i915_vgpu.c 9.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
/*
 * Copyright(c) 2011-2015 Intel Corporation. All rights reserved.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */

#include "intel_drv.h"
#include "i915_vgpu.h"

/**
 * DOC: Intel GVT-g guest support
 *
 * Intel GVT-g is a graphics virtualization technology which shares the
 * GPU among multiple virtual machines on a time-sharing basis. Each
 * virtual machine is presented a virtual GPU (vGPU), which has equivalent
 * features as the underlying physical GPU (pGPU), so i915 driver can run
 * seamlessly in a virtual machine. This file provides vGPU specific
 * optimizations when running in a virtual machine, to reduce the complexity
 * of vGPU emulation and to improve the overall performance.
 *
 * A primary function introduced here is so-called "address space ballooning"
 * technique. Intel GVT-g partitions global graphics memory among multiple VMs,
 * so each VM can directly access a portion of the memory without hypervisor's
 * intervention, e.g. filling textures or queuing commands. However with the
 * partitioning an unmodified i915 driver would assume a smaller graphics
 * memory starting from address ZERO, then requires vGPU emulation module to
 * translate the graphics address between 'guest view' and 'host view', for
 * all registers and command opcodes which contain a graphics memory address.
 * To reduce the complexity, Intel GVT-g introduces "address space ballooning",
 * by telling the exact partitioning knowledge to each guest i915 driver, which
 * then reserves and prevents non-allocated portions from allocation. Thus vGPU
 * emulation module only needs to scan and validate graphics addresses without
 * complexity of address translation.
 *
 */

/**
 * i915_check_vgpu - detect virtual GPU
56
 * @dev_priv: i915 device private
57 58 59 60
 *
 * This function is called at the initialization stage, to detect whether
 * running on a vGPU.
 */
61
void i915_check_vgpu(struct drm_i915_private *dev_priv)
62 63 64 65 66 67
{
	uint64_t magic;
	uint32_t version;

	BUILD_BUG_ON(sizeof(struct vgt_if) != VGT_PVINFO_SIZE);

68
	magic = __raw_i915_read64(dev_priv, vgtif_reg(magic));
69 70 71 72
	if (magic != VGT_MAGIC)
		return;

	version = INTEL_VGT_IF_VERSION_ENCODE(
73 74
		__raw_i915_read16(dev_priv, vgtif_reg(version_major)),
		__raw_i915_read16(dev_priv, vgtif_reg(version_minor)));
75 76 77 78 79 80 81 82
	if (version != INTEL_VGT_IF_VERSION) {
		DRM_INFO("VGT interface version mismatch!\n");
		return;
	}

	dev_priv->vgpu.active = true;
	DRM_INFO("Virtual GPU for Intel GVT-g detected.\n");
}
83 84 85 86 87 88 89 90 91 92 93 94 95 96

struct _balloon_info_ {
	/*
	 * There are up to 2 regions per mappable/unmappable graphic
	 * memory that might be ballooned. Here, index 0/1 is for mappable
	 * graphic memory, 2/3 for unmappable graphic memory.
	 */
	struct drm_mm_node space[4];
};

static struct _balloon_info_ bl_info;

/**
 * intel_vgt_deballoon - deballoon reserved graphics address trunks
97
 * @dev_priv: i915 device private data
98 99 100 101
 *
 * This function is called to deallocate the ballooned-out graphic memory, when
 * driver is unloaded or when ballooning fails.
 */
102
void intel_vgt_deballoon(struct drm_i915_private *dev_priv)
103 104 105
{
	int i;

106 107 108
	if (!intel_vgpu_active(dev_priv))
		return;

109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
	DRM_DEBUG("VGT deballoon.\n");

	for (i = 0; i < 4; i++) {
		if (bl_info.space[i].allocated)
			drm_mm_remove_node(&bl_info.space[i]);
	}

	memset(&bl_info, 0, sizeof(bl_info));
}

static int vgt_balloon_space(struct drm_mm *mm,
			     struct drm_mm_node *node,
			     unsigned long start, unsigned long end)
{
	unsigned long size = end - start;

	if (start == end)
		return -EINVAL;

	DRM_INFO("balloon space: range [ 0x%lx - 0x%lx ] %lu KiB.\n",
		 start, end, size / 1024);

	node->start = start;
	node->size = size;

	return drm_mm_reserve_node(mm, node);
}

/**
 * intel_vgt_balloon - balloon out reserved graphics address trunks
139
 * @dev_priv: i915 device private data
140 141 142 143 144 145 146 147 148 149 150 151 152 153
 *
 * This function is called at the initialization stage, to balloon out the
 * graphic address space allocated to other vGPUs, by marking these spaces as
 * reserved. The ballooning related knowledge(starting address and size of
 * the mappable/unmappable graphic memory) is described in the vgt_if structure
 * in a reserved mmio range.
 *
 * To give an example, the drawing below depicts one typical scenario after
 * ballooning. Here the vGPU1 has 2 pieces of graphic address spaces ballooned
 * out each for the mappable and the non-mappable part. From the vGPU1 point of
 * view, the total size is the same as the physical one, with the start address
 * of its graphic space being zero. Yet there are some portions ballooned out(
 * the shadow part, which are marked as reserved by drm allocator). From the
 * host point of view, the graphic address space is partitioned by multiple
154
 * vGPUs in different VMs. ::
155
 *
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
 *                         vGPU1 view         Host view
 *              0 ------> +-----------+     +-----------+
 *                ^       |###########|     |   vGPU3   |
 *                |       |###########|     +-----------+
 *                |       |###########|     |   vGPU2   |
 *                |       +-----------+     +-----------+
 *         mappable GM    | available | ==> |   vGPU1   |
 *                |       +-----------+     +-----------+
 *                |       |###########|     |           |
 *                v       |###########|     |   Host    |
 *                +=======+===========+     +===========+
 *                ^       |###########|     |   vGPU3   |
 *                |       |###########|     +-----------+
 *                |       |###########|     |   vGPU2   |
 *                |       +-----------+     +-----------+
 *       unmappable GM    | available | ==> |   vGPU1   |
 *                |       +-----------+     +-----------+
 *                |       |###########|     |           |
 *                |       |###########|     |   Host    |
 *                v       |###########|     |           |
 *  total GM size ------> +-----------+     +-----------+
177 178 179 180
 *
 * Returns:
 * zero on success, non-zero if configuration invalid or ballooning failed
 */
181
int intel_vgt_balloon(struct drm_i915_private *dev_priv)
182
{
183 184
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
	unsigned long ggtt_end = ggtt->base.start + ggtt->base.total;
185 186 187 188 189

	unsigned long mappable_base, mappable_size, mappable_end;
	unsigned long unmappable_base, unmappable_size, unmappable_end;
	int ret;

190 191 192
	if (!intel_vgpu_active(dev_priv))
		return 0;

193 194 195 196 197 198 199 200 201 202 203 204 205 206
	mappable_base = I915_READ(vgtif_reg(avail_rs.mappable_gmadr.base));
	mappable_size = I915_READ(vgtif_reg(avail_rs.mappable_gmadr.size));
	unmappable_base = I915_READ(vgtif_reg(avail_rs.nonmappable_gmadr.base));
	unmappable_size = I915_READ(vgtif_reg(avail_rs.nonmappable_gmadr.size));

	mappable_end = mappable_base + mappable_size;
	unmappable_end = unmappable_base + unmappable_size;

	DRM_INFO("VGT ballooning configuration:\n");
	DRM_INFO("Mappable graphic memory: base 0x%lx size %ldKiB\n",
		 mappable_base, mappable_size / 1024);
	DRM_INFO("Unmappable graphic memory: base 0x%lx size %ldKiB\n",
		 unmappable_base, unmappable_size / 1024);

207 208 209 210
	if (mappable_base < ggtt->base.start ||
	    mappable_end > ggtt->mappable_end ||
	    unmappable_base < ggtt->mappable_end ||
	    unmappable_end > ggtt_end) {
211 212 213 214 215
		DRM_ERROR("Invalid ballooning configuration!\n");
		return -EINVAL;
	}

	/* Unmappable graphic memory ballooning */
216 217
	if (unmappable_base > ggtt->mappable_end) {
		ret = vgt_balloon_space(&ggtt->base.mm,
218
					&bl_info.space[2],
219
					ggtt->mappable_end,
220 221 222 223 224 225 226 227 228 229
					unmappable_base);

		if (ret)
			goto err;
	}

	/*
	 * No need to partition out the last physical page,
	 * because it is reserved to the guard page.
	 */
230 231
	if (unmappable_end < ggtt_end - PAGE_SIZE) {
		ret = vgt_balloon_space(&ggtt->base.mm,
232 233
					&bl_info.space[3],
					unmappable_end,
234
					ggtt_end - PAGE_SIZE);
235 236 237 238 239
		if (ret)
			goto err;
	}

	/* Mappable graphic memory ballooning */
240 241
	if (mappable_base > ggtt->base.start) {
		ret = vgt_balloon_space(&ggtt->base.mm,
242
					&bl_info.space[0],
243
					ggtt->base.start, mappable_base);
244 245 246 247 248

		if (ret)
			goto err;
	}

249 250
	if (mappable_end < ggtt->mappable_end) {
		ret = vgt_balloon_space(&ggtt->base.mm,
251 252
					&bl_info.space[1],
					mappable_end,
253
					ggtt->mappable_end);
254 255 256 257 258 259 260 261 262 263

		if (ret)
			goto err;
	}

	DRM_INFO("VGT balloon successfully\n");
	return 0;

err:
	DRM_ERROR("VGT balloon fail\n");
264
	intel_vgt_deballoon(dev_priv);
265 266
	return ret;
}