intel_hdmi.c 65.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
/*
 * Copyright 2006 Dave Airlie <airlied@linux.ie>
 * Copyright © 2006-2009 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
 * DEALINGS IN THE SOFTWARE.
 *
 * Authors:
 *	Eric Anholt <eric@anholt.net>
 *	Jesse Barnes <jesse.barnes@intel.com>
 */

#include <linux/i2c.h>
30
#include <linux/slab.h>
31
#include <linux/delay.h>
32
#include <linux/hdmi.h>
33
#include <drm/drmP.h>
34
#include <drm/drm_atomic_helper.h>
35 36
#include <drm/drm_crtc.h>
#include <drm/drm_edid.h>
37
#include "intel_drv.h"
38
#include <drm/i915_drm.h>
39 40
#include "i915_drv.h"

41 42
static struct drm_device *intel_hdmi_to_dev(struct intel_hdmi *intel_hdmi)
{
43
	return hdmi_to_dig_port(intel_hdmi)->base.base.dev;
44 45
}

46 47 48
static void
assert_hdmi_port_disabled(struct intel_hdmi *intel_hdmi)
{
49
	struct drm_device *dev = intel_hdmi_to_dev(intel_hdmi);
50 51 52
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t enabled_bits;

P
Paulo Zanoni 已提交
53
	enabled_bits = HAS_DDI(dev) ? DDI_BUF_CTL_ENABLE : SDVO_ENABLE;
54

55
	WARN(I915_READ(intel_hdmi->hdmi_reg) & enabled_bits,
56 57 58
	     "HDMI port enabled, expecting disabled\n");
}

59
struct intel_hdmi *enc_to_intel_hdmi(struct drm_encoder *encoder)
C
Chris Wilson 已提交
60
{
61 62 63
	struct intel_digital_port *intel_dig_port =
		container_of(encoder, struct intel_digital_port, base.base);
	return &intel_dig_port->hdmi;
C
Chris Wilson 已提交
64 65
}

66 67
static struct intel_hdmi *intel_attached_hdmi(struct drm_connector *connector)
{
68
	return enc_to_intel_hdmi(&intel_attached_encoder(connector)->base);
69 70
}

71
static u32 g4x_infoframe_index(enum hdmi_infoframe_type type)
72
{
73 74
	switch (type) {
	case HDMI_INFOFRAME_TYPE_AVI:
75
		return VIDEO_DIP_SELECT_AVI;
76
	case HDMI_INFOFRAME_TYPE_SPD:
77
		return VIDEO_DIP_SELECT_SPD;
78 79
	case HDMI_INFOFRAME_TYPE_VENDOR:
		return VIDEO_DIP_SELECT_VENDOR;
80
	default:
81
		DRM_DEBUG_DRIVER("unknown info frame type %d\n", type);
82
		return 0;
83 84 85
	}
}

86
static u32 g4x_infoframe_enable(enum hdmi_infoframe_type type)
87
{
88 89
	switch (type) {
	case HDMI_INFOFRAME_TYPE_AVI:
90
		return VIDEO_DIP_ENABLE_AVI;
91
	case HDMI_INFOFRAME_TYPE_SPD:
92
		return VIDEO_DIP_ENABLE_SPD;
93 94
	case HDMI_INFOFRAME_TYPE_VENDOR:
		return VIDEO_DIP_ENABLE_VENDOR;
95
	default:
96
		DRM_DEBUG_DRIVER("unknown info frame type %d\n", type);
97
		return 0;
98 99 100
	}
}

101
static u32 hsw_infoframe_enable(enum hdmi_infoframe_type type)
102
{
103 104
	switch (type) {
	case HDMI_INFOFRAME_TYPE_AVI:
105
		return VIDEO_DIP_ENABLE_AVI_HSW;
106
	case HDMI_INFOFRAME_TYPE_SPD:
107
		return VIDEO_DIP_ENABLE_SPD_HSW;
108 109
	case HDMI_INFOFRAME_TYPE_VENDOR:
		return VIDEO_DIP_ENABLE_VS_HSW;
110
	default:
111
		DRM_DEBUG_DRIVER("unknown info frame type %d\n", type);
112 113 114 115
		return 0;
	}
}

116
static u32 hsw_infoframe_data_reg(enum hdmi_infoframe_type type,
117 118
				  enum transcoder cpu_transcoder,
				  struct drm_i915_private *dev_priv)
119
{
120 121
	switch (type) {
	case HDMI_INFOFRAME_TYPE_AVI:
122
		return HSW_TVIDEO_DIP_AVI_DATA(cpu_transcoder);
123
	case HDMI_INFOFRAME_TYPE_SPD:
124
		return HSW_TVIDEO_DIP_SPD_DATA(cpu_transcoder);
125 126
	case HDMI_INFOFRAME_TYPE_VENDOR:
		return HSW_TVIDEO_DIP_VS_DATA(cpu_transcoder);
127
	default:
128
		DRM_DEBUG_DRIVER("unknown info frame type %d\n", type);
129 130 131 132
		return 0;
	}
}

133
static void g4x_write_infoframe(struct drm_encoder *encoder,
134
				enum hdmi_infoframe_type type,
135
				const void *frame, ssize_t len)
136
{
137
	const uint32_t *data = frame;
138 139
	struct drm_device *dev = encoder->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
140
	u32 val = I915_READ(VIDEO_DIP_CTL);
141
	int i;
142

143 144
	WARN(!(val & VIDEO_DIP_ENABLE), "Writing DIP with CTL reg disabled\n");

145
	val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
146
	val |= g4x_infoframe_index(type);
147

148
	val &= ~g4x_infoframe_enable(type);
149

150
	I915_WRITE(VIDEO_DIP_CTL, val);
151

152
	mmiowb();
153
	for (i = 0; i < len; i += 4) {
154 155 156
		I915_WRITE(VIDEO_DIP_DATA, *data);
		data++;
	}
157 158 159
	/* Write every possible data byte to force correct ECC calculation. */
	for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
		I915_WRITE(VIDEO_DIP_DATA, 0);
160
	mmiowb();
161

162
	val |= g4x_infoframe_enable(type);
163
	val &= ~VIDEO_DIP_FREQ_MASK;
164
	val |= VIDEO_DIP_FREQ_VSYNC;
165

166
	I915_WRITE(VIDEO_DIP_CTL, val);
167
	POSTING_READ(VIDEO_DIP_CTL);
168 169
}

170 171 172 173
static bool g4x_infoframe_enabled(struct drm_encoder *encoder)
{
	struct drm_device *dev = encoder->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
174
	struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
175 176
	u32 val = I915_READ(VIDEO_DIP_CTL);

177 178
	if ((val & VIDEO_DIP_ENABLE) == 0)
		return false;
179

180 181 182 183 184
	if ((val & VIDEO_DIP_PORT_MASK) != VIDEO_DIP_PORT(intel_dig_port->port))
		return false;

	return val & (VIDEO_DIP_ENABLE_AVI |
		      VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_SPD);
185 186
}

187
static void ibx_write_infoframe(struct drm_encoder *encoder,
188
				enum hdmi_infoframe_type type,
189
				const void *frame, ssize_t len)
190
{
191
	const uint32_t *data = frame;
192 193
	struct drm_device *dev = encoder->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
194
	struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
195
	int i, reg = TVIDEO_DIP_CTL(intel_crtc->pipe);
196 197
	u32 val = I915_READ(reg);

198 199
	WARN(!(val & VIDEO_DIP_ENABLE), "Writing DIP with CTL reg disabled\n");

200
	val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
201
	val |= g4x_infoframe_index(type);
202

203
	val &= ~g4x_infoframe_enable(type);
204 205 206

	I915_WRITE(reg, val);

207
	mmiowb();
208 209 210 211
	for (i = 0; i < len; i += 4) {
		I915_WRITE(TVIDEO_DIP_DATA(intel_crtc->pipe), *data);
		data++;
	}
212 213 214
	/* Write every possible data byte to force correct ECC calculation. */
	for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
		I915_WRITE(TVIDEO_DIP_DATA(intel_crtc->pipe), 0);
215
	mmiowb();
216

217
	val |= g4x_infoframe_enable(type);
218
	val &= ~VIDEO_DIP_FREQ_MASK;
219
	val |= VIDEO_DIP_FREQ_VSYNC;
220 221

	I915_WRITE(reg, val);
222
	POSTING_READ(reg);
223 224
}

225 226 227 228 229
static bool ibx_infoframe_enabled(struct drm_encoder *encoder)
{
	struct drm_device *dev = encoder->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
230
	struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
231 232 233
	int reg = TVIDEO_DIP_CTL(intel_crtc->pipe);
	u32 val = I915_READ(reg);

234 235 236 237 238
	if ((val & VIDEO_DIP_ENABLE) == 0)
		return false;

	if ((val & VIDEO_DIP_PORT_MASK) != VIDEO_DIP_PORT(intel_dig_port->port))
		return false;
239

240 241 242
	return val & (VIDEO_DIP_ENABLE_AVI |
		      VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
		      VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
243 244
}

245
static void cpt_write_infoframe(struct drm_encoder *encoder,
246
				enum hdmi_infoframe_type type,
247
				const void *frame, ssize_t len)
248
{
249
	const uint32_t *data = frame;
250 251
	struct drm_device *dev = encoder->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
252
	struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
253
	int i, reg = TVIDEO_DIP_CTL(intel_crtc->pipe);
254
	u32 val = I915_READ(reg);
255

256 257
	WARN(!(val & VIDEO_DIP_ENABLE), "Writing DIP with CTL reg disabled\n");

258
	val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
259
	val |= g4x_infoframe_index(type);
260

261 262
	/* The DIP control register spec says that we need to update the AVI
	 * infoframe without clearing its enable bit */
263 264
	if (type != HDMI_INFOFRAME_TYPE_AVI)
		val &= ~g4x_infoframe_enable(type);
265

266
	I915_WRITE(reg, val);
267

268
	mmiowb();
269
	for (i = 0; i < len; i += 4) {
270 271 272
		I915_WRITE(TVIDEO_DIP_DATA(intel_crtc->pipe), *data);
		data++;
	}
273 274 275
	/* Write every possible data byte to force correct ECC calculation. */
	for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
		I915_WRITE(TVIDEO_DIP_DATA(intel_crtc->pipe), 0);
276
	mmiowb();
277

278
	val |= g4x_infoframe_enable(type);
279
	val &= ~VIDEO_DIP_FREQ_MASK;
280
	val |= VIDEO_DIP_FREQ_VSYNC;
281

282
	I915_WRITE(reg, val);
283
	POSTING_READ(reg);
284
}
285

286 287 288 289 290 291 292 293
static bool cpt_infoframe_enabled(struct drm_encoder *encoder)
{
	struct drm_device *dev = encoder->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
	int reg = TVIDEO_DIP_CTL(intel_crtc->pipe);
	u32 val = I915_READ(reg);

294 295 296 297 298 299
	if ((val & VIDEO_DIP_ENABLE) == 0)
		return false;

	return val & (VIDEO_DIP_ENABLE_AVI |
		      VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
		      VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
300 301
}

302
static void vlv_write_infoframe(struct drm_encoder *encoder,
303
				enum hdmi_infoframe_type type,
304
				const void *frame, ssize_t len)
305
{
306
	const uint32_t *data = frame;
307 308
	struct drm_device *dev = encoder->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
309
	struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
310
	int i, reg = VLV_TVIDEO_DIP_CTL(intel_crtc->pipe);
311
	u32 val = I915_READ(reg);
312

313 314
	WARN(!(val & VIDEO_DIP_ENABLE), "Writing DIP with CTL reg disabled\n");

315
	val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
316
	val |= g4x_infoframe_index(type);
317

318
	val &= ~g4x_infoframe_enable(type);
319

320
	I915_WRITE(reg, val);
321

322
	mmiowb();
323 324 325 326
	for (i = 0; i < len; i += 4) {
		I915_WRITE(VLV_TVIDEO_DIP_DATA(intel_crtc->pipe), *data);
		data++;
	}
327 328 329
	/* Write every possible data byte to force correct ECC calculation. */
	for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
		I915_WRITE(VLV_TVIDEO_DIP_DATA(intel_crtc->pipe), 0);
330
	mmiowb();
331

332
	val |= g4x_infoframe_enable(type);
333
	val &= ~VIDEO_DIP_FREQ_MASK;
334
	val |= VIDEO_DIP_FREQ_VSYNC;
335

336
	I915_WRITE(reg, val);
337
	POSTING_READ(reg);
338 339
}

340 341 342 343 344
static bool vlv_infoframe_enabled(struct drm_encoder *encoder)
{
	struct drm_device *dev = encoder->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
345
	struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
346 347 348
	int reg = VLV_TVIDEO_DIP_CTL(intel_crtc->pipe);
	u32 val = I915_READ(reg);

349 350 351 352 353
	if ((val & VIDEO_DIP_ENABLE) == 0)
		return false;

	if ((val & VIDEO_DIP_PORT_MASK) != VIDEO_DIP_PORT(intel_dig_port->port))
		return false;
354

355 356 357
	return val & (VIDEO_DIP_ENABLE_AVI |
		      VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
		      VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
358 359
}

360
static void hsw_write_infoframe(struct drm_encoder *encoder,
361
				enum hdmi_infoframe_type type,
362
				const void *frame, ssize_t len)
363
{
364
	const uint32_t *data = frame;
365 366 367
	struct drm_device *dev = encoder->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
368
	u32 ctl_reg = HSW_TVIDEO_DIP_CTL(intel_crtc->config->cpu_transcoder);
369 370
	u32 data_reg;
	int i;
371
	u32 val = I915_READ(ctl_reg);
372

373
	data_reg = hsw_infoframe_data_reg(type,
374
					  intel_crtc->config->cpu_transcoder,
375
					  dev_priv);
376 377 378
	if (data_reg == 0)
		return;

379
	val &= ~hsw_infoframe_enable(type);
380 381
	I915_WRITE(ctl_reg, val);

382
	mmiowb();
383 384 385 386
	for (i = 0; i < len; i += 4) {
		I915_WRITE(data_reg + i, *data);
		data++;
	}
387 388 389
	/* Write every possible data byte to force correct ECC calculation. */
	for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
		I915_WRITE(data_reg + i, 0);
390
	mmiowb();
391

392
	val |= hsw_infoframe_enable(type);
393
	I915_WRITE(ctl_reg, val);
394
	POSTING_READ(ctl_reg);
395 396
}

397 398 399 400 401
static bool hsw_infoframe_enabled(struct drm_encoder *encoder)
{
	struct drm_device *dev = encoder->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
402
	u32 ctl_reg = HSW_TVIDEO_DIP_CTL(intel_crtc->config->cpu_transcoder);
403 404
	u32 val = I915_READ(ctl_reg);

405 406 407
	return val & (VIDEO_DIP_ENABLE_VSC_HSW | VIDEO_DIP_ENABLE_AVI_HSW |
		      VIDEO_DIP_ENABLE_GCP_HSW | VIDEO_DIP_ENABLE_VS_HSW |
		      VIDEO_DIP_ENABLE_GMP_HSW | VIDEO_DIP_ENABLE_SPD_HSW);
408 409
}

410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
/*
 * The data we write to the DIP data buffer registers is 1 byte bigger than the
 * HDMI infoframe size because of an ECC/reserved byte at position 3 (starting
 * at 0). It's also a byte used by DisplayPort so the same DIP registers can be
 * used for both technologies.
 *
 * DW0: Reserved/ECC/DP | HB2 | HB1 | HB0
 * DW1:       DB3       | DB2 | DB1 | DB0
 * DW2:       DB7       | DB6 | DB5 | DB4
 * DW3: ...
 *
 * (HB is Header Byte, DB is Data Byte)
 *
 * The hdmi pack() functions don't know about that hardware specific hole so we
 * trick them by giving an offset into the buffer and moving back the header
 * bytes by one.
 */
427 428
static void intel_write_infoframe(struct drm_encoder *encoder,
				  union hdmi_infoframe *frame)
429 430
{
	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
431 432
	uint8_t buffer[VIDEO_DIP_DATA_SIZE];
	ssize_t len;
433

434 435 436 437 438 439 440 441 442 443 444
	/* see comment above for the reason for this offset */
	len = hdmi_infoframe_pack(frame, buffer + 1, sizeof(buffer) - 1);
	if (len < 0)
		return;

	/* Insert the 'hole' (see big comment above) at position 3 */
	buffer[0] = buffer[1];
	buffer[1] = buffer[2];
	buffer[2] = buffer[3];
	buffer[3] = 0;
	len++;
445

446
	intel_hdmi->write_infoframe(encoder, frame->any.type, buffer, len);
447 448
}

449
static void intel_hdmi_set_avi_infoframe(struct drm_encoder *encoder,
450
					 const struct drm_display_mode *adjusted_mode)
451
{
452
	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
453
	struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
454 455
	union hdmi_infoframe frame;
	int ret;
456

457 458 459 460 461 462
	ret = drm_hdmi_avi_infoframe_from_display_mode(&frame.avi,
						       adjusted_mode);
	if (ret < 0) {
		DRM_ERROR("couldn't fill AVI infoframe\n");
		return;
	}
P
Paulo Zanoni 已提交
463

464
	if (intel_hdmi->rgb_quant_range_selectable) {
465
		if (intel_crtc->config->limited_color_range)
466 467
			frame.avi.quantization_range =
				HDMI_QUANTIZATION_RANGE_LIMITED;
468
		else
469 470
			frame.avi.quantization_range =
				HDMI_QUANTIZATION_RANGE_FULL;
471 472
	}

473
	intel_write_infoframe(encoder, &frame);
474 475
}

476
static void intel_hdmi_set_spd_infoframe(struct drm_encoder *encoder)
477
{
478 479 480 481 482 483 484 485
	union hdmi_infoframe frame;
	int ret;

	ret = hdmi_spd_infoframe_init(&frame.spd, "Intel", "Integrated gfx");
	if (ret < 0) {
		DRM_ERROR("couldn't fill SPD infoframe\n");
		return;
	}
486

487
	frame.spd.sdi = HDMI_SPD_SDI_PC;
488

489
	intel_write_infoframe(encoder, &frame);
490 491
}

492 493
static void
intel_hdmi_set_hdmi_infoframe(struct drm_encoder *encoder,
494
			      const struct drm_display_mode *adjusted_mode)
495 496 497 498 499 500 501 502 503 504 505 506
{
	union hdmi_infoframe frame;
	int ret;

	ret = drm_hdmi_vendor_infoframe_from_display_mode(&frame.vendor.hdmi,
							  adjusted_mode);
	if (ret < 0)
		return;

	intel_write_infoframe(encoder, &frame);
}

507
static void g4x_set_infoframes(struct drm_encoder *encoder,
508
			       bool enable,
509
			       const struct drm_display_mode *adjusted_mode)
510
{
511
	struct drm_i915_private *dev_priv = encoder->dev->dev_private;
512 513
	struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
	struct intel_hdmi *intel_hdmi = &intel_dig_port->hdmi;
514 515
	u32 reg = VIDEO_DIP_CTL;
	u32 val = I915_READ(reg);
516
	u32 port = VIDEO_DIP_PORT(intel_dig_port->port);
517

518 519
	assert_hdmi_port_disabled(intel_hdmi);

520 521 522 523 524 525 526 527 528 529 530
	/* If the registers were not initialized yet, they might be zeroes,
	 * which means we're selecting the AVI DIP and we're setting its
	 * frequency to once. This seems to really confuse the HW and make
	 * things stop working (the register spec says the AVI always needs to
	 * be sent every VSync). So here we avoid writing to the register more
	 * than we need and also explicitly select the AVI DIP and explicitly
	 * set its frequency to every VSync. Avoiding to write it twice seems to
	 * be enough to solve the problem, but being defensive shouldn't hurt us
	 * either. */
	val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;

531
	if (!enable) {
532 533
		if (!(val & VIDEO_DIP_ENABLE))
			return;
534 535 536 537 538 539 540
		if (port != (val & VIDEO_DIP_PORT_MASK)) {
			DRM_DEBUG_KMS("video DIP still enabled on port %c\n",
				      (val & VIDEO_DIP_PORT_MASK) >> 29);
			return;
		}
		val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
			 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_SPD);
541
		I915_WRITE(reg, val);
542
		POSTING_READ(reg);
543 544 545
		return;
	}

546 547
	if (port != (val & VIDEO_DIP_PORT_MASK)) {
		if (val & VIDEO_DIP_ENABLE) {
548 549 550
			DRM_DEBUG_KMS("video DIP already enabled on port %c\n",
				      (val & VIDEO_DIP_PORT_MASK) >> 29);
			return;
551 552 553 554 555
		}
		val &= ~VIDEO_DIP_PORT_MASK;
		val |= port;
	}

556
	val |= VIDEO_DIP_ENABLE;
557 558
	val &= ~(VIDEO_DIP_ENABLE_AVI |
		 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_SPD);
559

560
	I915_WRITE(reg, val);
561
	POSTING_READ(reg);
562

563 564
	intel_hdmi_set_avi_infoframe(encoder, adjusted_mode);
	intel_hdmi_set_spd_infoframe(encoder);
565
	intel_hdmi_set_hdmi_infoframe(encoder, adjusted_mode);
566 567
}

568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586
static bool hdmi_sink_is_deep_color(struct drm_encoder *encoder)
{
	struct drm_device *dev = encoder->dev;
	struct drm_connector *connector;

	WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));

	/*
	 * HDMI cloning is only supported on g4x which doesn't
	 * support deep color or GCP infoframes anyway so no
	 * need to worry about multiple HDMI sinks here.
	 */
	list_for_each_entry(connector, &dev->mode_config.connector_list, head)
		if (connector->encoder == encoder)
			return connector->display_info.bpc > 8;

	return false;
}

587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629
/*
 * Determine if default_phase=1 can be indicated in the GCP infoframe.
 *
 * From HDMI specification 1.4a:
 * - The first pixel of each Video Data Period shall always have a pixel packing phase of 0
 * - The first pixel following each Video Data Period shall have a pixel packing phase of 0
 * - The PP bits shall be constant for all GCPs and will be equal to the last packing phase
 * - The first pixel following every transition of HSYNC or VSYNC shall have a pixel packing
 *   phase of 0
 */
static bool gcp_default_phase_possible(int pipe_bpp,
				       const struct drm_display_mode *mode)
{
	unsigned int pixels_per_group;

	switch (pipe_bpp) {
	case 30:
		/* 4 pixels in 5 clocks */
		pixels_per_group = 4;
		break;
	case 36:
		/* 2 pixels in 3 clocks */
		pixels_per_group = 2;
		break;
	case 48:
		/* 1 pixel in 2 clocks */
		pixels_per_group = 1;
		break;
	default:
		/* phase information not relevant for 8bpc */
		return false;
	}

	return mode->crtc_hdisplay % pixels_per_group == 0 &&
		mode->crtc_htotal % pixels_per_group == 0 &&
		mode->crtc_hblank_start % pixels_per_group == 0 &&
		mode->crtc_hblank_end % pixels_per_group == 0 &&
		mode->crtc_hsync_start % pixels_per_group == 0 &&
		mode->crtc_hsync_end % pixels_per_group == 0 &&
		((mode->flags & DRM_MODE_FLAG_INTERLACE) == 0 ||
		 mode->crtc_htotal/2 % pixels_per_group == 0);
}

630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648
static bool intel_hdmi_set_gcp_infoframe(struct drm_encoder *encoder)
{
	struct drm_i915_private *dev_priv = encoder->dev->dev_private;
	struct intel_crtc *crtc = to_intel_crtc(encoder->crtc);
	u32 reg, val = 0;

	if (HAS_DDI(dev_priv))
		reg = HSW_TVIDEO_DIP_GCP(crtc->config->cpu_transcoder);
	else if (IS_VALLEYVIEW(dev_priv))
		reg = VLV_TVIDEO_DIP_GCP(crtc->pipe);
	else if (HAS_PCH_SPLIT(dev_priv->dev))
		reg = TVIDEO_DIP_GCP(crtc->pipe);
	else
		return false;

	/* Indicate color depth whenever the sink supports deep color */
	if (hdmi_sink_is_deep_color(encoder))
		val |= GCP_COLOR_INDICATION;

649 650 651 652 653
	/* Enable default_phase whenever the display mode is suitably aligned */
	if (gcp_default_phase_possible(crtc->config->pipe_bpp,
				       &crtc->config->base.adjusted_mode))
		val |= GCP_DEFAULT_PHASE_ENABLE;

654 655 656 657 658
	I915_WRITE(reg, val);

	return val != 0;
}

659
static void ibx_set_infoframes(struct drm_encoder *encoder,
660
			       bool enable,
661
			       const struct drm_display_mode *adjusted_mode)
662
{
663 664
	struct drm_i915_private *dev_priv = encoder->dev->dev_private;
	struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
665 666
	struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
	struct intel_hdmi *intel_hdmi = &intel_dig_port->hdmi;
667 668
	u32 reg = TVIDEO_DIP_CTL(intel_crtc->pipe);
	u32 val = I915_READ(reg);
669
	u32 port = VIDEO_DIP_PORT(intel_dig_port->port);
670

671 672
	assert_hdmi_port_disabled(intel_hdmi);

673 674 675
	/* See the big comment in g4x_set_infoframes() */
	val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;

676
	if (!enable) {
677 678
		if (!(val & VIDEO_DIP_ENABLE))
			return;
679 680 681
		val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
			 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
			 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
682
		I915_WRITE(reg, val);
683
		POSTING_READ(reg);
684 685 686
		return;
	}

687
	if (port != (val & VIDEO_DIP_PORT_MASK)) {
688 689 690
		WARN(val & VIDEO_DIP_ENABLE,
		     "DIP already enabled on port %c\n",
		     (val & VIDEO_DIP_PORT_MASK) >> 29);
691 692 693 694
		val &= ~VIDEO_DIP_PORT_MASK;
		val |= port;
	}

695
	val |= VIDEO_DIP_ENABLE;
696 697 698
	val &= ~(VIDEO_DIP_ENABLE_AVI |
		 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
		 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
699

700 701 702
	if (intel_hdmi_set_gcp_infoframe(encoder))
		val |= VIDEO_DIP_ENABLE_GCP;

703
	I915_WRITE(reg, val);
704
	POSTING_READ(reg);
705

706 707
	intel_hdmi_set_avi_infoframe(encoder, adjusted_mode);
	intel_hdmi_set_spd_infoframe(encoder);
708
	intel_hdmi_set_hdmi_infoframe(encoder, adjusted_mode);
709 710 711
}

static void cpt_set_infoframes(struct drm_encoder *encoder,
712
			       bool enable,
713
			       const struct drm_display_mode *adjusted_mode)
714
{
715 716 717 718 719 720
	struct drm_i915_private *dev_priv = encoder->dev->dev_private;
	struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
	u32 reg = TVIDEO_DIP_CTL(intel_crtc->pipe);
	u32 val = I915_READ(reg);

721 722
	assert_hdmi_port_disabled(intel_hdmi);

723 724 725
	/* See the big comment in g4x_set_infoframes() */
	val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;

726
	if (!enable) {
727 728
		if (!(val & VIDEO_DIP_ENABLE))
			return;
729 730 731
		val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
			 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
			 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
732
		I915_WRITE(reg, val);
733
		POSTING_READ(reg);
734 735 736
		return;
	}

737 738
	/* Set both together, unset both together: see the spec. */
	val |= VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI;
739
	val &= ~(VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
740
		 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
741

742 743 744
	if (intel_hdmi_set_gcp_infoframe(encoder))
		val |= VIDEO_DIP_ENABLE_GCP;

745
	I915_WRITE(reg, val);
746
	POSTING_READ(reg);
747

748 749
	intel_hdmi_set_avi_infoframe(encoder, adjusted_mode);
	intel_hdmi_set_spd_infoframe(encoder);
750
	intel_hdmi_set_hdmi_infoframe(encoder, adjusted_mode);
751 752 753
}

static void vlv_set_infoframes(struct drm_encoder *encoder,
754
			       bool enable,
755
			       const struct drm_display_mode *adjusted_mode)
756
{
757
	struct drm_i915_private *dev_priv = encoder->dev->dev_private;
758
	struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
759 760 761 762
	struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
	u32 reg = VLV_TVIDEO_DIP_CTL(intel_crtc->pipe);
	u32 val = I915_READ(reg);
763
	u32 port = VIDEO_DIP_PORT(intel_dig_port->port);
764

765 766
	assert_hdmi_port_disabled(intel_hdmi);

767 768 769
	/* See the big comment in g4x_set_infoframes() */
	val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;

770
	if (!enable) {
771 772
		if (!(val & VIDEO_DIP_ENABLE))
			return;
773 774 775
		val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
			 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
			 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
776
		I915_WRITE(reg, val);
777
		POSTING_READ(reg);
778 779 780
		return;
	}

781
	if (port != (val & VIDEO_DIP_PORT_MASK)) {
782 783 784
		WARN(val & VIDEO_DIP_ENABLE,
		     "DIP already enabled on port %c\n",
		     (val & VIDEO_DIP_PORT_MASK) >> 29);
785 786 787 788
		val &= ~VIDEO_DIP_PORT_MASK;
		val |= port;
	}

789
	val |= VIDEO_DIP_ENABLE;
790 791 792
	val &= ~(VIDEO_DIP_ENABLE_AVI |
		 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
		 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
793

794 795 796
	if (intel_hdmi_set_gcp_infoframe(encoder))
		val |= VIDEO_DIP_ENABLE_GCP;

797
	I915_WRITE(reg, val);
798
	POSTING_READ(reg);
799

800 801
	intel_hdmi_set_avi_infoframe(encoder, adjusted_mode);
	intel_hdmi_set_spd_infoframe(encoder);
802
	intel_hdmi_set_hdmi_infoframe(encoder, adjusted_mode);
803 804 805
}

static void hsw_set_infoframes(struct drm_encoder *encoder,
806
			       bool enable,
807
			       const struct drm_display_mode *adjusted_mode)
808
{
809 810 811
	struct drm_i915_private *dev_priv = encoder->dev->dev_private;
	struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
812
	u32 reg = HSW_TVIDEO_DIP_CTL(intel_crtc->config->cpu_transcoder);
813
	u32 val = I915_READ(reg);
814

815 816
	assert_hdmi_port_disabled(intel_hdmi);

817 818 819 820
	val &= ~(VIDEO_DIP_ENABLE_VSC_HSW | VIDEO_DIP_ENABLE_AVI_HSW |
		 VIDEO_DIP_ENABLE_GCP_HSW | VIDEO_DIP_ENABLE_VS_HSW |
		 VIDEO_DIP_ENABLE_GMP_HSW | VIDEO_DIP_ENABLE_SPD_HSW);

821
	if (!enable) {
822
		I915_WRITE(reg, val);
823
		POSTING_READ(reg);
824 825 826
		return;
	}

827 828 829
	if (intel_hdmi_set_gcp_infoframe(encoder))
		val |= VIDEO_DIP_ENABLE_GCP_HSW;

830
	I915_WRITE(reg, val);
831
	POSTING_READ(reg);
832

833 834
	intel_hdmi_set_avi_infoframe(encoder, adjusted_mode);
	intel_hdmi_set_spd_infoframe(encoder);
835
	intel_hdmi_set_hdmi_infoframe(encoder, adjusted_mode);
836 837
}

838
static void intel_hdmi_prepare(struct intel_encoder *encoder)
839
{
840
	struct drm_device *dev = encoder->base.dev;
841
	struct drm_i915_private *dev_priv = dev->dev_private;
842 843
	struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
844
	const struct drm_display_mode *adjusted_mode = &crtc->config->base.adjusted_mode;
845
	u32 hdmi_val;
846

847
	hdmi_val = SDVO_ENCODING_HDMI;
848 849
	if (!HAS_PCH_SPLIT(dev) && crtc->config->limited_color_range)
		hdmi_val |= HDMI_COLOR_RANGE_16_235;
850
	if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
851
		hdmi_val |= SDVO_VSYNC_ACTIVE_HIGH;
852
	if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
853
		hdmi_val |= SDVO_HSYNC_ACTIVE_HIGH;
854

855
	if (crtc->config->pipe_bpp > 24)
856
		hdmi_val |= HDMI_COLOR_FORMAT_12bpc;
857
	else
858
		hdmi_val |= SDVO_COLOR_FORMAT_8bpc;
859

860
	if (crtc->config->has_hdmi_sink)
861
		hdmi_val |= HDMI_MODE_SELECT_HDMI;
862

863
	if (HAS_PCH_CPT(dev))
864
		hdmi_val |= SDVO_PIPE_SEL_CPT(crtc->pipe);
865 866
	else if (IS_CHERRYVIEW(dev))
		hdmi_val |= SDVO_PIPE_SEL_CHV(crtc->pipe);
867
	else
868
		hdmi_val |= SDVO_PIPE_SEL(crtc->pipe);
869

870 871
	I915_WRITE(intel_hdmi->hdmi_reg, hdmi_val);
	POSTING_READ(intel_hdmi->hdmi_reg);
872 873
}

874 875
static bool intel_hdmi_get_hw_state(struct intel_encoder *encoder,
				    enum pipe *pipe)
876
{
877
	struct drm_device *dev = encoder->base.dev;
878
	struct drm_i915_private *dev_priv = dev->dev_private;
879
	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
880
	enum intel_display_power_domain power_domain;
881 882
	u32 tmp;

883
	power_domain = intel_display_port_power_domain(encoder);
884
	if (!intel_display_power_is_enabled(dev_priv, power_domain))
885 886
		return false;

887
	tmp = I915_READ(intel_hdmi->hdmi_reg);
888 889 890 891 892 893

	if (!(tmp & SDVO_ENABLE))
		return false;

	if (HAS_PCH_CPT(dev))
		*pipe = PORT_TO_PIPE_CPT(tmp);
894 895
	else if (IS_CHERRYVIEW(dev))
		*pipe = SDVO_PORT_TO_PIPE_CHV(tmp);
896 897 898 899 900 901
	else
		*pipe = PORT_TO_PIPE(tmp);

	return true;
}

902
static void intel_hdmi_get_config(struct intel_encoder *encoder,
903
				  struct intel_crtc_state *pipe_config)
904 905
{
	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
906 907
	struct drm_device *dev = encoder->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
908
	u32 tmp, flags = 0;
909
	int dotclock;
910 911 912 913 914 915 916 917 918 919 920 921 922

	tmp = I915_READ(intel_hdmi->hdmi_reg);

	if (tmp & SDVO_HSYNC_ACTIVE_HIGH)
		flags |= DRM_MODE_FLAG_PHSYNC;
	else
		flags |= DRM_MODE_FLAG_NHSYNC;

	if (tmp & SDVO_VSYNC_ACTIVE_HIGH)
		flags |= DRM_MODE_FLAG_PVSYNC;
	else
		flags |= DRM_MODE_FLAG_NVSYNC;

923 924 925
	if (tmp & HDMI_MODE_SELECT_HDMI)
		pipe_config->has_hdmi_sink = true;

926 927 928
	if (intel_hdmi->infoframe_enabled(&encoder->base))
		pipe_config->has_infoframe = true;

929
	if (tmp & SDVO_AUDIO_ENABLE)
930 931
		pipe_config->has_audio = true;

932 933 934 935
	if (!HAS_PCH_SPLIT(dev) &&
	    tmp & HDMI_COLOR_RANGE_16_235)
		pipe_config->limited_color_range = true;

936
	pipe_config->base.adjusted_mode.flags |= flags;
937 938 939 940 941 942

	if ((tmp & SDVO_COLOR_FORMAT_MASK) == HDMI_COLOR_FORMAT_12bpc)
		dotclock = pipe_config->port_clock * 2 / 3;
	else
		dotclock = pipe_config->port_clock;

943 944 945
	if (pipe_config->pixel_multiplier)
		dotclock /= pipe_config->pixel_multiplier;

946 947 948
	if (HAS_PCH_SPLIT(dev_priv->dev))
		ironlake_check_encoder_dotclock(pipe_config, dotclock);

949
	pipe_config->base.adjusted_mode.crtc_clock = dotclock;
950 951
}

952 953 954 955 956 957 958 959 960 961
static void intel_enable_hdmi_audio(struct intel_encoder *encoder)
{
	struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);

	WARN_ON(!crtc->config->has_hdmi_sink);
	DRM_DEBUG_DRIVER("Enabling HDMI audio on pipe %c\n",
			 pipe_name(crtc->pipe));
	intel_audio_codec_enable(encoder);
}

962
static void g4x_enable_hdmi(struct intel_encoder *encoder)
963
{
964
	struct drm_device *dev = encoder->base.dev;
965
	struct drm_i915_private *dev_priv = dev->dev_private;
966
	struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
967
	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
968 969
	u32 temp;

970
	temp = I915_READ(intel_hdmi->hdmi_reg);
971

972 973 974
	temp |= SDVO_ENABLE;
	if (crtc->config->has_audio)
		temp |= SDVO_AUDIO_ENABLE;
975

976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991
	I915_WRITE(intel_hdmi->hdmi_reg, temp);
	POSTING_READ(intel_hdmi->hdmi_reg);

	if (crtc->config->has_audio)
		intel_enable_hdmi_audio(encoder);
}

static void ibx_enable_hdmi(struct intel_encoder *encoder)
{
	struct drm_device *dev = encoder->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
	u32 temp;

	temp = I915_READ(intel_hdmi->hdmi_reg);
992

993 994 995
	temp |= SDVO_ENABLE;
	if (crtc->config->has_audio)
		temp |= SDVO_AUDIO_ENABLE;
996

997 998 999 1000 1001 1002
	/*
	 * HW workaround, need to write this twice for issue
	 * that may result in first write getting masked.
	 */
	I915_WRITE(intel_hdmi->hdmi_reg, temp);
	POSTING_READ(intel_hdmi->hdmi_reg);
1003 1004
	I915_WRITE(intel_hdmi->hdmi_reg, temp);
	POSTING_READ(intel_hdmi->hdmi_reg);
1005

1006 1007 1008 1009 1010 1011
	/*
	 * HW workaround, need to toggle enable bit off and on
	 * for 12bpc with pixel repeat.
	 *
	 * FIXME: BSpec says this should be done at the end of
	 * of the modeset sequence, so not sure if this isn't too soon.
1012
	 */
1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
	if (crtc->config->pipe_bpp > 24 &&
	    crtc->config->pixel_multiplier > 1) {
		I915_WRITE(intel_hdmi->hdmi_reg, temp & ~SDVO_ENABLE);
		POSTING_READ(intel_hdmi->hdmi_reg);

		/*
		 * HW workaround, need to write this twice for issue
		 * that may result in first write getting masked.
		 */
		I915_WRITE(intel_hdmi->hdmi_reg, temp);
		POSTING_READ(intel_hdmi->hdmi_reg);
1024 1025
		I915_WRITE(intel_hdmi->hdmi_reg, temp);
		POSTING_READ(intel_hdmi->hdmi_reg);
1026
	}
1027

1028
	if (crtc->config->has_audio)
1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
		intel_enable_hdmi_audio(encoder);
}

static void cpt_enable_hdmi(struct intel_encoder *encoder)
{
	struct drm_device *dev = encoder->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
	enum pipe pipe = crtc->pipe;
	u32 temp;

	temp = I915_READ(intel_hdmi->hdmi_reg);

	temp |= SDVO_ENABLE;
	if (crtc->config->has_audio)
		temp |= SDVO_AUDIO_ENABLE;

	/*
	 * WaEnableHDMI8bpcBefore12bpc:snb,ivb
	 *
	 * The procedure for 12bpc is as follows:
	 * 1. disable HDMI clock gating
	 * 2. enable HDMI with 8bpc
	 * 3. enable HDMI with 12bpc
	 * 4. enable HDMI clock gating
	 */

	if (crtc->config->pipe_bpp > 24) {
		I915_WRITE(TRANS_CHICKEN1(pipe),
			   I915_READ(TRANS_CHICKEN1(pipe)) |
			   TRANS_CHICKEN1_HDMIUNIT_GC_DISABLE);

		temp &= ~SDVO_COLOR_FORMAT_MASK;
		temp |= SDVO_COLOR_FORMAT_8bpc;
1064
	}
1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082

	I915_WRITE(intel_hdmi->hdmi_reg, temp);
	POSTING_READ(intel_hdmi->hdmi_reg);

	if (crtc->config->pipe_bpp > 24) {
		temp &= ~SDVO_COLOR_FORMAT_MASK;
		temp |= HDMI_COLOR_FORMAT_12bpc;

		I915_WRITE(intel_hdmi->hdmi_reg, temp);
		POSTING_READ(intel_hdmi->hdmi_reg);

		I915_WRITE(TRANS_CHICKEN1(pipe),
			   I915_READ(TRANS_CHICKEN1(pipe)) &
			   ~TRANS_CHICKEN1_HDMIUNIT_GC_DISABLE);
	}

	if (crtc->config->has_audio)
		intel_enable_hdmi_audio(encoder);
1083
}
1084

1085 1086
static void vlv_enable_hdmi(struct intel_encoder *encoder)
{
1087 1088 1089 1090 1091 1092 1093
}

static void intel_disable_hdmi(struct intel_encoder *encoder)
{
	struct drm_device *dev = encoder->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
1094
	struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1095 1096
	u32 temp;

1097
	temp = I915_READ(intel_hdmi->hdmi_reg);
1098

1099
	temp &= ~(SDVO_ENABLE | SDVO_AUDIO_ENABLE);
1100 1101
	I915_WRITE(intel_hdmi->hdmi_reg, temp);
	POSTING_READ(intel_hdmi->hdmi_reg);
1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123

	/*
	 * HW workaround for IBX, we need to move the port
	 * to transcoder A after disabling it to allow the
	 * matching DP port to be enabled on transcoder A.
	 */
	if (HAS_PCH_IBX(dev) && crtc->pipe == PIPE_B) {
		temp &= ~SDVO_PIPE_B_SELECT;
		temp |= SDVO_ENABLE;
		/*
		 * HW workaround, need to write this twice for issue
		 * that may result in first write getting masked.
		 */
		I915_WRITE(intel_hdmi->hdmi_reg, temp);
		POSTING_READ(intel_hdmi->hdmi_reg);
		I915_WRITE(intel_hdmi->hdmi_reg, temp);
		POSTING_READ(intel_hdmi->hdmi_reg);

		temp &= ~SDVO_ENABLE;
		I915_WRITE(intel_hdmi->hdmi_reg, temp);
		POSTING_READ(intel_hdmi->hdmi_reg);
	}
1124

1125
	intel_hdmi->set_infoframes(&encoder->base, false, NULL);
1126 1127
}

1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
static void g4x_disable_hdmi(struct intel_encoder *encoder)
{
	struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);

	if (crtc->config->has_audio)
		intel_audio_codec_disable(encoder);

	intel_disable_hdmi(encoder);
}

static void pch_disable_hdmi(struct intel_encoder *encoder)
{
	struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);

	if (crtc->config->has_audio)
		intel_audio_codec_disable(encoder);
}

static void pch_post_disable_hdmi(struct intel_encoder *encoder)
{
	intel_disable_hdmi(encoder);
}

1151
static int hdmi_port_clock_limit(struct intel_hdmi *hdmi, bool respect_dvi_limit)
1152 1153 1154
{
	struct drm_device *dev = intel_hdmi_to_dev(hdmi);

1155
	if ((respect_dvi_limit && !hdmi->has_hdmi_sink) || IS_G4X(dev))
1156
		return 165000;
1157
	else if (IS_HASWELL(dev) || INTEL_INFO(dev)->gen >= 8)
1158 1159 1160 1161 1162
		return 300000;
	else
		return 225000;
}

1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173
static enum drm_mode_status
hdmi_port_clock_valid(struct intel_hdmi *hdmi,
		      int clock, bool respect_dvi_limit)
{
	struct drm_device *dev = intel_hdmi_to_dev(hdmi);

	if (clock < 25000)
		return MODE_CLOCK_LOW;
	if (clock > hdmi_port_clock_limit(hdmi, respect_dvi_limit))
		return MODE_CLOCK_HIGH;

1174 1175 1176 1177 1178 1179
	/* BXT DPLL can't generate 223-240 MHz */
	if (IS_BROXTON(dev) && clock > 223333 && clock < 240000)
		return MODE_CLOCK_RANGE;

	/* CHV DPLL can't generate 216-240 MHz */
	if (IS_CHERRYVIEW(dev) && clock > 216000 && clock < 240000)
1180 1181 1182 1183 1184
		return MODE_CLOCK_RANGE;

	return MODE_OK;
}

1185 1186 1187
static enum drm_mode_status
intel_hdmi_mode_valid(struct drm_connector *connector,
		      struct drm_display_mode *mode)
1188
{
1189 1190 1191 1192 1193 1194 1195
	struct intel_hdmi *hdmi = intel_attached_hdmi(connector);
	struct drm_device *dev = intel_hdmi_to_dev(hdmi);
	enum drm_mode_status status;
	int clock;

	if (mode->flags & DRM_MODE_FLAG_DBLSCAN)
		return MODE_NO_DBLESCAN;
1196

1197
	clock = mode->clock;
1198 1199 1200
	if (mode->flags & DRM_MODE_FLAG_DBLCLK)
		clock *= 2;

1201 1202
	/* check if we can do 8bpc */
	status = hdmi_port_clock_valid(hdmi, clock, true);
1203

1204 1205 1206
	/* if we can't do 8bpc we may still be able to do 12bpc */
	if (!HAS_GMCH_DISPLAY(dev) && status != MODE_OK)
		status = hdmi_port_clock_valid(hdmi, clock * 3 / 2, true);
1207

1208
	return status;
1209 1210
}

1211
static bool hdmi_12bpc_possible(struct intel_crtc_state *crtc_state)
1212
{
1213 1214
	struct drm_device *dev = crtc_state->base.crtc->dev;
	struct drm_atomic_state *state;
1215
	struct intel_encoder *encoder;
1216
	struct drm_connector *connector;
1217
	struct drm_connector_state *connector_state;
1218
	int count = 0, count_hdmi = 0;
1219
	int i;
1220

1221
	if (HAS_GMCH_DISPLAY(dev))
1222 1223
		return false;

1224 1225
	state = crtc_state->base.state;

1226
	for_each_connector_in_state(state, connector, connector_state, i) {
1227 1228 1229 1230 1231
		if (connector_state->crtc != crtc_state->base.crtc)
			continue;

		encoder = to_intel_encoder(connector_state->best_encoder);

1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242
		count_hdmi += encoder->type == INTEL_OUTPUT_HDMI;
		count++;
	}

	/*
	 * HDMI 12bpc affects the clocks, so it's only possible
	 * when not cloning with other encoder types.
	 */
	return count_hdmi > 0 && count_hdmi == count;
}

1243
bool intel_hdmi_compute_config(struct intel_encoder *encoder,
1244
			       struct intel_crtc_state *pipe_config)
1245
{
1246 1247
	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
	struct drm_device *dev = encoder->base.dev;
1248
	struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
1249 1250
	int clock_8bpc = pipe_config->base.adjusted_mode.crtc_clock;
	int clock_12bpc = clock_8bpc * 3 / 2;
1251
	int desired_bpp;
1252

1253 1254
	pipe_config->has_hdmi_sink = intel_hdmi->has_hdmi_sink;

1255 1256 1257
	if (pipe_config->has_hdmi_sink)
		pipe_config->has_infoframe = true;

1258 1259
	if (intel_hdmi->color_range_auto) {
		/* See CEA-861-E - 5.1 Default Encoding Parameters */
1260 1261 1262 1263 1264 1265
		pipe_config->limited_color_range =
			pipe_config->has_hdmi_sink &&
			drm_match_cea_mode(adjusted_mode) > 1;
	} else {
		pipe_config->limited_color_range =
			intel_hdmi->limited_color_range;
1266 1267
	}

1268 1269
	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK) {
		pipe_config->pixel_multiplier = 2;
1270
		clock_8bpc *= 2;
1271
		clock_12bpc *= 2;
1272 1273
	}

1274 1275 1276
	if (HAS_PCH_SPLIT(dev) && !HAS_DDI(dev))
		pipe_config->has_pch_encoder = true;

1277 1278 1279
	if (pipe_config->has_hdmi_sink && intel_hdmi->has_audio)
		pipe_config->has_audio = true;

1280 1281 1282
	/*
	 * HDMI is either 12 or 8, so if the display lets 10bpc sneak
	 * through, clamp it down. Note that g4x/vlv don't support 12bpc hdmi
1283 1284
	 * outputs. We also need to check that the higher clock still fits
	 * within limits.
1285
	 */
1286
	if (pipe_config->pipe_bpp > 8*3 && pipe_config->has_hdmi_sink &&
1287
	    hdmi_port_clock_valid(intel_hdmi, clock_12bpc, false) == MODE_OK &&
1288
	    hdmi_12bpc_possible(pipe_config)) {
1289 1290
		DRM_DEBUG_KMS("picking bpc to 12 for HDMI output\n");
		desired_bpp = 12*3;
1291 1292

		/* Need to adjust the port link by 1.5x for 12bpc. */
1293
		pipe_config->port_clock = clock_12bpc;
1294
	} else {
1295 1296
		DRM_DEBUG_KMS("picking bpc to 8 for HDMI output\n");
		desired_bpp = 8*3;
1297 1298

		pipe_config->port_clock = clock_8bpc;
1299 1300 1301 1302 1303
	}

	if (!pipe_config->bw_constrained) {
		DRM_DEBUG_KMS("forcing pipe bpc to %i for HDMI\n", desired_bpp);
		pipe_config->pipe_bpp = desired_bpp;
1304 1305
	}

1306 1307 1308
	if (hdmi_port_clock_valid(intel_hdmi, pipe_config->port_clock,
				  false) != MODE_OK) {
		DRM_DEBUG_KMS("unsupported HDMI clock, rejecting mode\n");
1309 1310 1311
		return false;
	}

1312 1313 1314
	/* Set user selected PAR to incoming mode's member */
	adjusted_mode->picture_aspect_ratio = intel_hdmi->aspect_ratio;

1315 1316 1317
	return true;
}

1318 1319
static void
intel_hdmi_unset_edid(struct drm_connector *connector)
1320
{
1321
	struct intel_hdmi *intel_hdmi = intel_attached_hdmi(connector);
1322

1323 1324 1325 1326 1327 1328 1329 1330 1331
	intel_hdmi->has_hdmi_sink = false;
	intel_hdmi->has_audio = false;
	intel_hdmi->rgb_quant_range_selectable = false;

	kfree(to_intel_connector(connector)->detect_edid);
	to_intel_connector(connector)->detect_edid = NULL;
}

static bool
1332
intel_hdmi_set_edid(struct drm_connector *connector, bool force)
1333 1334 1335 1336 1337 1338
{
	struct drm_i915_private *dev_priv = to_i915(connector->dev);
	struct intel_hdmi *intel_hdmi = intel_attached_hdmi(connector);
	struct intel_encoder *intel_encoder =
		&hdmi_to_dig_port(intel_hdmi)->base;
	enum intel_display_power_domain power_domain;
1339
	struct edid *edid = NULL;
1340
	bool connected = false;
1341

1342 1343 1344
	power_domain = intel_display_port_power_domain(intel_encoder);
	intel_display_power_get(dev_priv, power_domain);

1345 1346 1347 1348
	if (force)
		edid = drm_get_edid(connector,
				    intel_gmbus_get_adapter(dev_priv,
				    intel_hdmi->ddc_bus));
1349

1350
	intel_display_power_put(dev_priv, power_domain);
1351

1352 1353 1354 1355 1356 1357
	to_intel_connector(connector)->detect_edid = edid;
	if (edid && edid->input & DRM_EDID_INPUT_DIGITAL) {
		intel_hdmi->rgb_quant_range_selectable =
			drm_rgb_quant_range_selectable(edid);

		intel_hdmi->has_audio = drm_detect_monitor_audio(edid);
1358 1359
		if (intel_hdmi->force_audio != HDMI_AUDIO_AUTO)
			intel_hdmi->has_audio =
1360 1361 1362 1363 1364 1365 1366
				intel_hdmi->force_audio == HDMI_AUDIO_ON;

		if (intel_hdmi->force_audio != HDMI_AUDIO_OFF_DVI)
			intel_hdmi->has_hdmi_sink =
				drm_detect_hdmi_monitor(edid);

		connected = true;
1367 1368
	}

1369 1370 1371
	return connected;
}

1372 1373
static enum drm_connector_status
intel_hdmi_detect(struct drm_connector *connector, bool force)
1374
{
1375 1376 1377
	enum drm_connector_status status;
	struct intel_hdmi *intel_hdmi = intel_attached_hdmi(connector);
	struct drm_i915_private *dev_priv = to_i915(connector->dev);
1378 1379
	bool live_status = false;
	unsigned int retry = 3;
1380

1381 1382 1383
	DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
		      connector->base.id, connector->name);

1384 1385 1386 1387 1388 1389 1390 1391 1392
	while (!live_status && --retry) {
		live_status = intel_digital_port_connected(dev_priv,
				hdmi_to_dig_port(intel_hdmi));
		mdelay(10);
	}

	if (!live_status)
		DRM_DEBUG_KMS("Live status not up!");

1393
	intel_hdmi_unset_edid(connector);
1394

1395
	if (intel_hdmi_set_edid(connector, live_status)) {
1396 1397 1398 1399
		struct intel_hdmi *intel_hdmi = intel_attached_hdmi(connector);

		hdmi_to_dig_port(intel_hdmi)->base.type = INTEL_OUTPUT_HDMI;
		status = connector_status_connected;
1400
	} else
1401
		status = connector_status_disconnected;
1402

1403
	return status;
1404 1405
}

1406 1407
static void
intel_hdmi_force(struct drm_connector *connector)
1408
{
1409
	struct intel_hdmi *intel_hdmi = intel_attached_hdmi(connector);
1410

1411 1412
	DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
		      connector->base.id, connector->name);
1413

1414
	intel_hdmi_unset_edid(connector);
1415

1416 1417
	if (connector->status != connector_status_connected)
		return;
1418

1419
	intel_hdmi_set_edid(connector, true);
1420 1421
	hdmi_to_dig_port(intel_hdmi)->base.type = INTEL_OUTPUT_HDMI;
}
1422

1423 1424 1425 1426 1427 1428 1429
static int intel_hdmi_get_modes(struct drm_connector *connector)
{
	struct edid *edid;

	edid = to_intel_connector(connector)->detect_edid;
	if (edid == NULL)
		return 0;
1430

1431
	return intel_connector_update_modes(connector, edid);
1432 1433
}

1434 1435 1436 1437
static bool
intel_hdmi_detect_audio(struct drm_connector *connector)
{
	bool has_audio = false;
1438
	struct edid *edid;
1439

1440 1441 1442
	edid = to_intel_connector(connector)->detect_edid;
	if (edid && edid->input & DRM_EDID_INPUT_DIGITAL)
		has_audio = drm_detect_monitor_audio(edid);
1443

1444 1445 1446
	return has_audio;
}

1447 1448
static int
intel_hdmi_set_property(struct drm_connector *connector,
1449 1450
			struct drm_property *property,
			uint64_t val)
1451 1452
{
	struct intel_hdmi *intel_hdmi = intel_attached_hdmi(connector);
1453 1454
	struct intel_digital_port *intel_dig_port =
		hdmi_to_dig_port(intel_hdmi);
1455
	struct drm_i915_private *dev_priv = connector->dev->dev_private;
1456 1457
	int ret;

1458
	ret = drm_object_property_set_value(&connector->base, property, val);
1459 1460 1461
	if (ret)
		return ret;

1462
	if (property == dev_priv->force_audio_property) {
1463
		enum hdmi_force_audio i = val;
1464 1465 1466
		bool has_audio;

		if (i == intel_hdmi->force_audio)
1467 1468
			return 0;

1469
		intel_hdmi->force_audio = i;
1470

1471
		if (i == HDMI_AUDIO_AUTO)
1472 1473
			has_audio = intel_hdmi_detect_audio(connector);
		else
1474
			has_audio = (i == HDMI_AUDIO_ON);
1475

1476 1477
		if (i == HDMI_AUDIO_OFF_DVI)
			intel_hdmi->has_hdmi_sink = 0;
1478

1479
		intel_hdmi->has_audio = has_audio;
1480 1481 1482
		goto done;
	}

1483
	if (property == dev_priv->broadcast_rgb_property) {
1484
		bool old_auto = intel_hdmi->color_range_auto;
1485
		bool old_range = intel_hdmi->limited_color_range;
1486

1487 1488 1489 1490 1491 1492
		switch (val) {
		case INTEL_BROADCAST_RGB_AUTO:
			intel_hdmi->color_range_auto = true;
			break;
		case INTEL_BROADCAST_RGB_FULL:
			intel_hdmi->color_range_auto = false;
1493
			intel_hdmi->limited_color_range = false;
1494 1495 1496
			break;
		case INTEL_BROADCAST_RGB_LIMITED:
			intel_hdmi->color_range_auto = false;
1497
			intel_hdmi->limited_color_range = true;
1498 1499 1500 1501
			break;
		default:
			return -EINVAL;
		}
1502 1503

		if (old_auto == intel_hdmi->color_range_auto &&
1504
		    old_range == intel_hdmi->limited_color_range)
1505 1506
			return 0;

1507 1508 1509
		goto done;
	}

1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526
	if (property == connector->dev->mode_config.aspect_ratio_property) {
		switch (val) {
		case DRM_MODE_PICTURE_ASPECT_NONE:
			intel_hdmi->aspect_ratio = HDMI_PICTURE_ASPECT_NONE;
			break;
		case DRM_MODE_PICTURE_ASPECT_4_3:
			intel_hdmi->aspect_ratio = HDMI_PICTURE_ASPECT_4_3;
			break;
		case DRM_MODE_PICTURE_ASPECT_16_9:
			intel_hdmi->aspect_ratio = HDMI_PICTURE_ASPECT_16_9;
			break;
		default:
			return -EINVAL;
		}
		goto done;
	}

1527 1528 1529
	return -EINVAL;

done:
1530 1531
	if (intel_dig_port->base.base.crtc)
		intel_crtc_restore_mode(intel_dig_port->base.base.crtc);
1532 1533 1534 1535

	return 0;
}

1536 1537 1538 1539
static void intel_hdmi_pre_enable(struct intel_encoder *encoder)
{
	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
	struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
1540
	const struct drm_display_mode *adjusted_mode = &intel_crtc->config->base.adjusted_mode;
1541

1542 1543
	intel_hdmi_prepare(encoder);

1544
	intel_hdmi->set_infoframes(&encoder->base,
1545
				   intel_crtc->config->has_hdmi_sink,
1546
				   adjusted_mode);
1547 1548
}

1549
static void vlv_hdmi_pre_enable(struct intel_encoder *encoder)
1550 1551
{
	struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
1552
	struct intel_hdmi *intel_hdmi = &dport->hdmi;
1553 1554 1555 1556
	struct drm_device *dev = encoder->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_crtc *intel_crtc =
		to_intel_crtc(encoder->base.crtc);
1557
	const struct drm_display_mode *adjusted_mode = &intel_crtc->config->base.adjusted_mode;
1558
	enum dpio_channel port = vlv_dport_to_channel(dport);
1559 1560 1561 1562
	int pipe = intel_crtc->pipe;
	u32 val;

	/* Enable clock channels for this port */
V
Ville Syrjälä 已提交
1563
	mutex_lock(&dev_priv->sb_lock);
1564
	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(port));
1565 1566 1567 1568 1569 1570
	val = 0;
	if (pipe)
		val |= (1<<21);
	else
		val &= ~(1<<21);
	val |= 0x001000c4;
1571
	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW8(port), val);
1572 1573

	/* HDMI 1.0V-2dB */
1574 1575 1576 1577 1578 1579 1580 1581
	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0);
	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW4(port), 0x2b245f5f);
	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW2(port), 0x5578b83a);
	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW3(port), 0x0c782040);
	vlv_dpio_write(dev_priv, pipe, VLV_TX3_DW4(port), 0x2b247878);
	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW11(port), 0x00030000);
	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW9(port), 0x00002000);
	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), DPIO_TX_OCALINIT_EN);
1582 1583

	/* Program lane clock */
1584 1585
	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW14(port), 0x00760018);
	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW23(port), 0x00400888);
V
Ville Syrjälä 已提交
1586
	mutex_unlock(&dev_priv->sb_lock);
1587

1588
	intel_hdmi->set_infoframes(&encoder->base,
1589
				   intel_crtc->config->has_hdmi_sink,
1590
				   adjusted_mode);
1591

1592
	g4x_enable_hdmi(encoder);
1593

1594
	vlv_wait_port_ready(dev_priv, dport, 0x0);
1595 1596
}

1597
static void vlv_hdmi_pre_pll_enable(struct intel_encoder *encoder)
1598 1599 1600 1601
{
	struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
	struct drm_device *dev = encoder->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
1602 1603
	struct intel_crtc *intel_crtc =
		to_intel_crtc(encoder->base.crtc);
1604
	enum dpio_channel port = vlv_dport_to_channel(dport);
1605
	int pipe = intel_crtc->pipe;
1606

1607 1608
	intel_hdmi_prepare(encoder);

1609
	/* Program Tx lane resets to default */
V
Ville Syrjälä 已提交
1610
	mutex_lock(&dev_priv->sb_lock);
1611
	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port),
1612 1613
			 DPIO_PCS_TX_LANE2_RESET |
			 DPIO_PCS_TX_LANE1_RESET);
1614
	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port),
1615 1616 1617 1618 1619 1620
			 DPIO_PCS_CLK_CRI_RXEB_EIOS_EN |
			 DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN |
			 (1<<DPIO_PCS_CLK_DATAWIDTH_SHIFT) |
			 DPIO_PCS_CLK_SOFT_RESET);

	/* Fix up inter-pair skew failure */
1621 1622 1623 1624 1625 1626
	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW12(port), 0x00750f00);
	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW11(port), 0x00001500);
	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW14(port), 0x40400000);

	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW9(port), 0x00002000);
	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), DPIO_TX_OCALINIT_EN);
V
Ville Syrjälä 已提交
1627
	mutex_unlock(&dev_priv->sb_lock);
1628 1629
}

1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673
static void chv_data_lane_soft_reset(struct intel_encoder *encoder,
				     bool reset)
{
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
	enum dpio_channel ch = vlv_dport_to_channel(enc_to_dig_port(&encoder->base));
	struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
	enum pipe pipe = crtc->pipe;
	uint32_t val;

	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch));
	if (reset)
		val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
	else
		val |= DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET;
	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val);

	if (crtc->config->lane_count > 2) {
		val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch));
		if (reset)
			val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
		else
			val |= DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET;
		vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val);
	}

	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch));
	val |= CHV_PCS_REQ_SOFTRESET_EN;
	if (reset)
		val &= ~DPIO_PCS_CLK_SOFT_RESET;
	else
		val |= DPIO_PCS_CLK_SOFT_RESET;
	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val);

	if (crtc->config->lane_count > 2) {
		val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch));
		val |= CHV_PCS_REQ_SOFTRESET_EN;
		if (reset)
			val &= ~DPIO_PCS_CLK_SOFT_RESET;
		else
			val |= DPIO_PCS_CLK_SOFT_RESET;
		vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val);
	}
}

1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684
static void chv_hdmi_pre_pll_enable(struct intel_encoder *encoder)
{
	struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
	struct drm_device *dev = encoder->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_crtc *intel_crtc =
		to_intel_crtc(encoder->base.crtc);
	enum dpio_channel ch = vlv_dport_to_channel(dport);
	enum pipe pipe = intel_crtc->pipe;
	u32 val;

1685 1686
	intel_hdmi_prepare(encoder);

1687 1688 1689 1690 1691 1692 1693 1694
	/*
	 * Must trick the second common lane into life.
	 * Otherwise we can't even access the PLL.
	 */
	if (ch == DPIO_CH0 && pipe == PIPE_B)
		dport->release_cl2_override =
			!chv_phy_powergate_ch(dev_priv, DPIO_PHY0, DPIO_CH1, true);

1695 1696
	chv_phy_powergate_lanes(encoder, true, 0x0);

V
Ville Syrjälä 已提交
1697
	mutex_lock(&dev_priv->sb_lock);
1698

1699 1700 1701
	/* Assert data lane reset */
	chv_data_lane_soft_reset(encoder, true);

1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720
	/* program left/right clock distribution */
	if (pipe != PIPE_B) {
		val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
		val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
		if (ch == DPIO_CH0)
			val |= CHV_BUFLEFTENA1_FORCE;
		if (ch == DPIO_CH1)
			val |= CHV_BUFRIGHTENA1_FORCE;
		vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
	} else {
		val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
		val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
		if (ch == DPIO_CH0)
			val |= CHV_BUFLEFTENA2_FORCE;
		if (ch == DPIO_CH1)
			val |= CHV_BUFRIGHTENA2_FORCE;
		vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
	}

1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749
	/* program clock channel usage */
	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(ch));
	val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
	if (pipe != PIPE_B)
		val &= ~CHV_PCS_USEDCLKCHANNEL;
	else
		val |= CHV_PCS_USEDCLKCHANNEL;
	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW8(ch), val);

	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW8(ch));
	val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
	if (pipe != PIPE_B)
		val &= ~CHV_PCS_USEDCLKCHANNEL;
	else
		val |= CHV_PCS_USEDCLKCHANNEL;
	vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW8(ch), val);

	/*
	 * This a a bit weird since generally CL
	 * matches the pipe, but here we need to
	 * pick the CL based on the port.
	 */
	val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW19(ch));
	if (pipe != PIPE_B)
		val &= ~CHV_CMN_USEDCLKCHANNEL;
	else
		val |= CHV_CMN_USEDCLKCHANNEL;
	vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW19(ch), val);

V
Ville Syrjälä 已提交
1750
	mutex_unlock(&dev_priv->sb_lock);
1751 1752
}

1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772
static void chv_hdmi_post_pll_disable(struct intel_encoder *encoder)
{
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
	enum pipe pipe = to_intel_crtc(encoder->base.crtc)->pipe;
	u32 val;

	mutex_lock(&dev_priv->sb_lock);

	/* disable left/right clock distribution */
	if (pipe != PIPE_B) {
		val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
		val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
		vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
	} else {
		val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
		val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
		vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
	}

	mutex_unlock(&dev_priv->sb_lock);
1773

1774 1775 1776 1777 1778 1779 1780 1781 1782
	/*
	 * Leave the power down bit cleared for at least one
	 * lane so that chv_powergate_phy_ch() will power
	 * on something when the channel is otherwise unused.
	 * When the port is off and the override is removed
	 * the lanes power down anyway, so otherwise it doesn't
	 * really matter what the state of power down bits is
	 * after this.
	 */
1783
	chv_phy_powergate_lanes(encoder, false, 0x0);
1784 1785
}

1786
static void vlv_hdmi_post_disable(struct intel_encoder *encoder)
1787 1788 1789
{
	struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
	struct drm_i915_private *dev_priv = encoder->base.dev->dev_private;
1790 1791
	struct intel_crtc *intel_crtc =
		to_intel_crtc(encoder->base.crtc);
1792
	enum dpio_channel port = vlv_dport_to_channel(dport);
1793
	int pipe = intel_crtc->pipe;
1794 1795

	/* Reset lanes to avoid HDMI flicker (VLV w/a) */
V
Ville Syrjälä 已提交
1796
	mutex_lock(&dev_priv->sb_lock);
1797 1798
	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port), 0x00000000);
	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port), 0x00e00060);
V
Ville Syrjälä 已提交
1799
	mutex_unlock(&dev_priv->sb_lock);
1800 1801
}

1802 1803 1804 1805 1806
static void chv_hdmi_post_disable(struct intel_encoder *encoder)
{
	struct drm_device *dev = encoder->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;

V
Ville Syrjälä 已提交
1807
	mutex_lock(&dev_priv->sb_lock);
1808

1809 1810
	/* Assert data lane reset */
	chv_data_lane_soft_reset(encoder, true);
1811

V
Ville Syrjälä 已提交
1812
	mutex_unlock(&dev_priv->sb_lock);
1813 1814
}

1815 1816 1817
static void chv_hdmi_pre_enable(struct intel_encoder *encoder)
{
	struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
1818
	struct intel_hdmi *intel_hdmi = &dport->hdmi;
1819 1820 1821 1822
	struct drm_device *dev = encoder->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_crtc *intel_crtc =
		to_intel_crtc(encoder->base.crtc);
1823
	const struct drm_display_mode *adjusted_mode = &intel_crtc->config->base.adjusted_mode;
1824 1825
	enum dpio_channel ch = vlv_dport_to_channel(dport);
	int pipe = intel_crtc->pipe;
1826
	int data, i, stagger;
1827 1828
	u32 val;

V
Ville Syrjälä 已提交
1829
	mutex_lock(&dev_priv->sb_lock);
1830

1831 1832 1833 1834 1835 1836 1837 1838 1839
	/* allow hardware to manage TX FIFO reset source */
	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW11(ch));
	val &= ~DPIO_LANEDESKEW_STRAP_OVRD;
	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW11(ch), val);

	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW11(ch));
	val &= ~DPIO_LANEDESKEW_STRAP_OVRD;
	vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW11(ch), val);

1840
	/* Program Tx latency optimal setting */
1841 1842 1843 1844 1845 1846 1847 1848
	for (i = 0; i < 4; i++) {
		/* Set the upar bit */
		data = (i == 1) ? 0x0 : 0x1;
		vlv_dpio_write(dev_priv, pipe, CHV_TX_DW14(ch, i),
				data << DPIO_UPAR_SHIFT);
	}

	/* Data lane stagger programming */
1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880
	if (intel_crtc->config->port_clock > 270000)
		stagger = 0x18;
	else if (intel_crtc->config->port_clock > 135000)
		stagger = 0xd;
	else if (intel_crtc->config->port_clock > 67500)
		stagger = 0x7;
	else if (intel_crtc->config->port_clock > 33750)
		stagger = 0x4;
	else
		stagger = 0x2;

	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW11(ch));
	val |= DPIO_TX2_STAGGER_MASK(0x1f);
	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW11(ch), val);

	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW11(ch));
	val |= DPIO_TX2_STAGGER_MASK(0x1f);
	vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW11(ch), val);

	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW12(ch),
		       DPIO_LANESTAGGER_STRAP(stagger) |
		       DPIO_LANESTAGGER_STRAP_OVRD |
		       DPIO_TX1_STAGGER_MASK(0x1f) |
		       DPIO_TX1_STAGGER_MULT(6) |
		       DPIO_TX2_STAGGER_MULT(0));

	vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW12(ch),
		       DPIO_LANESTAGGER_STRAP(stagger) |
		       DPIO_LANESTAGGER_STRAP_OVRD |
		       DPIO_TX1_STAGGER_MASK(0x1f) |
		       DPIO_TX1_STAGGER_MULT(7) |
		       DPIO_TX2_STAGGER_MULT(5));
1881

1882 1883 1884
	/* Deassert data lane reset */
	chv_data_lane_soft_reset(encoder, false);

1885
	/* Clear calc init */
1886 1887
	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
	val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
1888 1889
	val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK);
	val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5;
1890 1891 1892 1893
	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);

	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
	val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
1894 1895
	val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK);
	val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5;
1896
	vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
1897

1898 1899 1900 1901 1902 1903 1904 1905 1906 1907
	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW9(ch));
	val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK);
	val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000;
	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW9(ch), val);

	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW9(ch));
	val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK);
	val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000;
	vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW9(ch), val);

1908 1909
	/* FIXME: Program the support xxx V-dB */
	/* Use 800mV-0dB */
1910 1911 1912 1913 1914 1915
	for (i = 0; i < 4; i++) {
		val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW4(ch, i));
		val &= ~DPIO_SWING_DEEMPH9P5_MASK;
		val |= 128 << DPIO_SWING_DEEMPH9P5_SHIFT;
		vlv_dpio_write(dev_priv, pipe, CHV_TX_DW4(ch, i), val);
	}
1916

1917 1918
	for (i = 0; i < 4; i++) {
		val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i));
1919

1920 1921
		val &= ~DPIO_SWING_MARGIN000_MASK;
		val |= 102 << DPIO_SWING_MARGIN000_SHIFT;
1922 1923 1924 1925 1926 1927 1928 1929 1930

		/*
		 * Supposedly this value shouldn't matter when unique transition
		 * scale is disabled, but in fact it does matter. Let's just
		 * always program the same value and hope it's OK.
		 */
		val &= ~(0xff << DPIO_UNIQ_TRANS_SCALE_SHIFT);
		val |= 0x9a << DPIO_UNIQ_TRANS_SCALE_SHIFT;

1931 1932
		vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val);
	}
1933

1934 1935 1936 1937 1938 1939
	/*
	 * The document said it needs to set bit 27 for ch0 and bit 26
	 * for ch1. Might be a typo in the doc.
	 * For now, for this unique transition scale selection, set bit
	 * 27 for ch0 and ch1.
	 */
1940 1941 1942 1943 1944
	for (i = 0; i < 4; i++) {
		val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i));
		val &= ~DPIO_TX_UNIQ_TRANS_SCALE_EN;
		vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val);
	}
1945 1946

	/* Start swing calculation */
1947 1948 1949 1950 1951 1952 1953
	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
	val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);

	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
	val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
	vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
1954

V
Ville Syrjälä 已提交
1955
	mutex_unlock(&dev_priv->sb_lock);
1956

1957
	intel_hdmi->set_infoframes(&encoder->base,
1958
				   intel_crtc->config->has_hdmi_sink,
1959 1960
				   adjusted_mode);

1961
	g4x_enable_hdmi(encoder);
1962

1963
	vlv_wait_port_ready(dev_priv, dport, 0x0);
1964 1965 1966 1967 1968 1969

	/* Second common lane will stay alive on its own now */
	if (dport->release_cl2_override) {
		chv_phy_powergate_ch(dev_priv, DPIO_PHY0, DPIO_CH1, false);
		dport->release_cl2_override = false;
	}
1970 1971
}

1972 1973
static void intel_hdmi_destroy(struct drm_connector *connector)
{
1974
	kfree(to_intel_connector(connector)->detect_edid);
1975
	drm_connector_cleanup(connector);
1976
	kfree(connector);
1977 1978 1979
}

static const struct drm_connector_funcs intel_hdmi_connector_funcs = {
1980
	.dpms = drm_atomic_helper_connector_dpms,
1981
	.detect = intel_hdmi_detect,
1982
	.force = intel_hdmi_force,
1983
	.fill_modes = drm_helper_probe_single_connector_modes,
1984
	.set_property = intel_hdmi_set_property,
1985
	.atomic_get_property = intel_connector_atomic_get_property,
1986
	.destroy = intel_hdmi_destroy,
1987
	.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
1988
	.atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state,
1989 1990 1991 1992 1993
};

static const struct drm_connector_helper_funcs intel_hdmi_connector_helper_funcs = {
	.get_modes = intel_hdmi_get_modes,
	.mode_valid = intel_hdmi_mode_valid,
1994
	.best_encoder = intel_best_encoder,
1995 1996 1997
};

static const struct drm_encoder_funcs intel_hdmi_enc_funcs = {
C
Chris Wilson 已提交
1998
	.destroy = intel_encoder_destroy,
1999 2000
};

2001 2002 2003
static void
intel_hdmi_add_properties(struct intel_hdmi *intel_hdmi, struct drm_connector *connector)
{
2004
	intel_attach_force_audio_property(connector);
2005
	intel_attach_broadcast_rgb_property(connector);
2006
	intel_hdmi->color_range_auto = true;
2007 2008
	intel_attach_aspect_ratio_property(connector);
	intel_hdmi->aspect_ratio = HDMI_PICTURE_ASPECT_NONE;
2009 2010
}

P
Paulo Zanoni 已提交
2011 2012
void intel_hdmi_init_connector(struct intel_digital_port *intel_dig_port,
			       struct intel_connector *intel_connector)
2013
{
2014 2015 2016 2017
	struct drm_connector *connector = &intel_connector->base;
	struct intel_hdmi *intel_hdmi = &intel_dig_port->hdmi;
	struct intel_encoder *intel_encoder = &intel_dig_port->base;
	struct drm_device *dev = intel_encoder->base.dev;
2018
	struct drm_i915_private *dev_priv = dev->dev_private;
2019
	enum port port = intel_dig_port->port;
X
Xiong Zhang 已提交
2020
	uint8_t alternate_ddc_pin;
2021

2022
	drm_connector_init(dev, connector, &intel_hdmi_connector_funcs,
2023
			   DRM_MODE_CONNECTOR_HDMIA);
2024 2025
	drm_connector_helper_add(connector, &intel_hdmi_connector_helper_funcs);

2026
	connector->interlace_allowed = 1;
2027
	connector->doublescan_allowed = 0;
2028
	connector->stereo_allowed = 1;
2029

2030 2031
	switch (port) {
	case PORT_B:
J
Jani Nikula 已提交
2032 2033 2034 2035
		if (IS_BROXTON(dev_priv))
			intel_hdmi->ddc_bus = GMBUS_PIN_1_BXT;
		else
			intel_hdmi->ddc_bus = GMBUS_PIN_DPB;
2036 2037 2038 2039 2040 2041 2042 2043
		/*
		 * On BXT A0/A1, sw needs to activate DDIA HPD logic and
		 * interrupts to check the external panel connection.
		 */
		if (IS_BROXTON(dev_priv) && (INTEL_REVID(dev) < BXT_REVID_B0))
			intel_encoder->hpd_pin = HPD_PORT_A;
		else
			intel_encoder->hpd_pin = HPD_PORT_B;
2044 2045
		break;
	case PORT_C:
J
Jani Nikula 已提交
2046 2047 2048 2049
		if (IS_BROXTON(dev_priv))
			intel_hdmi->ddc_bus = GMBUS_PIN_2_BXT;
		else
			intel_hdmi->ddc_bus = GMBUS_PIN_DPC;
2050
		intel_encoder->hpd_pin = HPD_PORT_C;
2051 2052
		break;
	case PORT_D:
J
Jani Nikula 已提交
2053 2054 2055
		if (WARN_ON(IS_BROXTON(dev_priv)))
			intel_hdmi->ddc_bus = GMBUS_PIN_DISABLED;
		else if (IS_CHERRYVIEW(dev_priv))
2056
			intel_hdmi->ddc_bus = GMBUS_PIN_DPD_CHV;
2057
		else
2058
			intel_hdmi->ddc_bus = GMBUS_PIN_DPD;
2059
		intel_encoder->hpd_pin = HPD_PORT_D;
2060
		break;
X
Xiong Zhang 已提交
2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080
	case PORT_E:
		/* On SKL PORT E doesn't have seperate GMBUS pin
		 *  We rely on VBT to set a proper alternate GMBUS pin. */
		alternate_ddc_pin =
			dev_priv->vbt.ddi_port_info[PORT_E].alternate_ddc_pin;
		switch (alternate_ddc_pin) {
		case DDC_PIN_B:
			intel_hdmi->ddc_bus = GMBUS_PIN_DPB;
			break;
		case DDC_PIN_C:
			intel_hdmi->ddc_bus = GMBUS_PIN_DPC;
			break;
		case DDC_PIN_D:
			intel_hdmi->ddc_bus = GMBUS_PIN_DPD;
			break;
		default:
			MISSING_CASE(alternate_ddc_pin);
		}
		intel_encoder->hpd_pin = HPD_PORT_E;
		break;
2081
	case PORT_A:
2082
		intel_encoder->hpd_pin = HPD_PORT_A;
2083 2084
		/* Internal port only for eDP. */
	default:
2085
		BUG();
2086
	}
2087

2088
	if (IS_VALLEYVIEW(dev)) {
2089
		intel_hdmi->write_infoframe = vlv_write_infoframe;
2090
		intel_hdmi->set_infoframes = vlv_set_infoframes;
2091
		intel_hdmi->infoframe_enabled = vlv_infoframe_enabled;
2092
	} else if (IS_G4X(dev)) {
2093 2094
		intel_hdmi->write_infoframe = g4x_write_infoframe;
		intel_hdmi->set_infoframes = g4x_set_infoframes;
2095
		intel_hdmi->infoframe_enabled = g4x_infoframe_enabled;
2096
	} else if (HAS_DDI(dev)) {
2097
		intel_hdmi->write_infoframe = hsw_write_infoframe;
2098
		intel_hdmi->set_infoframes = hsw_set_infoframes;
2099
		intel_hdmi->infoframe_enabled = hsw_infoframe_enabled;
2100 2101
	} else if (HAS_PCH_IBX(dev)) {
		intel_hdmi->write_infoframe = ibx_write_infoframe;
2102
		intel_hdmi->set_infoframes = ibx_set_infoframes;
2103
		intel_hdmi->infoframe_enabled = ibx_infoframe_enabled;
2104 2105
	} else {
		intel_hdmi->write_infoframe = cpt_write_infoframe;
2106
		intel_hdmi->set_infoframes = cpt_set_infoframes;
2107
		intel_hdmi->infoframe_enabled = cpt_infoframe_enabled;
2108
	}
2109

P
Paulo Zanoni 已提交
2110
	if (HAS_DDI(dev))
2111 2112 2113
		intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
	else
		intel_connector->get_hw_state = intel_connector_get_hw_state;
2114
	intel_connector->unregister = intel_connector_unregister;
2115 2116 2117 2118

	intel_hdmi_add_properties(intel_hdmi, connector);

	intel_connector_attach_encoder(intel_connector, intel_encoder);
2119
	drm_connector_register(connector);
2120
	intel_hdmi->attached_connector = intel_connector;
2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131

	/* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
	 * 0xd.  Failure to do so will result in spurious interrupts being
	 * generated on the port when a cable is not attached.
	 */
	if (IS_G4X(dev) && !IS_GM45(dev)) {
		u32 temp = I915_READ(PEG_BAND_GAP_DATA);
		I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
	}
}

2132
void intel_hdmi_init(struct drm_device *dev, int hdmi_reg, enum port port)
2133 2134 2135 2136 2137
{
	struct intel_digital_port *intel_dig_port;
	struct intel_encoder *intel_encoder;
	struct intel_connector *intel_connector;

2138
	intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
2139 2140 2141
	if (!intel_dig_port)
		return;

2142
	intel_connector = intel_connector_alloc();
2143 2144 2145 2146 2147 2148 2149 2150 2151
	if (!intel_connector) {
		kfree(intel_dig_port);
		return;
	}

	intel_encoder = &intel_dig_port->base;

	drm_encoder_init(dev, &intel_encoder->base, &intel_hdmi_enc_funcs,
			 DRM_MODE_ENCODER_TMDS);
P
Paulo Zanoni 已提交
2152

2153
	intel_encoder->compute_config = intel_hdmi_compute_config;
2154 2155 2156 2157 2158 2159
	if (HAS_PCH_SPLIT(dev)) {
		intel_encoder->disable = pch_disable_hdmi;
		intel_encoder->post_disable = pch_post_disable_hdmi;
	} else {
		intel_encoder->disable = g4x_disable_hdmi;
	}
P
Paulo Zanoni 已提交
2160
	intel_encoder->get_hw_state = intel_hdmi_get_hw_state;
2161
	intel_encoder->get_config = intel_hdmi_get_config;
2162
	if (IS_CHERRYVIEW(dev)) {
2163
		intel_encoder->pre_pll_enable = chv_hdmi_pre_pll_enable;
2164 2165
		intel_encoder->pre_enable = chv_hdmi_pre_enable;
		intel_encoder->enable = vlv_enable_hdmi;
2166
		intel_encoder->post_disable = chv_hdmi_post_disable;
2167
		intel_encoder->post_pll_disable = chv_hdmi_post_pll_disable;
2168
	} else if (IS_VALLEYVIEW(dev)) {
2169 2170
		intel_encoder->pre_pll_enable = vlv_hdmi_pre_pll_enable;
		intel_encoder->pre_enable = vlv_hdmi_pre_enable;
2171
		intel_encoder->enable = vlv_enable_hdmi;
2172
		intel_encoder->post_disable = vlv_hdmi_post_disable;
2173
	} else {
2174
		intel_encoder->pre_enable = intel_hdmi_pre_enable;
2175 2176
		if (HAS_PCH_CPT(dev))
			intel_encoder->enable = cpt_enable_hdmi;
2177 2178
		else if (HAS_PCH_IBX(dev))
			intel_encoder->enable = ibx_enable_hdmi;
2179
		else
2180
			intel_encoder->enable = g4x_enable_hdmi;
2181
	}
2182

2183
	intel_encoder->type = INTEL_OUTPUT_HDMI;
2184 2185 2186 2187 2188 2189 2190 2191
	if (IS_CHERRYVIEW(dev)) {
		if (port == PORT_D)
			intel_encoder->crtc_mask = 1 << 2;
		else
			intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
	} else {
		intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
	}
2192
	intel_encoder->cloneable = 1 << INTEL_OUTPUT_ANALOG;
2193 2194 2195 2196 2197 2198 2199
	/*
	 * BSpec is unclear about HDMI+HDMI cloning on g4x, but it seems
	 * to work on real hardware. And since g4x can send infoframes to
	 * only one port anyway, nothing is lost by allowing it.
	 */
	if (IS_G4X(dev))
		intel_encoder->cloneable |= 1 << INTEL_OUTPUT_HDMI;
2200

2201
	intel_dig_port->port = port;
2202
	intel_dig_port->hdmi.hdmi_reg = hdmi_reg;
2203
	intel_dig_port->dp.output_reg = 0;
2204

2205
	intel_hdmi_init_connector(intel_dig_port, intel_connector);
2206
}