migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
					migrate->cpages--;
					restore++;
				} else {
					migrate->src[i] = 0;
					unlock_page(page);
					migrate->cpages--;
					put_page(page);
				}
				continue;
2469
			}
2470 2471 2472

			/* Drop the reference we took in collect */
			put_page(page);
2473 2474 2475
		}

		if (!migrate_vma_check_page(page)) {
2476 2477 2478 2479
			if (remap) {
				migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
				migrate->cpages--;
				restore++;
2480

2481 2482 2483 2484
				if (!is_zone_device_page(page)) {
					get_page(page);
					putback_lru_page(page);
				}
2485 2486 2487 2488 2489
			} else {
				migrate->src[i] = 0;
				unlock_page(page);
				migrate->cpages--;

2490 2491 2492 2493
				if (!is_zone_device_page(page))
					putback_lru_page(page);
				else
					put_page(page);
2494
			}
2495 2496
		}
	}
2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510

	for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
		struct page *page = migrate_pfn_to_page(migrate->src[i]);

		if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
			continue;

		remove_migration_pte(page, migrate->vma, addr, page);

		migrate->src[i] = 0;
		unlock_page(page);
		put_page(page);
		restore--;
	}
2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536
}

/*
 * migrate_vma_unmap() - replace page mapping with special migration pte entry
 * @migrate: migrate struct containing all migration information
 *
 * Replace page mapping (CPU page table pte) with a special migration pte entry
 * and check again if it has been pinned. Pinned pages are restored because we
 * cannot migrate them.
 *
 * This is the last step before we call the device driver callback to allocate
 * destination memory and copy contents of original page over to new page.
 */
static void migrate_vma_unmap(struct migrate_vma *migrate)
{
	int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
	const unsigned long npages = migrate->npages;
	const unsigned long start = migrate->start;
	unsigned long addr, i, restore = 0;

	for (i = 0; i < npages; i++) {
		struct page *page = migrate_pfn_to_page(migrate->src[i]);

		if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
			continue;

2537 2538 2539 2540
		if (page_mapped(page)) {
			try_to_unmap(page, flags);
			if (page_mapped(page))
				goto restore;
2541
		}
2542 2543 2544 2545 2546 2547 2548 2549

		if (migrate_vma_check_page(page))
			continue;

restore:
		migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
		migrate->cpages--;
		restore++;
2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563
	}

	for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
		struct page *page = migrate_pfn_to_page(migrate->src[i]);

		if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
			continue;

		remove_migration_ptes(page, page, false);

		migrate->src[i] = 0;
		unlock_page(page);
		restore--;

2564 2565 2566 2567
		if (is_zone_device_page(page))
			put_page(page);
		else
			putback_lru_page(page);
2568 2569 2570
	}
}

2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674
/**
 * migrate_vma_setup() - prepare to migrate a range of memory
 * @args: contains the vma, start, and and pfns arrays for the migration
 *
 * Returns: negative errno on failures, 0 when 0 or more pages were migrated
 * without an error.
 *
 * Prepare to migrate a range of memory virtual address range by collecting all
 * the pages backing each virtual address in the range, saving them inside the
 * src array.  Then lock those pages and unmap them. Once the pages are locked
 * and unmapped, check whether each page is pinned or not.  Pages that aren't
 * pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the
 * corresponding src array entry.  Then restores any pages that are pinned, by
 * remapping and unlocking those pages.
 *
 * The caller should then allocate destination memory and copy source memory to
 * it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE
 * flag set).  Once these are allocated and copied, the caller must update each
 * corresponding entry in the dst array with the pfn value of the destination
 * page and with the MIGRATE_PFN_VALID and MIGRATE_PFN_LOCKED flags set
 * (destination pages must have their struct pages locked, via lock_page()).
 *
 * Note that the caller does not have to migrate all the pages that are marked
 * with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from
 * device memory to system memory.  If the caller cannot migrate a device page
 * back to system memory, then it must return VM_FAULT_SIGBUS, which has severe
 * consequences for the userspace process, so it must be avoided if at all
 * possible.
 *
 * For empty entries inside CPU page table (pte_none() or pmd_none() is true) we
 * do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus
 * allowing the caller to allocate device memory for those unback virtual
 * address.  For this the caller simply has to allocate device memory and
 * properly set the destination entry like for regular migration.  Note that
 * this can still fails and thus inside the device driver must check if the
 * migration was successful for those entries after calling migrate_vma_pages()
 * just like for regular migration.
 *
 * After that, the callers must call migrate_vma_pages() to go over each entry
 * in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
 * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
 * then migrate_vma_pages() to migrate struct page information from the source
 * struct page to the destination struct page.  If it fails to migrate the
 * struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the
 * src array.
 *
 * At this point all successfully migrated pages have an entry in the src
 * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
 * array entry with MIGRATE_PFN_VALID flag set.
 *
 * Once migrate_vma_pages() returns the caller may inspect which pages were
 * successfully migrated, and which were not.  Successfully migrated pages will
 * have the MIGRATE_PFN_MIGRATE flag set for their src array entry.
 *
 * It is safe to update device page table after migrate_vma_pages() because
 * both destination and source page are still locked, and the mmap_sem is held
 * in read mode (hence no one can unmap the range being migrated).
 *
 * Once the caller is done cleaning up things and updating its page table (if it
 * chose to do so, this is not an obligation) it finally calls
 * migrate_vma_finalize() to update the CPU page table to point to new pages
 * for successfully migrated pages or otherwise restore the CPU page table to
 * point to the original source pages.
 */
int migrate_vma_setup(struct migrate_vma *args)
{
	long nr_pages = (args->end - args->start) >> PAGE_SHIFT;

	args->start &= PAGE_MASK;
	args->end &= PAGE_MASK;
	if (!args->vma || is_vm_hugetlb_page(args->vma) ||
	    (args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma))
		return -EINVAL;
	if (nr_pages <= 0)
		return -EINVAL;
	if (args->start < args->vma->vm_start ||
	    args->start >= args->vma->vm_end)
		return -EINVAL;
	if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end)
		return -EINVAL;
	if (!args->src || !args->dst)
		return -EINVAL;

	memset(args->src, 0, sizeof(*args->src) * nr_pages);
	args->cpages = 0;
	args->npages = 0;

	migrate_vma_collect(args);

	if (args->cpages)
		migrate_vma_prepare(args);
	if (args->cpages)
		migrate_vma_unmap(args);

	/*
	 * At this point pages are locked and unmapped, and thus they have
	 * stable content and can safely be copied to destination memory that
	 * is allocated by the drivers.
	 */
	return 0;

}
EXPORT_SYMBOL(migrate_vma_setup);

2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720
static void migrate_vma_insert_page(struct migrate_vma *migrate,
				    unsigned long addr,
				    struct page *page,
				    unsigned long *src,
				    unsigned long *dst)
{
	struct vm_area_struct *vma = migrate->vma;
	struct mm_struct *mm = vma->vm_mm;
	struct mem_cgroup *memcg;
	bool flush = false;
	spinlock_t *ptl;
	pte_t entry;
	pgd_t *pgdp;
	p4d_t *p4dp;
	pud_t *pudp;
	pmd_t *pmdp;
	pte_t *ptep;

	/* Only allow populating anonymous memory */
	if (!vma_is_anonymous(vma))
		goto abort;

	pgdp = pgd_offset(mm, addr);
	p4dp = p4d_alloc(mm, pgdp, addr);
	if (!p4dp)
		goto abort;
	pudp = pud_alloc(mm, p4dp, addr);
	if (!pudp)
		goto abort;
	pmdp = pmd_alloc(mm, pudp, addr);
	if (!pmdp)
		goto abort;

	if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
		goto abort;

	/*
	 * Use pte_alloc() instead of pte_alloc_map().  We can't run
	 * pte_offset_map() on pmds where a huge pmd might be created
	 * from a different thread.
	 *
	 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
	 * parallel threads are excluded by other means.
	 *
	 * Here we only have down_read(mmap_sem).
	 */
2721
	if (pte_alloc(mm, pmdp))
2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739
		goto abort;

	/* See the comment in pte_alloc_one_map() */
	if (unlikely(pmd_trans_unstable(pmdp)))
		goto abort;

	if (unlikely(anon_vma_prepare(vma)))
		goto abort;
	if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
		goto abort;

	/*
	 * The memory barrier inside __SetPageUptodate makes sure that
	 * preceding stores to the page contents become visible before
	 * the set_pte_at() write.
	 */
	__SetPageUptodate(page);

2740 2741 2742 2743 2744 2745 2746
	if (is_zone_device_page(page)) {
		if (is_device_private_page(page)) {
			swp_entry_t swp_entry;

			swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE);
			entry = swp_entry_to_pte(swp_entry);
		}
2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805
	} else {
		entry = mk_pte(page, vma->vm_page_prot);
		if (vma->vm_flags & VM_WRITE)
			entry = pte_mkwrite(pte_mkdirty(entry));
	}

	ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);

	if (pte_present(*ptep)) {
		unsigned long pfn = pte_pfn(*ptep);

		if (!is_zero_pfn(pfn)) {
			pte_unmap_unlock(ptep, ptl);
			mem_cgroup_cancel_charge(page, memcg, false);
			goto abort;
		}
		flush = true;
	} else if (!pte_none(*ptep)) {
		pte_unmap_unlock(ptep, ptl);
		mem_cgroup_cancel_charge(page, memcg, false);
		goto abort;
	}

	/*
	 * Check for usefaultfd but do not deliver the fault. Instead,
	 * just back off.
	 */
	if (userfaultfd_missing(vma)) {
		pte_unmap_unlock(ptep, ptl);
		mem_cgroup_cancel_charge(page, memcg, false);
		goto abort;
	}

	inc_mm_counter(mm, MM_ANONPAGES);
	page_add_new_anon_rmap(page, vma, addr, false);
	mem_cgroup_commit_charge(page, memcg, false, false);
	if (!is_zone_device_page(page))
		lru_cache_add_active_or_unevictable(page, vma);
	get_page(page);

	if (flush) {
		flush_cache_page(vma, addr, pte_pfn(*ptep));
		ptep_clear_flush_notify(vma, addr, ptep);
		set_pte_at_notify(mm, addr, ptep, entry);
		update_mmu_cache(vma, addr, ptep);
	} else {
		/* No need to invalidate - it was non-present before */
		set_pte_at(mm, addr, ptep, entry);
		update_mmu_cache(vma, addr, ptep);
	}

	pte_unmap_unlock(ptep, ptl);
	*src = MIGRATE_PFN_MIGRATE;
	return;

abort:
	*src &= ~MIGRATE_PFN_MIGRATE;
}

2806
/**
2807 2808 2809 2810 2811 2812 2813
 * migrate_vma_pages() - migrate meta-data from src page to dst page
 * @migrate: migrate struct containing all migration information
 *
 * This migrates struct page meta-data from source struct page to destination
 * struct page. This effectively finishes the migration from source page to the
 * destination page.
 */
2814
void migrate_vma_pages(struct migrate_vma *migrate)
2815 2816 2817
{
	const unsigned long npages = migrate->npages;
	const unsigned long start = migrate->start;
2818 2819
	struct mmu_notifier_range range;
	unsigned long addr, i;
2820
	bool notified = false;
2821 2822 2823 2824 2825 2826 2827

	for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
		struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
		struct page *page = migrate_pfn_to_page(migrate->src[i]);
		struct address_space *mapping;
		int r;

2828 2829
		if (!newpage) {
			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2830
			continue;
2831 2832 2833 2834 2835 2836 2837 2838
		}

		if (!page) {
			if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE)) {
				continue;
			}
			if (!notified) {
				notified = true;
2839 2840

				mmu_notifier_range_init(&range,
2841
							MMU_NOTIFY_CLEAR, 0,
2842
							NULL,
2843 2844 2845
							migrate->vma->vm_mm,
							addr, migrate->end);
				mmu_notifier_invalidate_range_start(&range);
2846 2847 2848 2849
			}
			migrate_vma_insert_page(migrate, addr, newpage,
						&migrate->src[i],
						&migrate->dst[i]);
2850
			continue;
2851
		}
2852 2853 2854

		mapping = page_mapping(page);

2855 2856 2857 2858 2859 2860 2861 2862 2863 2864
		if (is_zone_device_page(newpage)) {
			if (is_device_private_page(newpage)) {
				/*
				 * For now only support private anonymous when
				 * migrating to un-addressable device memory.
				 */
				if (mapping) {
					migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
					continue;
				}
2865
			} else {
2866 2867 2868 2869 2870 2871 2872 2873 2874
				/*
				 * Other types of ZONE_DEVICE page are not
				 * supported.
				 */
				migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
				continue;
			}
		}

2875 2876 2877 2878
		r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
		if (r != MIGRATEPAGE_SUCCESS)
			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
	}
2879

2880 2881 2882 2883 2884
	/*
	 * No need to double call mmu_notifier->invalidate_range() callback as
	 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
	 * did already call it.
	 */
2885
	if (notified)
2886
		mmu_notifier_invalidate_range_only_end(&range);
2887
}
2888
EXPORT_SYMBOL(migrate_vma_pages);
2889

2890
/**
2891 2892 2893 2894 2895 2896 2897 2898 2899 2900
 * migrate_vma_finalize() - restore CPU page table entry
 * @migrate: migrate struct containing all migration information
 *
 * This replaces the special migration pte entry with either a mapping to the
 * new page if migration was successful for that page, or to the original page
 * otherwise.
 *
 * This also unlocks the pages and puts them back on the lru, or drops the extra
 * refcount, for device pages.
 */
2901
void migrate_vma_finalize(struct migrate_vma *migrate)
2902 2903 2904 2905 2906 2907 2908 2909
{
	const unsigned long npages = migrate->npages;
	unsigned long i;

	for (i = 0; i < npages; i++) {
		struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
		struct page *page = migrate_pfn_to_page(migrate->src[i]);

2910 2911 2912 2913 2914
		if (!page) {
			if (newpage) {
				unlock_page(newpage);
				put_page(newpage);
			}
2915
			continue;
2916 2917
		}

2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929
		if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
			if (newpage) {
				unlock_page(newpage);
				put_page(newpage);
			}
			newpage = page;
		}

		remove_migration_ptes(page, newpage, false);
		unlock_page(page);
		migrate->cpages--;

2930 2931 2932 2933
		if (is_zone_device_page(page))
			put_page(page);
		else
			putback_lru_page(page);
2934 2935 2936

		if (newpage != page) {
			unlock_page(newpage);
2937 2938 2939 2940
			if (is_zone_device_page(newpage))
				put_page(newpage);
			else
				putback_lru_page(newpage);
2941 2942 2943
		}
	}
}
2944
EXPORT_SYMBOL(migrate_vma_finalize);
2945
#endif /* defined(MIGRATE_VMA_HELPER) */