migrate.c 52.3 KB
Newer Older
C
Christoph Lameter 已提交
1
/*
2
 * Memory Migration functionality - linux/mm/migrate.c
C
Christoph Lameter 已提交
3 4 5 6 7 8 9 10 11
 *
 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
 *
 * Page migration was first developed in the context of the memory hotplug
 * project. The main authors of the migration code are:
 *
 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
 * Hirokazu Takahashi <taka@valinux.co.jp>
 * Dave Hansen <haveblue@us.ibm.com>
C
Christoph Lameter 已提交
12
 * Christoph Lameter
C
Christoph Lameter 已提交
13 14 15
 */

#include <linux/migrate.h>
16
#include <linux/export.h>
C
Christoph Lameter 已提交
17
#include <linux/swap.h>
18
#include <linux/swapops.h>
C
Christoph Lameter 已提交
19
#include <linux/pagemap.h>
20
#include <linux/buffer_head.h>
C
Christoph Lameter 已提交
21
#include <linux/mm_inline.h>
22
#include <linux/nsproxy.h>
C
Christoph Lameter 已提交
23
#include <linux/pagevec.h>
24
#include <linux/ksm.h>
C
Christoph Lameter 已提交
25 26 27 28
#include <linux/rmap.h>
#include <linux/topology.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
29
#include <linux/writeback.h>
30 31
#include <linux/mempolicy.h>
#include <linux/vmalloc.h>
32
#include <linux/security.h>
33
#include <linux/backing-dev.h>
34
#include <linux/compaction.h>
35
#include <linux/syscalls.h>
N
Naoya Horiguchi 已提交
36
#include <linux/hugetlb.h>
37
#include <linux/hugetlb_cgroup.h>
38
#include <linux/gfp.h>
39
#include <linux/balloon_compaction.h>
40
#include <linux/mmu_notifier.h>
41
#include <linux/page_idle.h>
42
#include <linux/page_owner.h>
43
#include <linux/sched/mm.h>
C
Christoph Lameter 已提交
44

45 46
#include <asm/tlbflush.h>

47 48 49
#define CREATE_TRACE_POINTS
#include <trace/events/migrate.h>

C
Christoph Lameter 已提交
50 51 52
#include "internal.h"

/*
53
 * migrate_prep() needs to be called before we start compiling a list of pages
54 55
 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
 * undesirable, use migrate_prep_local()
C
Christoph Lameter 已提交
56 57 58 59 60 61 62 63 64 65 66 67 68 69
 */
int migrate_prep(void)
{
	/*
	 * Clear the LRU lists so pages can be isolated.
	 * Note that pages may be moved off the LRU after we have
	 * drained them. Those pages will fail to migrate like other
	 * pages that may be busy.
	 */
	lru_add_drain_all();

	return 0;
}

70 71 72 73 74 75 76 77
/* Do the necessary work of migrate_prep but not if it involves other CPUs */
int migrate_prep_local(void)
{
	lru_add_drain();

	return 0;
}

78
int isolate_movable_page(struct page *page, isolate_mode_t mode)
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
{
	struct address_space *mapping;

	/*
	 * Avoid burning cycles with pages that are yet under __free_pages(),
	 * or just got freed under us.
	 *
	 * In case we 'win' a race for a movable page being freed under us and
	 * raise its refcount preventing __free_pages() from doing its job
	 * the put_page() at the end of this block will take care of
	 * release this page, thus avoiding a nasty leakage.
	 */
	if (unlikely(!get_page_unless_zero(page)))
		goto out;

	/*
	 * Check PageMovable before holding a PG_lock because page's owner
	 * assumes anybody doesn't touch PG_lock of newly allocated page
	 * so unconditionally grapping the lock ruins page's owner side.
	 */
	if (unlikely(!__PageMovable(page)))
		goto out_putpage;
	/*
	 * As movable pages are not isolated from LRU lists, concurrent
	 * compaction threads can race against page migration functions
	 * as well as race against the releasing a page.
	 *
	 * In order to avoid having an already isolated movable page
	 * being (wrongly) re-isolated while it is under migration,
	 * or to avoid attempting to isolate pages being released,
	 * lets be sure we have the page lock
	 * before proceeding with the movable page isolation steps.
	 */
	if (unlikely(!trylock_page(page)))
		goto out_putpage;

	if (!PageMovable(page) || PageIsolated(page))
		goto out_no_isolated;

	mapping = page_mapping(page);
	VM_BUG_ON_PAGE(!mapping, page);

	if (!mapping->a_ops->isolate_page(page, mode))
		goto out_no_isolated;

	/* Driver shouldn't use PG_isolated bit of page->flags */
	WARN_ON_ONCE(PageIsolated(page));
	__SetPageIsolated(page);
	unlock_page(page);

129
	return 0;
130 131 132 133 134 135

out_no_isolated:
	unlock_page(page);
out_putpage:
	put_page(page);
out:
136
	return -EBUSY;
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
}

/* It should be called on page which is PG_movable */
void putback_movable_page(struct page *page)
{
	struct address_space *mapping;

	VM_BUG_ON_PAGE(!PageLocked(page), page);
	VM_BUG_ON_PAGE(!PageMovable(page), page);
	VM_BUG_ON_PAGE(!PageIsolated(page), page);

	mapping = page_mapping(page);
	mapping->a_ops->putback_page(page);
	__ClearPageIsolated(page);
}

153 154 155 156
/*
 * Put previously isolated pages back onto the appropriate lists
 * from where they were once taken off for compaction/migration.
 *
157 158 159
 * This function shall be used whenever the isolated pageset has been
 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
 * and isolate_huge_page().
160 161 162 163 164 165
 */
void putback_movable_pages(struct list_head *l)
{
	struct page *page;
	struct page *page2;

C
Christoph Lameter 已提交
166
	list_for_each_entry_safe(page, page2, l, lru) {
167 168 169 170
		if (unlikely(PageHuge(page))) {
			putback_active_hugepage(page);
			continue;
		}
171
		list_del(&page->lru);
172 173 174 175 176
		/*
		 * We isolated non-lru movable page so here we can use
		 * __PageMovable because LRU page's mapping cannot have
		 * PAGE_MAPPING_MOVABLE.
		 */
177
		if (unlikely(__PageMovable(page))) {
178 179 180 181 182 183 184 185 186
			VM_BUG_ON_PAGE(!PageIsolated(page), page);
			lock_page(page);
			if (PageMovable(page))
				putback_movable_page(page);
			else
				__ClearPageIsolated(page);
			unlock_page(page);
			put_page(page);
		} else {
187 188
			dec_node_page_state(page, NR_ISOLATED_ANON +
					page_is_file_cache(page));
189
			putback_lru_page(page);
190
		}
C
Christoph Lameter 已提交
191 192 193
	}
}

194 195 196
/*
 * Restore a potential migration pte to a working pte entry
 */
M
Minchan Kim 已提交
197
static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
198
				 unsigned long addr, void *old)
199
{
200 201 202 203 204 205 206 207
	struct page_vma_mapped_walk pvmw = {
		.page = old,
		.vma = vma,
		.address = addr,
		.flags = PVMW_SYNC | PVMW_MIGRATION,
	};
	struct page *new;
	pte_t pte;
208 209
	swp_entry_t entry;

210 211
	VM_BUG_ON_PAGE(PageTail(page), page);
	while (page_vma_mapped_walk(&pvmw)) {
212 213 214 215 216
		if (PageKsm(page))
			new = page;
		else
			new = page - pvmw.page->index +
				linear_page_index(vma, pvmw.address);
217

218 219 220 221
		get_page(new);
		pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
		if (pte_swp_soft_dirty(*pvmw.pte))
			pte = pte_mksoft_dirty(pte);
222

223 224 225 226 227 228
		/*
		 * Recheck VMA as permissions can change since migration started
		 */
		entry = pte_to_swp_entry(*pvmw.pte);
		if (is_write_migration_entry(entry))
			pte = maybe_mkwrite(pte, vma);
229

230
		flush_dcache_page(new);
A
Andi Kleen 已提交
231
#ifdef CONFIG_HUGETLB_PAGE
232 233 234
		if (PageHuge(new)) {
			pte = pte_mkhuge(pte);
			pte = arch_make_huge_pte(pte, vma, new, 0);
235
			set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
236 237 238 239
			if (PageAnon(new))
				hugepage_add_anon_rmap(new, vma, pvmw.address);
			else
				page_dup_rmap(new, true);
240 241 242 243
		} else
#endif
		{
			set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
244

245 246 247 248 249
			if (PageAnon(new))
				page_add_anon_rmap(new, vma, pvmw.address, false);
			else
				page_add_file_rmap(new, false);
		}
250 251 252 253 254 255
		if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
			mlock_vma_page(new);

		/* No need to invalidate - it was non-present before */
		update_mmu_cache(vma, pvmw.address, pvmw.pte);
	}
256

M
Minchan Kim 已提交
257
	return true;
258 259
}

260 261 262 263
/*
 * Get rid of all migration entries and replace them by
 * references to the indicated page.
 */
264
void remove_migration_ptes(struct page *old, struct page *new, bool locked)
265
{
266 267 268 269 270
	struct rmap_walk_control rwc = {
		.rmap_one = remove_migration_pte,
		.arg = old,
	};

271 272 273 274
	if (locked)
		rmap_walk_locked(new, &rwc);
	else
		rmap_walk(new, &rwc);
275 276
}

277 278 279 280 281
/*
 * Something used the pte of a page under migration. We need to
 * get to the page and wait until migration is finished.
 * When we return from this function the fault will be retried.
 */
282
void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
283
				spinlock_t *ptl)
284
{
285
	pte_t pte;
286 287 288
	swp_entry_t entry;
	struct page *page;

289
	spin_lock(ptl);
290 291 292 293 294 295 296 297 298 299
	pte = *ptep;
	if (!is_swap_pte(pte))
		goto out;

	entry = pte_to_swp_entry(pte);
	if (!is_migration_entry(entry))
		goto out;

	page = migration_entry_to_page(entry);

N
Nick Piggin 已提交
300 301 302 303 304 305 306 307 308
	/*
	 * Once radix-tree replacement of page migration started, page_count
	 * *must* be zero. And, we don't want to call wait_on_page_locked()
	 * against a page without get_page().
	 * So, we use get_page_unless_zero(), here. Even failed, page fault
	 * will occur again.
	 */
	if (!get_page_unless_zero(page))
		goto out;
309 310 311 312 313 314 315 316
	pte_unmap_unlock(ptep, ptl);
	wait_on_page_locked(page);
	put_page(page);
	return;
out:
	pte_unmap_unlock(ptep, ptl);
}

317 318 319 320 321 322 323 324
void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
				unsigned long address)
{
	spinlock_t *ptl = pte_lockptr(mm, pmd);
	pte_t *ptep = pte_offset_map(pmd, address);
	__migration_entry_wait(mm, ptep, ptl);
}

325 326
void migration_entry_wait_huge(struct vm_area_struct *vma,
		struct mm_struct *mm, pte_t *pte)
327
{
328
	spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
329 330 331
	__migration_entry_wait(mm, pte, ptl);
}

332 333
#ifdef CONFIG_BLOCK
/* Returns true if all buffers are successfully locked */
334 335
static bool buffer_migrate_lock_buffers(struct buffer_head *head,
							enum migrate_mode mode)
336 337 338 339
{
	struct buffer_head *bh = head;

	/* Simple case, sync compaction */
340
	if (mode != MIGRATE_ASYNC) {
341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
		do {
			get_bh(bh);
			lock_buffer(bh);
			bh = bh->b_this_page;

		} while (bh != head);

		return true;
	}

	/* async case, we cannot block on lock_buffer so use trylock_buffer */
	do {
		get_bh(bh);
		if (!trylock_buffer(bh)) {
			/*
			 * We failed to lock the buffer and cannot stall in
			 * async migration. Release the taken locks
			 */
			struct buffer_head *failed_bh = bh;
			put_bh(failed_bh);
			bh = head;
			while (bh != failed_bh) {
				unlock_buffer(bh);
				put_bh(bh);
				bh = bh->b_this_page;
			}
			return false;
		}

		bh = bh->b_this_page;
	} while (bh != head);
	return true;
}
#else
static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
376
							enum migrate_mode mode)
377 378 379 380 381
{
	return true;
}
#endif /* CONFIG_BLOCK */

C
Christoph Lameter 已提交
382
/*
383
 * Replace the page in the mapping.
384 385 386 387
 *
 * The number of remaining references must be:
 * 1 for anonymous pages without a mapping
 * 2 for pages with a mapping
388
 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
C
Christoph Lameter 已提交
389
 */
390
int migrate_page_move_mapping(struct address_space *mapping,
391
		struct page *newpage, struct page *page,
392 393
		struct buffer_head *head, enum migrate_mode mode,
		int extra_count)
C
Christoph Lameter 已提交
394
{
395 396
	struct zone *oldzone, *newzone;
	int dirty;
397
	int expected_count = 1 + extra_count;
398
	void **pslot;
C
Christoph Lameter 已提交
399

400
	if (!mapping) {
401
		/* Anonymous page without mapping */
402
		if (page_count(page) != expected_count)
403
			return -EAGAIN;
404 405 406 407 408

		/* No turning back from here */
		newpage->index = page->index;
		newpage->mapping = page->mapping;
		if (PageSwapBacked(page))
409
			__SetPageSwapBacked(newpage);
410

411
		return MIGRATEPAGE_SUCCESS;
412 413
	}

414 415 416
	oldzone = page_zone(page);
	newzone = page_zone(newpage);

N
Nick Piggin 已提交
417
	spin_lock_irq(&mapping->tree_lock);
C
Christoph Lameter 已提交
418

419 420
	pslot = radix_tree_lookup_slot(&mapping->page_tree,
 					page_index(page));
C
Christoph Lameter 已提交
421

422
	expected_count += 1 + page_has_private(page);
N
Nick Piggin 已提交
423
	if (page_count(page) != expected_count ||
424
		radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
N
Nick Piggin 已提交
425
		spin_unlock_irq(&mapping->tree_lock);
426
		return -EAGAIN;
C
Christoph Lameter 已提交
427 428
	}

429
	if (!page_ref_freeze(page, expected_count)) {
N
Nick Piggin 已提交
430
		spin_unlock_irq(&mapping->tree_lock);
N
Nick Piggin 已提交
431 432 433
		return -EAGAIN;
	}

434 435 436 437 438 439 440
	/*
	 * In the async migration case of moving a page with buffers, lock the
	 * buffers using trylock before the mapping is moved. If the mapping
	 * was moved, we later failed to lock the buffers and could not move
	 * the mapping back due to an elevated page count, we would have to
	 * block waiting on other references to be dropped.
	 */
441 442
	if (mode == MIGRATE_ASYNC && head &&
			!buffer_migrate_lock_buffers(head, mode)) {
443
		page_ref_unfreeze(page, expected_count);
444 445 446 447
		spin_unlock_irq(&mapping->tree_lock);
		return -EAGAIN;
	}

C
Christoph Lameter 已提交
448
	/*
449 450
	 * Now we know that no one else is looking at the page:
	 * no turning back from here.
C
Christoph Lameter 已提交
451
	 */
452 453
	newpage->index = page->index;
	newpage->mapping = page->mapping;
454
	get_page(newpage);	/* add cache reference */
455 456 457 458 459 460 461 462
	if (PageSwapBacked(page)) {
		__SetPageSwapBacked(newpage);
		if (PageSwapCache(page)) {
			SetPageSwapCache(newpage);
			set_page_private(newpage, page_private(page));
		}
	} else {
		VM_BUG_ON_PAGE(PageSwapCache(page), page);
C
Christoph Lameter 已提交
463 464
	}

465 466 467 468 469 470 471
	/* Move dirty while page refs frozen and newpage not yet exposed */
	dirty = PageDirty(page);
	if (dirty) {
		ClearPageDirty(page);
		SetPageDirty(newpage);
	}

472
	radix_tree_replace_slot(&mapping->page_tree, pslot, newpage);
473 474

	/*
475 476
	 * Drop cache reference from old page by unfreezing
	 * to one less reference.
477 478
	 * We know this isn't the last reference.
	 */
479
	page_ref_unfreeze(page, expected_count - 1);
480

481 482 483
	spin_unlock(&mapping->tree_lock);
	/* Leave irq disabled to prevent preemption while updating stats */

484 485 486 487 488 489 490
	/*
	 * If moved to a different zone then also account
	 * the page for that zone. Other VM counters will be
	 * taken care of when we establish references to the
	 * new page and drop references to the old page.
	 *
	 * Note that anonymous pages are accounted for
491
	 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
492 493
	 * are mapped to swap space.
	 */
494
	if (newzone != oldzone) {
495 496
		__dec_node_state(oldzone->zone_pgdat, NR_FILE_PAGES);
		__inc_node_state(newzone->zone_pgdat, NR_FILE_PAGES);
497
		if (PageSwapBacked(page) && !PageSwapCache(page)) {
498 499
			__dec_node_state(oldzone->zone_pgdat, NR_SHMEM);
			__inc_node_state(newzone->zone_pgdat, NR_SHMEM);
500 501
		}
		if (dirty && mapping_cap_account_dirty(mapping)) {
502
			__dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY);
503
			__dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING);
504
			__inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY);
505
			__inc_zone_state(newzone, NR_ZONE_WRITE_PENDING);
506
		}
507
	}
508
	local_irq_enable();
C
Christoph Lameter 已提交
509

510
	return MIGRATEPAGE_SUCCESS;
C
Christoph Lameter 已提交
511
}
512
EXPORT_SYMBOL(migrate_page_move_mapping);
C
Christoph Lameter 已提交
513

N
Naoya Horiguchi 已提交
514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530
/*
 * The expected number of remaining references is the same as that
 * of migrate_page_move_mapping().
 */
int migrate_huge_page_move_mapping(struct address_space *mapping,
				   struct page *newpage, struct page *page)
{
	int expected_count;
	void **pslot;

	spin_lock_irq(&mapping->tree_lock);

	pslot = radix_tree_lookup_slot(&mapping->page_tree,
					page_index(page));

	expected_count = 2 + page_has_private(page);
	if (page_count(page) != expected_count ||
531
		radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
N
Naoya Horiguchi 已提交
532 533 534 535
		spin_unlock_irq(&mapping->tree_lock);
		return -EAGAIN;
	}

536
	if (!page_ref_freeze(page, expected_count)) {
N
Naoya Horiguchi 已提交
537 538 539 540
		spin_unlock_irq(&mapping->tree_lock);
		return -EAGAIN;
	}

541 542
	newpage->index = page->index;
	newpage->mapping = page->mapping;
543

N
Naoya Horiguchi 已提交
544 545
	get_page(newpage);

546
	radix_tree_replace_slot(&mapping->page_tree, pslot, newpage);
N
Naoya Horiguchi 已提交
547

548
	page_ref_unfreeze(page, expected_count - 1);
N
Naoya Horiguchi 已提交
549 550

	spin_unlock_irq(&mapping->tree_lock);
551

552
	return MIGRATEPAGE_SUCCESS;
N
Naoya Horiguchi 已提交
553 554
}

555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602
/*
 * Gigantic pages are so large that we do not guarantee that page++ pointer
 * arithmetic will work across the entire page.  We need something more
 * specialized.
 */
static void __copy_gigantic_page(struct page *dst, struct page *src,
				int nr_pages)
{
	int i;
	struct page *dst_base = dst;
	struct page *src_base = src;

	for (i = 0; i < nr_pages; ) {
		cond_resched();
		copy_highpage(dst, src);

		i++;
		dst = mem_map_next(dst, dst_base, i);
		src = mem_map_next(src, src_base, i);
	}
}

static void copy_huge_page(struct page *dst, struct page *src)
{
	int i;
	int nr_pages;

	if (PageHuge(src)) {
		/* hugetlbfs page */
		struct hstate *h = page_hstate(src);
		nr_pages = pages_per_huge_page(h);

		if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
			__copy_gigantic_page(dst, src, nr_pages);
			return;
		}
	} else {
		/* thp page */
		BUG_ON(!PageTransHuge(src));
		nr_pages = hpage_nr_pages(src);
	}

	for (i = 0; i < nr_pages; i++) {
		cond_resched();
		copy_highpage(dst + i, src + i);
	}
}

C
Christoph Lameter 已提交
603 604 605
/*
 * Copy the page to its new location
 */
N
Naoya Horiguchi 已提交
606
void migrate_page_copy(struct page *newpage, struct page *page)
C
Christoph Lameter 已提交
607
{
608 609
	int cpupid;

610
	if (PageHuge(page) || PageTransHuge(page))
N
Naoya Horiguchi 已提交
611 612 613
		copy_huge_page(newpage, page);
	else
		copy_highpage(newpage, page);
C
Christoph Lameter 已提交
614 615 616 617 618 619 620

	if (PageError(page))
		SetPageError(newpage);
	if (PageReferenced(page))
		SetPageReferenced(newpage);
	if (PageUptodate(page))
		SetPageUptodate(newpage);
L
Lee Schermerhorn 已提交
621
	if (TestClearPageActive(page)) {
622
		VM_BUG_ON_PAGE(PageUnevictable(page), page);
C
Christoph Lameter 已提交
623
		SetPageActive(newpage);
624 625
	} else if (TestClearPageUnevictable(page))
		SetPageUnevictable(newpage);
C
Christoph Lameter 已提交
626 627 628 629 630
	if (PageChecked(page))
		SetPageChecked(newpage);
	if (PageMappedToDisk(page))
		SetPageMappedToDisk(newpage);

631 632 633
	/* Move dirty on pages not done by migrate_page_move_mapping() */
	if (PageDirty(page))
		SetPageDirty(newpage);
C
Christoph Lameter 已提交
634

635 636 637 638 639
	if (page_is_young(page))
		set_page_young(newpage);
	if (page_is_idle(page))
		set_page_idle(newpage);

640 641 642 643 644 645 646
	/*
	 * Copy NUMA information to the new page, to prevent over-eager
	 * future migrations of this same page.
	 */
	cpupid = page_cpupid_xchg_last(page, -1);
	page_cpupid_xchg_last(newpage, cpupid);

647
	ksm_migrate_page(newpage, page);
648 649 650 651
	/*
	 * Please do not reorder this without considering how mm/ksm.c's
	 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
	 */
652 653
	if (PageSwapCache(page))
		ClearPageSwapCache(page);
C
Christoph Lameter 已提交
654 655 656 657 658 659 660 661 662
	ClearPagePrivate(page);
	set_page_private(page, 0);

	/*
	 * If any waiters have accumulated on the new page then
	 * wake them up.
	 */
	if (PageWriteback(newpage))
		end_page_writeback(newpage);
663 664

	copy_page_owner(page, newpage);
665 666

	mem_cgroup_migrate(page, newpage);
C
Christoph Lameter 已提交
667
}
668
EXPORT_SYMBOL(migrate_page_copy);
C
Christoph Lameter 已提交
669

670 671 672 673
/************************************************************
 *                    Migration functions
 ***********************************************************/

C
Christoph Lameter 已提交
674
/*
675
 * Common logic to directly migrate a single LRU page suitable for
676
 * pages that do not use PagePrivate/PagePrivate2.
C
Christoph Lameter 已提交
677 678 679
 *
 * Pages are locked upon entry and exit.
 */
680
int migrate_page(struct address_space *mapping,
681 682
		struct page *newpage, struct page *page,
		enum migrate_mode mode)
C
Christoph Lameter 已提交
683 684 685 686 687
{
	int rc;

	BUG_ON(PageWriteback(page));	/* Writeback must be complete */

688
	rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
C
Christoph Lameter 已提交
689

690
	if (rc != MIGRATEPAGE_SUCCESS)
C
Christoph Lameter 已提交
691 692 693
		return rc;

	migrate_page_copy(newpage, page);
694
	return MIGRATEPAGE_SUCCESS;
C
Christoph Lameter 已提交
695 696 697
}
EXPORT_SYMBOL(migrate_page);

698
#ifdef CONFIG_BLOCK
699 700 701 702 703
/*
 * Migration function for pages with buffers. This function can only be used
 * if the underlying filesystem guarantees that no other references to "page"
 * exist.
 */
704
int buffer_migrate_page(struct address_space *mapping,
705
		struct page *newpage, struct page *page, enum migrate_mode mode)
706 707 708 709 710
{
	struct buffer_head *bh, *head;
	int rc;

	if (!page_has_buffers(page))
711
		return migrate_page(mapping, newpage, page, mode);
712 713 714

	head = page_buffers(page);

715
	rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0);
716

717
	if (rc != MIGRATEPAGE_SUCCESS)
718 719
		return rc;

720 721 722 723 724
	/*
	 * In the async case, migrate_page_move_mapping locked the buffers
	 * with an IRQ-safe spinlock held. In the sync case, the buffers
	 * need to be locked now
	 */
725 726
	if (mode != MIGRATE_ASYNC)
		BUG_ON(!buffer_migrate_lock_buffers(head, mode));
727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752

	ClearPagePrivate(page);
	set_page_private(newpage, page_private(page));
	set_page_private(page, 0);
	put_page(page);
	get_page(newpage);

	bh = head;
	do {
		set_bh_page(bh, newpage, bh_offset(bh));
		bh = bh->b_this_page;

	} while (bh != head);

	SetPagePrivate(newpage);

	migrate_page_copy(newpage, page);

	bh = head;
	do {
		unlock_buffer(bh);
 		put_bh(bh);
		bh = bh->b_this_page;

	} while (bh != head);

753
	return MIGRATEPAGE_SUCCESS;
754 755
}
EXPORT_SYMBOL(buffer_migrate_page);
756
#endif
757

758 759 760 761
/*
 * Writeback a page to clean the dirty state
 */
static int writeout(struct address_space *mapping, struct page *page)
762
{
763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779
	struct writeback_control wbc = {
		.sync_mode = WB_SYNC_NONE,
		.nr_to_write = 1,
		.range_start = 0,
		.range_end = LLONG_MAX,
		.for_reclaim = 1
	};
	int rc;

	if (!mapping->a_ops->writepage)
		/* No write method for the address space */
		return -EINVAL;

	if (!clear_page_dirty_for_io(page))
		/* Someone else already triggered a write */
		return -EAGAIN;

780
	/*
781 782 783 784 785 786
	 * A dirty page may imply that the underlying filesystem has
	 * the page on some queue. So the page must be clean for
	 * migration. Writeout may mean we loose the lock and the
	 * page state is no longer what we checked for earlier.
	 * At this point we know that the migration attempt cannot
	 * be successful.
787
	 */
788
	remove_migration_ptes(page, page, false);
789

790
	rc = mapping->a_ops->writepage(page, &wbc);
791

792 793 794 795
	if (rc != AOP_WRITEPAGE_ACTIVATE)
		/* unlocked. Relock */
		lock_page(page);

H
Hugh Dickins 已提交
796
	return (rc < 0) ? -EIO : -EAGAIN;
797 798 799 800 801 802
}

/*
 * Default handling if a filesystem does not provide a migration function.
 */
static int fallback_migrate_page(struct address_space *mapping,
803
	struct page *newpage, struct page *page, enum migrate_mode mode)
804
{
805
	if (PageDirty(page)) {
806 807
		/* Only writeback pages in full synchronous migration */
		if (mode != MIGRATE_SYNC)
808
			return -EBUSY;
809
		return writeout(mapping, page);
810
	}
811 812 813 814 815

	/*
	 * Buffers may be managed in a filesystem specific way.
	 * We must have no buffers or drop them.
	 */
816
	if (page_has_private(page) &&
817 818 819
	    !try_to_release_page(page, GFP_KERNEL))
		return -EAGAIN;

820
	return migrate_page(mapping, newpage, page, mode);
821 822
}

823 824 825 826 827 828
/*
 * Move a page to a newly allocated page
 * The page is locked and all ptes have been successfully removed.
 *
 * The new page will have replaced the old page if this function
 * is successful.
L
Lee Schermerhorn 已提交
829 830 831
 *
 * Return value:
 *   < 0 - error code
832
 *  MIGRATEPAGE_SUCCESS - success
833
 */
834
static int move_to_new_page(struct page *newpage, struct page *page,
835
				enum migrate_mode mode)
836 837
{
	struct address_space *mapping;
838 839
	int rc = -EAGAIN;
	bool is_lru = !__PageMovable(page);
840

841 842
	VM_BUG_ON_PAGE(!PageLocked(page), page);
	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
843 844

	mapping = page_mapping(page);
845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862

	if (likely(is_lru)) {
		if (!mapping)
			rc = migrate_page(mapping, newpage, page, mode);
		else if (mapping->a_ops->migratepage)
			/*
			 * Most pages have a mapping and most filesystems
			 * provide a migratepage callback. Anonymous pages
			 * are part of swap space which also has its own
			 * migratepage callback. This is the most common path
			 * for page migration.
			 */
			rc = mapping->a_ops->migratepage(mapping, newpage,
							page, mode);
		else
			rc = fallback_migrate_page(mapping, newpage,
							page, mode);
	} else {
863
		/*
864 865
		 * In case of non-lru page, it could be released after
		 * isolation step. In that case, we shouldn't try migration.
866
		 */
867 868 869 870 871 872 873 874 875 876 877 878
		VM_BUG_ON_PAGE(!PageIsolated(page), page);
		if (!PageMovable(page)) {
			rc = MIGRATEPAGE_SUCCESS;
			__ClearPageIsolated(page);
			goto out;
		}

		rc = mapping->a_ops->migratepage(mapping, newpage,
						page, mode);
		WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
			!PageIsolated(page));
	}
879

880 881 882 883 884
	/*
	 * When successful, old pagecache page->mapping must be cleared before
	 * page is freed; but stats require that PageAnon be left as PageAnon.
	 */
	if (rc == MIGRATEPAGE_SUCCESS) {
885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900
		if (__PageMovable(page)) {
			VM_BUG_ON_PAGE(!PageIsolated(page), page);

			/*
			 * We clear PG_movable under page_lock so any compactor
			 * cannot try to migrate this page.
			 */
			__ClearPageIsolated(page);
		}

		/*
		 * Anonymous and movable page->mapping will be cleard by
		 * free_pages_prepare so don't reset it here for keeping
		 * the type to work PageAnon, for example.
		 */
		if (!PageMappingFlags(page))
901
			page->mapping = NULL;
902
	}
903
out:
904 905 906
	return rc;
}

907
static int __unmap_and_move(struct page *page, struct page *newpage,
908
				int force, enum migrate_mode mode)
909
{
910
	int rc = -EAGAIN;
911
	int page_was_mapped = 0;
912
	struct anon_vma *anon_vma = NULL;
913
	bool is_lru = !__PageMovable(page);
914

N
Nick Piggin 已提交
915
	if (!trylock_page(page)) {
916
		if (!force || mode == MIGRATE_ASYNC)
917
			goto out;
918 919 920 921 922 923 924 925 926 927 928 929 930 931 932

		/*
		 * It's not safe for direct compaction to call lock_page.
		 * For example, during page readahead pages are added locked
		 * to the LRU. Later, when the IO completes the pages are
		 * marked uptodate and unlocked. However, the queueing
		 * could be merging multiple pages for one bio (e.g.
		 * mpage_readpages). If an allocation happens for the
		 * second or third page, the process can end up locking
		 * the same page twice and deadlocking. Rather than
		 * trying to be clever about what pages can be locked,
		 * avoid the use of lock_page for direct compaction
		 * altogether.
		 */
		if (current->flags & PF_MEMALLOC)
933
			goto out;
934

935 936 937 938
		lock_page(page);
	}

	if (PageWriteback(page)) {
939
		/*
940
		 * Only in the case of a full synchronous migration is it
941 942 943
		 * necessary to wait for PageWriteback. In the async case,
		 * the retry loop is too short and in the sync-light case,
		 * the overhead of stalling is too much
944
		 */
945
		if (mode != MIGRATE_SYNC) {
946
			rc = -EBUSY;
947
			goto out_unlock;
948 949
		}
		if (!force)
950
			goto out_unlock;
951 952
		wait_on_page_writeback(page);
	}
953

954
	/*
955 956
	 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
	 * we cannot notice that anon_vma is freed while we migrates a page.
957
	 * This get_anon_vma() delays freeing anon_vma pointer until the end
958
	 * of migration. File cache pages are no problem because of page_lock()
959 960
	 * File Caches may use write_page() or lock_page() in migration, then,
	 * just care Anon page here.
961 962 963 964 965 966
	 *
	 * Only page_get_anon_vma() understands the subtleties of
	 * getting a hold on an anon_vma from outside one of its mms.
	 * But if we cannot get anon_vma, then we won't need it anyway,
	 * because that implies that the anon page is no longer mapped
	 * (and cannot be remapped so long as we hold the page lock).
967
	 */
968
	if (PageAnon(page) && !PageKsm(page))
969
		anon_vma = page_get_anon_vma(page);
970

971 972 973 974 975 976 977 978 979 980 981
	/*
	 * Block others from accessing the new page when we get around to
	 * establishing additional references. We are usually the only one
	 * holding a reference to newpage at this point. We used to have a BUG
	 * here if trylock_page(newpage) fails, but would like to allow for
	 * cases where there might be a race with the previous use of newpage.
	 * This is much like races on refcount of oldpage: just don't BUG().
	 */
	if (unlikely(!trylock_page(newpage)))
		goto out_unlock;

982 983 984 985 986
	if (unlikely(!is_lru)) {
		rc = move_to_new_page(newpage, page, mode);
		goto out_unlock_both;
	}

987
	/*
988 989 990 991 992 993 994 995 996 997
	 * Corner case handling:
	 * 1. When a new swap-cache page is read into, it is added to the LRU
	 * and treated as swapcache but it has no rmap yet.
	 * Calling try_to_unmap() against a page->mapping==NULL page will
	 * trigger a BUG.  So handle it here.
	 * 2. An orphaned page (see truncate_complete_page) might have
	 * fs-private metadata. The page can be picked up due to memory
	 * offlining.  Everywhere else except page reclaim, the page is
	 * invisible to the vm, so the page can not be migrated.  So try to
	 * free the metadata, so the page can be freed.
998
	 */
999
	if (!page->mapping) {
1000
		VM_BUG_ON_PAGE(PageAnon(page), page);
1001
		if (page_has_private(page)) {
1002
			try_to_free_buffers(page);
1003
			goto out_unlock_both;
1004
		}
1005 1006
	} else if (page_mapped(page)) {
		/* Establish migration ptes */
1007 1008
		VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
				page);
1009
		try_to_unmap(page,
1010
			TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1011 1012
		page_was_mapped = 1;
	}
1013

1014
	if (!page_mapped(page))
1015
		rc = move_to_new_page(newpage, page, mode);
1016

1017 1018
	if (page_was_mapped)
		remove_migration_ptes(page,
1019
			rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1020

1021 1022 1023
out_unlock_both:
	unlock_page(newpage);
out_unlock:
1024
	/* Drop an anon_vma reference if we took one */
1025
	if (anon_vma)
1026
		put_anon_vma(anon_vma);
1027
	unlock_page(page);
1028
out:
1029 1030 1031 1032 1033 1034 1035
	/*
	 * If migration is successful, decrease refcount of the newpage
	 * which will not free the page because new page owner increased
	 * refcounter. As well, if it is LRU page, add the page to LRU
	 * list in here.
	 */
	if (rc == MIGRATEPAGE_SUCCESS) {
1036
		if (unlikely(__PageMovable(newpage)))
1037 1038 1039 1040 1041
			put_page(newpage);
		else
			putback_lru_page(newpage);
	}

1042 1043
	return rc;
}
1044

1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
/*
 * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move().  Work
 * around it.
 */
#if (GCC_VERSION >= 40700 && GCC_VERSION < 40900) && defined(CONFIG_ARM)
#define ICE_noinline noinline
#else
#define ICE_noinline
#endif

1055 1056 1057 1058
/*
 * Obtain the lock on page, remove all ptes and migrate the page
 * to the newly allocated page in newpage.
 */
1059 1060 1061
static ICE_noinline int unmap_and_move(new_page_t get_new_page,
				   free_page_t put_new_page,
				   unsigned long private, struct page *page,
1062 1063
				   int force, enum migrate_mode mode,
				   enum migrate_reason reason)
1064
{
1065
	int rc = MIGRATEPAGE_SUCCESS;
1066
	int *result = NULL;
1067
	struct page *newpage;
1068

1069
	newpage = get_new_page(page, private, &result);
1070 1071 1072 1073 1074
	if (!newpage)
		return -ENOMEM;

	if (page_count(page) == 1) {
		/* page was freed from under us. So we are done. */
1075 1076
		ClearPageActive(page);
		ClearPageUnevictable(page);
1077 1078 1079 1080 1081 1082
		if (unlikely(__PageMovable(page))) {
			lock_page(page);
			if (!PageMovable(page))
				__ClearPageIsolated(page);
			unlock_page(page);
		}
1083 1084 1085 1086
		if (put_new_page)
			put_new_page(newpage, private);
		else
			put_page(newpage);
1087 1088 1089
		goto out;
	}

1090 1091 1092 1093 1094
	if (unlikely(PageTransHuge(page))) {
		lock_page(page);
		rc = split_huge_page(page);
		unlock_page(page);
		if (rc)
1095
			goto out;
1096
	}
1097

1098
	rc = __unmap_and_move(page, newpage, force, mode);
1099
	if (rc == MIGRATEPAGE_SUCCESS)
1100
		set_page_owner_migrate_reason(newpage, reason);
1101

1102
out:
1103
	if (rc != -EAGAIN) {
1104 1105 1106 1107 1108 1109 1110
		/*
		 * A page that has been migrated has all references
		 * removed and will be freed. A page that has not been
		 * migrated will have kepts its references and be
		 * restored.
		 */
		list_del(&page->lru);
1111 1112 1113 1114 1115 1116 1117 1118 1119

		/*
		 * Compaction can migrate also non-LRU pages which are
		 * not accounted to NR_ISOLATED_*. They can be recognized
		 * as __PageMovable
		 */
		if (likely(!__PageMovable(page)))
			dec_node_page_state(page, NR_ISOLATED_ANON +
					page_is_file_cache(page));
1120 1121 1122 1123 1124 1125 1126 1127 1128 1129
	}

	/*
	 * If migration is successful, releases reference grabbed during
	 * isolation. Otherwise, restore the page to right list unless
	 * we want to retry.
	 */
	if (rc == MIGRATEPAGE_SUCCESS) {
		put_page(page);
		if (reason == MR_MEMORY_FAILURE) {
1130
			/*
1131 1132 1133
			 * Set PG_HWPoison on just freed page
			 * intentionally. Although it's rather weird,
			 * it's how HWPoison flag works at the moment.
1134
			 */
1135 1136
			if (!test_set_page_hwpoison(page))
				num_poisoned_pages_inc();
1137 1138
		}
	} else {
1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153
		if (rc != -EAGAIN) {
			if (likely(!__PageMovable(page))) {
				putback_lru_page(page);
				goto put_new;
			}

			lock_page(page);
			if (PageMovable(page))
				putback_movable_page(page);
			else
				__ClearPageIsolated(page);
			unlock_page(page);
			put_page(page);
		}
put_new:
1154 1155 1156 1157
		if (put_new_page)
			put_new_page(newpage, private);
		else
			put_page(newpage);
1158
	}
1159

1160 1161 1162 1163 1164 1165
	if (result) {
		if (rc)
			*result = rc;
		else
			*result = page_to_nid(newpage);
	}
1166 1167 1168
	return rc;
}

N
Naoya Horiguchi 已提交
1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
/*
 * Counterpart of unmap_and_move_page() for hugepage migration.
 *
 * This function doesn't wait the completion of hugepage I/O
 * because there is no race between I/O and migration for hugepage.
 * Note that currently hugepage I/O occurs only in direct I/O
 * where no lock is held and PG_writeback is irrelevant,
 * and writeback status of all subpages are counted in the reference
 * count of the head page (i.e. if all subpages of a 2MB hugepage are
 * under direct I/O, the reference of the head page is 512 and a bit more.)
 * This means that when we try to migrate hugepage whose subpages are
 * doing direct I/O, some references remain after try_to_unmap() and
 * hugepage migration fails without data corruption.
 *
 * There is also no race when direct I/O is issued on the page under migration,
 * because then pte is replaced with migration swap entry and direct I/O code
 * will wait in the page fault for migration to complete.
 */
static int unmap_and_move_huge_page(new_page_t get_new_page,
1188 1189
				free_page_t put_new_page, unsigned long private,
				struct page *hpage, int force,
1190
				enum migrate_mode mode, int reason)
N
Naoya Horiguchi 已提交
1191
{
1192
	int rc = -EAGAIN;
N
Naoya Horiguchi 已提交
1193
	int *result = NULL;
1194
	int page_was_mapped = 0;
1195
	struct page *new_hpage;
N
Naoya Horiguchi 已提交
1196 1197
	struct anon_vma *anon_vma = NULL;

1198 1199 1200 1201 1202 1203 1204
	/*
	 * Movability of hugepages depends on architectures and hugepage size.
	 * This check is necessary because some callers of hugepage migration
	 * like soft offline and memory hotremove don't walk through page
	 * tables or check whether the hugepage is pmd-based or not before
	 * kicking migration.
	 */
1205
	if (!hugepage_migration_supported(page_hstate(hpage))) {
1206
		putback_active_hugepage(hpage);
1207
		return -ENOSYS;
1208
	}
1209

1210
	new_hpage = get_new_page(hpage, private, &result);
N
Naoya Horiguchi 已提交
1211 1212 1213 1214
	if (!new_hpage)
		return -ENOMEM;

	if (!trylock_page(hpage)) {
1215
		if (!force || mode != MIGRATE_SYNC)
N
Naoya Horiguchi 已提交
1216 1217 1218 1219
			goto out;
		lock_page(hpage);
	}

1220 1221
	if (PageAnon(hpage))
		anon_vma = page_get_anon_vma(hpage);
N
Naoya Horiguchi 已提交
1222

1223 1224 1225
	if (unlikely(!trylock_page(new_hpage)))
		goto put_anon;

1226 1227 1228 1229 1230
	if (page_mapped(hpage)) {
		try_to_unmap(hpage,
			TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
		page_was_mapped = 1;
	}
N
Naoya Horiguchi 已提交
1231 1232

	if (!page_mapped(hpage))
1233
		rc = move_to_new_page(new_hpage, hpage, mode);
N
Naoya Horiguchi 已提交
1234

1235 1236
	if (page_was_mapped)
		remove_migration_ptes(hpage,
1237
			rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
N
Naoya Horiguchi 已提交
1238

1239 1240 1241
	unlock_page(new_hpage);

put_anon:
H
Hugh Dickins 已提交
1242
	if (anon_vma)
1243
		put_anon_vma(anon_vma);
1244

1245
	if (rc == MIGRATEPAGE_SUCCESS) {
1246
		hugetlb_cgroup_migrate(hpage, new_hpage);
1247
		put_new_page = NULL;
1248
		set_page_owner_migrate_reason(new_hpage, reason);
1249
	}
1250

N
Naoya Horiguchi 已提交
1251
	unlock_page(hpage);
1252
out:
1253 1254
	if (rc != -EAGAIN)
		putback_active_hugepage(hpage);
1255 1256
	if (reason == MR_MEMORY_FAILURE && !test_set_page_hwpoison(hpage))
		num_poisoned_pages_inc();
1257 1258 1259 1260 1261 1262

	/*
	 * If migration was not successful and there's a freeing callback, use
	 * it.  Otherwise, put_page() will drop the reference grabbed during
	 * isolation.
	 */
1263
	if (put_new_page)
1264 1265
		put_new_page(new_hpage, private);
	else
1266
		putback_active_hugepage(new_hpage);
1267

N
Naoya Horiguchi 已提交
1268 1269 1270 1271 1272 1273 1274 1275 1276
	if (result) {
		if (rc)
			*result = rc;
		else
			*result = page_to_nid(new_hpage);
	}
	return rc;
}

C
Christoph Lameter 已提交
1277
/*
1278 1279
 * migrate_pages - migrate the pages specified in a list, to the free pages
 *		   supplied as the target for the page migration
C
Christoph Lameter 已提交
1280
 *
1281 1282 1283
 * @from:		The list of pages to be migrated.
 * @get_new_page:	The function used to allocate free pages to be used
 *			as the target of the page migration.
1284 1285
 * @put_new_page:	The function used to free target pages if migration
 *			fails, or NULL if no special handling is necessary.
1286 1287 1288 1289
 * @private:		Private data to be passed on to get_new_page()
 * @mode:		The migration mode that specifies the constraints for
 *			page migration, if any.
 * @reason:		The reason for page migration.
C
Christoph Lameter 已提交
1290
 *
1291 1292
 * The function returns after 10 attempts or if no pages are movable any more
 * because the list has become empty or no retryable pages exist any more.
1293
 * The caller should call putback_movable_pages() to return pages to the LRU
1294
 * or free list only if ret != 0.
C
Christoph Lameter 已提交
1295
 *
1296
 * Returns the number of pages that were not migrated, or an error code.
C
Christoph Lameter 已提交
1297
 */
1298
int migrate_pages(struct list_head *from, new_page_t get_new_page,
1299 1300
		free_page_t put_new_page, unsigned long private,
		enum migrate_mode mode, int reason)
C
Christoph Lameter 已提交
1301
{
1302
	int retry = 1;
C
Christoph Lameter 已提交
1303
	int nr_failed = 0;
1304
	int nr_succeeded = 0;
C
Christoph Lameter 已提交
1305 1306 1307 1308 1309 1310 1311 1312 1313
	int pass = 0;
	struct page *page;
	struct page *page2;
	int swapwrite = current->flags & PF_SWAPWRITE;
	int rc;

	if (!swapwrite)
		current->flags |= PF_SWAPWRITE;

1314 1315
	for(pass = 0; pass < 10 && retry; pass++) {
		retry = 0;
C
Christoph Lameter 已提交
1316

1317 1318
		list_for_each_entry_safe(page, page2, from, lru) {
			cond_resched();
1319

1320 1321
			if (PageHuge(page))
				rc = unmap_and_move_huge_page(get_new_page,
1322
						put_new_page, private, page,
1323
						pass > 2, mode, reason);
1324
			else
1325
				rc = unmap_and_move(get_new_page, put_new_page,
1326 1327
						private, page, pass > 2, mode,
						reason);
1328

1329
			switch(rc) {
1330
			case -ENOMEM:
1331
				nr_failed++;
1332
				goto out;
1333
			case -EAGAIN:
1334
				retry++;
1335
				break;
1336
			case MIGRATEPAGE_SUCCESS:
1337
				nr_succeeded++;
1338 1339
				break;
			default:
1340 1341 1342 1343 1344 1345
				/*
				 * Permanent failure (-EBUSY, -ENOSYS, etc.):
				 * unlike -EAGAIN case, the failed page is
				 * removed from migration page list and not
				 * retried in the next outer loop.
				 */
1346
				nr_failed++;
1347
				break;
1348
			}
C
Christoph Lameter 已提交
1349 1350
		}
	}
1351 1352
	nr_failed += retry;
	rc = nr_failed;
1353
out:
1354 1355 1356 1357
	if (nr_succeeded)
		count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
	if (nr_failed)
		count_vm_events(PGMIGRATE_FAIL, nr_failed);
1358 1359
	trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);

C
Christoph Lameter 已提交
1360 1361 1362
	if (!swapwrite)
		current->flags &= ~PF_SWAPWRITE;

1363
	return rc;
C
Christoph Lameter 已提交
1364
}
1365

1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389
#ifdef CONFIG_NUMA
/*
 * Move a list of individual pages
 */
struct page_to_node {
	unsigned long addr;
	struct page *page;
	int node;
	int status;
};

static struct page *new_page_node(struct page *p, unsigned long private,
		int **result)
{
	struct page_to_node *pm = (struct page_to_node *)private;

	while (pm->node != MAX_NUMNODES && pm->page != p)
		pm++;

	if (pm->node == MAX_NUMNODES)
		return NULL;

	*result = &pm->status;

1390 1391 1392 1393
	if (PageHuge(p))
		return alloc_huge_page_node(page_hstate(compound_head(p)),
					pm->node);
	else
1394
		return __alloc_pages_node(pm->node,
1395
				GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 0);
1396 1397 1398 1399 1400 1401
}

/*
 * Move a set of pages as indicated in the pm array. The addr
 * field must be set to the virtual address of the page to be moved
 * and the node number must contain a valid target node.
1402
 * The pm array ends with node = MAX_NUMNODES.
1403
 */
1404 1405 1406
static int do_move_page_to_node_array(struct mm_struct *mm,
				      struct page_to_node *pm,
				      int migrate_all)
1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422
{
	int err;
	struct page_to_node *pp;
	LIST_HEAD(pagelist);

	down_read(&mm->mmap_sem);

	/*
	 * Build a list of pages to migrate
	 */
	for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
		struct vm_area_struct *vma;
		struct page *page;

		err = -EFAULT;
		vma = find_vma(mm, pp->addr);
1423
		if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma))
1424 1425
			goto set_status;

1426 1427 1428
		/* FOLL_DUMP to ignore special (like zero) pages */
		page = follow_page(vma, pp->addr,
				FOLL_GET | FOLL_SPLIT | FOLL_DUMP);
1429 1430 1431 1432 1433

		err = PTR_ERR(page);
		if (IS_ERR(page))
			goto set_status;

1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451
		err = -ENOENT;
		if (!page)
			goto set_status;

		pp->page = page;
		err = page_to_nid(page);

		if (err == pp->node)
			/*
			 * Node already in the right place
			 */
			goto put_and_set;

		err = -EACCES;
		if (page_mapcount(page) > 1 &&
				!migrate_all)
			goto put_and_set;

1452
		if (PageHuge(page)) {
1453 1454
			if (PageHead(page))
				isolate_huge_page(page, &pagelist);
1455 1456 1457
			goto put_and_set;
		}

1458
		err = isolate_lru_page(page);
1459
		if (!err) {
1460
			list_add_tail(&page->lru, &pagelist);
M
Mel Gorman 已提交
1461
			inc_node_page_state(page, NR_ISOLATED_ANON +
1462 1463
					    page_is_file_cache(page));
		}
1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474
put_and_set:
		/*
		 * Either remove the duplicate refcount from
		 * isolate_lru_page() or drop the page ref if it was
		 * not isolated.
		 */
		put_page(page);
set_status:
		pp->status = err;
	}

1475
	err = 0;
1476
	if (!list_empty(&pagelist)) {
1477
		err = migrate_pages(&pagelist, new_page_node, NULL,
1478
				(unsigned long)pm, MIGRATE_SYNC, MR_SYSCALL);
1479
		if (err)
1480
			putback_movable_pages(&pagelist);
1481
	}
1482 1483 1484 1485 1486

	up_read(&mm->mmap_sem);
	return err;
}

1487 1488 1489 1490
/*
 * Migrate an array of page address onto an array of nodes and fill
 * the corresponding array of status.
 */
1491
static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1492 1493 1494 1495 1496
			 unsigned long nr_pages,
			 const void __user * __user *pages,
			 const int __user *nodes,
			 int __user *status, int flags)
{
1497 1498 1499 1500
	struct page_to_node *pm;
	unsigned long chunk_nr_pages;
	unsigned long chunk_start;
	int err;
1501

1502 1503 1504
	err = -ENOMEM;
	pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
	if (!pm)
1505
		goto out;
1506 1507 1508

	migrate_prep();

1509
	/*
1510 1511
	 * Store a chunk of page_to_node array in a page,
	 * but keep the last one as a marker
1512
	 */
1513
	chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
1514

1515 1516 1517 1518
	for (chunk_start = 0;
	     chunk_start < nr_pages;
	     chunk_start += chunk_nr_pages) {
		int j;
1519

1520 1521 1522 1523 1524 1525
		if (chunk_start + chunk_nr_pages > nr_pages)
			chunk_nr_pages = nr_pages - chunk_start;

		/* fill the chunk pm with addrs and nodes from user-space */
		for (j = 0; j < chunk_nr_pages; j++) {
			const void __user *p;
1526 1527
			int node;

1528 1529 1530 1531 1532 1533
			err = -EFAULT;
			if (get_user(p, pages + j + chunk_start))
				goto out_pm;
			pm[j].addr = (unsigned long) p;

			if (get_user(node, nodes + j + chunk_start))
1534 1535 1536
				goto out_pm;

			err = -ENODEV;
1537 1538 1539
			if (node < 0 || node >= MAX_NUMNODES)
				goto out_pm;

1540
			if (!node_state(node, N_MEMORY))
1541 1542 1543 1544 1545 1546
				goto out_pm;

			err = -EACCES;
			if (!node_isset(node, task_nodes))
				goto out_pm;

1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557
			pm[j].node = node;
		}

		/* End marker for this chunk */
		pm[chunk_nr_pages].node = MAX_NUMNODES;

		/* Migrate this chunk */
		err = do_move_page_to_node_array(mm, pm,
						 flags & MPOL_MF_MOVE_ALL);
		if (err < 0)
			goto out_pm;
1558 1559

		/* Return status information */
1560 1561
		for (j = 0; j < chunk_nr_pages; j++)
			if (put_user(pm[j].status, status + j + chunk_start)) {
1562
				err = -EFAULT;
1563 1564 1565 1566
				goto out_pm;
			}
	}
	err = 0;
1567 1568

out_pm:
1569
	free_page((unsigned long)pm);
1570 1571 1572 1573
out:
	return err;
}

1574
/*
1575
 * Determine the nodes of an array of pages and store it in an array of status.
1576
 */
1577 1578
static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
				const void __user **pages, int *status)
1579
{
1580 1581
	unsigned long i;

1582 1583
	down_read(&mm->mmap_sem);

1584
	for (i = 0; i < nr_pages; i++) {
1585
		unsigned long addr = (unsigned long)(*pages);
1586 1587
		struct vm_area_struct *vma;
		struct page *page;
1588
		int err = -EFAULT;
1589 1590

		vma = find_vma(mm, addr);
1591
		if (!vma || addr < vma->vm_start)
1592 1593
			goto set_status;

1594 1595
		/* FOLL_DUMP to ignore special (like zero) pages */
		page = follow_page(vma, addr, FOLL_DUMP);
1596 1597 1598 1599 1600

		err = PTR_ERR(page);
		if (IS_ERR(page))
			goto set_status;

1601
		err = page ? page_to_nid(page) : -ENOENT;
1602
set_status:
1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623
		*status = err;

		pages++;
		status++;
	}

	up_read(&mm->mmap_sem);
}

/*
 * Determine the nodes of a user array of pages and store it in
 * a user array of status.
 */
static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
			 const void __user * __user *pages,
			 int __user *status)
{
#define DO_PAGES_STAT_CHUNK_NR 16
	const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
	int chunk_status[DO_PAGES_STAT_CHUNK_NR];

1624 1625
	while (nr_pages) {
		unsigned long chunk_nr;
1626

1627 1628 1629 1630 1631 1632
		chunk_nr = nr_pages;
		if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
			chunk_nr = DO_PAGES_STAT_CHUNK_NR;

		if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
			break;
1633 1634 1635

		do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);

1636 1637
		if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
			break;
1638

1639 1640 1641 1642 1643
		pages += chunk_nr;
		status += chunk_nr;
		nr_pages -= chunk_nr;
	}
	return nr_pages ? -EFAULT : 0;
1644 1645 1646 1647 1648 1649
}

/*
 * Move a list of pages in the address space of the currently executing
 * process.
 */
1650 1651 1652 1653
SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
		const void __user * __user *, pages,
		const int __user *, nodes,
		int __user *, status, int, flags)
1654
{
1655
	const struct cred *cred = current_cred(), *tcred;
1656 1657
	struct task_struct *task;
	struct mm_struct *mm;
1658
	int err;
1659
	nodemask_t task_nodes;
1660 1661 1662 1663 1664 1665 1666 1667 1668

	/* Check flags */
	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
		return -EINVAL;

	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
		return -EPERM;

	/* Find the mm_struct */
1669
	rcu_read_lock();
1670
	task = pid ? find_task_by_vpid(pid) : current;
1671
	if (!task) {
1672
		rcu_read_unlock();
1673 1674
		return -ESRCH;
	}
1675
	get_task_struct(task);
1676 1677 1678 1679 1680 1681 1682

	/*
	 * Check if this process has the right to modify the specified
	 * process. The right exists if the process has administrative
	 * capabilities, superuser privileges or the same
	 * userid as the target process.
	 */
1683
	tcred = __task_cred(task);
1684 1685
	if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
	    !uid_eq(cred->uid,  tcred->suid) && !uid_eq(cred->uid,  tcred->uid) &&
1686
	    !capable(CAP_SYS_NICE)) {
1687
		rcu_read_unlock();
1688
		err = -EPERM;
1689
		goto out;
1690
	}
1691
	rcu_read_unlock();
1692

1693 1694
 	err = security_task_movememory(task);
 	if (err)
1695
		goto out;
1696

1697 1698 1699 1700
	task_nodes = cpuset_mems_allowed(task);
	mm = get_task_mm(task);
	put_task_struct(task);

1701 1702 1703 1704 1705 1706 1707 1708
	if (!mm)
		return -EINVAL;

	if (nodes)
		err = do_pages_move(mm, task_nodes, nr_pages, pages,
				    nodes, status, flags);
	else
		err = do_pages_stat(mm, nr_pages, pages, status);
1709 1710 1711

	mmput(mm);
	return err;
1712 1713 1714 1715

out:
	put_task_struct(task);
	return err;
1716 1717
}

1718 1719 1720 1721 1722 1723
#ifdef CONFIG_NUMA_BALANCING
/*
 * Returns true if this is a safe migration target node for misplaced NUMA
 * pages. Currently it only checks the watermarks which crude
 */
static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1724
				   unsigned long nr_migrate_pages)
1725 1726
{
	int z;
M
Mel Gorman 已提交
1727

1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751
	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
		struct zone *zone = pgdat->node_zones + z;

		if (!populated_zone(zone))
			continue;

		/* Avoid waking kswapd by allocating pages_to_migrate pages. */
		if (!zone_watermark_ok(zone, 0,
				       high_wmark_pages(zone) +
				       nr_migrate_pages,
				       0, 0))
			continue;
		return true;
	}
	return false;
}

static struct page *alloc_misplaced_dst_page(struct page *page,
					   unsigned long data,
					   int **result)
{
	int nid = (int) data;
	struct page *newpage;

1752
	newpage = __alloc_pages_node(nid,
1753 1754 1755
					 (GFP_HIGHUSER_MOVABLE |
					  __GFP_THISNODE | __GFP_NOMEMALLOC |
					  __GFP_NORETRY | __GFP_NOWARN) &
1756
					 ~__GFP_RECLAIM, 0);
1757

1758 1759 1760
	return newpage;
}

1761 1762 1763 1764 1765 1766 1767 1768
/*
 * page migration rate limiting control.
 * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
 * window of time. Default here says do not migrate more than 1280M per second.
 */
static unsigned int migrate_interval_millisecs __read_mostly = 100;
static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT);

1769
/* Returns true if the node is migrate rate-limited after the update */
1770 1771
static bool numamigrate_update_ratelimit(pg_data_t *pgdat,
					unsigned long nr_pages)
1772
{
1773 1774 1775 1776 1777 1778
	/*
	 * Rate-limit the amount of data that is being migrated to a node.
	 * Optimal placement is no good if the memory bus is saturated and
	 * all the time is being spent migrating!
	 */
	if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) {
1779
		spin_lock(&pgdat->numabalancing_migrate_lock);
1780 1781 1782
		pgdat->numabalancing_migrate_nr_pages = 0;
		pgdat->numabalancing_migrate_next_window = jiffies +
			msecs_to_jiffies(migrate_interval_millisecs);
1783
		spin_unlock(&pgdat->numabalancing_migrate_lock);
1784
	}
1785 1786 1787
	if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages) {
		trace_mm_numa_migrate_ratelimit(current, pgdat->node_id,
								nr_pages);
1788
		return true;
1789
	}
1790 1791 1792 1793 1794 1795 1796 1797 1798

	/*
	 * This is an unlocked non-atomic update so errors are possible.
	 * The consequences are failing to migrate when we potentiall should
	 * have which is not severe enough to warrant locking. If it is ever
	 * a problem, it can be converted to a per-cpu counter.
	 */
	pgdat->numabalancing_migrate_nr_pages += nr_pages;
	return false;
1799 1800
}

1801
static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1802
{
1803
	int page_lru;
1804

1805
	VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1806

1807
	/* Avoid migrating to a node that is nearly full */
1808 1809
	if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
		return 0;
1810

1811 1812
	if (isolate_lru_page(page))
		return 0;
1813

1814 1815 1816 1817 1818 1819 1820 1821 1822 1823
	/*
	 * migrate_misplaced_transhuge_page() skips page migration's usual
	 * check on page_count(), so we must do it here, now that the page
	 * has been isolated: a GUP pin, or any other pin, prevents migration.
	 * The expected page count is 3: 1 for page's mapcount and 1 for the
	 * caller's pin and 1 for the reference taken by isolate_lru_page().
	 */
	if (PageTransHuge(page) && page_count(page) != 3) {
		putback_lru_page(page);
		return 0;
1824 1825
	}

1826
	page_lru = page_is_file_cache(page);
M
Mel Gorman 已提交
1827
	mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
1828 1829
				hpage_nr_pages(page));

1830
	/*
1831 1832 1833
	 * Isolating the page has taken another reference, so the
	 * caller's reference can be safely dropped without the page
	 * disappearing underneath us during migration.
1834 1835
	 */
	put_page(page);
1836
	return 1;
1837 1838
}

1839 1840 1841 1842 1843 1844
bool pmd_trans_migrating(pmd_t pmd)
{
	struct page *page = pmd_page(pmd);
	return PageLocked(page);
}

1845 1846 1847 1848 1849
/*
 * Attempt to migrate a misplaced page to the specified destination
 * node. Caller is expected to have an elevated reference count on
 * the page that will be dropped by this function before returning.
 */
1850 1851
int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
			   int node)
1852 1853
{
	pg_data_t *pgdat = NODE_DATA(node);
1854
	int isolated;
1855 1856 1857 1858
	int nr_remaining;
	LIST_HEAD(migratepages);

	/*
1859 1860
	 * Don't migrate file pages that are mapped in multiple processes
	 * with execute permissions as they are probably shared libraries.
1861
	 */
1862 1863
	if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
	    (vma->vm_flags & VM_EXEC))
1864 1865 1866 1867 1868 1869 1870
		goto out;

	/*
	 * Rate-limit the amount of data that is being migrated to a node.
	 * Optimal placement is no good if the memory bus is saturated and
	 * all the time is being spent migrating!
	 */
1871
	if (numamigrate_update_ratelimit(pgdat, 1))
1872 1873 1874 1875 1876 1877 1878
		goto out;

	isolated = numamigrate_isolate_page(pgdat, page);
	if (!isolated)
		goto out;

	list_add(&page->lru, &migratepages);
1879
	nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1880 1881
				     NULL, node, MIGRATE_ASYNC,
				     MR_NUMA_MISPLACED);
1882
	if (nr_remaining) {
1883 1884
		if (!list_empty(&migratepages)) {
			list_del(&page->lru);
M
Mel Gorman 已提交
1885
			dec_node_page_state(page, NR_ISOLATED_ANON +
1886 1887 1888
					page_is_file_cache(page));
			putback_lru_page(page);
		}
1889 1890 1891
		isolated = 0;
	} else
		count_vm_numa_event(NUMA_PAGE_MIGRATE);
1892 1893
	BUG_ON(!list_empty(&migratepages));
	return isolated;
1894 1895 1896 1897

out:
	put_page(page);
	return 0;
1898
}
1899
#endif /* CONFIG_NUMA_BALANCING */
1900

1901
#if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1902 1903 1904 1905
/*
 * Migrates a THP to a given target node. page must be locked and is unlocked
 * before returning.
 */
1906 1907 1908 1909 1910 1911
int migrate_misplaced_transhuge_page(struct mm_struct *mm,
				struct vm_area_struct *vma,
				pmd_t *pmd, pmd_t entry,
				unsigned long address,
				struct page *page, int node)
{
1912
	spinlock_t *ptl;
1913 1914 1915 1916
	pg_data_t *pgdat = NODE_DATA(node);
	int isolated = 0;
	struct page *new_page = NULL;
	int page_lru = page_is_file_cache(page);
1917 1918
	unsigned long mmun_start = address & HPAGE_PMD_MASK;
	unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE;
1919
	pmd_t orig_entry;
1920 1921 1922 1923 1924 1925

	/*
	 * Rate-limit the amount of data that is being migrated to a node.
	 * Optimal placement is no good if the memory bus is saturated and
	 * all the time is being spent migrating!
	 */
1926
	if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR))
1927 1928 1929
		goto out_dropref;

	new_page = alloc_pages_node(node,
1930
		(GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
1931
		HPAGE_PMD_ORDER);
1932 1933
	if (!new_page)
		goto out_fail;
1934
	prep_transhuge_page(new_page);
1935

1936
	isolated = numamigrate_isolate_page(pgdat, page);
1937
	if (!isolated) {
1938
		put_page(new_page);
1939
		goto out_fail;
1940
	}
1941 1942 1943 1944
	/*
	 * We are not sure a pending tlb flush here is for a huge page
	 * mapping or not. Hence use the tlb range variant
	 */
1945 1946 1947
	if (mm_tlb_flush_pending(mm))
		flush_tlb_range(vma, mmun_start, mmun_end);

1948
	/* Prepare a page as a migration target */
1949
	__SetPageLocked(new_page);
1950 1951
	if (PageSwapBacked(page))
		__SetPageSwapBacked(new_page);
1952 1953 1954 1955 1956 1957 1958 1959

	/* anon mapping, we can simply copy page->mapping to the new page: */
	new_page->mapping = page->mapping;
	new_page->index = page->index;
	migrate_page_copy(new_page, page);
	WARN_ON(PageLRU(new_page));

	/* Recheck the target PMD */
1960
	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1961
	ptl = pmd_lock(mm, pmd);
1962 1963
	if (unlikely(!pmd_same(*pmd, entry) || page_count(page) != 2)) {
fail_putback:
1964
		spin_unlock(ptl);
1965
		mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1966 1967 1968 1969 1970 1971 1972 1973 1974 1975

		/* Reverse changes made by migrate_page_copy() */
		if (TestClearPageActive(new_page))
			SetPageActive(page);
		if (TestClearPageUnevictable(new_page))
			SetPageUnevictable(page);

		unlock_page(new_page);
		put_page(new_page);		/* Free it */

1976 1977
		/* Retake the callers reference and putback on LRU */
		get_page(page);
1978
		putback_lru_page(page);
M
Mel Gorman 已提交
1979
		mod_node_page_state(page_pgdat(page),
1980
			 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
1981 1982

		goto out_unlock;
1983 1984
	}

1985
	orig_entry = *pmd;
K
Kirill A. Shutemov 已提交
1986
	entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1987
	entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1988

1989 1990 1991 1992 1993 1994 1995
	/*
	 * Clear the old entry under pagetable lock and establish the new PTE.
	 * Any parallel GUP will either observe the old page blocking on the
	 * page lock, block on the page table lock or observe the new page.
	 * The SetPageUptodate on the new page and page_add_new_anon_rmap
	 * guarantee the copy is visible before the pagetable update.
	 */
1996
	flush_cache_range(vma, mmun_start, mmun_end);
1997
	page_add_anon_rmap(new_page, vma, mmun_start, true);
1998
	pmdp_huge_clear_flush_notify(vma, mmun_start, pmd);
1999
	set_pmd_at(mm, mmun_start, pmd, entry);
2000
	update_mmu_cache_pmd(vma, address, &entry);
2001 2002

	if (page_count(page) != 2) {
2003
		set_pmd_at(mm, mmun_start, pmd, orig_entry);
2004
		flush_pmd_tlb_range(vma, mmun_start, mmun_end);
2005
		mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
2006
		update_mmu_cache_pmd(vma, address, &entry);
2007
		page_remove_rmap(new_page, true);
2008 2009 2010
		goto fail_putback;
	}

2011
	mlock_migrate_page(new_page, page);
2012
	page_remove_rmap(page, true);
2013
	set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2014

2015
	spin_unlock(ptl);
2016
	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2017

2018 2019 2020 2021
	/* Take an "isolate" reference and put new page on the LRU. */
	get_page(new_page);
	putback_lru_page(new_page);

2022 2023 2024 2025 2026 2027 2028 2029
	unlock_page(new_page);
	unlock_page(page);
	put_page(page);			/* Drop the rmap reference */
	put_page(page);			/* Drop the LRU isolation reference */

	count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
	count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);

M
Mel Gorman 已提交
2030
	mod_node_page_state(page_pgdat(page),
2031 2032 2033 2034
			NR_ISOLATED_ANON + page_lru,
			-HPAGE_PMD_NR);
	return isolated;

2035 2036
out_fail:
	count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2037
out_dropref:
2038 2039
	ptl = pmd_lock(mm, pmd);
	if (pmd_same(*pmd, entry)) {
2040
		entry = pmd_modify(entry, vma->vm_page_prot);
2041
		set_pmd_at(mm, mmun_start, pmd, entry);
2042 2043 2044
		update_mmu_cache_pmd(vma, address, &entry);
	}
	spin_unlock(ptl);
2045

2046
out_unlock:
2047
	unlock_page(page);
2048 2049 2050
	put_page(page);
	return 0;
}
2051 2052 2053
#endif /* CONFIG_NUMA_BALANCING */

#endif /* CONFIG_NUMA */