i915_vgpu.c 9.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
/*
 * Copyright(c) 2011-2015 Intel Corporation. All rights reserved.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */

#include "intel_drv.h"
#include "i915_vgpu.h"

/**
 * DOC: Intel GVT-g guest support
 *
 * Intel GVT-g is a graphics virtualization technology which shares the
 * GPU among multiple virtual machines on a time-sharing basis. Each
 * virtual machine is presented a virtual GPU (vGPU), which has equivalent
 * features as the underlying physical GPU (pGPU), so i915 driver can run
 * seamlessly in a virtual machine. This file provides vGPU specific
 * optimizations when running in a virtual machine, to reduce the complexity
 * of vGPU emulation and to improve the overall performance.
 *
 * A primary function introduced here is so-called "address space ballooning"
 * technique. Intel GVT-g partitions global graphics memory among multiple VMs,
 * so each VM can directly access a portion of the memory without hypervisor's
 * intervention, e.g. filling textures or queuing commands. However with the
 * partitioning an unmodified i915 driver would assume a smaller graphics
 * memory starting from address ZERO, then requires vGPU emulation module to
 * translate the graphics address between 'guest view' and 'host view', for
 * all registers and command opcodes which contain a graphics memory address.
 * To reduce the complexity, Intel GVT-g introduces "address space ballooning",
 * by telling the exact partitioning knowledge to each guest i915 driver, which
 * then reserves and prevents non-allocated portions from allocation. Thus vGPU
 * emulation module only needs to scan and validate graphics addresses without
 * complexity of address translation.
 *
 */

/**
 * i915_check_vgpu - detect virtual GPU
56
 * @dev_priv: i915 device private
57 58 59 60
 *
 * This function is called at the initialization stage, to detect whether
 * running on a vGPU.
 */
61
void i915_check_vgpu(struct drm_i915_private *dev_priv)
62 63 64 65 66 67
{
	uint64_t magic;
	uint32_t version;

	BUILD_BUG_ON(sizeof(struct vgt_if) != VGT_PVINFO_SIZE);

68
	magic = __raw_i915_read64(dev_priv, vgtif_reg(magic));
69 70 71 72
	if (magic != VGT_MAGIC)
		return;

	version = INTEL_VGT_IF_VERSION_ENCODE(
73 74
		__raw_i915_read16(dev_priv, vgtif_reg(version_major)),
		__raw_i915_read16(dev_priv, vgtif_reg(version_minor)));
75 76 77 78 79 80 81 82
	if (version != INTEL_VGT_IF_VERSION) {
		DRM_INFO("VGT interface version mismatch!\n");
		return;
	}

	dev_priv->vgpu.active = true;
	DRM_INFO("Virtual GPU for Intel GVT-g detected.\n");
}
83 84 85 86 87 88 89 90 91 92 93 94

struct _balloon_info_ {
	/*
	 * There are up to 2 regions per mappable/unmappable graphic
	 * memory that might be ballooned. Here, index 0/1 is for mappable
	 * graphic memory, 2/3 for unmappable graphic memory.
	 */
	struct drm_mm_node space[4];
};

static struct _balloon_info_ bl_info;

95 96 97 98 99 100 101 102 103 104 105 106
static void vgt_deballoon_space(struct i915_ggtt *ggtt,
				struct drm_mm_node *node)
{
	DRM_DEBUG_DRIVER("deballoon space: range [0x%llx - 0x%llx] %llu KiB.\n",
			 node->start,
			 node->start + node->size,
			 node->size / 1024);

	ggtt->base.reserved -= node->size;
	drm_mm_remove_node(node);
}

107 108
/**
 * intel_vgt_deballoon - deballoon reserved graphics address trunks
109
 * @dev_priv: i915 device private data
110 111 112 113
 *
 * This function is called to deallocate the ballooned-out graphic memory, when
 * driver is unloaded or when ballooning fails.
 */
114
void intel_vgt_deballoon(struct drm_i915_private *dev_priv)
115 116 117
{
	int i;

118 119 120
	if (!intel_vgpu_active(dev_priv))
		return;

121 122
	DRM_DEBUG("VGT deballoon.\n");

123 124
	for (i = 0; i < 4; i++)
		vgt_deballoon_space(&dev_priv->ggtt, &bl_info.space[i]);
125 126
}

127
static int vgt_balloon_space(struct i915_ggtt *ggtt,
128 129 130 131
			     struct drm_mm_node *node,
			     unsigned long start, unsigned long end)
{
	unsigned long size = end - start;
132
	int ret;
133

134
	if (start >= end)
135 136 137 138
		return -EINVAL;

	DRM_INFO("balloon space: range [ 0x%lx - 0x%lx ] %lu KiB.\n",
		 start, end, size / 1024);
139 140 141 142 143 144 145
	ret = i915_gem_gtt_reserve(&ggtt->base, node,
				   size, start, I915_COLOR_UNEVICTABLE,
				   0);
	if (!ret)
		ggtt->base.reserved += size;

	return ret;
146 147 148 149
}

/**
 * intel_vgt_balloon - balloon out reserved graphics address trunks
150
 * @dev_priv: i915 device private data
151 152 153 154 155 156 157 158 159 160 161 162 163 164
 *
 * This function is called at the initialization stage, to balloon out the
 * graphic address space allocated to other vGPUs, by marking these spaces as
 * reserved. The ballooning related knowledge(starting address and size of
 * the mappable/unmappable graphic memory) is described in the vgt_if structure
 * in a reserved mmio range.
 *
 * To give an example, the drawing below depicts one typical scenario after
 * ballooning. Here the vGPU1 has 2 pieces of graphic address spaces ballooned
 * out each for the mappable and the non-mappable part. From the vGPU1 point of
 * view, the total size is the same as the physical one, with the start address
 * of its graphic space being zero. Yet there are some portions ballooned out(
 * the shadow part, which are marked as reserved by drm allocator). From the
 * host point of view, the graphic address space is partitioned by multiple
165
 * vGPUs in different VMs. ::
166
 *
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
 *                         vGPU1 view         Host view
 *              0 ------> +-----------+     +-----------+
 *                ^       |###########|     |   vGPU3   |
 *                |       |###########|     +-----------+
 *                |       |###########|     |   vGPU2   |
 *                |       +-----------+     +-----------+
 *         mappable GM    | available | ==> |   vGPU1   |
 *                |       +-----------+     +-----------+
 *                |       |###########|     |           |
 *                v       |###########|     |   Host    |
 *                +=======+===========+     +===========+
 *                ^       |###########|     |   vGPU3   |
 *                |       |###########|     +-----------+
 *                |       |###########|     |   vGPU2   |
 *                |       +-----------+     +-----------+
 *       unmappable GM    | available | ==> |   vGPU1   |
 *                |       +-----------+     +-----------+
 *                |       |###########|     |           |
 *                |       |###########|     |   Host    |
 *                v       |###########|     |           |
 *  total GM size ------> +-----------+     +-----------+
188 189 190 191
 *
 * Returns:
 * zero on success, non-zero if configuration invalid or ballooning failed
 */
192
int intel_vgt_balloon(struct drm_i915_private *dev_priv)
193
{
194
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
195
	unsigned long ggtt_end = ggtt->base.total;
196 197 198 199 200

	unsigned long mappable_base, mappable_size, mappable_end;
	unsigned long unmappable_base, unmappable_size, unmappable_end;
	int ret;

201 202 203
	if (!intel_vgpu_active(dev_priv))
		return 0;

204 205 206 207 208 209 210 211 212 213 214 215 216 217
	mappable_base = I915_READ(vgtif_reg(avail_rs.mappable_gmadr.base));
	mappable_size = I915_READ(vgtif_reg(avail_rs.mappable_gmadr.size));
	unmappable_base = I915_READ(vgtif_reg(avail_rs.nonmappable_gmadr.base));
	unmappable_size = I915_READ(vgtif_reg(avail_rs.nonmappable_gmadr.size));

	mappable_end = mappable_base + mappable_size;
	unmappable_end = unmappable_base + unmappable_size;

	DRM_INFO("VGT ballooning configuration:\n");
	DRM_INFO("Mappable graphic memory: base 0x%lx size %ldKiB\n",
		 mappable_base, mappable_size / 1024);
	DRM_INFO("Unmappable graphic memory: base 0x%lx size %ldKiB\n",
		 unmappable_base, unmappable_size / 1024);

218
	if (mappable_end > ggtt->mappable_end ||
219 220
	    unmappable_base < ggtt->mappable_end ||
	    unmappable_end > ggtt_end) {
221 222 223 224 225
		DRM_ERROR("Invalid ballooning configuration!\n");
		return -EINVAL;
	}

	/* Unmappable graphic memory ballooning */
226
	if (unmappable_base > ggtt->mappable_end) {
227 228
		ret = vgt_balloon_space(ggtt, &bl_info.space[2],
					ggtt->mappable_end, unmappable_base);
229 230 231 232 233

		if (ret)
			goto err;
	}

234
	if (unmappable_end < ggtt_end) {
235
		ret = vgt_balloon_space(ggtt, &bl_info.space[3],
236
					unmappable_end, ggtt_end);
237
		if (ret)
238
			goto err_upon_mappable;
239 240 241
	}

	/* Mappable graphic memory ballooning */
242
	if (mappable_base) {
243
		ret = vgt_balloon_space(ggtt, &bl_info.space[0],
244
					0, mappable_base);
245 246

		if (ret)
247
			goto err_upon_unmappable;
248 249
	}

250
	if (mappable_end < ggtt->mappable_end) {
251 252
		ret = vgt_balloon_space(ggtt, &bl_info.space[1],
					mappable_end, ggtt->mappable_end);
253 254

		if (ret)
255
			goto err_below_mappable;
256 257 258 259 260
	}

	DRM_INFO("VGT balloon successfully\n");
	return 0;

261 262 263 264 265 266
err_below_mappable:
	vgt_deballoon_space(ggtt, &bl_info.space[0]);
err_upon_unmappable:
	vgt_deballoon_space(ggtt, &bl_info.space[3]);
err_upon_mappable:
	vgt_deballoon_space(ggtt, &bl_info.space[2]);
267 268 269 270
err:
	DRM_ERROR("VGT balloon fail\n");
	return ret;
}