flow_netlink.c 77.6 KB
Newer Older
1
/*
2
 * Copyright (c) 2007-2017 Nicira, Inc.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of version 2 of the GNU General Public
 * License as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
 * 02110-1301, USA
 */

19 20
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
#include "flow.h"
#include "datapath.h"
#include <linux/uaccess.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/if_ether.h>
#include <linux/if_vlan.h>
#include <net/llc_pdu.h>
#include <linux/kernel.h>
#include <linux/jhash.h>
#include <linux/jiffies.h>
#include <linux/llc.h>
#include <linux/module.h>
#include <linux/in.h>
#include <linux/rcupdate.h>
#include <linux/if_arp.h>
#include <linux/ip.h>
#include <linux/ipv6.h>
#include <linux/sctp.h>
#include <linux/tcp.h>
#include <linux/udp.h>
#include <linux/icmp.h>
#include <linux/icmpv6.h>
#include <linux/rculist.h>
45
#include <net/geneve.h>
46 47 48
#include <net/ip.h>
#include <net/ipv6.h>
#include <net/ndisc.h>
49
#include <net/mpls.h>
50
#include <net/vxlan.h>
51
#include <net/erspan.h>
52 53 54

#include "flow_netlink.h"

55 56 57 58 59 60
struct ovs_len_tbl {
	int len;
	const struct ovs_len_tbl *next;
};

#define OVS_ATTR_NESTED -1
61
#define OVS_ATTR_VARIABLE -2
62

63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
static bool actions_may_change_flow(const struct nlattr *actions)
{
	struct nlattr *nla;
	int rem;

	nla_for_each_nested(nla, actions, rem) {
		u16 action = nla_type(nla);

		switch (action) {
		case OVS_ACTION_ATTR_OUTPUT:
		case OVS_ACTION_ATTR_RECIRC:
		case OVS_ACTION_ATTR_TRUNC:
		case OVS_ACTION_ATTR_USERSPACE:
			break;

		case OVS_ACTION_ATTR_CT:
E
Eric Garver 已提交
79
		case OVS_ACTION_ATTR_CT_CLEAR:
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
		case OVS_ACTION_ATTR_HASH:
		case OVS_ACTION_ATTR_POP_ETH:
		case OVS_ACTION_ATTR_POP_MPLS:
		case OVS_ACTION_ATTR_POP_VLAN:
		case OVS_ACTION_ATTR_PUSH_ETH:
		case OVS_ACTION_ATTR_PUSH_MPLS:
		case OVS_ACTION_ATTR_PUSH_VLAN:
		case OVS_ACTION_ATTR_SAMPLE:
		case OVS_ACTION_ATTR_SET:
		case OVS_ACTION_ATTR_SET_MASKED:
		default:
			return true;
		}
	}
	return false;
}

97 98
static void update_range(struct sw_flow_match *match,
			 size_t offset, size_t size, bool is_mask)
99
{
100
	struct sw_flow_key_range *range;
101 102 103 104 105
	size_t start = rounddown(offset, sizeof(long));
	size_t end = roundup(offset + size, sizeof(long));

	if (!is_mask)
		range = &match->range;
106
	else
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
		range = &match->mask->range;

	if (range->start == range->end) {
		range->start = start;
		range->end = end;
		return;
	}

	if (range->start > start)
		range->start = start;

	if (range->end < end)
		range->end = end;
}

#define SW_FLOW_KEY_PUT(match, field, value, is_mask) \
	do { \
124 125 126 127 128
		update_range(match, offsetof(struct sw_flow_key, field),    \
			     sizeof((match)->key->field), is_mask);	    \
		if (is_mask)						    \
			(match)->mask->key.field = value;		    \
		else							    \
129 130 131
			(match)->key->field = value;		            \
	} while (0)

132 133
#define SW_FLOW_KEY_MEMCPY_OFFSET(match, offset, value_p, len, is_mask)	    \
	do {								    \
134
		update_range(match, offset, len, is_mask);		    \
135 136
		if (is_mask)						    \
			memcpy((u8 *)&(match)->mask->key + offset, value_p, \
137
			       len);					   \
138 139
		else							    \
			memcpy((u8 *)(match)->key + offset, value_p, len);  \
140 141
	} while (0)

142 143 144 145
#define SW_FLOW_KEY_MEMCPY(match, field, value_p, len, is_mask)		      \
	SW_FLOW_KEY_MEMCPY_OFFSET(match, offsetof(struct sw_flow_key, field), \
				  value_p, len, is_mask)

146 147 148 149 150 151 152 153
#define SW_FLOW_KEY_MEMSET_FIELD(match, field, value, is_mask)		    \
	do {								    \
		update_range(match, offsetof(struct sw_flow_key, field),    \
			     sizeof((match)->key->field), is_mask);	    \
		if (is_mask)						    \
			memset((u8 *)&(match)->mask->key.field, value,      \
			       sizeof((match)->mask->key.field));	    \
		else							    \
154 155 156
			memset((u8 *)&(match)->key->field, value,           \
			       sizeof((match)->key->field));                \
	} while (0)
157 158

static bool match_validate(const struct sw_flow_match *match,
159
			   u64 key_attrs, u64 mask_attrs, bool log)
160
{
161
	u64 key_expected = 0;
162 163 164 165 166
	u64 mask_allowed = key_attrs;  /* At most allow all key attributes */

	/* The following mask attributes allowed only if they
	 * pass the validation tests. */
	mask_allowed &= ~((1 << OVS_KEY_ATTR_IPV4)
167
			| (1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4)
168
			| (1 << OVS_KEY_ATTR_IPV6)
169
			| (1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6)
170
			| (1 << OVS_KEY_ATTR_TCP)
171
			| (1 << OVS_KEY_ATTR_TCP_FLAGS)
172 173 174 175 176
			| (1 << OVS_KEY_ATTR_UDP)
			| (1 << OVS_KEY_ATTR_SCTP)
			| (1 << OVS_KEY_ATTR_ICMP)
			| (1 << OVS_KEY_ATTR_ICMPV6)
			| (1 << OVS_KEY_ATTR_ARP)
177 178
			| (1 << OVS_KEY_ATTR_ND)
			| (1 << OVS_KEY_ATTR_MPLS));
179 180 181 182 183 184 185 186 187 188

	/* Always allowed mask fields. */
	mask_allowed |= ((1 << OVS_KEY_ATTR_TUNNEL)
		       | (1 << OVS_KEY_ATTR_IN_PORT)
		       | (1 << OVS_KEY_ATTR_ETHERTYPE));

	/* Check key attributes. */
	if (match->key->eth.type == htons(ETH_P_ARP)
			|| match->key->eth.type == htons(ETH_P_RARP)) {
		key_expected |= 1 << OVS_KEY_ATTR_ARP;
189
		if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
190 191 192
			mask_allowed |= 1 << OVS_KEY_ATTR_ARP;
	}

193 194 195 196 197 198
	if (eth_p_mpls(match->key->eth.type)) {
		key_expected |= 1 << OVS_KEY_ATTR_MPLS;
		if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
			mask_allowed |= 1 << OVS_KEY_ATTR_MPLS;
	}

199 200
	if (match->key->eth.type == htons(ETH_P_IP)) {
		key_expected |= 1 << OVS_KEY_ATTR_IPV4;
201
		if (match->mask && match->mask->key.eth.type == htons(0xffff)) {
202
			mask_allowed |= 1 << OVS_KEY_ATTR_IPV4;
203 204
			mask_allowed |= 1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4;
		}
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220

		if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) {
			if (match->key->ip.proto == IPPROTO_UDP) {
				key_expected |= 1 << OVS_KEY_ATTR_UDP;
				if (match->mask && (match->mask->key.ip.proto == 0xff))
					mask_allowed |= 1 << OVS_KEY_ATTR_UDP;
			}

			if (match->key->ip.proto == IPPROTO_SCTP) {
				key_expected |= 1 << OVS_KEY_ATTR_SCTP;
				if (match->mask && (match->mask->key.ip.proto == 0xff))
					mask_allowed |= 1 << OVS_KEY_ATTR_SCTP;
			}

			if (match->key->ip.proto == IPPROTO_TCP) {
				key_expected |= 1 << OVS_KEY_ATTR_TCP;
221 222
				key_expected |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
				if (match->mask && (match->mask->key.ip.proto == 0xff)) {
223
					mask_allowed |= 1 << OVS_KEY_ATTR_TCP;
224 225
					mask_allowed |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
				}
226 227 228 229 230 231 232 233 234 235 236 237
			}

			if (match->key->ip.proto == IPPROTO_ICMP) {
				key_expected |= 1 << OVS_KEY_ATTR_ICMP;
				if (match->mask && (match->mask->key.ip.proto == 0xff))
					mask_allowed |= 1 << OVS_KEY_ATTR_ICMP;
			}
		}
	}

	if (match->key->eth.type == htons(ETH_P_IPV6)) {
		key_expected |= 1 << OVS_KEY_ATTR_IPV6;
238
		if (match->mask && match->mask->key.eth.type == htons(0xffff)) {
239
			mask_allowed |= 1 << OVS_KEY_ATTR_IPV6;
240 241
			mask_allowed |= 1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6;
		}
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257

		if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) {
			if (match->key->ip.proto == IPPROTO_UDP) {
				key_expected |= 1 << OVS_KEY_ATTR_UDP;
				if (match->mask && (match->mask->key.ip.proto == 0xff))
					mask_allowed |= 1 << OVS_KEY_ATTR_UDP;
			}

			if (match->key->ip.proto == IPPROTO_SCTP) {
				key_expected |= 1 << OVS_KEY_ATTR_SCTP;
				if (match->mask && (match->mask->key.ip.proto == 0xff))
					mask_allowed |= 1 << OVS_KEY_ATTR_SCTP;
			}

			if (match->key->ip.proto == IPPROTO_TCP) {
				key_expected |= 1 << OVS_KEY_ATTR_TCP;
258 259
				key_expected |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
				if (match->mask && (match->mask->key.ip.proto == 0xff)) {
260
					mask_allowed |= 1 << OVS_KEY_ATTR_TCP;
261 262
					mask_allowed |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
				}
263 264 265 266 267 268 269
			}

			if (match->key->ip.proto == IPPROTO_ICMPV6) {
				key_expected |= 1 << OVS_KEY_ATTR_ICMPV6;
				if (match->mask && (match->mask->key.ip.proto == 0xff))
					mask_allowed |= 1 << OVS_KEY_ATTR_ICMPV6;

270
				if (match->key->tp.src ==
271
						htons(NDISC_NEIGHBOUR_SOLICITATION) ||
272
				    match->key->tp.src == htons(NDISC_NEIGHBOUR_ADVERTISEMENT)) {
273
					key_expected |= 1 << OVS_KEY_ATTR_ND;
274 275 276 277 278 279
					/* Original direction conntrack tuple
					 * uses the same space as the ND fields
					 * in the key, so both are not allowed
					 * at the same time.
					 */
					mask_allowed &= ~(1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6);
280
					if (match->mask && (match->mask->key.tp.src == htons(0xff)))
281 282 283 284 285 286 287 288
						mask_allowed |= 1 << OVS_KEY_ATTR_ND;
				}
			}
		}
	}

	if ((key_attrs & key_expected) != key_expected) {
		/* Key attributes check failed. */
289 290 291
		OVS_NLERR(log, "Missing key (keys=%llx, expected=%llx)",
			  (unsigned long long)key_attrs,
			  (unsigned long long)key_expected);
292 293 294 295 296
		return false;
	}

	if ((mask_attrs & mask_allowed) != mask_attrs) {
		/* Mask attributes check failed. */
297 298 299
		OVS_NLERR(log, "Unexpected mask (mask=%llx, allowed=%llx)",
			  (unsigned long long)mask_attrs,
			  (unsigned long long)mask_allowed);
300 301 302 303 304 305
		return false;
	}

	return true;
}

306 307 308 309 310
size_t ovs_tun_key_attr_size(void)
{
	/* Whenever adding new OVS_TUNNEL_KEY_ FIELDS, we should consider
	 * updating this function.
	 */
311
	return    nla_total_size_64bit(8) /* OVS_TUNNEL_KEY_ATTR_ID */
312 313
		+ nla_total_size(16)   /* OVS_TUNNEL_KEY_ATTR_IPV[46]_SRC */
		+ nla_total_size(16)   /* OVS_TUNNEL_KEY_ATTR_IPV[46]_DST */
314 315 316 317 318 319
		+ nla_total_size(1)    /* OVS_TUNNEL_KEY_ATTR_TOS */
		+ nla_total_size(1)    /* OVS_TUNNEL_KEY_ATTR_TTL */
		+ nla_total_size(0)    /* OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT */
		+ nla_total_size(0)    /* OVS_TUNNEL_KEY_ATTR_CSUM */
		+ nla_total_size(0)    /* OVS_TUNNEL_KEY_ATTR_OAM */
		+ nla_total_size(256)  /* OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS */
320 321 322
		/* OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS is mutually exclusive with
		 * OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS and covered by it.
		 */
323
		+ nla_total_size(2)    /* OVS_TUNNEL_KEY_ATTR_TP_SRC */
324 325
		+ nla_total_size(2)    /* OVS_TUNNEL_KEY_ATTR_TP_DST */
		+ nla_total_size(4);   /* OVS_TUNNEL_KEY_ATTR_ERSPAN_OPTS */
326 327
}

328 329 330 331 332
size_t ovs_key_attr_size(void)
{
	/* Whenever adding new OVS_KEY_ FIELDS, we should consider
	 * updating this function.
	 */
333
	BUILD_BUG_ON(OVS_KEY_ATTR_TUNNEL_INFO != 28);
334 335 336

	return    nla_total_size(4)   /* OVS_KEY_ATTR_PRIORITY */
		+ nla_total_size(0)   /* OVS_KEY_ATTR_TUNNEL */
337
		  + ovs_tun_key_attr_size()
338 339 340 341
		+ nla_total_size(4)   /* OVS_KEY_ATTR_IN_PORT */
		+ nla_total_size(4)   /* OVS_KEY_ATTR_SKB_MARK */
		+ nla_total_size(4)   /* OVS_KEY_ATTR_DP_HASH */
		+ nla_total_size(4)   /* OVS_KEY_ATTR_RECIRC_ID */
342
		+ nla_total_size(4)   /* OVS_KEY_ATTR_CT_STATE */
J
Joe Stringer 已提交
343
		+ nla_total_size(2)   /* OVS_KEY_ATTR_CT_ZONE */
344
		+ nla_total_size(4)   /* OVS_KEY_ATTR_CT_MARK */
J
Joe Stringer 已提交
345
		+ nla_total_size(16)  /* OVS_KEY_ATTR_CT_LABELS */
346
		+ nla_total_size(40)  /* OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6 */
347 348 349 350 351 352 353 354 355 356
		+ nla_total_size(12)  /* OVS_KEY_ATTR_ETHERNET */
		+ nla_total_size(2)   /* OVS_KEY_ATTR_ETHERTYPE */
		+ nla_total_size(4)   /* OVS_KEY_ATTR_VLAN */
		+ nla_total_size(0)   /* OVS_KEY_ATTR_ENCAP */
		+ nla_total_size(2)   /* OVS_KEY_ATTR_ETHERTYPE */
		+ nla_total_size(40)  /* OVS_KEY_ATTR_IPV6 */
		+ nla_total_size(2)   /* OVS_KEY_ATTR_ICMPV6 */
		+ nla_total_size(28); /* OVS_KEY_ATTR_ND */
}

357 358 359 360
static const struct ovs_len_tbl ovs_vxlan_ext_key_lens[OVS_VXLAN_EXT_MAX + 1] = {
	[OVS_VXLAN_EXT_GBP]	    = { .len = sizeof(u32) },
};

361 362 363 364 365 366 367 368 369 370 371
static const struct ovs_len_tbl ovs_tunnel_key_lens[OVS_TUNNEL_KEY_ATTR_MAX + 1] = {
	[OVS_TUNNEL_KEY_ATTR_ID]	    = { .len = sizeof(u64) },
	[OVS_TUNNEL_KEY_ATTR_IPV4_SRC]	    = { .len = sizeof(u32) },
	[OVS_TUNNEL_KEY_ATTR_IPV4_DST]	    = { .len = sizeof(u32) },
	[OVS_TUNNEL_KEY_ATTR_TOS]	    = { .len = 1 },
	[OVS_TUNNEL_KEY_ATTR_TTL]	    = { .len = 1 },
	[OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT] = { .len = 0 },
	[OVS_TUNNEL_KEY_ATTR_CSUM]	    = { .len = 0 },
	[OVS_TUNNEL_KEY_ATTR_TP_SRC]	    = { .len = sizeof(u16) },
	[OVS_TUNNEL_KEY_ATTR_TP_DST]	    = { .len = sizeof(u16) },
	[OVS_TUNNEL_KEY_ATTR_OAM]	    = { .len = 0 },
372 373 374
	[OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS]   = { .len = OVS_ATTR_VARIABLE },
	[OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS]    = { .len = OVS_ATTR_NESTED,
						.next = ovs_vxlan_ext_key_lens },
375 376
	[OVS_TUNNEL_KEY_ATTR_IPV6_SRC]      = { .len = sizeof(struct in6_addr) },
	[OVS_TUNNEL_KEY_ATTR_IPV6_DST]      = { .len = sizeof(struct in6_addr) },
377
	[OVS_TUNNEL_KEY_ATTR_ERSPAN_OPTS]   = { .len = sizeof(u32) },
378 379
};

380
/* The size of the argument for each %OVS_KEY_ATTR_* Netlink attribute.  */
381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403
static const struct ovs_len_tbl ovs_key_lens[OVS_KEY_ATTR_MAX + 1] = {
	[OVS_KEY_ATTR_ENCAP]	 = { .len = OVS_ATTR_NESTED },
	[OVS_KEY_ATTR_PRIORITY]	 = { .len = sizeof(u32) },
	[OVS_KEY_ATTR_IN_PORT]	 = { .len = sizeof(u32) },
	[OVS_KEY_ATTR_SKB_MARK]	 = { .len = sizeof(u32) },
	[OVS_KEY_ATTR_ETHERNET]	 = { .len = sizeof(struct ovs_key_ethernet) },
	[OVS_KEY_ATTR_VLAN]	 = { .len = sizeof(__be16) },
	[OVS_KEY_ATTR_ETHERTYPE] = { .len = sizeof(__be16) },
	[OVS_KEY_ATTR_IPV4]	 = { .len = sizeof(struct ovs_key_ipv4) },
	[OVS_KEY_ATTR_IPV6]	 = { .len = sizeof(struct ovs_key_ipv6) },
	[OVS_KEY_ATTR_TCP]	 = { .len = sizeof(struct ovs_key_tcp) },
	[OVS_KEY_ATTR_TCP_FLAGS] = { .len = sizeof(__be16) },
	[OVS_KEY_ATTR_UDP]	 = { .len = sizeof(struct ovs_key_udp) },
	[OVS_KEY_ATTR_SCTP]	 = { .len = sizeof(struct ovs_key_sctp) },
	[OVS_KEY_ATTR_ICMP]	 = { .len = sizeof(struct ovs_key_icmp) },
	[OVS_KEY_ATTR_ICMPV6]	 = { .len = sizeof(struct ovs_key_icmpv6) },
	[OVS_KEY_ATTR_ARP]	 = { .len = sizeof(struct ovs_key_arp) },
	[OVS_KEY_ATTR_ND]	 = { .len = sizeof(struct ovs_key_nd) },
	[OVS_KEY_ATTR_RECIRC_ID] = { .len = sizeof(u32) },
	[OVS_KEY_ATTR_DP_HASH]	 = { .len = sizeof(u32) },
	[OVS_KEY_ATTR_TUNNEL]	 = { .len = OVS_ATTR_NESTED,
				     .next = ovs_tunnel_key_lens, },
	[OVS_KEY_ATTR_MPLS]	 = { .len = sizeof(struct ovs_key_mpls) },
404
	[OVS_KEY_ATTR_CT_STATE]	 = { .len = sizeof(u32) },
J
Joe Stringer 已提交
405
	[OVS_KEY_ATTR_CT_ZONE]	 = { .len = sizeof(u16) },
406
	[OVS_KEY_ATTR_CT_MARK]	 = { .len = sizeof(u32) },
J
Joe Stringer 已提交
407
	[OVS_KEY_ATTR_CT_LABELS] = { .len = sizeof(struct ovs_key_ct_labels) },
408 409 410 411
	[OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4] = {
		.len = sizeof(struct ovs_key_ct_tuple_ipv4) },
	[OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6] = {
		.len = sizeof(struct ovs_key_ct_tuple_ipv6) },
412 413
};

414 415 416 417 418 419 420
static bool check_attr_len(unsigned int attr_len, unsigned int expected_len)
{
	return expected_len == attr_len ||
	       expected_len == OVS_ATTR_NESTED ||
	       expected_len == OVS_ATTR_VARIABLE;
}

421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
static bool is_all_zero(const u8 *fp, size_t size)
{
	int i;

	if (!fp)
		return false;

	for (i = 0; i < size; i++)
		if (fp[i])
			return false;

	return true;
}

static int __parse_flow_nlattrs(const struct nlattr *attr,
				const struct nlattr *a[],
437
				u64 *attrsp, bool log, bool nz)
438 439 440 441 442 443 444 445 446 447 448
{
	const struct nlattr *nla;
	u64 attrs;
	int rem;

	attrs = *attrsp;
	nla_for_each_nested(nla, attr, rem) {
		u16 type = nla_type(nla);
		int expected_len;

		if (type > OVS_KEY_ATTR_MAX) {
449
			OVS_NLERR(log, "Key type %d is out of range max %d",
450 451 452 453 454
				  type, OVS_KEY_ATTR_MAX);
			return -EINVAL;
		}

		if (attrs & (1 << type)) {
455
			OVS_NLERR(log, "Duplicate key (type %d).", type);
456 457 458
			return -EINVAL;
		}

459
		expected_len = ovs_key_lens[type].len;
460
		if (!check_attr_len(nla_len(nla), expected_len)) {
461 462
			OVS_NLERR(log, "Key %d has unexpected len %d expected %d",
				  type, nla_len(nla), expected_len);
463 464 465 466 467 468 469 470 471
			return -EINVAL;
		}

		if (!nz || !is_all_zero(nla_data(nla), expected_len)) {
			attrs |= 1 << type;
			a[type] = nla;
		}
	}
	if (rem) {
472
		OVS_NLERR(log, "Message has %d unknown bytes.", rem);
473 474 475 476 477 478 479 480
		return -EINVAL;
	}

	*attrsp = attrs;
	return 0;
}

static int parse_flow_mask_nlattrs(const struct nlattr *attr,
481 482
				   const struct nlattr *a[], u64 *attrsp,
				   bool log)
483
{
484
	return __parse_flow_nlattrs(attr, a, attrsp, log, true);
485 486
}

487 488
int parse_flow_nlattrs(const struct nlattr *attr, const struct nlattr *a[],
		       u64 *attrsp, bool log)
489
{
490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537
	return __parse_flow_nlattrs(attr, a, attrsp, log, false);
}

static int genev_tun_opt_from_nlattr(const struct nlattr *a,
				     struct sw_flow_match *match, bool is_mask,
				     bool log)
{
	unsigned long opt_key_offset;

	if (nla_len(a) > sizeof(match->key->tun_opts)) {
		OVS_NLERR(log, "Geneve option length err (len %d, max %zu).",
			  nla_len(a), sizeof(match->key->tun_opts));
		return -EINVAL;
	}

	if (nla_len(a) % 4 != 0) {
		OVS_NLERR(log, "Geneve opt len %d is not a multiple of 4.",
			  nla_len(a));
		return -EINVAL;
	}

	/* We need to record the length of the options passed
	 * down, otherwise packets with the same format but
	 * additional options will be silently matched.
	 */
	if (!is_mask) {
		SW_FLOW_KEY_PUT(match, tun_opts_len, nla_len(a),
				false);
	} else {
		/* This is somewhat unusual because it looks at
		 * both the key and mask while parsing the
		 * attributes (and by extension assumes the key
		 * is parsed first). Normally, we would verify
		 * that each is the correct length and that the
		 * attributes line up in the validate function.
		 * However, that is difficult because this is
		 * variable length and we won't have the
		 * information later.
		 */
		if (match->key->tun_opts_len != nla_len(a)) {
			OVS_NLERR(log, "Geneve option len %d != mask len %d",
				  match->key->tun_opts_len, nla_len(a));
			return -EINVAL;
		}

		SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true);
	}

538
	opt_key_offset = TUN_METADATA_OFFSET(nla_len(a));
539 540 541
	SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, nla_data(a),
				  nla_len(a), is_mask);
	return 0;
542 543
}

544
static int vxlan_tun_opt_from_nlattr(const struct nlattr *attr,
545 546 547
				     struct sw_flow_match *match, bool is_mask,
				     bool log)
{
548 549
	struct nlattr *a;
	int rem;
550
	unsigned long opt_key_offset;
551
	struct vxlan_metadata opts;
552 553 554 555

	BUILD_BUG_ON(sizeof(opts) > sizeof(match->key->tun_opts));

	memset(&opts, 0, sizeof(opts));
556 557
	nla_for_each_nested(a, attr, rem) {
		int type = nla_type(a);
558

559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587
		if (type > OVS_VXLAN_EXT_MAX) {
			OVS_NLERR(log, "VXLAN extension %d out of range max %d",
				  type, OVS_VXLAN_EXT_MAX);
			return -EINVAL;
		}

		if (!check_attr_len(nla_len(a),
				    ovs_vxlan_ext_key_lens[type].len)) {
			OVS_NLERR(log, "VXLAN extension %d has unexpected len %d expected %d",
				  type, nla_len(a),
				  ovs_vxlan_ext_key_lens[type].len);
			return -EINVAL;
		}

		switch (type) {
		case OVS_VXLAN_EXT_GBP:
			opts.gbp = nla_get_u32(a);
			break;
		default:
			OVS_NLERR(log, "Unknown VXLAN extension attribute %d",
				  type);
			return -EINVAL;
		}
	}
	if (rem) {
		OVS_NLERR(log, "VXLAN extension message has %d unknown bytes.",
			  rem);
		return -EINVAL;
	}
588 589 590 591 592 593 594 595 596 597 598 599

	if (!is_mask)
		SW_FLOW_KEY_PUT(match, tun_opts_len, sizeof(opts), false);
	else
		SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true);

	opt_key_offset = TUN_METADATA_OFFSET(sizeof(opts));
	SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, &opts, sizeof(opts),
				  is_mask);
	return 0;
}

600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626
static int erspan_tun_opt_from_nlattr(const struct nlattr *attr,
				      struct sw_flow_match *match, bool is_mask,
				      bool log)
{
	unsigned long opt_key_offset;
	struct erspan_metadata opts;

	BUILD_BUG_ON(sizeof(opts) > sizeof(match->key->tun_opts));

	memset(&opts, 0, sizeof(opts));
	opts.index = nla_get_be32(attr);

	/* Index has only 20-bit */
	if (ntohl(opts.index) & ~INDEX_MASK) {
		OVS_NLERR(log, "ERSPAN index number %x too large.",
			  ntohl(opts.index));
		return -EINVAL;
	}

	SW_FLOW_KEY_PUT(match, tun_opts_len, sizeof(opts), is_mask);
	opt_key_offset = TUN_METADATA_OFFSET(sizeof(opts));
	SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, &opts, sizeof(opts),
				  is_mask);

	return 0;
}

627 628 629
static int ip_tun_from_nlattr(const struct nlattr *attr,
			      struct sw_flow_match *match, bool is_mask,
			      bool log)
630
{
631 632 633
	bool ttl = false, ipv4 = false, ipv6 = false;
	__be16 tun_flags = 0;
	int opts_type = 0;
634 635 636 637 638
	struct nlattr *a;
	int rem;

	nla_for_each_nested(a, attr, rem) {
		int type = nla_type(a);
639 640
		int err;

641
		if (type > OVS_TUNNEL_KEY_ATTR_MAX) {
642 643
			OVS_NLERR(log, "Tunnel attr %d out of range max %d",
				  type, OVS_TUNNEL_KEY_ATTR_MAX);
644 645 646
			return -EINVAL;
		}

647 648
		if (!check_attr_len(nla_len(a),
				    ovs_tunnel_key_lens[type].len)) {
649
			OVS_NLERR(log, "Tunnel attr %d has unexpected len %d expected %d",
650
				  type, nla_len(a), ovs_tunnel_key_lens[type].len);
651 652 653 654 655 656 657 658 659 660
			return -EINVAL;
		}

		switch (type) {
		case OVS_TUNNEL_KEY_ATTR_ID:
			SW_FLOW_KEY_PUT(match, tun_key.tun_id,
					nla_get_be64(a), is_mask);
			tun_flags |= TUNNEL_KEY;
			break;
		case OVS_TUNNEL_KEY_ATTR_IPV4_SRC:
661
			SW_FLOW_KEY_PUT(match, tun_key.u.ipv4.src,
662
					nla_get_in_addr(a), is_mask);
663
			ipv4 = true;
664 665
			break;
		case OVS_TUNNEL_KEY_ATTR_IPV4_DST:
666
			SW_FLOW_KEY_PUT(match, tun_key.u.ipv4.dst,
667
					nla_get_in_addr(a), is_mask);
668 669 670
			ipv4 = true;
			break;
		case OVS_TUNNEL_KEY_ATTR_IPV6_SRC:
671
			SW_FLOW_KEY_PUT(match, tun_key.u.ipv6.src,
672 673 674 675 676 677 678
					nla_get_in6_addr(a), is_mask);
			ipv6 = true;
			break;
		case OVS_TUNNEL_KEY_ATTR_IPV6_DST:
			SW_FLOW_KEY_PUT(match, tun_key.u.ipv6.dst,
					nla_get_in6_addr(a), is_mask);
			ipv6 = true;
679 680
			break;
		case OVS_TUNNEL_KEY_ATTR_TOS:
681
			SW_FLOW_KEY_PUT(match, tun_key.tos,
682 683 684
					nla_get_u8(a), is_mask);
			break;
		case OVS_TUNNEL_KEY_ATTR_TTL:
685
			SW_FLOW_KEY_PUT(match, tun_key.ttl,
686 687 688 689 690 691 692 693 694
					nla_get_u8(a), is_mask);
			ttl = true;
			break;
		case OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT:
			tun_flags |= TUNNEL_DONT_FRAGMENT;
			break;
		case OVS_TUNNEL_KEY_ATTR_CSUM:
			tun_flags |= TUNNEL_CSUM;
			break;
695 696 697 698 699 700 701 702
		case OVS_TUNNEL_KEY_ATTR_TP_SRC:
			SW_FLOW_KEY_PUT(match, tun_key.tp_src,
					nla_get_be16(a), is_mask);
			break;
		case OVS_TUNNEL_KEY_ATTR_TP_DST:
			SW_FLOW_KEY_PUT(match, tun_key.tp_dst,
					nla_get_be16(a), is_mask);
			break;
703 704 705
		case OVS_TUNNEL_KEY_ATTR_OAM:
			tun_flags |= TUNNEL_OAM;
			break;
706
		case OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS:
707 708 709 710 711
			if (opts_type) {
				OVS_NLERR(log, "Multiple metadata blocks provided");
				return -EINVAL;
			}

712 713 714
			err = genev_tun_opt_from_nlattr(a, match, is_mask, log);
			if (err)
				return err;
715

716 717 718 719 720 721 722 723 724 725 726 727 728 729 730
			tun_flags |= TUNNEL_GENEVE_OPT;
			opts_type = type;
			break;
		case OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS:
			if (opts_type) {
				OVS_NLERR(log, "Multiple metadata blocks provided");
				return -EINVAL;
			}

			err = vxlan_tun_opt_from_nlattr(a, match, is_mask, log);
			if (err)
				return err;

			tun_flags |= TUNNEL_VXLAN_OPT;
			opts_type = type;
731
			break;
732 733
		case OVS_TUNNEL_KEY_ATTR_PAD:
			break;
734 735 736 737 738 739 740 741 742 743 744 745 746
		case OVS_TUNNEL_KEY_ATTR_ERSPAN_OPTS:
			if (opts_type) {
				OVS_NLERR(log, "Multiple metadata blocks provided");
				return -EINVAL;
			}

			err = erspan_tun_opt_from_nlattr(a, match, is_mask, log);
			if (err)
				return err;

			tun_flags |= TUNNEL_ERSPAN_OPT;
			opts_type = type;
			break;
747
		default:
748
			OVS_NLERR(log, "Unknown IP tunnel attribute %d",
749
				  type);
750 751 752 753 754
			return -EINVAL;
		}
	}

	SW_FLOW_KEY_PUT(match, tun_key.tun_flags, tun_flags, is_mask);
755 756 757
	if (is_mask)
		SW_FLOW_KEY_MEMSET_FIELD(match, tun_proto, 0xff, true);
	else
758 759
		SW_FLOW_KEY_PUT(match, tun_proto, ipv6 ? AF_INET6 : AF_INET,
				false);
760 761

	if (rem > 0) {
762
		OVS_NLERR(log, "IP tunnel attribute has %d unknown bytes.",
763
			  rem);
764 765 766
		return -EINVAL;
	}

767 768 769 770 771
	if (ipv4 && ipv6) {
		OVS_NLERR(log, "Mixed IPv4 and IPv6 tunnel attributes");
		return -EINVAL;
	}

772
	if (!is_mask) {
773 774 775 776 777
		if (!ipv4 && !ipv6) {
			OVS_NLERR(log, "IP tunnel dst address not specified");
			return -EINVAL;
		}
		if (ipv4 && !match->key->tun_key.u.ipv4.dst) {
778
			OVS_NLERR(log, "IPv4 tunnel dst address is zero");
779 780
			return -EINVAL;
		}
781 782 783 784
		if (ipv6 && ipv6_addr_any(&match->key->tun_key.u.ipv6.dst)) {
			OVS_NLERR(log, "IPv6 tunnel dst address is zero");
			return -EINVAL;
		}
785 786

		if (!ttl) {
787
			OVS_NLERR(log, "IP tunnel TTL not specified.");
788 789 790 791
			return -EINVAL;
		}
	}

792 793 794 795 796 797
	return opts_type;
}

static int vxlan_opt_to_nlattr(struct sk_buff *skb,
			       const void *tun_opts, int swkey_tun_opts_len)
{
798
	const struct vxlan_metadata *opts = tun_opts;
799 800 801 802 803 804 805 806 807 808
	struct nlattr *nla;

	nla = nla_nest_start(skb, OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS);
	if (!nla)
		return -EMSGSIZE;

	if (nla_put_u32(skb, OVS_VXLAN_EXT_GBP, opts->gbp) < 0)
		return -EMSGSIZE;

	nla_nest_end(skb, nla);
809 810 811
	return 0;
}

812 813 814 815
static int __ip_tun_to_nlattr(struct sk_buff *skb,
			      const struct ip_tunnel_key *output,
			      const void *tun_opts, int swkey_tun_opts_len,
			      unsigned short tun_proto)
816 817
{
	if (output->tun_flags & TUNNEL_KEY &&
818 819
	    nla_put_be64(skb, OVS_TUNNEL_KEY_ATTR_ID, output->tun_id,
			 OVS_TUNNEL_KEY_ATTR_PAD))
820
		return -EMSGSIZE;
821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842
	switch (tun_proto) {
	case AF_INET:
		if (output->u.ipv4.src &&
		    nla_put_in_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV4_SRC,
				    output->u.ipv4.src))
			return -EMSGSIZE;
		if (output->u.ipv4.dst &&
		    nla_put_in_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV4_DST,
				    output->u.ipv4.dst))
			return -EMSGSIZE;
		break;
	case AF_INET6:
		if (!ipv6_addr_any(&output->u.ipv6.src) &&
		    nla_put_in6_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV6_SRC,
				     &output->u.ipv6.src))
			return -EMSGSIZE;
		if (!ipv6_addr_any(&output->u.ipv6.dst) &&
		    nla_put_in6_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV6_DST,
				     &output->u.ipv6.dst))
			return -EMSGSIZE;
		break;
	}
843 844
	if (output->tos &&
	    nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TOS, output->tos))
845
		return -EMSGSIZE;
846
	if (nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TTL, output->ttl))
847 848
		return -EMSGSIZE;
	if ((output->tun_flags & TUNNEL_DONT_FRAGMENT) &&
849
	    nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT))
850 851
		return -EMSGSIZE;
	if ((output->tun_flags & TUNNEL_CSUM) &&
852 853
	    nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_CSUM))
		return -EMSGSIZE;
854 855 856 857 858 859
	if (output->tp_src &&
	    nla_put_be16(skb, OVS_TUNNEL_KEY_ATTR_TP_SRC, output->tp_src))
		return -EMSGSIZE;
	if (output->tp_dst &&
	    nla_put_be16(skb, OVS_TUNNEL_KEY_ATTR_TP_DST, output->tp_dst))
		return -EMSGSIZE;
860 861
	if ((output->tun_flags & TUNNEL_OAM) &&
	    nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_OAM))
862
		return -EMSGSIZE;
863
	if (swkey_tun_opts_len) {
864 865 866 867 868 869 870
		if (output->tun_flags & TUNNEL_GENEVE_OPT &&
		    nla_put(skb, OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS,
			    swkey_tun_opts_len, tun_opts))
			return -EMSGSIZE;
		else if (output->tun_flags & TUNNEL_VXLAN_OPT &&
			 vxlan_opt_to_nlattr(skb, tun_opts, swkey_tun_opts_len))
			return -EMSGSIZE;
871 872 873 874
		else if (output->tun_flags & TUNNEL_ERSPAN_OPT &&
			 nla_put_be32(skb, OVS_TUNNEL_KEY_ATTR_ERSPAN_OPTS,
				      ((struct erspan_metadata *)tun_opts)->index))
			return -EMSGSIZE;
875
	}
876 877 878 879

	return 0;
}

880 881 882 883
static int ip_tun_to_nlattr(struct sk_buff *skb,
			    const struct ip_tunnel_key *output,
			    const void *tun_opts, int swkey_tun_opts_len,
			    unsigned short tun_proto)
884 885 886 887 888 889 890 891
{
	struct nlattr *nla;
	int err;

	nla = nla_nest_start(skb, OVS_KEY_ATTR_TUNNEL);
	if (!nla)
		return -EMSGSIZE;

892 893
	err = __ip_tun_to_nlattr(skb, output, tun_opts, swkey_tun_opts_len,
				 tun_proto);
894 895 896 897 898 899 900
	if (err)
		return err;

	nla_nest_end(skb, nla);
	return 0;
}

901 902
int ovs_nla_put_tunnel_info(struct sk_buff *skb,
			    struct ip_tunnel_info *tun_info)
903
{
904 905 906 907
	return __ip_tun_to_nlattr(skb, &tun_info->key,
				  ip_tunnel_info_opts(tun_info),
				  tun_info->options_len,
				  ip_tunnel_info_af(tun_info));
908 909
}

910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070
static int encode_vlan_from_nlattrs(struct sw_flow_match *match,
				    const struct nlattr *a[],
				    bool is_mask, bool inner)
{
	__be16 tci = 0;
	__be16 tpid = 0;

	if (a[OVS_KEY_ATTR_VLAN])
		tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);

	if (a[OVS_KEY_ATTR_ETHERTYPE])
		tpid = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);

	if (likely(!inner)) {
		SW_FLOW_KEY_PUT(match, eth.vlan.tpid, tpid, is_mask);
		SW_FLOW_KEY_PUT(match, eth.vlan.tci, tci, is_mask);
	} else {
		SW_FLOW_KEY_PUT(match, eth.cvlan.tpid, tpid, is_mask);
		SW_FLOW_KEY_PUT(match, eth.cvlan.tci, tci, is_mask);
	}
	return 0;
}

static int validate_vlan_from_nlattrs(const struct sw_flow_match *match,
				      u64 key_attrs, bool inner,
				      const struct nlattr **a, bool log)
{
	__be16 tci = 0;

	if (!((key_attrs & (1 << OVS_KEY_ATTR_ETHERNET)) &&
	      (key_attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) &&
	       eth_type_vlan(nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE])))) {
		/* Not a VLAN. */
		return 0;
	}

	if (!((key_attrs & (1 << OVS_KEY_ATTR_VLAN)) &&
	      (key_attrs & (1 << OVS_KEY_ATTR_ENCAP)))) {
		OVS_NLERR(log, "Invalid %s frame", (inner) ? "C-VLAN" : "VLAN");
		return -EINVAL;
	}

	if (a[OVS_KEY_ATTR_VLAN])
		tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);

	if (!(tci & htons(VLAN_TAG_PRESENT))) {
		if (tci) {
			OVS_NLERR(log, "%s TCI does not have VLAN_TAG_PRESENT bit set.",
				  (inner) ? "C-VLAN" : "VLAN");
			return -EINVAL;
		} else if (nla_len(a[OVS_KEY_ATTR_ENCAP])) {
			/* Corner case for truncated VLAN header. */
			OVS_NLERR(log, "Truncated %s header has non-zero encap attribute.",
				  (inner) ? "C-VLAN" : "VLAN");
			return -EINVAL;
		}
	}

	return 1;
}

static int validate_vlan_mask_from_nlattrs(const struct sw_flow_match *match,
					   u64 key_attrs, bool inner,
					   const struct nlattr **a, bool log)
{
	__be16 tci = 0;
	__be16 tpid = 0;
	bool encap_valid = !!(match->key->eth.vlan.tci &
			      htons(VLAN_TAG_PRESENT));
	bool i_encap_valid = !!(match->key->eth.cvlan.tci &
				htons(VLAN_TAG_PRESENT));

	if (!(key_attrs & (1 << OVS_KEY_ATTR_ENCAP))) {
		/* Not a VLAN. */
		return 0;
	}

	if ((!inner && !encap_valid) || (inner && !i_encap_valid)) {
		OVS_NLERR(log, "Encap mask attribute is set for non-%s frame.",
			  (inner) ? "C-VLAN" : "VLAN");
		return -EINVAL;
	}

	if (a[OVS_KEY_ATTR_VLAN])
		tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);

	if (a[OVS_KEY_ATTR_ETHERTYPE])
		tpid = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);

	if (tpid != htons(0xffff)) {
		OVS_NLERR(log, "Must have an exact match on %s TPID (mask=%x).",
			  (inner) ? "C-VLAN" : "VLAN", ntohs(tpid));
		return -EINVAL;
	}
	if (!(tci & htons(VLAN_TAG_PRESENT))) {
		OVS_NLERR(log, "%s TCI mask does not have exact match for VLAN_TAG_PRESENT bit.",
			  (inner) ? "C-VLAN" : "VLAN");
		return -EINVAL;
	}

	return 1;
}

static int __parse_vlan_from_nlattrs(struct sw_flow_match *match,
				     u64 *key_attrs, bool inner,
				     const struct nlattr **a, bool is_mask,
				     bool log)
{
	int err;
	const struct nlattr *encap;

	if (!is_mask)
		err = validate_vlan_from_nlattrs(match, *key_attrs, inner,
						 a, log);
	else
		err = validate_vlan_mask_from_nlattrs(match, *key_attrs, inner,
						      a, log);
	if (err <= 0)
		return err;

	err = encode_vlan_from_nlattrs(match, a, is_mask, inner);
	if (err)
		return err;

	*key_attrs &= ~(1 << OVS_KEY_ATTR_ENCAP);
	*key_attrs &= ~(1 << OVS_KEY_ATTR_VLAN);
	*key_attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);

	encap = a[OVS_KEY_ATTR_ENCAP];

	if (!is_mask)
		err = parse_flow_nlattrs(encap, a, key_attrs, log);
	else
		err = parse_flow_mask_nlattrs(encap, a, key_attrs, log);

	return err;
}

static int parse_vlan_from_nlattrs(struct sw_flow_match *match,
				   u64 *key_attrs, const struct nlattr **a,
				   bool is_mask, bool log)
{
	int err;
	bool encap_valid = false;

	err = __parse_vlan_from_nlattrs(match, key_attrs, false, a,
					is_mask, log);
	if (err)
		return err;

	encap_valid = !!(match->key->eth.vlan.tci & htons(VLAN_TAG_PRESENT));
	if (encap_valid) {
		err = __parse_vlan_from_nlattrs(match, key_attrs, true, a,
						is_mask, log);
		if (err)
			return err;
	}

	return 0;
}

1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
static int parse_eth_type_from_nlattrs(struct sw_flow_match *match,
				       u64 *attrs, const struct nlattr **a,
				       bool is_mask, bool log)
{
	__be16 eth_type;

	eth_type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
	if (is_mask) {
		/* Always exact match EtherType. */
		eth_type = htons(0xffff);
	} else if (!eth_proto_is_802_3(eth_type)) {
		OVS_NLERR(log, "EtherType %x is less than min %x",
				ntohs(eth_type), ETH_P_802_3_MIN);
		return -EINVAL;
	}

	SW_FLOW_KEY_PUT(match, eth.type, eth_type, is_mask);
	*attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
	return 0;
}

1092 1093 1094
static int metadata_from_nlattrs(struct net *net, struct sw_flow_match *match,
				 u64 *attrs, const struct nlattr **a,
				 bool is_mask, bool log)
1095
{
1096 1097
	u8 mac_proto = MAC_PROTO_ETHERNET;

1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111
	if (*attrs & (1 << OVS_KEY_ATTR_DP_HASH)) {
		u32 hash_val = nla_get_u32(a[OVS_KEY_ATTR_DP_HASH]);

		SW_FLOW_KEY_PUT(match, ovs_flow_hash, hash_val, is_mask);
		*attrs &= ~(1 << OVS_KEY_ATTR_DP_HASH);
	}

	if (*attrs & (1 << OVS_KEY_ATTR_RECIRC_ID)) {
		u32 recirc_id = nla_get_u32(a[OVS_KEY_ATTR_RECIRC_ID]);

		SW_FLOW_KEY_PUT(match, recirc_id, recirc_id, is_mask);
		*attrs &= ~(1 << OVS_KEY_ATTR_RECIRC_ID);
	}

1112 1113 1114 1115 1116 1117 1118 1119 1120
	if (*attrs & (1 << OVS_KEY_ATTR_PRIORITY)) {
		SW_FLOW_KEY_PUT(match, phy.priority,
			  nla_get_u32(a[OVS_KEY_ATTR_PRIORITY]), is_mask);
		*attrs &= ~(1 << OVS_KEY_ATTR_PRIORITY);
	}

	if (*attrs & (1 << OVS_KEY_ATTR_IN_PORT)) {
		u32 in_port = nla_get_u32(a[OVS_KEY_ATTR_IN_PORT]);

1121
		if (is_mask) {
1122
			in_port = 0xffffffff; /* Always exact match in_port. */
1123
		} else if (in_port >= DP_MAX_PORTS) {
1124
			OVS_NLERR(log, "Port %d exceeds max allowable %d",
1125
				  in_port, DP_MAX_PORTS);
1126
			return -EINVAL;
1127
		}
1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141

		SW_FLOW_KEY_PUT(match, phy.in_port, in_port, is_mask);
		*attrs &= ~(1 << OVS_KEY_ATTR_IN_PORT);
	} else if (!is_mask) {
		SW_FLOW_KEY_PUT(match, phy.in_port, DP_MAX_PORTS, is_mask);
	}

	if (*attrs & (1 << OVS_KEY_ATTR_SKB_MARK)) {
		uint32_t mark = nla_get_u32(a[OVS_KEY_ATTR_SKB_MARK]);

		SW_FLOW_KEY_PUT(match, phy.skb_mark, mark, is_mask);
		*attrs &= ~(1 << OVS_KEY_ATTR_SKB_MARK);
	}
	if (*attrs & (1 << OVS_KEY_ATTR_TUNNEL)) {
1142 1143
		if (ip_tun_from_nlattr(a[OVS_KEY_ATTR_TUNNEL], match,
				       is_mask, log) < 0)
1144 1145 1146
			return -EINVAL;
		*attrs &= ~(1 << OVS_KEY_ATTR_TUNNEL);
	}
J
Joe Stringer 已提交
1147 1148

	if (*attrs & (1 << OVS_KEY_ATTR_CT_STATE) &&
1149
	    ovs_ct_verify(net, OVS_KEY_ATTR_CT_STATE)) {
1150
		u32 ct_state = nla_get_u32(a[OVS_KEY_ATTR_CT_STATE]);
J
Joe Stringer 已提交
1151

1152
		if (ct_state & ~CT_SUPPORTED_MASK) {
1153
			OVS_NLERR(log, "ct_state flags %08x unsupported",
1154 1155 1156
				  ct_state);
			return -EINVAL;
		}
J
Joe Stringer 已提交
1157

1158
		SW_FLOW_KEY_PUT(match, ct_state, ct_state, is_mask);
J
Joe Stringer 已提交
1159 1160 1161
		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_STATE);
	}
	if (*attrs & (1 << OVS_KEY_ATTR_CT_ZONE) &&
1162
	    ovs_ct_verify(net, OVS_KEY_ATTR_CT_ZONE)) {
J
Joe Stringer 已提交
1163 1164
		u16 ct_zone = nla_get_u16(a[OVS_KEY_ATTR_CT_ZONE]);

1165
		SW_FLOW_KEY_PUT(match, ct_zone, ct_zone, is_mask);
J
Joe Stringer 已提交
1166 1167
		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_ZONE);
	}
1168
	if (*attrs & (1 << OVS_KEY_ATTR_CT_MARK) &&
1169
	    ovs_ct_verify(net, OVS_KEY_ATTR_CT_MARK)) {
1170 1171 1172 1173 1174
		u32 mark = nla_get_u32(a[OVS_KEY_ATTR_CT_MARK]);

		SW_FLOW_KEY_PUT(match, ct.mark, mark, is_mask);
		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_MARK);
	}
J
Joe Stringer 已提交
1175 1176 1177
	if (*attrs & (1 << OVS_KEY_ATTR_CT_LABELS) &&
	    ovs_ct_verify(net, OVS_KEY_ATTR_CT_LABELS)) {
		const struct ovs_key_ct_labels *cl;
1178

J
Joe Stringer 已提交
1179 1180
		cl = nla_data(a[OVS_KEY_ATTR_CT_LABELS]);
		SW_FLOW_KEY_MEMCPY(match, ct.labels, cl->ct_labels,
1181
				   sizeof(*cl), is_mask);
J
Joe Stringer 已提交
1182
		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_LABELS);
1183
	}
1184 1185 1186 1187 1188 1189 1190 1191 1192
	if (*attrs & (1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4)) {
		const struct ovs_key_ct_tuple_ipv4 *ct;

		ct = nla_data(a[OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4]);

		SW_FLOW_KEY_PUT(match, ipv4.ct_orig.src, ct->ipv4_src, is_mask);
		SW_FLOW_KEY_PUT(match, ipv4.ct_orig.dst, ct->ipv4_dst, is_mask);
		SW_FLOW_KEY_PUT(match, ct.orig_tp.src, ct->src_port, is_mask);
		SW_FLOW_KEY_PUT(match, ct.orig_tp.dst, ct->dst_port, is_mask);
1193
		SW_FLOW_KEY_PUT(match, ct_orig_proto, ct->ipv4_proto, is_mask);
1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208
		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4);
	}
	if (*attrs & (1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6)) {
		const struct ovs_key_ct_tuple_ipv6 *ct;

		ct = nla_data(a[OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6]);

		SW_FLOW_KEY_MEMCPY(match, ipv6.ct_orig.src, &ct->ipv6_src,
				   sizeof(match->key->ipv6.ct_orig.src),
				   is_mask);
		SW_FLOW_KEY_MEMCPY(match, ipv6.ct_orig.dst, &ct->ipv6_dst,
				   sizeof(match->key->ipv6.ct_orig.dst),
				   is_mask);
		SW_FLOW_KEY_PUT(match, ct.orig_tp.src, ct->src_port, is_mask);
		SW_FLOW_KEY_PUT(match, ct.orig_tp.dst, ct->dst_port, is_mask);
1209
		SW_FLOW_KEY_PUT(match, ct_orig_proto, ct->ipv6_proto, is_mask);
1210 1211
		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6);
	}
1212

1213 1214 1215 1216 1217 1218 1219
	/* For layer 3 packets the Ethernet type is provided
	 * and treated as metadata but no MAC addresses are provided.
	 */
	if (!(*attrs & (1ULL << OVS_KEY_ATTR_ETHERNET)) &&
	    (*attrs & (1ULL << OVS_KEY_ATTR_ETHERTYPE)))
		mac_proto = MAC_PROTO_NONE;

1220
	/* Always exact match mac_proto */
1221 1222 1223 1224 1225
	SW_FLOW_KEY_PUT(match, mac_proto, is_mask ? 0xff : mac_proto, is_mask);

	if (mac_proto == MAC_PROTO_NONE)
		return parse_eth_type_from_nlattrs(match, attrs, a, is_mask,
						   log);
1226

1227 1228 1229
	return 0;
}

1230 1231 1232
static int ovs_key_from_nlattrs(struct net *net, struct sw_flow_match *match,
				u64 attrs, const struct nlattr **a,
				bool is_mask, bool log)
1233 1234 1235
{
	int err;

1236
	err = metadata_from_nlattrs(net, match, &attrs, a, is_mask, log);
1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249
	if (err)
		return err;

	if (attrs & (1 << OVS_KEY_ATTR_ETHERNET)) {
		const struct ovs_key_ethernet *eth_key;

		eth_key = nla_data(a[OVS_KEY_ATTR_ETHERNET]);
		SW_FLOW_KEY_MEMCPY(match, eth.src,
				eth_key->eth_src, ETH_ALEN, is_mask);
		SW_FLOW_KEY_MEMCPY(match, eth.dst,
				eth_key->eth_dst, ETH_ALEN, is_mask);
		attrs &= ~(1 << OVS_KEY_ATTR_ETHERNET);

1250 1251 1252 1253 1254
		if (attrs & (1 << OVS_KEY_ATTR_VLAN)) {
			/* VLAN attribute is always parsed before getting here since it
			 * may occur multiple times.
			 */
			OVS_NLERR(log, "VLAN attribute unexpected.");
1255 1256 1257
			return -EINVAL;
		}

1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268
		if (attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) {
			err = parse_eth_type_from_nlattrs(match, &attrs, a, is_mask,
							  log);
			if (err)
				return err;
		} else if (!is_mask) {
			SW_FLOW_KEY_PUT(match, eth.type, htons(ETH_P_802_2), is_mask);
		}
	} else if (!match->key->eth.type) {
		OVS_NLERR(log, "Either Ethernet header or EtherType is required.");
		return -EINVAL;
1269 1270 1271 1272 1273 1274 1275
	}

	if (attrs & (1 << OVS_KEY_ATTR_IPV4)) {
		const struct ovs_key_ipv4 *ipv4_key;

		ipv4_key = nla_data(a[OVS_KEY_ATTR_IPV4]);
		if (!is_mask && ipv4_key->ipv4_frag > OVS_FRAG_TYPE_MAX) {
1276 1277
			OVS_NLERR(log, "IPv4 frag type %d is out of range max %d",
				  ipv4_key->ipv4_frag, OVS_FRAG_TYPE_MAX);
1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299
			return -EINVAL;
		}
		SW_FLOW_KEY_PUT(match, ip.proto,
				ipv4_key->ipv4_proto, is_mask);
		SW_FLOW_KEY_PUT(match, ip.tos,
				ipv4_key->ipv4_tos, is_mask);
		SW_FLOW_KEY_PUT(match, ip.ttl,
				ipv4_key->ipv4_ttl, is_mask);
		SW_FLOW_KEY_PUT(match, ip.frag,
				ipv4_key->ipv4_frag, is_mask);
		SW_FLOW_KEY_PUT(match, ipv4.addr.src,
				ipv4_key->ipv4_src, is_mask);
		SW_FLOW_KEY_PUT(match, ipv4.addr.dst,
				ipv4_key->ipv4_dst, is_mask);
		attrs &= ~(1 << OVS_KEY_ATTR_IPV4);
	}

	if (attrs & (1 << OVS_KEY_ATTR_IPV6)) {
		const struct ovs_key_ipv6 *ipv6_key;

		ipv6_key = nla_data(a[OVS_KEY_ATTR_IPV6]);
		if (!is_mask && ipv6_key->ipv6_frag > OVS_FRAG_TYPE_MAX) {
1300 1301
			OVS_NLERR(log, "IPv6 frag type %d is out of range max %d",
				  ipv6_key->ipv6_frag, OVS_FRAG_TYPE_MAX);
1302 1303
			return -EINVAL;
		}
1304

1305
		if (!is_mask && ipv6_key->ipv6_label & htonl(0xFFF00000)) {
1306
			OVS_NLERR(log, "IPv6 flow label %x is out of range (max=%x)",
1307 1308 1309 1310
				  ntohl(ipv6_key->ipv6_label), (1 << 20) - 1);
			return -EINVAL;
		}

1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337
		SW_FLOW_KEY_PUT(match, ipv6.label,
				ipv6_key->ipv6_label, is_mask);
		SW_FLOW_KEY_PUT(match, ip.proto,
				ipv6_key->ipv6_proto, is_mask);
		SW_FLOW_KEY_PUT(match, ip.tos,
				ipv6_key->ipv6_tclass, is_mask);
		SW_FLOW_KEY_PUT(match, ip.ttl,
				ipv6_key->ipv6_hlimit, is_mask);
		SW_FLOW_KEY_PUT(match, ip.frag,
				ipv6_key->ipv6_frag, is_mask);
		SW_FLOW_KEY_MEMCPY(match, ipv6.addr.src,
				ipv6_key->ipv6_src,
				sizeof(match->key->ipv6.addr.src),
				is_mask);
		SW_FLOW_KEY_MEMCPY(match, ipv6.addr.dst,
				ipv6_key->ipv6_dst,
				sizeof(match->key->ipv6.addr.dst),
				is_mask);

		attrs &= ~(1 << OVS_KEY_ATTR_IPV6);
	}

	if (attrs & (1 << OVS_KEY_ATTR_ARP)) {
		const struct ovs_key_arp *arp_key;

		arp_key = nla_data(a[OVS_KEY_ATTR_ARP]);
		if (!is_mask && (arp_key->arp_op & htons(0xff00))) {
1338
			OVS_NLERR(log, "Unknown ARP opcode (opcode=%d).",
1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356
				  arp_key->arp_op);
			return -EINVAL;
		}

		SW_FLOW_KEY_PUT(match, ipv4.addr.src,
				arp_key->arp_sip, is_mask);
		SW_FLOW_KEY_PUT(match, ipv4.addr.dst,
			arp_key->arp_tip, is_mask);
		SW_FLOW_KEY_PUT(match, ip.proto,
				ntohs(arp_key->arp_op), is_mask);
		SW_FLOW_KEY_MEMCPY(match, ipv4.arp.sha,
				arp_key->arp_sha, ETH_ALEN, is_mask);
		SW_FLOW_KEY_MEMCPY(match, ipv4.arp.tha,
				arp_key->arp_tha, ETH_ALEN, is_mask);

		attrs &= ~(1 << OVS_KEY_ATTR_ARP);
	}

1357 1358 1359 1360 1361 1362 1363 1364 1365 1366
	if (attrs & (1 << OVS_KEY_ATTR_MPLS)) {
		const struct ovs_key_mpls *mpls_key;

		mpls_key = nla_data(a[OVS_KEY_ATTR_MPLS]);
		SW_FLOW_KEY_PUT(match, mpls.top_lse,
				mpls_key->mpls_lse, is_mask);

		attrs &= ~(1 << OVS_KEY_ATTR_MPLS);
	 }

1367 1368 1369 1370
	if (attrs & (1 << OVS_KEY_ATTR_TCP)) {
		const struct ovs_key_tcp *tcp_key;

		tcp_key = nla_data(a[OVS_KEY_ATTR_TCP]);
1371 1372
		SW_FLOW_KEY_PUT(match, tp.src, tcp_key->tcp_src, is_mask);
		SW_FLOW_KEY_PUT(match, tp.dst, tcp_key->tcp_dst, is_mask);
1373 1374 1375
		attrs &= ~(1 << OVS_KEY_ATTR_TCP);
	}

1376
	if (attrs & (1 << OVS_KEY_ATTR_TCP_FLAGS)) {
1377 1378 1379
		SW_FLOW_KEY_PUT(match, tp.flags,
				nla_get_be16(a[OVS_KEY_ATTR_TCP_FLAGS]),
				is_mask);
1380 1381 1382
		attrs &= ~(1 << OVS_KEY_ATTR_TCP_FLAGS);
	}

1383 1384 1385 1386
	if (attrs & (1 << OVS_KEY_ATTR_UDP)) {
		const struct ovs_key_udp *udp_key;

		udp_key = nla_data(a[OVS_KEY_ATTR_UDP]);
1387 1388
		SW_FLOW_KEY_PUT(match, tp.src, udp_key->udp_src, is_mask);
		SW_FLOW_KEY_PUT(match, tp.dst, udp_key->udp_dst, is_mask);
1389 1390 1391 1392 1393 1394 1395
		attrs &= ~(1 << OVS_KEY_ATTR_UDP);
	}

	if (attrs & (1 << OVS_KEY_ATTR_SCTP)) {
		const struct ovs_key_sctp *sctp_key;

		sctp_key = nla_data(a[OVS_KEY_ATTR_SCTP]);
1396 1397
		SW_FLOW_KEY_PUT(match, tp.src, sctp_key->sctp_src, is_mask);
		SW_FLOW_KEY_PUT(match, tp.dst, sctp_key->sctp_dst, is_mask);
1398 1399 1400 1401 1402 1403 1404
		attrs &= ~(1 << OVS_KEY_ATTR_SCTP);
	}

	if (attrs & (1 << OVS_KEY_ATTR_ICMP)) {
		const struct ovs_key_icmp *icmp_key;

		icmp_key = nla_data(a[OVS_KEY_ATTR_ICMP]);
1405
		SW_FLOW_KEY_PUT(match, tp.src,
1406
				htons(icmp_key->icmp_type), is_mask);
1407
		SW_FLOW_KEY_PUT(match, tp.dst,
1408 1409 1410 1411 1412 1413 1414 1415
				htons(icmp_key->icmp_code), is_mask);
		attrs &= ~(1 << OVS_KEY_ATTR_ICMP);
	}

	if (attrs & (1 << OVS_KEY_ATTR_ICMPV6)) {
		const struct ovs_key_icmpv6 *icmpv6_key;

		icmpv6_key = nla_data(a[OVS_KEY_ATTR_ICMPV6]);
1416
		SW_FLOW_KEY_PUT(match, tp.src,
1417
				htons(icmpv6_key->icmpv6_type), is_mask);
1418
		SW_FLOW_KEY_PUT(match, tp.dst,
1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437
				htons(icmpv6_key->icmpv6_code), is_mask);
		attrs &= ~(1 << OVS_KEY_ATTR_ICMPV6);
	}

	if (attrs & (1 << OVS_KEY_ATTR_ND)) {
		const struct ovs_key_nd *nd_key;

		nd_key = nla_data(a[OVS_KEY_ATTR_ND]);
		SW_FLOW_KEY_MEMCPY(match, ipv6.nd.target,
			nd_key->nd_target,
			sizeof(match->key->ipv6.nd.target),
			is_mask);
		SW_FLOW_KEY_MEMCPY(match, ipv6.nd.sll,
			nd_key->nd_sll, ETH_ALEN, is_mask);
		SW_FLOW_KEY_MEMCPY(match, ipv6.nd.tll,
				nd_key->nd_tll, ETH_ALEN, is_mask);
		attrs &= ~(1 << OVS_KEY_ATTR_ND);
	}

1438
	if (attrs != 0) {
1439
		OVS_NLERR(log, "Unknown key attributes %llx",
1440
			  (unsigned long long)attrs);
1441
		return -EINVAL;
1442
	}
1443 1444 1445 1446

	return 0;
}

1447 1448
static void nlattr_set(struct nlattr *attr, u8 val,
		       const struct ovs_len_tbl *tbl)
1449
{
1450 1451
	struct nlattr *nla;
	int rem;
1452

1453 1454
	/* The nlattr stream should already have been validated */
	nla_for_each_nested(nla, attr, rem) {
1455 1456 1457 1458 1459
		if (tbl[nla_type(nla)].len == OVS_ATTR_NESTED) {
			if (tbl[nla_type(nla)].next)
				tbl = tbl[nla_type(nla)].next;
			nlattr_set(nla, val, tbl);
		} else {
1460
			memset(nla_data(nla), val, nla_len(nla));
1461
		}
1462 1463 1464

		if (nla_type(nla) == OVS_KEY_ATTR_CT_STATE)
			*(u32 *)nla_data(nla) &= CT_SUPPORTED_MASK;
1465 1466 1467 1468 1469
	}
}

static void mask_set_nlattr(struct nlattr *attr, u8 val)
{
1470
	nlattr_set(attr, val, ovs_key_lens);
1471 1472 1473 1474 1475 1476 1477
}

/**
 * ovs_nla_get_match - parses Netlink attributes into a flow key and
 * mask. In case the 'mask' is NULL, the flow is treated as exact match
 * flow. Otherwise, it is treated as a wildcarded flow, except the mask
 * does not include any don't care bit.
1478
 * @net: Used to determine per-namespace field support.
1479 1480 1481 1482 1483 1484
 * @match: receives the extracted flow match information.
 * @key: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
 * sequence. The fields should of the packet that triggered the creation
 * of this flow.
 * @mask: Optional. Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink
 * attribute specifies the mask field of the wildcarded flow.
1485 1486 1487
 * @log: Boolean to allow kernel error logging.  Normally true, but when
 * probing for feature compatibility this should be passed in as false to
 * suppress unnecessary error logging.
1488
 */
1489
int ovs_nla_get_match(struct net *net, struct sw_flow_match *match,
1490
		      const struct nlattr *nla_key,
1491 1492
		      const struct nlattr *nla_mask,
		      bool log)
1493 1494
{
	const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
1495
	struct nlattr *newmask = NULL;
1496 1497 1498 1499
	u64 key_attrs = 0;
	u64 mask_attrs = 0;
	int err;

1500
	err = parse_flow_nlattrs(nla_key, a, &key_attrs, log);
1501 1502 1503
	if (err)
		return err;

1504 1505 1506
	err = parse_vlan_from_nlattrs(match, &key_attrs, a, false, log);
	if (err)
		return err;
1507

1508
	err = ovs_key_from_nlattrs(net, match, key_attrs, a, false, log);
1509 1510 1511
	if (err)
		return err;

1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528
	if (match->mask) {
		if (!nla_mask) {
			/* Create an exact match mask. We need to set to 0xff
			 * all the 'match->mask' fields that have been touched
			 * in 'match->key'. We cannot simply memset
			 * 'match->mask', because padding bytes and fields not
			 * specified in 'match->key' should be left to 0.
			 * Instead, we use a stream of netlink attributes,
			 * copied from 'key' and set to 0xff.
			 * ovs_key_from_nlattrs() will take care of filling
			 * 'match->mask' appropriately.
			 */
			newmask = kmemdup(nla_key,
					  nla_total_size(nla_len(nla_key)),
					  GFP_KERNEL);
			if (!newmask)
				return -ENOMEM;
1529

1530
			mask_set_nlattr(newmask, 0xff);
1531

1532 1533 1534
			/* The userspace does not send tunnel attributes that
			 * are 0, but we should not wildcard them nonetheless.
			 */
1535
			if (match->key->tun_proto)
1536 1537
				SW_FLOW_KEY_MEMSET_FIELD(match, tun_key,
							 0xff, true);
1538

1539 1540
			nla_mask = newmask;
		}
1541

1542
		err = parse_flow_mask_nlattrs(nla_mask, a, &mask_attrs, log);
1543
		if (err)
1544
			goto free_newmask;
1545

1546
		/* Always match on tci. */
1547 1548
		SW_FLOW_KEY_PUT(match, eth.vlan.tci, htons(0xffff), true);
		SW_FLOW_KEY_PUT(match, eth.cvlan.tci, htons(0xffff), true);
1549

1550 1551 1552
		err = parse_vlan_from_nlattrs(match, &mask_attrs, a, true, log);
		if (err)
			goto free_newmask;
1553

1554 1555
		err = ovs_key_from_nlattrs(net, match, mask_attrs, a, true,
					   log);
1556
		if (err)
1557
			goto free_newmask;
1558 1559
	}

1560
	if (!match_validate(match, key_attrs, mask_attrs, log))
1561
		err = -EINVAL;
1562

1563 1564 1565
free_newmask:
	kfree(newmask);
	return err;
1566 1567
}

1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620
static size_t get_ufid_len(const struct nlattr *attr, bool log)
{
	size_t len;

	if (!attr)
		return 0;

	len = nla_len(attr);
	if (len < 1 || len > MAX_UFID_LENGTH) {
		OVS_NLERR(log, "ufid size %u bytes exceeds the range (1, %d)",
			  nla_len(attr), MAX_UFID_LENGTH);
		return 0;
	}

	return len;
}

/* Initializes 'flow->ufid', returning true if 'attr' contains a valid UFID,
 * or false otherwise.
 */
bool ovs_nla_get_ufid(struct sw_flow_id *sfid, const struct nlattr *attr,
		      bool log)
{
	sfid->ufid_len = get_ufid_len(attr, log);
	if (sfid->ufid_len)
		memcpy(sfid->ufid, nla_data(attr), sfid->ufid_len);

	return sfid->ufid_len;
}

int ovs_nla_get_identifier(struct sw_flow_id *sfid, const struct nlattr *ufid,
			   const struct sw_flow_key *key, bool log)
{
	struct sw_flow_key *new_key;

	if (ovs_nla_get_ufid(sfid, ufid, log))
		return 0;

	/* If UFID was not provided, use unmasked key. */
	new_key = kmalloc(sizeof(*new_key), GFP_KERNEL);
	if (!new_key)
		return -ENOMEM;
	memcpy(new_key, key, sizeof(*key));
	sfid->unmasked_key = new_key;

	return 0;
}

u32 ovs_nla_get_ufid_flags(const struct nlattr *attr)
{
	return attr ? nla_get_u32(attr) : 0;
}

1621 1622
/**
 * ovs_nla_get_flow_metadata - parses Netlink attributes into a flow key.
1623 1624 1625 1626 1627 1628
 * @net: Network namespace.
 * @key: Receives extracted in_port, priority, tun_key, skb_mark and conntrack
 * metadata.
 * @a: Array of netlink attributes holding parsed %OVS_KEY_ATTR_* Netlink
 * attributes.
 * @attrs: Bit mask for the netlink attributes included in @a.
1629 1630 1631
 * @log: Boolean to allow kernel error logging.  Normally true, but when
 * probing for feature compatibility this should be passed in as false to
 * suppress unnecessary error logging.
1632 1633 1634 1635 1636
 *
 * This parses a series of Netlink attributes that form a flow key, which must
 * take the same form accepted by flow_from_nlattrs(), but only enough of it to
 * get the metadata, that is, the parts of the flow key that cannot be
 * extracted from the packet itself.
1637 1638
 *
 * This must be called before the packet key fields are filled in 'key'.
1639 1640
 */

1641 1642 1643
int ovs_nla_get_flow_metadata(struct net *net,
			      const struct nlattr *a[OVS_KEY_ATTR_MAX + 1],
			      u64 attrs, struct sw_flow_key *key, bool log)
1644
{
1645
	struct sw_flow_match match;
1646 1647

	memset(&match, 0, sizeof(match));
1648
	match.key = key;
1649

1650 1651 1652
	key->ct_state = 0;
	key->ct_zone = 0;
	key->ct_orig_proto = 0;
J
Joe Stringer 已提交
1653
	memset(&key->ct, 0, sizeof(key->ct));
1654 1655 1656
	memset(&key->ipv4.ct_orig, 0, sizeof(key->ipv4.ct_orig));
	memset(&key->ipv6.ct_orig, 0, sizeof(key->ipv6.ct_orig));

1657
	key->phy.in_port = DP_MAX_PORTS;
1658

1659
	return metadata_from_nlattrs(net, &match, &attrs, a, false, log);
1660 1661
}

1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672
static int ovs_nla_put_vlan(struct sk_buff *skb, const struct vlan_head *vh,
			    bool is_mask)
{
	__be16 eth_type = !is_mask ? vh->tpid : htons(0xffff);

	if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, eth_type) ||
	    nla_put_be16(skb, OVS_KEY_ATTR_VLAN, vh->tci))
		return -EMSGSIZE;
	return 0;
}

1673 1674 1675
static int __ovs_nla_put_key(const struct sw_flow_key *swkey,
			     const struct sw_flow_key *output, bool is_mask,
			     struct sk_buff *skb)
1676 1677
{
	struct ovs_key_ethernet *eth_key;
1678 1679 1680
	struct nlattr *nla;
	struct nlattr *encap = NULL;
	struct nlattr *in_encap = NULL;
1681

1682 1683 1684 1685 1686 1687
	if (nla_put_u32(skb, OVS_KEY_ATTR_RECIRC_ID, output->recirc_id))
		goto nla_put_failure;

	if (nla_put_u32(skb, OVS_KEY_ATTR_DP_HASH, output->ovs_flow_hash))
		goto nla_put_failure;

1688 1689 1690
	if (nla_put_u32(skb, OVS_KEY_ATTR_PRIORITY, output->phy.priority))
		goto nla_put_failure;

1691
	if ((swkey->tun_proto || is_mask)) {
1692
		const void *opts = NULL;
1693 1694

		if (output->tun_key.tun_flags & TUNNEL_OPTIONS_PRESENT)
1695
			opts = TUN_METADATA_OPTS(output, swkey->tun_opts_len);
1696

1697 1698
		if (ip_tun_to_nlattr(skb, &output->tun_key, opts,
				     swkey->tun_opts_len, swkey->tun_proto))
1699 1700
			goto nla_put_failure;
	}
1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717

	if (swkey->phy.in_port == DP_MAX_PORTS) {
		if (is_mask && (output->phy.in_port == 0xffff))
			if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT, 0xffffffff))
				goto nla_put_failure;
	} else {
		u16 upper_u16;
		upper_u16 = !is_mask ? 0 : 0xffff;

		if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT,
				(upper_u16 << 16) | output->phy.in_port))
			goto nla_put_failure;
	}

	if (nla_put_u32(skb, OVS_KEY_ATTR_SKB_MARK, output->phy.skb_mark))
		goto nla_put_failure;

1718
	if (ovs_ct_put_key(swkey, output, skb))
J
Joe Stringer 已提交
1719 1720
		goto nla_put_failure;

1721 1722 1723
	if (ovs_key_mac_proto(swkey) == MAC_PROTO_ETHERNET) {
		nla = nla_reserve(skb, OVS_KEY_ATTR_ETHERNET, sizeof(*eth_key));
		if (!nla)
1724
			goto nla_put_failure;
1725

1726 1727 1728 1729 1730 1731
		eth_key = nla_data(nla);
		ether_addr_copy(eth_key->eth_src, output->eth.src);
		ether_addr_copy(eth_key->eth_dst, output->eth.dst);

		if (swkey->eth.vlan.tci || eth_type_vlan(swkey->eth.type)) {
			if (ovs_nla_put_vlan(skb, &output->eth.vlan, is_mask))
1732
				goto nla_put_failure;
1733 1734
			encap = nla_nest_start(skb, OVS_KEY_ATTR_ENCAP);
			if (!swkey->eth.vlan.tci)
1735
				goto unencap;
1736 1737 1738 1739 1740 1741 1742 1743

			if (swkey->eth.cvlan.tci || eth_type_vlan(swkey->eth.type)) {
				if (ovs_nla_put_vlan(skb, &output->eth.cvlan, is_mask))
					goto nla_put_failure;
				in_encap = nla_nest_start(skb, OVS_KEY_ATTR_ENCAP);
				if (!swkey->eth.cvlan.tci)
					goto unencap;
			}
1744
		}
1745

1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758
		if (swkey->eth.type == htons(ETH_P_802_2)) {
			/*
			* Ethertype 802.2 is represented in the netlink with omitted
			* OVS_KEY_ATTR_ETHERTYPE in the flow key attribute, and
			* 0xffff in the mask attribute.  Ethertype can also
			* be wildcarded.
			*/
			if (is_mask && output->eth.type)
				if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE,
							output->eth.type))
					goto nla_put_failure;
			goto unencap;
		}
1759 1760 1761 1762 1763
	}

	if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, output->eth.type))
		goto nla_put_failure;

1764 1765 1766 1767 1768 1769 1770 1771
	if (eth_type_vlan(swkey->eth.type)) {
		/* There are 3 VLAN tags, we don't know anything about the rest
		 * of the packet, so truncate here.
		 */
		WARN_ON_ONCE(!(encap && in_encap));
		goto unencap;
	}

1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812
	if (swkey->eth.type == htons(ETH_P_IP)) {
		struct ovs_key_ipv4 *ipv4_key;

		nla = nla_reserve(skb, OVS_KEY_ATTR_IPV4, sizeof(*ipv4_key));
		if (!nla)
			goto nla_put_failure;
		ipv4_key = nla_data(nla);
		ipv4_key->ipv4_src = output->ipv4.addr.src;
		ipv4_key->ipv4_dst = output->ipv4.addr.dst;
		ipv4_key->ipv4_proto = output->ip.proto;
		ipv4_key->ipv4_tos = output->ip.tos;
		ipv4_key->ipv4_ttl = output->ip.ttl;
		ipv4_key->ipv4_frag = output->ip.frag;
	} else if (swkey->eth.type == htons(ETH_P_IPV6)) {
		struct ovs_key_ipv6 *ipv6_key;

		nla = nla_reserve(skb, OVS_KEY_ATTR_IPV6, sizeof(*ipv6_key));
		if (!nla)
			goto nla_put_failure;
		ipv6_key = nla_data(nla);
		memcpy(ipv6_key->ipv6_src, &output->ipv6.addr.src,
				sizeof(ipv6_key->ipv6_src));
		memcpy(ipv6_key->ipv6_dst, &output->ipv6.addr.dst,
				sizeof(ipv6_key->ipv6_dst));
		ipv6_key->ipv6_label = output->ipv6.label;
		ipv6_key->ipv6_proto = output->ip.proto;
		ipv6_key->ipv6_tclass = output->ip.tos;
		ipv6_key->ipv6_hlimit = output->ip.ttl;
		ipv6_key->ipv6_frag = output->ip.frag;
	} else if (swkey->eth.type == htons(ETH_P_ARP) ||
		   swkey->eth.type == htons(ETH_P_RARP)) {
		struct ovs_key_arp *arp_key;

		nla = nla_reserve(skb, OVS_KEY_ATTR_ARP, sizeof(*arp_key));
		if (!nla)
			goto nla_put_failure;
		arp_key = nla_data(nla);
		memset(arp_key, 0, sizeof(struct ovs_key_arp));
		arp_key->arp_sip = output->ipv4.addr.src;
		arp_key->arp_tip = output->ipv4.addr.dst;
		arp_key->arp_op = htons(output->ip.proto);
J
Joe Perches 已提交
1813 1814
		ether_addr_copy(arp_key->arp_sha, output->ipv4.arp.sha);
		ether_addr_copy(arp_key->arp_tha, output->ipv4.arp.tha);
1815 1816 1817 1818 1819 1820 1821 1822
	} else if (eth_p_mpls(swkey->eth.type)) {
		struct ovs_key_mpls *mpls_key;

		nla = nla_reserve(skb, OVS_KEY_ATTR_MPLS, sizeof(*mpls_key));
		if (!nla)
			goto nla_put_failure;
		mpls_key = nla_data(nla);
		mpls_key->mpls_lse = output->mpls.top_lse;
1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835
	}

	if ((swkey->eth.type == htons(ETH_P_IP) ||
	     swkey->eth.type == htons(ETH_P_IPV6)) &&
	     swkey->ip.frag != OVS_FRAG_TYPE_LATER) {

		if (swkey->ip.proto == IPPROTO_TCP) {
			struct ovs_key_tcp *tcp_key;

			nla = nla_reserve(skb, OVS_KEY_ATTR_TCP, sizeof(*tcp_key));
			if (!nla)
				goto nla_put_failure;
			tcp_key = nla_data(nla);
1836 1837 1838 1839 1840
			tcp_key->tcp_src = output->tp.src;
			tcp_key->tcp_dst = output->tp.dst;
			if (nla_put_be16(skb, OVS_KEY_ATTR_TCP_FLAGS,
					 output->tp.flags))
				goto nla_put_failure;
1841 1842 1843 1844 1845 1846 1847
		} else if (swkey->ip.proto == IPPROTO_UDP) {
			struct ovs_key_udp *udp_key;

			nla = nla_reserve(skb, OVS_KEY_ATTR_UDP, sizeof(*udp_key));
			if (!nla)
				goto nla_put_failure;
			udp_key = nla_data(nla);
1848 1849
			udp_key->udp_src = output->tp.src;
			udp_key->udp_dst = output->tp.dst;
1850 1851 1852 1853 1854 1855 1856
		} else if (swkey->ip.proto == IPPROTO_SCTP) {
			struct ovs_key_sctp *sctp_key;

			nla = nla_reserve(skb, OVS_KEY_ATTR_SCTP, sizeof(*sctp_key));
			if (!nla)
				goto nla_put_failure;
			sctp_key = nla_data(nla);
1857 1858
			sctp_key->sctp_src = output->tp.src;
			sctp_key->sctp_dst = output->tp.dst;
1859 1860 1861 1862 1863 1864 1865 1866
		} else if (swkey->eth.type == htons(ETH_P_IP) &&
			   swkey->ip.proto == IPPROTO_ICMP) {
			struct ovs_key_icmp *icmp_key;

			nla = nla_reserve(skb, OVS_KEY_ATTR_ICMP, sizeof(*icmp_key));
			if (!nla)
				goto nla_put_failure;
			icmp_key = nla_data(nla);
1867 1868
			icmp_key->icmp_type = ntohs(output->tp.src);
			icmp_key->icmp_code = ntohs(output->tp.dst);
1869 1870 1871 1872 1873 1874 1875 1876 1877
		} else if (swkey->eth.type == htons(ETH_P_IPV6) &&
			   swkey->ip.proto == IPPROTO_ICMPV6) {
			struct ovs_key_icmpv6 *icmpv6_key;

			nla = nla_reserve(skb, OVS_KEY_ATTR_ICMPV6,
						sizeof(*icmpv6_key));
			if (!nla)
				goto nla_put_failure;
			icmpv6_key = nla_data(nla);
1878 1879
			icmpv6_key->icmpv6_type = ntohs(output->tp.src);
			icmpv6_key->icmpv6_code = ntohs(output->tp.dst);
1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890

			if (icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_SOLICITATION ||
			    icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_ADVERTISEMENT) {
				struct ovs_key_nd *nd_key;

				nla = nla_reserve(skb, OVS_KEY_ATTR_ND, sizeof(*nd_key));
				if (!nla)
					goto nla_put_failure;
				nd_key = nla_data(nla);
				memcpy(nd_key->nd_target, &output->ipv6.nd.target,
							sizeof(nd_key->nd_target));
J
Joe Perches 已提交
1891 1892
				ether_addr_copy(nd_key->nd_sll, output->ipv6.nd.sll);
				ether_addr_copy(nd_key->nd_tll, output->ipv6.nd.tll);
1893 1894 1895 1896 1897
			}
		}
	}

unencap:
1898 1899
	if (in_encap)
		nla_nest_end(skb, in_encap);
1900 1901 1902 1903 1904 1905 1906 1907 1908
	if (encap)
		nla_nest_end(skb, encap);

	return 0;

nla_put_failure:
	return -EMSGSIZE;
}

1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927
int ovs_nla_put_key(const struct sw_flow_key *swkey,
		    const struct sw_flow_key *output, int attr, bool is_mask,
		    struct sk_buff *skb)
{
	int err;
	struct nlattr *nla;

	nla = nla_nest_start(skb, attr);
	if (!nla)
		return -EMSGSIZE;
	err = __ovs_nla_put_key(swkey, output, is_mask, skb);
	if (err)
		return err;
	nla_nest_end(skb, nla);

	return 0;
}

/* Called with ovs_mutex or RCU read lock. */
1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939
int ovs_nla_put_identifier(const struct sw_flow *flow, struct sk_buff *skb)
{
	if (ovs_identifier_is_ufid(&flow->id))
		return nla_put(skb, OVS_FLOW_ATTR_UFID, flow->id.ufid_len,
			       flow->id.ufid);

	return ovs_nla_put_key(flow->id.unmasked_key, flow->id.unmasked_key,
			       OVS_FLOW_ATTR_KEY, false, skb);
}

/* Called with ovs_mutex or RCU read lock. */
int ovs_nla_put_masked_key(const struct sw_flow *flow, struct sk_buff *skb)
1940
{
1941
	return ovs_nla_put_key(&flow->key, &flow->key,
1942 1943 1944 1945 1946 1947 1948 1949 1950 1951
				OVS_FLOW_ATTR_KEY, false, skb);
}

/* Called with ovs_mutex or RCU read lock. */
int ovs_nla_put_mask(const struct sw_flow *flow, struct sk_buff *skb)
{
	return ovs_nla_put_key(&flow->key, &flow->mask->key,
				OVS_FLOW_ATTR_MASK, true, skb);
}

1952 1953
#define MAX_ACTIONS_BUFSIZE	(32 * 1024)

1954
static struct sw_flow_actions *nla_alloc_flow_actions(int size, bool log)
1955 1956 1957
{
	struct sw_flow_actions *sfa;

1958
	if (size > MAX_ACTIONS_BUFSIZE) {
1959
		OVS_NLERR(log, "Flow action size %u bytes exceeds max", size);
1960
		return ERR_PTR(-EINVAL);
1961
	}
1962 1963 1964 1965 1966 1967 1968 1969 1970

	sfa = kmalloc(sizeof(*sfa) + size, GFP_KERNEL);
	if (!sfa)
		return ERR_PTR(-ENOMEM);

	sfa->actions_len = 0;
	return sfa;
}

1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996
static void ovs_nla_free_set_action(const struct nlattr *a)
{
	const struct nlattr *ovs_key = nla_data(a);
	struct ovs_tunnel_info *ovs_tun;

	switch (nla_type(ovs_key)) {
	case OVS_KEY_ATTR_TUNNEL_INFO:
		ovs_tun = nla_data(ovs_key);
		dst_release((struct dst_entry *)ovs_tun->tun_dst);
		break;
	}
}

void ovs_nla_free_flow_actions(struct sw_flow_actions *sf_acts)
{
	const struct nlattr *a;
	int rem;

	if (!sf_acts)
		return;

	nla_for_each_attr(a, sf_acts->actions, sf_acts->actions_len, rem) {
		switch (nla_type(a)) {
		case OVS_ACTION_ATTR_SET:
			ovs_nla_free_set_action(a);
			break;
J
Joe Stringer 已提交
1997 1998 1999
		case OVS_ACTION_ATTR_CT:
			ovs_ct_free_action(a);
			break;
2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010
		}
	}

	kfree(sf_acts);
}

static void __ovs_nla_free_flow_actions(struct rcu_head *head)
{
	ovs_nla_free_flow_actions(container_of(head, struct sw_flow_actions, rcu));
}

2011 2012
/* Schedules 'sf_acts' to be freed after the next RCU grace period.
 * The caller must hold rcu_read_lock for this to be sensible. */
2013
void ovs_nla_free_flow_actions_rcu(struct sw_flow_actions *sf_acts)
2014
{
2015
	call_rcu(&sf_acts->rcu, __ovs_nla_free_flow_actions);
2016 2017 2018
}

static struct nlattr *reserve_sfa_size(struct sw_flow_actions **sfa,
2019
				       int attr_len, bool log)
2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038
{

	struct sw_flow_actions *acts;
	int new_acts_size;
	int req_size = NLA_ALIGN(attr_len);
	int next_offset = offsetof(struct sw_flow_actions, actions) +
					(*sfa)->actions_len;

	if (req_size <= (ksize(*sfa) - next_offset))
		goto out;

	new_acts_size = ksize(*sfa) * 2;

	if (new_acts_size > MAX_ACTIONS_BUFSIZE) {
		if ((MAX_ACTIONS_BUFSIZE - next_offset) < req_size)
			return ERR_PTR(-EMSGSIZE);
		new_acts_size = MAX_ACTIONS_BUFSIZE;
	}

2039
	acts = nla_alloc_flow_actions(new_acts_size, log);
2040 2041 2042 2043 2044
	if (IS_ERR(acts))
		return (void *)acts;

	memcpy(acts->actions, (*sfa)->actions, (*sfa)->actions_len);
	acts->actions_len = (*sfa)->actions_len;
2045
	acts->orig_len = (*sfa)->orig_len;
2046 2047 2048 2049 2050 2051 2052 2053
	kfree(*sfa);
	*sfa = acts;

out:
	(*sfa)->actions_len += req_size;
	return  (struct nlattr *) ((unsigned char *)(*sfa) + next_offset);
}

2054
static struct nlattr *__add_action(struct sw_flow_actions **sfa,
2055
				   int attrtype, void *data, int len, bool log)
2056 2057 2058
{
	struct nlattr *a;

2059
	a = reserve_sfa_size(sfa, nla_attr_size(len), log);
2060
	if (IS_ERR(a))
2061
		return a;
2062 2063 2064 2065 2066 2067 2068 2069

	a->nla_type = attrtype;
	a->nla_len = nla_attr_size(len);

	if (data)
		memcpy(nla_data(a), data, len);
	memset((unsigned char *) a + a->nla_len, 0, nla_padlen(len));

2070 2071 2072
	return a;
}

J
Joe Stringer 已提交
2073 2074
int ovs_nla_add_action(struct sw_flow_actions **sfa, int attrtype, void *data,
		       int len, bool log)
2075 2076 2077
{
	struct nlattr *a;

2078
	a = __add_action(sfa, attrtype, data, len, log);
2079

2080
	return PTR_ERR_OR_ZERO(a);
2081 2082 2083
}

static inline int add_nested_action_start(struct sw_flow_actions **sfa,
2084
					  int attrtype, bool log)
2085 2086 2087 2088
{
	int used = (*sfa)->actions_len;
	int err;

J
Joe Stringer 已提交
2089
	err = ovs_nla_add_action(sfa, attrtype, NULL, 0, log);
2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104
	if (err)
		return err;

	return used;
}

static inline void add_nested_action_end(struct sw_flow_actions *sfa,
					 int st_offset)
{
	struct nlattr *a = (struct nlattr *) ((unsigned char *)sfa->actions +
							       st_offset);

	a->nla_len = sfa->actions_len - st_offset;
}

J
Joe Stringer 已提交
2105
static int __ovs_nla_copy_actions(struct net *net, const struct nlattr *attr,
2106
				  const struct sw_flow_key *key,
2107
				  struct sw_flow_actions **sfa,
2108
				  __be16 eth_type, __be16 vlan_tci, bool log);
2109

J
Joe Stringer 已提交
2110
static int validate_and_copy_sample(struct net *net, const struct nlattr *attr,
2111
				    const struct sw_flow_key *key,
2112
				    struct sw_flow_actions **sfa,
2113 2114
				    __be16 eth_type, __be16 vlan_tci,
				    bool log, bool last)
2115 2116 2117 2118
{
	const struct nlattr *attrs[OVS_SAMPLE_ATTR_MAX + 1];
	const struct nlattr *probability, *actions;
	const struct nlattr *a;
2119 2120
	int rem, start, err;
	struct sample_arg arg;
2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140

	memset(attrs, 0, sizeof(attrs));
	nla_for_each_nested(a, attr, rem) {
		int type = nla_type(a);
		if (!type || type > OVS_SAMPLE_ATTR_MAX || attrs[type])
			return -EINVAL;
		attrs[type] = a;
	}
	if (rem)
		return -EINVAL;

	probability = attrs[OVS_SAMPLE_ATTR_PROBABILITY];
	if (!probability || nla_len(probability) != sizeof(u32))
		return -EINVAL;

	actions = attrs[OVS_SAMPLE_ATTR_ACTIONS];
	if (!actions || (nla_len(actions) && nla_len(actions) < NLA_HDRLEN))
		return -EINVAL;

	/* validation done, copy sample action. */
2141
	start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SAMPLE, log);
2142 2143
	if (start < 0)
		return start;
2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160

	/* When both skb and flow may be changed, put the sample
	 * into a deferred fifo. On the other hand, if only skb
	 * may be modified, the actions can be executed in place.
	 *
	 * Do this analysis at the flow installation time.
	 * Set 'clone_action->exec' to true if the actions can be
	 * executed without being deferred.
	 *
	 * If the sample is the last action, it can always be excuted
	 * rather than deferred.
	 */
	arg.exec = last || !actions_may_change_flow(actions);
	arg.probability = nla_get_u32(probability);

	err = ovs_nla_add_action(sfa, OVS_SAMPLE_ATTR_ARG, &arg, sizeof(arg),
				 log);
2161 2162 2163
	if (err)
		return err;

2164
	err = __ovs_nla_copy_actions(net, actions, key, sfa,
2165
				     eth_type, vlan_tci, log);
2166

2167 2168 2169 2170 2171 2172 2173 2174 2175 2176
	if (err)
		return err;

	add_nested_action_end(*sfa, start);

	return 0;
}

void ovs_match_init(struct sw_flow_match *match,
		    struct sw_flow_key *key,
2177
		    bool reset_key,
2178 2179 2180 2181 2182 2183
		    struct sw_flow_mask *mask)
{
	memset(match, 0, sizeof(*match));
	match->key = key;
	match->mask = mask;

2184 2185
	if (reset_key)
		memset(key, 0, sizeof(*key));
2186 2187 2188 2189 2190 2191 2192

	if (mask) {
		memset(&mask->key, 0, sizeof(mask->key));
		mask->range.start = mask->range.end = 0;
	}
}

2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220
static int validate_geneve_opts(struct sw_flow_key *key)
{
	struct geneve_opt *option;
	int opts_len = key->tun_opts_len;
	bool crit_opt = false;

	option = (struct geneve_opt *)TUN_METADATA_OPTS(key, key->tun_opts_len);
	while (opts_len > 0) {
		int len;

		if (opts_len < sizeof(*option))
			return -EINVAL;

		len = sizeof(*option) + option->length * 4;
		if (len > opts_len)
			return -EINVAL;

		crit_opt |= !!(option->type & GENEVE_CRIT_OPT_TYPE);

		option = (struct geneve_opt *)((u8 *)option + len);
		opts_len -= len;
	};

	key->tun_key.tun_flags |= crit_opt ? TUNNEL_CRIT_OPT : 0;

	return 0;
}

2221
static int validate_and_copy_set_tun(const struct nlattr *attr,
2222
				     struct sw_flow_actions **sfa, bool log)
2223 2224 2225
{
	struct sw_flow_match match;
	struct sw_flow_key key;
2226
	struct metadata_dst *tun_dst;
2227
	struct ip_tunnel_info *tun_info;
2228
	struct ovs_tunnel_info *ovs_tun;
2229
	struct nlattr *a;
2230
	int err = 0, start, opts_type;
2231

2232
	ovs_match_init(&match, &key, true, NULL);
2233
	opts_type = ip_tun_from_nlattr(nla_data(attr), &match, false, log);
2234 2235
	if (opts_type < 0)
		return opts_type;
2236

2237
	if (key.tun_opts_len) {
2238 2239 2240 2241 2242 2243 2244 2245
		switch (opts_type) {
		case OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS:
			err = validate_geneve_opts(&key);
			if (err < 0)
				return err;
			break;
		case OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS:
			break;
2246 2247
		case OVS_TUNNEL_KEY_ATTR_ERSPAN_OPTS:
			break;
2248
		}
2249 2250
	};

2251
	start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SET, log);
2252 2253 2254
	if (start < 0)
		return start;

2255 2256 2257
	tun_dst = metadata_dst_alloc(key.tun_opts_len, METADATA_IP_TUNNEL,
				     GFP_KERNEL);

2258 2259 2260
	if (!tun_dst)
		return -ENOMEM;

2261 2262 2263 2264 2265 2266
	err = dst_cache_init(&tun_dst->u.tun_info.dst_cache, GFP_KERNEL);
	if (err) {
		dst_release((struct dst_entry *)tun_dst);
		return err;
	}

2267
	a = __add_action(sfa, OVS_KEY_ATTR_TUNNEL_INFO, NULL,
2268 2269 2270
			 sizeof(*ovs_tun), log);
	if (IS_ERR(a)) {
		dst_release((struct dst_entry *)tun_dst);
2271
		return PTR_ERR(a);
2272 2273 2274 2275
	}

	ovs_tun = nla_data(a);
	ovs_tun->tun_dst = tun_dst;
2276

2277 2278
	tun_info = &tun_dst->u.tun_info;
	tun_info->mode = IP_TUNNEL_INFO_TX;
2279 2280
	if (key.tun_proto == AF_INET6)
		tun_info->mode |= IP_TUNNEL_INFO_IPV6;
2281
	tun_info->key = key.tun_key;
2282

2283 2284 2285 2286 2287 2288 2289
	/* We need to store the options in the action itself since
	 * everything else will go away after flow setup. We can append
	 * it to tun_info and then point there.
	 */
	ip_tunnel_info_opts_set(tun_info,
				TUN_METADATA_OPTS(&key, key.tun_opts_len),
				key.tun_opts_len);
2290 2291 2292 2293 2294
	add_nested_action_end(*sfa, start);

	return err;
}

2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308
/* Return false if there are any non-masked bits set.
 * Mask follows data immediately, before any netlink padding.
 */
static bool validate_masked(u8 *data, int len)
{
	u8 *mask = data + len;

	while (len--)
		if (*data++ & ~*mask++)
			return false;

	return true;
}

2309 2310
static int validate_set(const struct nlattr *a,
			const struct sw_flow_key *flow_key,
2311 2312
			struct sw_flow_actions **sfa, bool *skip_copy,
			u8 mac_proto, __be16 eth_type, bool masked, bool log)
2313 2314 2315
{
	const struct nlattr *ovs_key = nla_data(a);
	int key_type = nla_type(ovs_key);
2316
	size_t key_len;
2317 2318 2319 2320 2321

	/* There can be only one key in a action */
	if (nla_total_size(nla_len(ovs_key)) != nla_len(a))
		return -EINVAL;

2322 2323 2324 2325
	key_len = nla_len(ovs_key);
	if (masked)
		key_len /= 2;

2326
	if (key_type > OVS_KEY_ATTR_MAX ||
2327
	    !check_attr_len(key_len, ovs_key_lens[key_type].len))
2328 2329
		return -EINVAL;

2330 2331 2332
	if (masked && !validate_masked(nla_data(ovs_key), key_len))
		return -EINVAL;

2333 2334 2335 2336 2337 2338 2339
	switch (key_type) {
	const struct ovs_key_ipv4 *ipv4_key;
	const struct ovs_key_ipv6 *ipv6_key;
	int err;

	case OVS_KEY_ATTR_PRIORITY:
	case OVS_KEY_ATTR_SKB_MARK:
2340
	case OVS_KEY_ATTR_CT_MARK:
J
Joe Stringer 已提交
2341
	case OVS_KEY_ATTR_CT_LABELS:
2342 2343
		break;

2344 2345 2346
	case OVS_KEY_ATTR_ETHERNET:
		if (mac_proto != MAC_PROTO_ETHERNET)
			return -EINVAL;
2347
		break;
2348

2349
	case OVS_KEY_ATTR_TUNNEL:
2350 2351 2352 2353
		if (masked)
			return -EINVAL; /* Masked tunnel set not supported. */

		*skip_copy = true;
2354
		err = validate_and_copy_set_tun(a, sfa, log);
2355 2356 2357 2358 2359
		if (err)
			return err;
		break;

	case OVS_KEY_ATTR_IPV4:
2360
		if (eth_type != htons(ETH_P_IP))
2361 2362 2363 2364
			return -EINVAL;

		ipv4_key = nla_data(ovs_key);

2365 2366
		if (masked) {
			const struct ovs_key_ipv4 *mask = ipv4_key + 1;
2367

2368 2369 2370 2371 2372 2373 2374 2375 2376 2377
			/* Non-writeable fields. */
			if (mask->ipv4_proto || mask->ipv4_frag)
				return -EINVAL;
		} else {
			if (ipv4_key->ipv4_proto != flow_key->ip.proto)
				return -EINVAL;

			if (ipv4_key->ipv4_frag != flow_key->ip.frag)
				return -EINVAL;
		}
2378 2379 2380
		break;

	case OVS_KEY_ATTR_IPV6:
2381
		if (eth_type != htons(ETH_P_IPV6))
2382 2383 2384 2385
			return -EINVAL;

		ipv6_key = nla_data(ovs_key);

2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398
		if (masked) {
			const struct ovs_key_ipv6 *mask = ipv6_key + 1;

			/* Non-writeable fields. */
			if (mask->ipv6_proto || mask->ipv6_frag)
				return -EINVAL;

			/* Invalid bits in the flow label mask? */
			if (ntohl(mask->ipv6_label) & 0xFFF00000)
				return -EINVAL;
		} else {
			if (ipv6_key->ipv6_proto != flow_key->ip.proto)
				return -EINVAL;
2399

2400 2401 2402
			if (ipv6_key->ipv6_frag != flow_key->ip.frag)
				return -EINVAL;
		}
2403 2404 2405 2406 2407 2408
		if (ntohl(ipv6_key->ipv6_label) & 0xFFF00000)
			return -EINVAL;

		break;

	case OVS_KEY_ATTR_TCP:
2409 2410 2411
		if ((eth_type != htons(ETH_P_IP) &&
		     eth_type != htons(ETH_P_IPV6)) ||
		    flow_key->ip.proto != IPPROTO_TCP)
2412 2413
			return -EINVAL;

2414
		break;
2415 2416

	case OVS_KEY_ATTR_UDP:
2417 2418 2419
		if ((eth_type != htons(ETH_P_IP) &&
		     eth_type != htons(ETH_P_IPV6)) ||
		    flow_key->ip.proto != IPPROTO_UDP)
2420 2421
			return -EINVAL;

2422
		break;
2423 2424 2425 2426 2427

	case OVS_KEY_ATTR_MPLS:
		if (!eth_p_mpls(eth_type))
			return -EINVAL;
		break;
2428 2429

	case OVS_KEY_ATTR_SCTP:
2430 2431 2432
		if ((eth_type != htons(ETH_P_IP) &&
		     eth_type != htons(ETH_P_IPV6)) ||
		    flow_key->ip.proto != IPPROTO_SCTP)
2433 2434
			return -EINVAL;

2435
		break;
2436 2437 2438 2439 2440

	default:
		return -EINVAL;
	}

2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468
	/* Convert non-masked non-tunnel set actions to masked set actions. */
	if (!masked && key_type != OVS_KEY_ATTR_TUNNEL) {
		int start, len = key_len * 2;
		struct nlattr *at;

		*skip_copy = true;

		start = add_nested_action_start(sfa,
						OVS_ACTION_ATTR_SET_TO_MASKED,
						log);
		if (start < 0)
			return start;

		at = __add_action(sfa, key_type, NULL, len, log);
		if (IS_ERR(at))
			return PTR_ERR(at);

		memcpy(nla_data(at), nla_data(ovs_key), key_len); /* Key. */
		memset(nla_data(at) + key_len, 0xff, key_len);    /* Mask. */
		/* Clear non-writeable bits from otherwise writeable fields. */
		if (key_type == OVS_KEY_ATTR_IPV6) {
			struct ovs_key_ipv6 *mask = nla_data(at) + key_len;

			mask->ipv6_label &= htonl(0x000FFFFF);
		}
		add_nested_action_end(*sfa, start);
	}

2469 2470 2471 2472 2473 2474 2475 2476
	return 0;
}

static int validate_userspace(const struct nlattr *attr)
{
	static const struct nla_policy userspace_policy[OVS_USERSPACE_ATTR_MAX + 1] = {
		[OVS_USERSPACE_ATTR_PID] = {.type = NLA_U32 },
		[OVS_USERSPACE_ATTR_USERDATA] = {.type = NLA_UNSPEC },
2477
		[OVS_USERSPACE_ATTR_EGRESS_TUN_PORT] = {.type = NLA_U32 },
2478 2479 2480 2481
	};
	struct nlattr *a[OVS_USERSPACE_ATTR_MAX + 1];
	int error;

2482 2483
	error = nla_parse_nested(a, OVS_USERSPACE_ATTR_MAX, attr,
				 userspace_policy, NULL);
2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494
	if (error)
		return error;

	if (!a[OVS_USERSPACE_ATTR_PID] ||
	    !nla_get_u32(a[OVS_USERSPACE_ATTR_PID]))
		return -EINVAL;

	return 0;
}

static int copy_action(const struct nlattr *from,
2495
		       struct sw_flow_actions **sfa, bool log)
2496 2497 2498 2499
{
	int totlen = NLA_ALIGN(from->nla_len);
	struct nlattr *to;

2500
	to = reserve_sfa_size(sfa, from->nla_len, log);
2501 2502 2503 2504 2505 2506 2507
	if (IS_ERR(to))
		return PTR_ERR(to);

	memcpy(to, from, totlen);
	return 0;
}

J
Joe Stringer 已提交
2508
static int __ovs_nla_copy_actions(struct net *net, const struct nlattr *attr,
2509
				  const struct sw_flow_key *key,
2510
				  struct sw_flow_actions **sfa,
2511
				  __be16 eth_type, __be16 vlan_tci, bool log)
2512
{
2513
	u8 mac_proto = ovs_key_mac_proto(key);
2514 2515 2516 2517 2518 2519 2520
	const struct nlattr *a;
	int rem, err;

	nla_for_each_nested(a, attr, rem) {
		/* Expected argument lengths, (u32)-1 for variable length. */
		static const u32 action_lens[OVS_ACTION_ATTR_MAX + 1] = {
			[OVS_ACTION_ATTR_OUTPUT] = sizeof(u32),
2521
			[OVS_ACTION_ATTR_RECIRC] = sizeof(u32),
2522
			[OVS_ACTION_ATTR_USERSPACE] = (u32)-1,
2523 2524
			[OVS_ACTION_ATTR_PUSH_MPLS] = sizeof(struct ovs_action_push_mpls),
			[OVS_ACTION_ATTR_POP_MPLS] = sizeof(__be16),
2525 2526 2527
			[OVS_ACTION_ATTR_PUSH_VLAN] = sizeof(struct ovs_action_push_vlan),
			[OVS_ACTION_ATTR_POP_VLAN] = 0,
			[OVS_ACTION_ATTR_SET] = (u32)-1,
2528
			[OVS_ACTION_ATTR_SET_MASKED] = (u32)-1,
2529
			[OVS_ACTION_ATTR_SAMPLE] = (u32)-1,
J
Joe Stringer 已提交
2530 2531
			[OVS_ACTION_ATTR_HASH] = sizeof(struct ovs_action_hash),
			[OVS_ACTION_ATTR_CT] = (u32)-1,
E
Eric Garver 已提交
2532
			[OVS_ACTION_ATTR_CT_CLEAR] = 0,
2533
			[OVS_ACTION_ATTR_TRUNC] = sizeof(struct ovs_action_trunc),
2534 2535
			[OVS_ACTION_ATTR_PUSH_ETH] = sizeof(struct ovs_action_push_eth),
			[OVS_ACTION_ATTR_POP_ETH] = 0,
2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561
		};
		const struct ovs_action_push_vlan *vlan;
		int type = nla_type(a);
		bool skip_copy;

		if (type > OVS_ACTION_ATTR_MAX ||
		    (action_lens[type] != nla_len(a) &&
		     action_lens[type] != (u32)-1))
			return -EINVAL;

		skip_copy = false;
		switch (type) {
		case OVS_ACTION_ATTR_UNSPEC:
			return -EINVAL;

		case OVS_ACTION_ATTR_USERSPACE:
			err = validate_userspace(a);
			if (err)
				return err;
			break;

		case OVS_ACTION_ATTR_OUTPUT:
			if (nla_get_u32(a) >= DP_MAX_PORTS)
				return -EINVAL;
			break;

2562 2563 2564 2565 2566 2567 2568 2569
		case OVS_ACTION_ATTR_TRUNC: {
			const struct ovs_action_trunc *trunc = nla_data(a);

			if (trunc->max_len < ETH_HLEN)
				return -EINVAL;
			break;
		}

2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581
		case OVS_ACTION_ATTR_HASH: {
			const struct ovs_action_hash *act_hash = nla_data(a);

			switch (act_hash->hash_alg) {
			case OVS_HASH_ALG_L4:
				break;
			default:
				return  -EINVAL;
			}

			break;
		}
2582 2583

		case OVS_ACTION_ATTR_POP_VLAN:
2584 2585
			if (mac_proto != MAC_PROTO_ETHERNET)
				return -EINVAL;
2586
			vlan_tci = htons(0);
2587 2588 2589
			break;

		case OVS_ACTION_ATTR_PUSH_VLAN:
2590 2591
			if (mac_proto != MAC_PROTO_ETHERNET)
				return -EINVAL;
2592
			vlan = nla_data(a);
2593
			if (!eth_type_vlan(vlan->vlan_tpid))
2594 2595 2596
				return -EINVAL;
			if (!(vlan->vlan_tci & htons(VLAN_TAG_PRESENT)))
				return -EINVAL;
2597
			vlan_tci = vlan->vlan_tci;
2598 2599
			break;

2600 2601 2602
		case OVS_ACTION_ATTR_RECIRC:
			break;

2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638
		case OVS_ACTION_ATTR_PUSH_MPLS: {
			const struct ovs_action_push_mpls *mpls = nla_data(a);

			if (!eth_p_mpls(mpls->mpls_ethertype))
				return -EINVAL;
			/* Prohibit push MPLS other than to a white list
			 * for packets that have a known tag order.
			 */
			if (vlan_tci & htons(VLAN_TAG_PRESENT) ||
			    (eth_type != htons(ETH_P_IP) &&
			     eth_type != htons(ETH_P_IPV6) &&
			     eth_type != htons(ETH_P_ARP) &&
			     eth_type != htons(ETH_P_RARP) &&
			     !eth_p_mpls(eth_type)))
				return -EINVAL;
			eth_type = mpls->mpls_ethertype;
			break;
		}

		case OVS_ACTION_ATTR_POP_MPLS:
			if (vlan_tci & htons(VLAN_TAG_PRESENT) ||
			    !eth_p_mpls(eth_type))
				return -EINVAL;

			/* Disallow subsequent L2.5+ set and mpls_pop actions
			 * as there is no check here to ensure that the new
			 * eth_type is valid and thus set actions could
			 * write off the end of the packet or otherwise
			 * corrupt it.
			 *
			 * Support for these actions is planned using packet
			 * recirculation.
			 */
			eth_type = htons(0);
			break;

2639
		case OVS_ACTION_ATTR_SET:
2640
			err = validate_set(a, key, sfa,
2641 2642
					   &skip_copy, mac_proto, eth_type,
					   false, log);
2643 2644 2645 2646 2647 2648
			if (err)
				return err;
			break;

		case OVS_ACTION_ATTR_SET_MASKED:
			err = validate_set(a, key, sfa,
2649 2650
					   &skip_copy, mac_proto, eth_type,
					   true, log);
2651 2652 2653 2654
			if (err)
				return err;
			break;

2655 2656 2657 2658 2659 2660
		case OVS_ACTION_ATTR_SAMPLE: {
			bool last = nla_is_last(a, rem);

			err = validate_and_copy_sample(net, a, key, sfa,
						       eth_type, vlan_tci,
						       log, last);
2661 2662 2663 2664
			if (err)
				return err;
			skip_copy = true;
			break;
2665
		}
2666

J
Joe Stringer 已提交
2667 2668 2669 2670 2671 2672 2673
		case OVS_ACTION_ATTR_CT:
			err = ovs_ct_copy_action(net, a, key, sfa, log);
			if (err)
				return err;
			skip_copy = true;
			break;

E
Eric Garver 已提交
2674 2675 2676
		case OVS_ACTION_ATTR_CT_CLEAR:
			break;

2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692
		case OVS_ACTION_ATTR_PUSH_ETH:
			/* Disallow pushing an Ethernet header if one
			 * is already present */
			if (mac_proto != MAC_PROTO_NONE)
				return -EINVAL;
			mac_proto = MAC_PROTO_NONE;
			break;

		case OVS_ACTION_ATTR_POP_ETH:
			if (mac_proto != MAC_PROTO_ETHERNET)
				return -EINVAL;
			if (vlan_tci & htons(VLAN_TAG_PRESENT))
				return -EINVAL;
			mac_proto = MAC_PROTO_ETHERNET;
			break;

2693
		default:
2694
			OVS_NLERR(log, "Unknown Action type %d", type);
2695 2696 2697
			return -EINVAL;
		}
		if (!skip_copy) {
2698
			err = copy_action(a, sfa, log);
2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709
			if (err)
				return err;
		}
	}

	if (rem > 0)
		return -EINVAL;

	return 0;
}

2710
/* 'key' must be the masked key. */
J
Joe Stringer 已提交
2711
int ovs_nla_copy_actions(struct net *net, const struct nlattr *attr,
2712
			 const struct sw_flow_key *key,
2713
			 struct sw_flow_actions **sfa, bool log)
2714
{
2715 2716
	int err;

2717
	*sfa = nla_alloc_flow_actions(nla_len(attr), log);
2718 2719 2720
	if (IS_ERR(*sfa))
		return PTR_ERR(*sfa);

2721
	(*sfa)->orig_len = nla_len(attr);
2722
	err = __ovs_nla_copy_actions(net, attr, key, sfa, key->eth.type,
2723
				     key->eth.vlan.tci, log);
2724
	if (err)
2725
		ovs_nla_free_flow_actions(*sfa);
2726 2727

	return err;
2728 2729
}

2730 2731
static int sample_action_to_attr(const struct nlattr *attr,
				 struct sk_buff *skb)
2732
{
2733 2734 2735 2736
	struct nlattr *start, *ac_start = NULL, *sample_arg;
	int err = 0, rem = nla_len(attr);
	const struct sample_arg *arg;
	struct nlattr *actions;
2737 2738 2739 2740 2741

	start = nla_nest_start(skb, OVS_ACTION_ATTR_SAMPLE);
	if (!start)
		return -EMSGSIZE;

2742 2743 2744
	sample_arg = nla_data(attr);
	arg = nla_data(sample_arg);
	actions = nla_next(sample_arg, &rem);
2745

2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765
	if (nla_put_u32(skb, OVS_SAMPLE_ATTR_PROBABILITY, arg->probability)) {
		err = -EMSGSIZE;
		goto out;
	}

	ac_start = nla_nest_start(skb, OVS_SAMPLE_ATTR_ACTIONS);
	if (!ac_start) {
		err = -EMSGSIZE;
		goto out;
	}

	err = ovs_nla_put_actions(actions, rem, skb);

out:
	if (err) {
		nla_nest_cancel(skb, ac_start);
		nla_nest_cancel(skb, start);
	} else {
		nla_nest_end(skb, ac_start);
		nla_nest_end(skb, start);
2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778
	}

	return err;
}

static int set_action_to_attr(const struct nlattr *a, struct sk_buff *skb)
{
	const struct nlattr *ovs_key = nla_data(a);
	int key_type = nla_type(ovs_key);
	struct nlattr *start;
	int err;

	switch (key_type) {
2779
	case OVS_KEY_ATTR_TUNNEL_INFO: {
2780 2781
		struct ovs_tunnel_info *ovs_tun = nla_data(ovs_key);
		struct ip_tunnel_info *tun_info = &ovs_tun->tun_dst->u.tun_info;
2782

2783 2784 2785 2786
		start = nla_nest_start(skb, OVS_ACTION_ATTR_SET);
		if (!start)
			return -EMSGSIZE;

2787 2788 2789 2790
		err =  ip_tun_to_nlattr(skb, &tun_info->key,
					ip_tunnel_info_opts(tun_info),
					tun_info->options_len,
					ip_tunnel_info_af(tun_info));
2791 2792 2793 2794
		if (err)
			return err;
		nla_nest_end(skb, start);
		break;
2795
	}
2796 2797 2798 2799 2800 2801 2802 2803 2804
	default:
		if (nla_put(skb, OVS_ACTION_ATTR_SET, nla_len(a), ovs_key))
			return -EMSGSIZE;
		break;
	}

	return 0;
}

2805 2806 2807 2808
static int masked_set_action_to_set_action_attr(const struct nlattr *a,
						struct sk_buff *skb)
{
	const struct nlattr *ovs_key = nla_data(a);
2809
	struct nlattr *nla;
2810 2811 2812 2813 2814
	size_t key_len = nla_len(ovs_key) / 2;

	/* Revert the conversion we did from a non-masked set action to
	 * masked set action.
	 */
2815 2816
	nla = nla_nest_start(skb, OVS_ACTION_ATTR_SET);
	if (!nla)
2817 2818
		return -EMSGSIZE;

2819 2820 2821 2822
	if (nla_put(skb, nla_type(ovs_key), key_len, nla_data(ovs_key)))
		return -EMSGSIZE;

	nla_nest_end(skb, nla);
2823 2824 2825
	return 0;
}

2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840
int ovs_nla_put_actions(const struct nlattr *attr, int len, struct sk_buff *skb)
{
	const struct nlattr *a;
	int rem, err;

	nla_for_each_attr(a, attr, len, rem) {
		int type = nla_type(a);

		switch (type) {
		case OVS_ACTION_ATTR_SET:
			err = set_action_to_attr(a, skb);
			if (err)
				return err;
			break;

2841 2842 2843 2844 2845 2846
		case OVS_ACTION_ATTR_SET_TO_MASKED:
			err = masked_set_action_to_set_action_attr(a, skb);
			if (err)
				return err;
			break;

2847 2848 2849 2850 2851
		case OVS_ACTION_ATTR_SAMPLE:
			err = sample_action_to_attr(a, skb);
			if (err)
				return err;
			break;
J
Joe Stringer 已提交
2852 2853 2854 2855 2856 2857 2858

		case OVS_ACTION_ATTR_CT:
			err = ovs_ct_action_to_attr(nla_data(a), skb);
			if (err)
				return err;
			break;

2859 2860 2861 2862 2863 2864 2865 2866 2867
		default:
			if (nla_put(skb, type, nla_len(a), nla_data(a)))
				return -EMSGSIZE;
			break;
		}
	}

	return 0;
}