flow_netlink.c 63.3 KB
Newer Older
1
/*
2
 * Copyright (c) 2007-2014 Nicira, Inc.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of version 2 of the GNU General Public
 * License as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
 * 02110-1301, USA
 */

19 20
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
#include "flow.h"
#include "datapath.h"
#include <linux/uaccess.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/if_ether.h>
#include <linux/if_vlan.h>
#include <net/llc_pdu.h>
#include <linux/kernel.h>
#include <linux/jhash.h>
#include <linux/jiffies.h>
#include <linux/llc.h>
#include <linux/module.h>
#include <linux/in.h>
#include <linux/rcupdate.h>
#include <linux/if_arp.h>
#include <linux/ip.h>
#include <linux/ipv6.h>
#include <linux/sctp.h>
#include <linux/tcp.h>
#include <linux/udp.h>
#include <linux/icmp.h>
#include <linux/icmpv6.h>
#include <linux/rculist.h>
45
#include <net/geneve.h>
46 47 48
#include <net/ip.h>
#include <net/ipv6.h>
#include <net/ndisc.h>
49
#include <net/mpls.h>
50
#include <net/vxlan.h>
51 52 53

#include "flow_netlink.h"

54 55 56 57 58 59 60
struct ovs_len_tbl {
	int len;
	const struct ovs_len_tbl *next;
};

#define OVS_ATTR_NESTED -1

61 62
static void update_range(struct sw_flow_match *match,
			 size_t offset, size_t size, bool is_mask)
63
{
64
	struct sw_flow_key_range *range;
65 66 67 68 69
	size_t start = rounddown(offset, sizeof(long));
	size_t end = roundup(offset + size, sizeof(long));

	if (!is_mask)
		range = &match->range;
70
	else
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
		range = &match->mask->range;

	if (range->start == range->end) {
		range->start = start;
		range->end = end;
		return;
	}

	if (range->start > start)
		range->start = start;

	if (range->end < end)
		range->end = end;
}

#define SW_FLOW_KEY_PUT(match, field, value, is_mask) \
	do { \
88 89 90 91 92
		update_range(match, offsetof(struct sw_flow_key, field),    \
			     sizeof((match)->key->field), is_mask);	    \
		if (is_mask)						    \
			(match)->mask->key.field = value;		    \
		else							    \
93 94 95
			(match)->key->field = value;		            \
	} while (0)

96 97
#define SW_FLOW_KEY_MEMCPY_OFFSET(match, offset, value_p, len, is_mask)	    \
	do {								    \
98
		update_range(match, offset, len, is_mask);		    \
99 100
		if (is_mask)						    \
			memcpy((u8 *)&(match)->mask->key + offset, value_p, \
101
			       len);					   \
102 103
		else							    \
			memcpy((u8 *)(match)->key + offset, value_p, len);  \
104 105
	} while (0)

106 107 108 109
#define SW_FLOW_KEY_MEMCPY(match, field, value_p, len, is_mask)		      \
	SW_FLOW_KEY_MEMCPY_OFFSET(match, offsetof(struct sw_flow_key, field), \
				  value_p, len, is_mask)

110 111 112 113 114 115 116 117
#define SW_FLOW_KEY_MEMSET_FIELD(match, field, value, is_mask)		    \
	do {								    \
		update_range(match, offsetof(struct sw_flow_key, field),    \
			     sizeof((match)->key->field), is_mask);	    \
		if (is_mask)						    \
			memset((u8 *)&(match)->mask->key.field, value,      \
			       sizeof((match)->mask->key.field));	    \
		else							    \
118 119 120
			memset((u8 *)&(match)->key->field, value,           \
			       sizeof((match)->key->field));                \
	} while (0)
121 122

static bool match_validate(const struct sw_flow_match *match,
123
			   u64 key_attrs, u64 mask_attrs, bool log)
124 125 126 127 128 129 130 131 132
{
	u64 key_expected = 1 << OVS_KEY_ATTR_ETHERNET;
	u64 mask_allowed = key_attrs;  /* At most allow all key attributes */

	/* The following mask attributes allowed only if they
	 * pass the validation tests. */
	mask_allowed &= ~((1 << OVS_KEY_ATTR_IPV4)
			| (1 << OVS_KEY_ATTR_IPV6)
			| (1 << OVS_KEY_ATTR_TCP)
133
			| (1 << OVS_KEY_ATTR_TCP_FLAGS)
134 135 136 137 138
			| (1 << OVS_KEY_ATTR_UDP)
			| (1 << OVS_KEY_ATTR_SCTP)
			| (1 << OVS_KEY_ATTR_ICMP)
			| (1 << OVS_KEY_ATTR_ICMPV6)
			| (1 << OVS_KEY_ATTR_ARP)
139 140
			| (1 << OVS_KEY_ATTR_ND)
			| (1 << OVS_KEY_ATTR_MPLS));
141 142 143 144 145 146 147 148 149 150

	/* Always allowed mask fields. */
	mask_allowed |= ((1 << OVS_KEY_ATTR_TUNNEL)
		       | (1 << OVS_KEY_ATTR_IN_PORT)
		       | (1 << OVS_KEY_ATTR_ETHERTYPE));

	/* Check key attributes. */
	if (match->key->eth.type == htons(ETH_P_ARP)
			|| match->key->eth.type == htons(ETH_P_RARP)) {
		key_expected |= 1 << OVS_KEY_ATTR_ARP;
151
		if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
152 153 154
			mask_allowed |= 1 << OVS_KEY_ATTR_ARP;
	}

155 156 157 158 159 160
	if (eth_p_mpls(match->key->eth.type)) {
		key_expected |= 1 << OVS_KEY_ATTR_MPLS;
		if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
			mask_allowed |= 1 << OVS_KEY_ATTR_MPLS;
	}

161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
	if (match->key->eth.type == htons(ETH_P_IP)) {
		key_expected |= 1 << OVS_KEY_ATTR_IPV4;
		if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
			mask_allowed |= 1 << OVS_KEY_ATTR_IPV4;

		if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) {
			if (match->key->ip.proto == IPPROTO_UDP) {
				key_expected |= 1 << OVS_KEY_ATTR_UDP;
				if (match->mask && (match->mask->key.ip.proto == 0xff))
					mask_allowed |= 1 << OVS_KEY_ATTR_UDP;
			}

			if (match->key->ip.proto == IPPROTO_SCTP) {
				key_expected |= 1 << OVS_KEY_ATTR_SCTP;
				if (match->mask && (match->mask->key.ip.proto == 0xff))
					mask_allowed |= 1 << OVS_KEY_ATTR_SCTP;
			}

			if (match->key->ip.proto == IPPROTO_TCP) {
				key_expected |= 1 << OVS_KEY_ATTR_TCP;
181 182
				key_expected |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
				if (match->mask && (match->mask->key.ip.proto == 0xff)) {
183
					mask_allowed |= 1 << OVS_KEY_ATTR_TCP;
184 185
					mask_allowed |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
				}
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
			}

			if (match->key->ip.proto == IPPROTO_ICMP) {
				key_expected |= 1 << OVS_KEY_ATTR_ICMP;
				if (match->mask && (match->mask->key.ip.proto == 0xff))
					mask_allowed |= 1 << OVS_KEY_ATTR_ICMP;
			}
		}
	}

	if (match->key->eth.type == htons(ETH_P_IPV6)) {
		key_expected |= 1 << OVS_KEY_ATTR_IPV6;
		if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
			mask_allowed |= 1 << OVS_KEY_ATTR_IPV6;

		if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) {
			if (match->key->ip.proto == IPPROTO_UDP) {
				key_expected |= 1 << OVS_KEY_ATTR_UDP;
				if (match->mask && (match->mask->key.ip.proto == 0xff))
					mask_allowed |= 1 << OVS_KEY_ATTR_UDP;
			}

			if (match->key->ip.proto == IPPROTO_SCTP) {
				key_expected |= 1 << OVS_KEY_ATTR_SCTP;
				if (match->mask && (match->mask->key.ip.proto == 0xff))
					mask_allowed |= 1 << OVS_KEY_ATTR_SCTP;
			}

			if (match->key->ip.proto == IPPROTO_TCP) {
				key_expected |= 1 << OVS_KEY_ATTR_TCP;
216 217
				key_expected |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
				if (match->mask && (match->mask->key.ip.proto == 0xff)) {
218
					mask_allowed |= 1 << OVS_KEY_ATTR_TCP;
219 220
					mask_allowed |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
				}
221 222 223 224 225 226 227
			}

			if (match->key->ip.proto == IPPROTO_ICMPV6) {
				key_expected |= 1 << OVS_KEY_ATTR_ICMPV6;
				if (match->mask && (match->mask->key.ip.proto == 0xff))
					mask_allowed |= 1 << OVS_KEY_ATTR_ICMPV6;

228
				if (match->key->tp.src ==
229
						htons(NDISC_NEIGHBOUR_SOLICITATION) ||
230
				    match->key->tp.src == htons(NDISC_NEIGHBOUR_ADVERTISEMENT)) {
231
					key_expected |= 1 << OVS_KEY_ATTR_ND;
232
					if (match->mask && (match->mask->key.tp.src == htons(0xff)))
233 234 235 236 237 238 239 240
						mask_allowed |= 1 << OVS_KEY_ATTR_ND;
				}
			}
		}
	}

	if ((key_attrs & key_expected) != key_expected) {
		/* Key attributes check failed. */
241 242 243
		OVS_NLERR(log, "Missing key (keys=%llx, expected=%llx)",
			  (unsigned long long)key_attrs,
			  (unsigned long long)key_expected);
244 245 246 247 248
		return false;
	}

	if ((mask_attrs & mask_allowed) != mask_attrs) {
		/* Mask attributes check failed. */
249 250 251
		OVS_NLERR(log, "Unexpected mask (mask=%llx, allowed=%llx)",
			  (unsigned long long)mask_attrs,
			  (unsigned long long)mask_allowed);
252 253 254 255 256 257
		return false;
	}

	return true;
}

258 259 260 261 262 263 264 265 266 267 268 269 270 271
size_t ovs_tun_key_attr_size(void)
{
	/* Whenever adding new OVS_TUNNEL_KEY_ FIELDS, we should consider
	 * updating this function.
	 */
	return    nla_total_size(8)    /* OVS_TUNNEL_KEY_ATTR_ID */
		+ nla_total_size(4)    /* OVS_TUNNEL_KEY_ATTR_IPV4_SRC */
		+ nla_total_size(4)    /* OVS_TUNNEL_KEY_ATTR_IPV4_DST */
		+ nla_total_size(1)    /* OVS_TUNNEL_KEY_ATTR_TOS */
		+ nla_total_size(1)    /* OVS_TUNNEL_KEY_ATTR_TTL */
		+ nla_total_size(0)    /* OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT */
		+ nla_total_size(0)    /* OVS_TUNNEL_KEY_ATTR_CSUM */
		+ nla_total_size(0)    /* OVS_TUNNEL_KEY_ATTR_OAM */
		+ nla_total_size(256)  /* OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS */
272 273 274
		/* OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS is mutually exclusive with
		 * OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS and covered by it.
		 */
275 276 277 278
		+ nla_total_size(2)    /* OVS_TUNNEL_KEY_ATTR_TP_SRC */
		+ nla_total_size(2);   /* OVS_TUNNEL_KEY_ATTR_TP_DST */
}

279 280 281 282 283 284 285 286 287
size_t ovs_key_attr_size(void)
{
	/* Whenever adding new OVS_KEY_ FIELDS, we should consider
	 * updating this function.
	 */
	BUILD_BUG_ON(OVS_KEY_ATTR_TUNNEL_INFO != 22);

	return    nla_total_size(4)   /* OVS_KEY_ATTR_PRIORITY */
		+ nla_total_size(0)   /* OVS_KEY_ATTR_TUNNEL */
288
		  + ovs_tun_key_attr_size()
289 290 291 292 293 294 295 296 297 298 299 300 301 302
		+ nla_total_size(4)   /* OVS_KEY_ATTR_IN_PORT */
		+ nla_total_size(4)   /* OVS_KEY_ATTR_SKB_MARK */
		+ nla_total_size(4)   /* OVS_KEY_ATTR_DP_HASH */
		+ nla_total_size(4)   /* OVS_KEY_ATTR_RECIRC_ID */
		+ nla_total_size(12)  /* OVS_KEY_ATTR_ETHERNET */
		+ nla_total_size(2)   /* OVS_KEY_ATTR_ETHERTYPE */
		+ nla_total_size(4)   /* OVS_KEY_ATTR_VLAN */
		+ nla_total_size(0)   /* OVS_KEY_ATTR_ENCAP */
		+ nla_total_size(2)   /* OVS_KEY_ATTR_ETHERTYPE */
		+ nla_total_size(40)  /* OVS_KEY_ATTR_IPV6 */
		+ nla_total_size(2)   /* OVS_KEY_ATTR_ICMPV6 */
		+ nla_total_size(28); /* OVS_KEY_ATTR_ND */
}

303 304 305 306 307 308 309 310 311 312 313 314
static const struct ovs_len_tbl ovs_tunnel_key_lens[OVS_TUNNEL_KEY_ATTR_MAX + 1] = {
	[OVS_TUNNEL_KEY_ATTR_ID]	    = { .len = sizeof(u64) },
	[OVS_TUNNEL_KEY_ATTR_IPV4_SRC]	    = { .len = sizeof(u32) },
	[OVS_TUNNEL_KEY_ATTR_IPV4_DST]	    = { .len = sizeof(u32) },
	[OVS_TUNNEL_KEY_ATTR_TOS]	    = { .len = 1 },
	[OVS_TUNNEL_KEY_ATTR_TTL]	    = { .len = 1 },
	[OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT] = { .len = 0 },
	[OVS_TUNNEL_KEY_ATTR_CSUM]	    = { .len = 0 },
	[OVS_TUNNEL_KEY_ATTR_TP_SRC]	    = { .len = sizeof(u16) },
	[OVS_TUNNEL_KEY_ATTR_TP_DST]	    = { .len = sizeof(u16) },
	[OVS_TUNNEL_KEY_ATTR_OAM]	    = { .len = 0 },
	[OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS]   = { .len = OVS_ATTR_NESTED },
315
	[OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS]    = { .len = OVS_ATTR_NESTED },
316 317
};

318
/* The size of the argument for each %OVS_KEY_ATTR_* Netlink attribute.  */
319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
static const struct ovs_len_tbl ovs_key_lens[OVS_KEY_ATTR_MAX + 1] = {
	[OVS_KEY_ATTR_ENCAP]	 = { .len = OVS_ATTR_NESTED },
	[OVS_KEY_ATTR_PRIORITY]	 = { .len = sizeof(u32) },
	[OVS_KEY_ATTR_IN_PORT]	 = { .len = sizeof(u32) },
	[OVS_KEY_ATTR_SKB_MARK]	 = { .len = sizeof(u32) },
	[OVS_KEY_ATTR_ETHERNET]	 = { .len = sizeof(struct ovs_key_ethernet) },
	[OVS_KEY_ATTR_VLAN]	 = { .len = sizeof(__be16) },
	[OVS_KEY_ATTR_ETHERTYPE] = { .len = sizeof(__be16) },
	[OVS_KEY_ATTR_IPV4]	 = { .len = sizeof(struct ovs_key_ipv4) },
	[OVS_KEY_ATTR_IPV6]	 = { .len = sizeof(struct ovs_key_ipv6) },
	[OVS_KEY_ATTR_TCP]	 = { .len = sizeof(struct ovs_key_tcp) },
	[OVS_KEY_ATTR_TCP_FLAGS] = { .len = sizeof(__be16) },
	[OVS_KEY_ATTR_UDP]	 = { .len = sizeof(struct ovs_key_udp) },
	[OVS_KEY_ATTR_SCTP]	 = { .len = sizeof(struct ovs_key_sctp) },
	[OVS_KEY_ATTR_ICMP]	 = { .len = sizeof(struct ovs_key_icmp) },
	[OVS_KEY_ATTR_ICMPV6]	 = { .len = sizeof(struct ovs_key_icmpv6) },
	[OVS_KEY_ATTR_ARP]	 = { .len = sizeof(struct ovs_key_arp) },
	[OVS_KEY_ATTR_ND]	 = { .len = sizeof(struct ovs_key_nd) },
	[OVS_KEY_ATTR_RECIRC_ID] = { .len = sizeof(u32) },
	[OVS_KEY_ATTR_DP_HASH]	 = { .len = sizeof(u32) },
	[OVS_KEY_ATTR_TUNNEL]	 = { .len = OVS_ATTR_NESTED,
				     .next = ovs_tunnel_key_lens, },
	[OVS_KEY_ATTR_MPLS]	 = { .len = sizeof(struct ovs_key_mpls) },
342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359
};

static bool is_all_zero(const u8 *fp, size_t size)
{
	int i;

	if (!fp)
		return false;

	for (i = 0; i < size; i++)
		if (fp[i])
			return false;

	return true;
}

static int __parse_flow_nlattrs(const struct nlattr *attr,
				const struct nlattr *a[],
360
				u64 *attrsp, bool log, bool nz)
361 362 363 364 365 366 367 368 369 370 371
{
	const struct nlattr *nla;
	u64 attrs;
	int rem;

	attrs = *attrsp;
	nla_for_each_nested(nla, attr, rem) {
		u16 type = nla_type(nla);
		int expected_len;

		if (type > OVS_KEY_ATTR_MAX) {
372
			OVS_NLERR(log, "Key type %d is out of range max %d",
373 374 375 376 377
				  type, OVS_KEY_ATTR_MAX);
			return -EINVAL;
		}

		if (attrs & (1 << type)) {
378
			OVS_NLERR(log, "Duplicate key (type %d).", type);
379 380 381
			return -EINVAL;
		}

382 383
		expected_len = ovs_key_lens[type].len;
		if (nla_len(nla) != expected_len && expected_len != OVS_ATTR_NESTED) {
384 385
			OVS_NLERR(log, "Key %d has unexpected len %d expected %d",
				  type, nla_len(nla), expected_len);
386 387 388 389 390 391 392 393 394
			return -EINVAL;
		}

		if (!nz || !is_all_zero(nla_data(nla), expected_len)) {
			attrs |= 1 << type;
			a[type] = nla;
		}
	}
	if (rem) {
395
		OVS_NLERR(log, "Message has %d unknown bytes.", rem);
396 397 398 399 400 401 402 403
		return -EINVAL;
	}

	*attrsp = attrs;
	return 0;
}

static int parse_flow_mask_nlattrs(const struct nlattr *attr,
404 405
				   const struct nlattr *a[], u64 *attrsp,
				   bool log)
406
{
407
	return __parse_flow_nlattrs(attr, a, attrsp, log, true);
408 409 410
}

static int parse_flow_nlattrs(const struct nlattr *attr,
411 412
			      const struct nlattr *a[], u64 *attrsp,
			      bool log)
413
{
414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
	return __parse_flow_nlattrs(attr, a, attrsp, log, false);
}

static int genev_tun_opt_from_nlattr(const struct nlattr *a,
				     struct sw_flow_match *match, bool is_mask,
				     bool log)
{
	unsigned long opt_key_offset;

	if (nla_len(a) > sizeof(match->key->tun_opts)) {
		OVS_NLERR(log, "Geneve option length err (len %d, max %zu).",
			  nla_len(a), sizeof(match->key->tun_opts));
		return -EINVAL;
	}

	if (nla_len(a) % 4 != 0) {
		OVS_NLERR(log, "Geneve opt len %d is not a multiple of 4.",
			  nla_len(a));
		return -EINVAL;
	}

	/* We need to record the length of the options passed
	 * down, otherwise packets with the same format but
	 * additional options will be silently matched.
	 */
	if (!is_mask) {
		SW_FLOW_KEY_PUT(match, tun_opts_len, nla_len(a),
				false);
	} else {
		/* This is somewhat unusual because it looks at
		 * both the key and mask while parsing the
		 * attributes (and by extension assumes the key
		 * is parsed first). Normally, we would verify
		 * that each is the correct length and that the
		 * attributes line up in the validate function.
		 * However, that is difficult because this is
		 * variable length and we won't have the
		 * information later.
		 */
		if (match->key->tun_opts_len != nla_len(a)) {
			OVS_NLERR(log, "Geneve option len %d != mask len %d",
				  match->key->tun_opts_len, nla_len(a));
			return -EINVAL;
		}

		SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true);
	}

462
	opt_key_offset = TUN_METADATA_OFFSET(nla_len(a));
463 464 465
	SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, nla_data(a),
				  nla_len(a), is_mask);
	return 0;
466 467
}

468 469 470 471 472 473 474 475 476 477
static const struct nla_policy vxlan_opt_policy[OVS_VXLAN_EXT_MAX + 1] = {
	[OVS_VXLAN_EXT_GBP]	= { .type = NLA_U32 },
};

static int vxlan_tun_opt_from_nlattr(const struct nlattr *a,
				     struct sw_flow_match *match, bool is_mask,
				     bool log)
{
	struct nlattr *tb[OVS_VXLAN_EXT_MAX+1];
	unsigned long opt_key_offset;
478
	struct vxlan_metadata opts;
479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
	int err;

	BUILD_BUG_ON(sizeof(opts) > sizeof(match->key->tun_opts));

	err = nla_parse_nested(tb, OVS_VXLAN_EXT_MAX, a, vxlan_opt_policy);
	if (err < 0)
		return err;

	memset(&opts, 0, sizeof(opts));

	if (tb[OVS_VXLAN_EXT_GBP])
		opts.gbp = nla_get_u32(tb[OVS_VXLAN_EXT_GBP]);

	if (!is_mask)
		SW_FLOW_KEY_PUT(match, tun_opts_len, sizeof(opts), false);
	else
		SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true);

	opt_key_offset = TUN_METADATA_OFFSET(sizeof(opts));
	SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, &opts, sizeof(opts),
				  is_mask);
	return 0;
}

503
static int ipv4_tun_from_nlattr(const struct nlattr *attr,
504 505
				struct sw_flow_match *match, bool is_mask,
				bool log)
506 507 508 509 510
{
	struct nlattr *a;
	int rem;
	bool ttl = false;
	__be16 tun_flags = 0;
511
	int opts_type = 0;
512 513 514

	nla_for_each_nested(a, attr, rem) {
		int type = nla_type(a);
515 516
		int err;

517
		if (type > OVS_TUNNEL_KEY_ATTR_MAX) {
518 519
			OVS_NLERR(log, "Tunnel attr %d out of range max %d",
				  type, OVS_TUNNEL_KEY_ATTR_MAX);
520 521 522
			return -EINVAL;
		}

523 524
		if (ovs_tunnel_key_lens[type].len != nla_len(a) &&
		    ovs_tunnel_key_lens[type].len != OVS_ATTR_NESTED) {
525
			OVS_NLERR(log, "Tunnel attr %d has unexpected len %d expected %d",
526
				  type, nla_len(a), ovs_tunnel_key_lens[type].len);
527 528 529 530 531 532 533 534 535 536 537
			return -EINVAL;
		}

		switch (type) {
		case OVS_TUNNEL_KEY_ATTR_ID:
			SW_FLOW_KEY_PUT(match, tun_key.tun_id,
					nla_get_be64(a), is_mask);
			tun_flags |= TUNNEL_KEY;
			break;
		case OVS_TUNNEL_KEY_ATTR_IPV4_SRC:
			SW_FLOW_KEY_PUT(match, tun_key.ipv4_src,
538
					nla_get_in_addr(a), is_mask);
539 540 541
			break;
		case OVS_TUNNEL_KEY_ATTR_IPV4_DST:
			SW_FLOW_KEY_PUT(match, tun_key.ipv4_dst,
542
					nla_get_in_addr(a), is_mask);
543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558
			break;
		case OVS_TUNNEL_KEY_ATTR_TOS:
			SW_FLOW_KEY_PUT(match, tun_key.ipv4_tos,
					nla_get_u8(a), is_mask);
			break;
		case OVS_TUNNEL_KEY_ATTR_TTL:
			SW_FLOW_KEY_PUT(match, tun_key.ipv4_ttl,
					nla_get_u8(a), is_mask);
			ttl = true;
			break;
		case OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT:
			tun_flags |= TUNNEL_DONT_FRAGMENT;
			break;
		case OVS_TUNNEL_KEY_ATTR_CSUM:
			tun_flags |= TUNNEL_CSUM;
			break;
559 560 561 562 563 564 565 566
		case OVS_TUNNEL_KEY_ATTR_TP_SRC:
			SW_FLOW_KEY_PUT(match, tun_key.tp_src,
					nla_get_be16(a), is_mask);
			break;
		case OVS_TUNNEL_KEY_ATTR_TP_DST:
			SW_FLOW_KEY_PUT(match, tun_key.tp_dst,
					nla_get_be16(a), is_mask);
			break;
567 568 569
		case OVS_TUNNEL_KEY_ATTR_OAM:
			tun_flags |= TUNNEL_OAM;
			break;
570
		case OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS:
571 572 573 574 575
			if (opts_type) {
				OVS_NLERR(log, "Multiple metadata blocks provided");
				return -EINVAL;
			}

576 577 578
			err = genev_tun_opt_from_nlattr(a, match, is_mask, log);
			if (err)
				return err;
579

580 581 582 583 584 585 586 587 588 589 590 591 592 593 594
			tun_flags |= TUNNEL_GENEVE_OPT;
			opts_type = type;
			break;
		case OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS:
			if (opts_type) {
				OVS_NLERR(log, "Multiple metadata blocks provided");
				return -EINVAL;
			}

			err = vxlan_tun_opt_from_nlattr(a, match, is_mask, log);
			if (err)
				return err;

			tun_flags |= TUNNEL_VXLAN_OPT;
			opts_type = type;
595
			break;
596
		default:
597
			OVS_NLERR(log, "Unknown IPv4 tunnel attribute %d",
598
				  type);
599 600 601 602 603 604 605
			return -EINVAL;
		}
	}

	SW_FLOW_KEY_PUT(match, tun_key.tun_flags, tun_flags, is_mask);

	if (rem > 0) {
606 607
		OVS_NLERR(log, "IPv4 tunnel attribute has %d unknown bytes.",
			  rem);
608 609 610 611 612
		return -EINVAL;
	}

	if (!is_mask) {
		if (!match->key->tun_key.ipv4_dst) {
613
			OVS_NLERR(log, "IPv4 tunnel dst address is zero");
614 615 616 617
			return -EINVAL;
		}

		if (!ttl) {
618
			OVS_NLERR(log, "IPv4 tunnel TTL not specified.");
619 620 621 622
			return -EINVAL;
		}
	}

623 624 625 626 627 628
	return opts_type;
}

static int vxlan_opt_to_nlattr(struct sk_buff *skb,
			       const void *tun_opts, int swkey_tun_opts_len)
{
629
	const struct vxlan_metadata *opts = tun_opts;
630 631 632 633 634 635 636 637 638 639
	struct nlattr *nla;

	nla = nla_nest_start(skb, OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS);
	if (!nla)
		return -EMSGSIZE;

	if (nla_put_u32(skb, OVS_VXLAN_EXT_GBP, opts->gbp) < 0)
		return -EMSGSIZE;

	nla_nest_end(skb, nla);
640 641 642
	return 0;
}

643
static int __ipv4_tun_to_nlattr(struct sk_buff *skb,
644
				const struct ip_tunnel_key *output,
645
				const void *tun_opts, int swkey_tun_opts_len)
646 647 648 649 650
{
	if (output->tun_flags & TUNNEL_KEY &&
	    nla_put_be64(skb, OVS_TUNNEL_KEY_ATTR_ID, output->tun_id))
		return -EMSGSIZE;
	if (output->ipv4_src &&
651 652
	    nla_put_in_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV4_SRC,
			    output->ipv4_src))
653 654
		return -EMSGSIZE;
	if (output->ipv4_dst &&
655 656
	    nla_put_in_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV4_DST,
			    output->ipv4_dst))
657 658
		return -EMSGSIZE;
	if (output->ipv4_tos &&
659
	    nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TOS, output->ipv4_tos))
660 661 662 663
		return -EMSGSIZE;
	if (nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TTL, output->ipv4_ttl))
		return -EMSGSIZE;
	if ((output->tun_flags & TUNNEL_DONT_FRAGMENT) &&
664
	    nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT))
665 666
		return -EMSGSIZE;
	if ((output->tun_flags & TUNNEL_CSUM) &&
667 668
	    nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_CSUM))
		return -EMSGSIZE;
669 670 671 672 673 674
	if (output->tp_src &&
	    nla_put_be16(skb, OVS_TUNNEL_KEY_ATTR_TP_SRC, output->tp_src))
		return -EMSGSIZE;
	if (output->tp_dst &&
	    nla_put_be16(skb, OVS_TUNNEL_KEY_ATTR_TP_DST, output->tp_dst))
		return -EMSGSIZE;
675 676
	if ((output->tun_flags & TUNNEL_OAM) &&
	    nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_OAM))
677
		return -EMSGSIZE;
678 679 680 681 682 683 684 685 686
	if (tun_opts) {
		if (output->tun_flags & TUNNEL_GENEVE_OPT &&
		    nla_put(skb, OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS,
			    swkey_tun_opts_len, tun_opts))
			return -EMSGSIZE;
		else if (output->tun_flags & TUNNEL_VXLAN_OPT &&
			 vxlan_opt_to_nlattr(skb, tun_opts, swkey_tun_opts_len))
			return -EMSGSIZE;
	}
687 688 689 690

	return 0;
}

691
static int ipv4_tun_to_nlattr(struct sk_buff *skb,
692
			      const struct ip_tunnel_key *output,
693
			      const void *tun_opts, int swkey_tun_opts_len)
694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709
{
	struct nlattr *nla;
	int err;

	nla = nla_nest_start(skb, OVS_KEY_ATTR_TUNNEL);
	if (!nla)
		return -EMSGSIZE;

	err = __ipv4_tun_to_nlattr(skb, output, tun_opts, swkey_tun_opts_len);
	if (err)
		return err;

	nla_nest_end(skb, nla);
	return 0;
}

710
int ovs_nla_put_egress_tunnel_key(struct sk_buff *skb,
711
				  const struct ip_tunnel_info *egress_tun_info)
712
{
713
	return __ipv4_tun_to_nlattr(skb, &egress_tun_info->key,
714 715 716 717
				    egress_tun_info->options,
				    egress_tun_info->options_len);
}

718
static int metadata_from_nlattrs(struct sw_flow_match *match,  u64 *attrs,
719 720
				 const struct nlattr **a, bool is_mask,
				 bool log)
721
{
722 723 724 725 726 727 728 729 730 731 732 733 734 735
	if (*attrs & (1 << OVS_KEY_ATTR_DP_HASH)) {
		u32 hash_val = nla_get_u32(a[OVS_KEY_ATTR_DP_HASH]);

		SW_FLOW_KEY_PUT(match, ovs_flow_hash, hash_val, is_mask);
		*attrs &= ~(1 << OVS_KEY_ATTR_DP_HASH);
	}

	if (*attrs & (1 << OVS_KEY_ATTR_RECIRC_ID)) {
		u32 recirc_id = nla_get_u32(a[OVS_KEY_ATTR_RECIRC_ID]);

		SW_FLOW_KEY_PUT(match, recirc_id, recirc_id, is_mask);
		*attrs &= ~(1 << OVS_KEY_ATTR_RECIRC_ID);
	}

736 737 738 739 740 741 742 743 744
	if (*attrs & (1 << OVS_KEY_ATTR_PRIORITY)) {
		SW_FLOW_KEY_PUT(match, phy.priority,
			  nla_get_u32(a[OVS_KEY_ATTR_PRIORITY]), is_mask);
		*attrs &= ~(1 << OVS_KEY_ATTR_PRIORITY);
	}

	if (*attrs & (1 << OVS_KEY_ATTR_IN_PORT)) {
		u32 in_port = nla_get_u32(a[OVS_KEY_ATTR_IN_PORT]);

745
		if (is_mask) {
746
			in_port = 0xffffffff; /* Always exact match in_port. */
747
		} else if (in_port >= DP_MAX_PORTS) {
748
			OVS_NLERR(log, "Port %d exceeds max allowable %d",
749
				  in_port, DP_MAX_PORTS);
750
			return -EINVAL;
751
		}
752 753 754 755 756 757 758 759 760 761 762 763 764 765 766

		SW_FLOW_KEY_PUT(match, phy.in_port, in_port, is_mask);
		*attrs &= ~(1 << OVS_KEY_ATTR_IN_PORT);
	} else if (!is_mask) {
		SW_FLOW_KEY_PUT(match, phy.in_port, DP_MAX_PORTS, is_mask);
	}

	if (*attrs & (1 << OVS_KEY_ATTR_SKB_MARK)) {
		uint32_t mark = nla_get_u32(a[OVS_KEY_ATTR_SKB_MARK]);

		SW_FLOW_KEY_PUT(match, phy.skb_mark, mark, is_mask);
		*attrs &= ~(1 << OVS_KEY_ATTR_SKB_MARK);
	}
	if (*attrs & (1 << OVS_KEY_ATTR_TUNNEL)) {
		if (ipv4_tun_from_nlattr(a[OVS_KEY_ATTR_TUNNEL], match,
767
					 is_mask, log) < 0)
768 769 770 771 772 773
			return -EINVAL;
		*attrs &= ~(1 << OVS_KEY_ATTR_TUNNEL);
	}
	return 0;
}

774
static int ovs_key_from_nlattrs(struct sw_flow_match *match, u64 attrs,
775 776
				const struct nlattr **a, bool is_mask,
				bool log)
777 778 779
{
	int err;

780
	err = metadata_from_nlattrs(match, &attrs, a, is_mask, log);
781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800
	if (err)
		return err;

	if (attrs & (1 << OVS_KEY_ATTR_ETHERNET)) {
		const struct ovs_key_ethernet *eth_key;

		eth_key = nla_data(a[OVS_KEY_ATTR_ETHERNET]);
		SW_FLOW_KEY_MEMCPY(match, eth.src,
				eth_key->eth_src, ETH_ALEN, is_mask);
		SW_FLOW_KEY_MEMCPY(match, eth.dst,
				eth_key->eth_dst, ETH_ALEN, is_mask);
		attrs &= ~(1 << OVS_KEY_ATTR_ETHERNET);
	}

	if (attrs & (1 << OVS_KEY_ATTR_VLAN)) {
		__be16 tci;

		tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
		if (!(tci & htons(VLAN_TAG_PRESENT))) {
			if (is_mask)
801
				OVS_NLERR(log, "VLAN TCI mask does not have exact match for VLAN_TAG_PRESENT bit.");
802
			else
803
				OVS_NLERR(log, "VLAN TCI does not have VLAN_TAG_PRESENT bit set.");
804 805 806 807 808 809

			return -EINVAL;
		}

		SW_FLOW_KEY_PUT(match, eth.tci, tci, is_mask);
		attrs &= ~(1 << OVS_KEY_ATTR_VLAN);
810
	}
811 812 813 814 815 816 817 818

	if (attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) {
		__be16 eth_type;

		eth_type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
		if (is_mask) {
			/* Always exact match EtherType. */
			eth_type = htons(0xffff);
819
		} else if (!eth_proto_is_802_3(eth_type)) {
820 821
			OVS_NLERR(log, "EtherType %x is less than min %x",
				  ntohs(eth_type), ETH_P_802_3_MIN);
822 823 824 825 826 827 828 829 830 831 832 833 834 835
			return -EINVAL;
		}

		SW_FLOW_KEY_PUT(match, eth.type, eth_type, is_mask);
		attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
	} else if (!is_mask) {
		SW_FLOW_KEY_PUT(match, eth.type, htons(ETH_P_802_2), is_mask);
	}

	if (attrs & (1 << OVS_KEY_ATTR_IPV4)) {
		const struct ovs_key_ipv4 *ipv4_key;

		ipv4_key = nla_data(a[OVS_KEY_ATTR_IPV4]);
		if (!is_mask && ipv4_key->ipv4_frag > OVS_FRAG_TYPE_MAX) {
836 837
			OVS_NLERR(log, "IPv4 frag type %d is out of range max %d",
				  ipv4_key->ipv4_frag, OVS_FRAG_TYPE_MAX);
838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859
			return -EINVAL;
		}
		SW_FLOW_KEY_PUT(match, ip.proto,
				ipv4_key->ipv4_proto, is_mask);
		SW_FLOW_KEY_PUT(match, ip.tos,
				ipv4_key->ipv4_tos, is_mask);
		SW_FLOW_KEY_PUT(match, ip.ttl,
				ipv4_key->ipv4_ttl, is_mask);
		SW_FLOW_KEY_PUT(match, ip.frag,
				ipv4_key->ipv4_frag, is_mask);
		SW_FLOW_KEY_PUT(match, ipv4.addr.src,
				ipv4_key->ipv4_src, is_mask);
		SW_FLOW_KEY_PUT(match, ipv4.addr.dst,
				ipv4_key->ipv4_dst, is_mask);
		attrs &= ~(1 << OVS_KEY_ATTR_IPV4);
	}

	if (attrs & (1 << OVS_KEY_ATTR_IPV6)) {
		const struct ovs_key_ipv6 *ipv6_key;

		ipv6_key = nla_data(a[OVS_KEY_ATTR_IPV6]);
		if (!is_mask && ipv6_key->ipv6_frag > OVS_FRAG_TYPE_MAX) {
860 861
			OVS_NLERR(log, "IPv6 frag type %d is out of range max %d",
				  ipv6_key->ipv6_frag, OVS_FRAG_TYPE_MAX);
862 863
			return -EINVAL;
		}
864

865
		if (!is_mask && ipv6_key->ipv6_label & htonl(0xFFF00000)) {
866
			OVS_NLERR(log, "IPv6 flow label %x is out of range (max=%x).\n",
867 868 869 870
				  ntohl(ipv6_key->ipv6_label), (1 << 20) - 1);
			return -EINVAL;
		}

871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897
		SW_FLOW_KEY_PUT(match, ipv6.label,
				ipv6_key->ipv6_label, is_mask);
		SW_FLOW_KEY_PUT(match, ip.proto,
				ipv6_key->ipv6_proto, is_mask);
		SW_FLOW_KEY_PUT(match, ip.tos,
				ipv6_key->ipv6_tclass, is_mask);
		SW_FLOW_KEY_PUT(match, ip.ttl,
				ipv6_key->ipv6_hlimit, is_mask);
		SW_FLOW_KEY_PUT(match, ip.frag,
				ipv6_key->ipv6_frag, is_mask);
		SW_FLOW_KEY_MEMCPY(match, ipv6.addr.src,
				ipv6_key->ipv6_src,
				sizeof(match->key->ipv6.addr.src),
				is_mask);
		SW_FLOW_KEY_MEMCPY(match, ipv6.addr.dst,
				ipv6_key->ipv6_dst,
				sizeof(match->key->ipv6.addr.dst),
				is_mask);

		attrs &= ~(1 << OVS_KEY_ATTR_IPV6);
	}

	if (attrs & (1 << OVS_KEY_ATTR_ARP)) {
		const struct ovs_key_arp *arp_key;

		arp_key = nla_data(a[OVS_KEY_ATTR_ARP]);
		if (!is_mask && (arp_key->arp_op & htons(0xff00))) {
898
			OVS_NLERR(log, "Unknown ARP opcode (opcode=%d).",
899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916
				  arp_key->arp_op);
			return -EINVAL;
		}

		SW_FLOW_KEY_PUT(match, ipv4.addr.src,
				arp_key->arp_sip, is_mask);
		SW_FLOW_KEY_PUT(match, ipv4.addr.dst,
			arp_key->arp_tip, is_mask);
		SW_FLOW_KEY_PUT(match, ip.proto,
				ntohs(arp_key->arp_op), is_mask);
		SW_FLOW_KEY_MEMCPY(match, ipv4.arp.sha,
				arp_key->arp_sha, ETH_ALEN, is_mask);
		SW_FLOW_KEY_MEMCPY(match, ipv4.arp.tha,
				arp_key->arp_tha, ETH_ALEN, is_mask);

		attrs &= ~(1 << OVS_KEY_ATTR_ARP);
	}

917 918 919 920 921 922 923 924 925 926
	if (attrs & (1 << OVS_KEY_ATTR_MPLS)) {
		const struct ovs_key_mpls *mpls_key;

		mpls_key = nla_data(a[OVS_KEY_ATTR_MPLS]);
		SW_FLOW_KEY_PUT(match, mpls.top_lse,
				mpls_key->mpls_lse, is_mask);

		attrs &= ~(1 << OVS_KEY_ATTR_MPLS);
	 }

927 928 929 930
	if (attrs & (1 << OVS_KEY_ATTR_TCP)) {
		const struct ovs_key_tcp *tcp_key;

		tcp_key = nla_data(a[OVS_KEY_ATTR_TCP]);
931 932
		SW_FLOW_KEY_PUT(match, tp.src, tcp_key->tcp_src, is_mask);
		SW_FLOW_KEY_PUT(match, tp.dst, tcp_key->tcp_dst, is_mask);
933 934 935
		attrs &= ~(1 << OVS_KEY_ATTR_TCP);
	}

936
	if (attrs & (1 << OVS_KEY_ATTR_TCP_FLAGS)) {
937 938 939
		SW_FLOW_KEY_PUT(match, tp.flags,
				nla_get_be16(a[OVS_KEY_ATTR_TCP_FLAGS]),
				is_mask);
940 941 942
		attrs &= ~(1 << OVS_KEY_ATTR_TCP_FLAGS);
	}

943 944 945 946
	if (attrs & (1 << OVS_KEY_ATTR_UDP)) {
		const struct ovs_key_udp *udp_key;

		udp_key = nla_data(a[OVS_KEY_ATTR_UDP]);
947 948
		SW_FLOW_KEY_PUT(match, tp.src, udp_key->udp_src, is_mask);
		SW_FLOW_KEY_PUT(match, tp.dst, udp_key->udp_dst, is_mask);
949 950 951 952 953 954 955
		attrs &= ~(1 << OVS_KEY_ATTR_UDP);
	}

	if (attrs & (1 << OVS_KEY_ATTR_SCTP)) {
		const struct ovs_key_sctp *sctp_key;

		sctp_key = nla_data(a[OVS_KEY_ATTR_SCTP]);
956 957
		SW_FLOW_KEY_PUT(match, tp.src, sctp_key->sctp_src, is_mask);
		SW_FLOW_KEY_PUT(match, tp.dst, sctp_key->sctp_dst, is_mask);
958 959 960 961 962 963 964
		attrs &= ~(1 << OVS_KEY_ATTR_SCTP);
	}

	if (attrs & (1 << OVS_KEY_ATTR_ICMP)) {
		const struct ovs_key_icmp *icmp_key;

		icmp_key = nla_data(a[OVS_KEY_ATTR_ICMP]);
965
		SW_FLOW_KEY_PUT(match, tp.src,
966
				htons(icmp_key->icmp_type), is_mask);
967
		SW_FLOW_KEY_PUT(match, tp.dst,
968 969 970 971 972 973 974 975
				htons(icmp_key->icmp_code), is_mask);
		attrs &= ~(1 << OVS_KEY_ATTR_ICMP);
	}

	if (attrs & (1 << OVS_KEY_ATTR_ICMPV6)) {
		const struct ovs_key_icmpv6 *icmpv6_key;

		icmpv6_key = nla_data(a[OVS_KEY_ATTR_ICMPV6]);
976
		SW_FLOW_KEY_PUT(match, tp.src,
977
				htons(icmpv6_key->icmpv6_type), is_mask);
978
		SW_FLOW_KEY_PUT(match, tp.dst,
979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997
				htons(icmpv6_key->icmpv6_code), is_mask);
		attrs &= ~(1 << OVS_KEY_ATTR_ICMPV6);
	}

	if (attrs & (1 << OVS_KEY_ATTR_ND)) {
		const struct ovs_key_nd *nd_key;

		nd_key = nla_data(a[OVS_KEY_ATTR_ND]);
		SW_FLOW_KEY_MEMCPY(match, ipv6.nd.target,
			nd_key->nd_target,
			sizeof(match->key->ipv6.nd.target),
			is_mask);
		SW_FLOW_KEY_MEMCPY(match, ipv6.nd.sll,
			nd_key->nd_sll, ETH_ALEN, is_mask);
		SW_FLOW_KEY_MEMCPY(match, ipv6.nd.tll,
				nd_key->nd_tll, ETH_ALEN, is_mask);
		attrs &= ~(1 << OVS_KEY_ATTR_ND);
	}

998
	if (attrs != 0) {
999
		OVS_NLERR(log, "Unknown key attributes %llx",
1000
			  (unsigned long long)attrs);
1001
		return -EINVAL;
1002
	}
1003 1004 1005 1006

	return 0;
}

1007 1008
static void nlattr_set(struct nlattr *attr, u8 val,
		       const struct ovs_len_tbl *tbl)
1009
{
1010 1011
	struct nlattr *nla;
	int rem;
1012

1013 1014
	/* The nlattr stream should already have been validated */
	nla_for_each_nested(nla, attr, rem) {
1015 1016
		if (tbl && tbl[nla_type(nla)].len == OVS_ATTR_NESTED)
			nlattr_set(nla, val, tbl[nla_type(nla)].next);
1017 1018 1019 1020 1021 1022 1023
		else
			memset(nla_data(nla), val, nla_len(nla));
	}
}

static void mask_set_nlattr(struct nlattr *attr, u8 val)
{
1024
	nlattr_set(attr, val, ovs_key_lens);
1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
}

/**
 * ovs_nla_get_match - parses Netlink attributes into a flow key and
 * mask. In case the 'mask' is NULL, the flow is treated as exact match
 * flow. Otherwise, it is treated as a wildcarded flow, except the mask
 * does not include any don't care bit.
 * @match: receives the extracted flow match information.
 * @key: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
 * sequence. The fields should of the packet that triggered the creation
 * of this flow.
 * @mask: Optional. Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink
 * attribute specifies the mask field of the wildcarded flow.
1038 1039 1040
 * @log: Boolean to allow kernel error logging.  Normally true, but when
 * probing for feature compatibility this should be passed in as false to
 * suppress unnecessary error logging.
1041 1042
 */
int ovs_nla_get_match(struct sw_flow_match *match,
1043
		      const struct nlattr *nla_key,
1044 1045
		      const struct nlattr *nla_mask,
		      bool log)
1046 1047 1048
{
	const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
	const struct nlattr *encap;
1049
	struct nlattr *newmask = NULL;
1050 1051 1052 1053 1054
	u64 key_attrs = 0;
	u64 mask_attrs = 0;
	bool encap_valid = false;
	int err;

1055
	err = parse_flow_nlattrs(nla_key, a, &key_attrs, log);
1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
	if (err)
		return err;

	if ((key_attrs & (1 << OVS_KEY_ATTR_ETHERNET)) &&
	    (key_attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) &&
	    (nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]) == htons(ETH_P_8021Q))) {
		__be16 tci;

		if (!((key_attrs & (1 << OVS_KEY_ATTR_VLAN)) &&
		      (key_attrs & (1 << OVS_KEY_ATTR_ENCAP)))) {
1066
			OVS_NLERR(log, "Invalid Vlan frame.");
1067 1068 1069 1070 1071 1072 1073 1074 1075 1076
			return -EINVAL;
		}

		key_attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
		tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
		encap = a[OVS_KEY_ATTR_ENCAP];
		key_attrs &= ~(1 << OVS_KEY_ATTR_ENCAP);
		encap_valid = true;

		if (tci & htons(VLAN_TAG_PRESENT)) {
1077
			err = parse_flow_nlattrs(encap, a, &key_attrs, log);
1078 1079 1080 1081 1082
			if (err)
				return err;
		} else if (!tci) {
			/* Corner case for truncated 802.1Q header. */
			if (nla_len(encap)) {
1083
				OVS_NLERR(log, "Truncated 802.1Q header has non-zero encap attribute.");
1084 1085 1086
				return -EINVAL;
			}
		} else {
1087
			OVS_NLERR(log, "Encap attr is set for non-VLAN frame");
1088 1089 1090 1091
			return  -EINVAL;
		}
	}

1092
	err = ovs_key_from_nlattrs(match, key_attrs, a, false, log);
1093 1094 1095
	if (err)
		return err;

1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112
	if (match->mask) {
		if (!nla_mask) {
			/* Create an exact match mask. We need to set to 0xff
			 * all the 'match->mask' fields that have been touched
			 * in 'match->key'. We cannot simply memset
			 * 'match->mask', because padding bytes and fields not
			 * specified in 'match->key' should be left to 0.
			 * Instead, we use a stream of netlink attributes,
			 * copied from 'key' and set to 0xff.
			 * ovs_key_from_nlattrs() will take care of filling
			 * 'match->mask' appropriately.
			 */
			newmask = kmemdup(nla_key,
					  nla_total_size(nla_len(nla_key)),
					  GFP_KERNEL);
			if (!newmask)
				return -ENOMEM;
1113

1114
			mask_set_nlattr(newmask, 0xff);
1115

1116 1117 1118 1119 1120 1121
			/* The userspace does not send tunnel attributes that
			 * are 0, but we should not wildcard them nonetheless.
			 */
			if (match->key->tun_key.ipv4_dst)
				SW_FLOW_KEY_MEMSET_FIELD(match, tun_key,
							 0xff, true);
1122

1123 1124
			nla_mask = newmask;
		}
1125

1126
		err = parse_flow_mask_nlattrs(nla_mask, a, &mask_attrs, log);
1127
		if (err)
1128
			goto free_newmask;
1129

1130 1131 1132
		/* Always match on tci. */
		SW_FLOW_KEY_PUT(match, eth.tci, htons(0xffff), true);

1133
		if (mask_attrs & 1 << OVS_KEY_ATTR_ENCAP) {
1134 1135 1136 1137
			__be16 eth_type = 0;
			__be16 tci = 0;

			if (!encap_valid) {
1138
				OVS_NLERR(log, "Encap mask attribute is set for non-VLAN frame.");
1139 1140
				err = -EINVAL;
				goto free_newmask;
1141 1142 1143 1144 1145 1146 1147 1148 1149
			}

			mask_attrs &= ~(1 << OVS_KEY_ATTR_ENCAP);
			if (a[OVS_KEY_ATTR_ETHERTYPE])
				eth_type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);

			if (eth_type == htons(0xffff)) {
				mask_attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
				encap = a[OVS_KEY_ATTR_ENCAP];
1150 1151
				err = parse_flow_mask_nlattrs(encap, a,
							      &mask_attrs, log);
1152 1153
				if (err)
					goto free_newmask;
1154
			} else {
1155 1156
				OVS_NLERR(log, "VLAN frames must have an exact match on the TPID (mask=%x).",
					  ntohs(eth_type));
1157 1158
				err = -EINVAL;
				goto free_newmask;
1159 1160 1161 1162 1163 1164
			}

			if (a[OVS_KEY_ATTR_VLAN])
				tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);

			if (!(tci & htons(VLAN_TAG_PRESENT))) {
1165 1166
				OVS_NLERR(log, "VLAN tag present bit must have an exact match (tci_mask=%x).",
					  ntohs(tci));
1167 1168
				err = -EINVAL;
				goto free_newmask;
1169 1170 1171
			}
		}

1172
		err = ovs_key_from_nlattrs(match, mask_attrs, a, true, log);
1173
		if (err)
1174
			goto free_newmask;
1175 1176
	}

1177
	if (!match_validate(match, key_attrs, mask_attrs, log))
1178
		err = -EINVAL;
1179

1180 1181 1182
free_newmask:
	kfree(newmask);
	return err;
1183 1184
}

1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237
static size_t get_ufid_len(const struct nlattr *attr, bool log)
{
	size_t len;

	if (!attr)
		return 0;

	len = nla_len(attr);
	if (len < 1 || len > MAX_UFID_LENGTH) {
		OVS_NLERR(log, "ufid size %u bytes exceeds the range (1, %d)",
			  nla_len(attr), MAX_UFID_LENGTH);
		return 0;
	}

	return len;
}

/* Initializes 'flow->ufid', returning true if 'attr' contains a valid UFID,
 * or false otherwise.
 */
bool ovs_nla_get_ufid(struct sw_flow_id *sfid, const struct nlattr *attr,
		      bool log)
{
	sfid->ufid_len = get_ufid_len(attr, log);
	if (sfid->ufid_len)
		memcpy(sfid->ufid, nla_data(attr), sfid->ufid_len);

	return sfid->ufid_len;
}

int ovs_nla_get_identifier(struct sw_flow_id *sfid, const struct nlattr *ufid,
			   const struct sw_flow_key *key, bool log)
{
	struct sw_flow_key *new_key;

	if (ovs_nla_get_ufid(sfid, ufid, log))
		return 0;

	/* If UFID was not provided, use unmasked key. */
	new_key = kmalloc(sizeof(*new_key), GFP_KERNEL);
	if (!new_key)
		return -ENOMEM;
	memcpy(new_key, key, sizeof(*key));
	sfid->unmasked_key = new_key;

	return 0;
}

u32 ovs_nla_get_ufid_flags(const struct nlattr *attr)
{
	return attr ? nla_get_u32(attr) : 0;
}

1238 1239
/**
 * ovs_nla_get_flow_metadata - parses Netlink attributes into a flow key.
1240
 * @key: Receives extracted in_port, priority, tun_key and skb_mark.
1241 1242
 * @attr: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
 * sequence.
1243 1244 1245
 * @log: Boolean to allow kernel error logging.  Normally true, but when
 * probing for feature compatibility this should be passed in as false to
 * suppress unnecessary error logging.
1246 1247 1248 1249 1250 1251 1252
 *
 * This parses a series of Netlink attributes that form a flow key, which must
 * take the same form accepted by flow_from_nlattrs(), but only enough of it to
 * get the metadata, that is, the parts of the flow key that cannot be
 * extracted from the packet itself.
 */

1253
int ovs_nla_get_flow_metadata(const struct nlattr *attr,
1254 1255
			      struct sw_flow_key *key,
			      bool log)
1256 1257
{
	const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
1258
	struct sw_flow_match match;
1259 1260 1261
	u64 attrs = 0;
	int err;

1262
	err = parse_flow_nlattrs(attr, a, &attrs, log);
1263 1264 1265 1266
	if (err)
		return -EINVAL;

	memset(&match, 0, sizeof(match));
1267
	match.key = key;
1268

1269
	key->phy.in_port = DP_MAX_PORTS;
1270

1271
	return metadata_from_nlattrs(&match, &attrs, a, false, log);
1272 1273
}

1274 1275 1276
static int __ovs_nla_put_key(const struct sw_flow_key *swkey,
			     const struct sw_flow_key *output, bool is_mask,
			     struct sk_buff *skb)
1277 1278 1279 1280
{
	struct ovs_key_ethernet *eth_key;
	struct nlattr *nla, *encap;

1281 1282 1283 1284 1285 1286
	if (nla_put_u32(skb, OVS_KEY_ATTR_RECIRC_ID, output->recirc_id))
		goto nla_put_failure;

	if (nla_put_u32(skb, OVS_KEY_ATTR_DP_HASH, output->ovs_flow_hash))
		goto nla_put_failure;

1287 1288 1289
	if (nla_put_u32(skb, OVS_KEY_ATTR_PRIORITY, output->phy.priority))
		goto nla_put_failure;

1290
	if ((swkey->tun_key.ipv4_dst || is_mask)) {
1291
		const void *opts = NULL;
1292 1293

		if (output->tun_key.tun_flags & TUNNEL_OPTIONS_PRESENT)
1294
			opts = TUN_METADATA_OPTS(output, swkey->tun_opts_len);
1295 1296 1297 1298 1299

		if (ipv4_tun_to_nlattr(skb, &output->tun_key, opts,
				       swkey->tun_opts_len))
			goto nla_put_failure;
	}
1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321

	if (swkey->phy.in_port == DP_MAX_PORTS) {
		if (is_mask && (output->phy.in_port == 0xffff))
			if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT, 0xffffffff))
				goto nla_put_failure;
	} else {
		u16 upper_u16;
		upper_u16 = !is_mask ? 0 : 0xffff;

		if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT,
				(upper_u16 << 16) | output->phy.in_port))
			goto nla_put_failure;
	}

	if (nla_put_u32(skb, OVS_KEY_ATTR_SKB_MARK, output->phy.skb_mark))
		goto nla_put_failure;

	nla = nla_reserve(skb, OVS_KEY_ATTR_ETHERNET, sizeof(*eth_key));
	if (!nla)
		goto nla_put_failure;

	eth_key = nla_data(nla);
J
Joe Perches 已提交
1322 1323
	ether_addr_copy(eth_key->eth_src, output->eth.src);
	ether_addr_copy(eth_key->eth_dst, output->eth.dst);
1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394

	if (swkey->eth.tci || swkey->eth.type == htons(ETH_P_8021Q)) {
		__be16 eth_type;
		eth_type = !is_mask ? htons(ETH_P_8021Q) : htons(0xffff);
		if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, eth_type) ||
		    nla_put_be16(skb, OVS_KEY_ATTR_VLAN, output->eth.tci))
			goto nla_put_failure;
		encap = nla_nest_start(skb, OVS_KEY_ATTR_ENCAP);
		if (!swkey->eth.tci)
			goto unencap;
	} else
		encap = NULL;

	if (swkey->eth.type == htons(ETH_P_802_2)) {
		/*
		 * Ethertype 802.2 is represented in the netlink with omitted
		 * OVS_KEY_ATTR_ETHERTYPE in the flow key attribute, and
		 * 0xffff in the mask attribute.  Ethertype can also
		 * be wildcarded.
		 */
		if (is_mask && output->eth.type)
			if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE,
						output->eth.type))
				goto nla_put_failure;
		goto unencap;
	}

	if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, output->eth.type))
		goto nla_put_failure;

	if (swkey->eth.type == htons(ETH_P_IP)) {
		struct ovs_key_ipv4 *ipv4_key;

		nla = nla_reserve(skb, OVS_KEY_ATTR_IPV4, sizeof(*ipv4_key));
		if (!nla)
			goto nla_put_failure;
		ipv4_key = nla_data(nla);
		ipv4_key->ipv4_src = output->ipv4.addr.src;
		ipv4_key->ipv4_dst = output->ipv4.addr.dst;
		ipv4_key->ipv4_proto = output->ip.proto;
		ipv4_key->ipv4_tos = output->ip.tos;
		ipv4_key->ipv4_ttl = output->ip.ttl;
		ipv4_key->ipv4_frag = output->ip.frag;
	} else if (swkey->eth.type == htons(ETH_P_IPV6)) {
		struct ovs_key_ipv6 *ipv6_key;

		nla = nla_reserve(skb, OVS_KEY_ATTR_IPV6, sizeof(*ipv6_key));
		if (!nla)
			goto nla_put_failure;
		ipv6_key = nla_data(nla);
		memcpy(ipv6_key->ipv6_src, &output->ipv6.addr.src,
				sizeof(ipv6_key->ipv6_src));
		memcpy(ipv6_key->ipv6_dst, &output->ipv6.addr.dst,
				sizeof(ipv6_key->ipv6_dst));
		ipv6_key->ipv6_label = output->ipv6.label;
		ipv6_key->ipv6_proto = output->ip.proto;
		ipv6_key->ipv6_tclass = output->ip.tos;
		ipv6_key->ipv6_hlimit = output->ip.ttl;
		ipv6_key->ipv6_frag = output->ip.frag;
	} else if (swkey->eth.type == htons(ETH_P_ARP) ||
		   swkey->eth.type == htons(ETH_P_RARP)) {
		struct ovs_key_arp *arp_key;

		nla = nla_reserve(skb, OVS_KEY_ATTR_ARP, sizeof(*arp_key));
		if (!nla)
			goto nla_put_failure;
		arp_key = nla_data(nla);
		memset(arp_key, 0, sizeof(struct ovs_key_arp));
		arp_key->arp_sip = output->ipv4.addr.src;
		arp_key->arp_tip = output->ipv4.addr.dst;
		arp_key->arp_op = htons(output->ip.proto);
J
Joe Perches 已提交
1395 1396
		ether_addr_copy(arp_key->arp_sha, output->ipv4.arp.sha);
		ether_addr_copy(arp_key->arp_tha, output->ipv4.arp.tha);
1397 1398 1399 1400 1401 1402 1403 1404
	} else if (eth_p_mpls(swkey->eth.type)) {
		struct ovs_key_mpls *mpls_key;

		nla = nla_reserve(skb, OVS_KEY_ATTR_MPLS, sizeof(*mpls_key));
		if (!nla)
			goto nla_put_failure;
		mpls_key = nla_data(nla);
		mpls_key->mpls_lse = output->mpls.top_lse;
1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417
	}

	if ((swkey->eth.type == htons(ETH_P_IP) ||
	     swkey->eth.type == htons(ETH_P_IPV6)) &&
	     swkey->ip.frag != OVS_FRAG_TYPE_LATER) {

		if (swkey->ip.proto == IPPROTO_TCP) {
			struct ovs_key_tcp *tcp_key;

			nla = nla_reserve(skb, OVS_KEY_ATTR_TCP, sizeof(*tcp_key));
			if (!nla)
				goto nla_put_failure;
			tcp_key = nla_data(nla);
1418 1419 1420 1421 1422
			tcp_key->tcp_src = output->tp.src;
			tcp_key->tcp_dst = output->tp.dst;
			if (nla_put_be16(skb, OVS_KEY_ATTR_TCP_FLAGS,
					 output->tp.flags))
				goto nla_put_failure;
1423 1424 1425 1426 1427 1428 1429
		} else if (swkey->ip.proto == IPPROTO_UDP) {
			struct ovs_key_udp *udp_key;

			nla = nla_reserve(skb, OVS_KEY_ATTR_UDP, sizeof(*udp_key));
			if (!nla)
				goto nla_put_failure;
			udp_key = nla_data(nla);
1430 1431
			udp_key->udp_src = output->tp.src;
			udp_key->udp_dst = output->tp.dst;
1432 1433 1434 1435 1436 1437 1438
		} else if (swkey->ip.proto == IPPROTO_SCTP) {
			struct ovs_key_sctp *sctp_key;

			nla = nla_reserve(skb, OVS_KEY_ATTR_SCTP, sizeof(*sctp_key));
			if (!nla)
				goto nla_put_failure;
			sctp_key = nla_data(nla);
1439 1440
			sctp_key->sctp_src = output->tp.src;
			sctp_key->sctp_dst = output->tp.dst;
1441 1442 1443 1444 1445 1446 1447 1448
		} else if (swkey->eth.type == htons(ETH_P_IP) &&
			   swkey->ip.proto == IPPROTO_ICMP) {
			struct ovs_key_icmp *icmp_key;

			nla = nla_reserve(skb, OVS_KEY_ATTR_ICMP, sizeof(*icmp_key));
			if (!nla)
				goto nla_put_failure;
			icmp_key = nla_data(nla);
1449 1450
			icmp_key->icmp_type = ntohs(output->tp.src);
			icmp_key->icmp_code = ntohs(output->tp.dst);
1451 1452 1453 1454 1455 1456 1457 1458 1459
		} else if (swkey->eth.type == htons(ETH_P_IPV6) &&
			   swkey->ip.proto == IPPROTO_ICMPV6) {
			struct ovs_key_icmpv6 *icmpv6_key;

			nla = nla_reserve(skb, OVS_KEY_ATTR_ICMPV6,
						sizeof(*icmpv6_key));
			if (!nla)
				goto nla_put_failure;
			icmpv6_key = nla_data(nla);
1460 1461
			icmpv6_key->icmpv6_type = ntohs(output->tp.src);
			icmpv6_key->icmpv6_code = ntohs(output->tp.dst);
1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472

			if (icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_SOLICITATION ||
			    icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_ADVERTISEMENT) {
				struct ovs_key_nd *nd_key;

				nla = nla_reserve(skb, OVS_KEY_ATTR_ND, sizeof(*nd_key));
				if (!nla)
					goto nla_put_failure;
				nd_key = nla_data(nla);
				memcpy(nd_key->nd_target, &output->ipv6.nd.target,
							sizeof(nd_key->nd_target));
J
Joe Perches 已提交
1473 1474
				ether_addr_copy(nd_key->nd_sll, output->ipv6.nd.sll);
				ether_addr_copy(nd_key->nd_tll, output->ipv6.nd.tll);
1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488
			}
		}
	}

unencap:
	if (encap)
		nla_nest_end(skb, encap);

	return 0;

nla_put_failure:
	return -EMSGSIZE;
}

1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507
int ovs_nla_put_key(const struct sw_flow_key *swkey,
		    const struct sw_flow_key *output, int attr, bool is_mask,
		    struct sk_buff *skb)
{
	int err;
	struct nlattr *nla;

	nla = nla_nest_start(skb, attr);
	if (!nla)
		return -EMSGSIZE;
	err = __ovs_nla_put_key(swkey, output, is_mask, skb);
	if (err)
		return err;
	nla_nest_end(skb, nla);

	return 0;
}

/* Called with ovs_mutex or RCU read lock. */
1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519
int ovs_nla_put_identifier(const struct sw_flow *flow, struct sk_buff *skb)
{
	if (ovs_identifier_is_ufid(&flow->id))
		return nla_put(skb, OVS_FLOW_ATTR_UFID, flow->id.ufid_len,
			       flow->id.ufid);

	return ovs_nla_put_key(flow->id.unmasked_key, flow->id.unmasked_key,
			       OVS_FLOW_ATTR_KEY, false, skb);
}

/* Called with ovs_mutex or RCU read lock. */
int ovs_nla_put_masked_key(const struct sw_flow *flow, struct sk_buff *skb)
1520
{
1521
	return ovs_nla_put_key(&flow->key, &flow->key,
1522 1523 1524 1525 1526 1527 1528 1529 1530 1531
				OVS_FLOW_ATTR_KEY, false, skb);
}

/* Called with ovs_mutex or RCU read lock. */
int ovs_nla_put_mask(const struct sw_flow *flow, struct sk_buff *skb)
{
	return ovs_nla_put_key(&flow->key, &flow->mask->key,
				OVS_FLOW_ATTR_MASK, true, skb);
}

1532 1533
#define MAX_ACTIONS_BUFSIZE	(32 * 1024)

1534
static struct sw_flow_actions *nla_alloc_flow_actions(int size, bool log)
1535 1536 1537
{
	struct sw_flow_actions *sfa;

1538
	if (size > MAX_ACTIONS_BUFSIZE) {
1539
		OVS_NLERR(log, "Flow action size %u bytes exceeds max", size);
1540
		return ERR_PTR(-EINVAL);
1541
	}
1542 1543 1544 1545 1546 1547 1548 1549 1550

	sfa = kmalloc(sizeof(*sfa) + size, GFP_KERNEL);
	if (!sfa)
		return ERR_PTR(-ENOMEM);

	sfa->actions_len = 0;
	return sfa;
}

1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587
static void ovs_nla_free_set_action(const struct nlattr *a)
{
	const struct nlattr *ovs_key = nla_data(a);
	struct ovs_tunnel_info *ovs_tun;

	switch (nla_type(ovs_key)) {
	case OVS_KEY_ATTR_TUNNEL_INFO:
		ovs_tun = nla_data(ovs_key);
		dst_release((struct dst_entry *)ovs_tun->tun_dst);
		break;
	}
}

void ovs_nla_free_flow_actions(struct sw_flow_actions *sf_acts)
{
	const struct nlattr *a;
	int rem;

	if (!sf_acts)
		return;

	nla_for_each_attr(a, sf_acts->actions, sf_acts->actions_len, rem) {
		switch (nla_type(a)) {
		case OVS_ACTION_ATTR_SET:
			ovs_nla_free_set_action(a);
			break;
		}
	}

	kfree(sf_acts);
}

static void __ovs_nla_free_flow_actions(struct rcu_head *head)
{
	ovs_nla_free_flow_actions(container_of(head, struct sw_flow_actions, rcu));
}

1588 1589
/* Schedules 'sf_acts' to be freed after the next RCU grace period.
 * The caller must hold rcu_read_lock for this to be sensible. */
1590
void ovs_nla_free_flow_actions_rcu(struct sw_flow_actions *sf_acts)
1591
{
1592
	call_rcu(&sf_acts->rcu, __ovs_nla_free_flow_actions);
1593 1594 1595
}

static struct nlattr *reserve_sfa_size(struct sw_flow_actions **sfa,
1596
				       int attr_len, bool log)
1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615
{

	struct sw_flow_actions *acts;
	int new_acts_size;
	int req_size = NLA_ALIGN(attr_len);
	int next_offset = offsetof(struct sw_flow_actions, actions) +
					(*sfa)->actions_len;

	if (req_size <= (ksize(*sfa) - next_offset))
		goto out;

	new_acts_size = ksize(*sfa) * 2;

	if (new_acts_size > MAX_ACTIONS_BUFSIZE) {
		if ((MAX_ACTIONS_BUFSIZE - next_offset) < req_size)
			return ERR_PTR(-EMSGSIZE);
		new_acts_size = MAX_ACTIONS_BUFSIZE;
	}

1616
	acts = nla_alloc_flow_actions(new_acts_size, log);
1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629
	if (IS_ERR(acts))
		return (void *)acts;

	memcpy(acts->actions, (*sfa)->actions, (*sfa)->actions_len);
	acts->actions_len = (*sfa)->actions_len;
	kfree(*sfa);
	*sfa = acts;

out:
	(*sfa)->actions_len += req_size;
	return  (struct nlattr *) ((unsigned char *)(*sfa) + next_offset);
}

1630
static struct nlattr *__add_action(struct sw_flow_actions **sfa,
1631
				   int attrtype, void *data, int len, bool log)
1632 1633 1634
{
	struct nlattr *a;

1635
	a = reserve_sfa_size(sfa, nla_attr_size(len), log);
1636
	if (IS_ERR(a))
1637
		return a;
1638 1639 1640 1641 1642 1643 1644 1645

	a->nla_type = attrtype;
	a->nla_len = nla_attr_size(len);

	if (data)
		memcpy(nla_data(a), data, len);
	memset((unsigned char *) a + a->nla_len, 0, nla_padlen(len));

1646 1647 1648 1649
	return a;
}

static int add_action(struct sw_flow_actions **sfa, int attrtype,
1650
		      void *data, int len, bool log)
1651 1652 1653
{
	struct nlattr *a;

1654
	a = __add_action(sfa, attrtype, data, len, log);
1655

1656
	return PTR_ERR_OR_ZERO(a);
1657 1658 1659
}

static inline int add_nested_action_start(struct sw_flow_actions **sfa,
1660
					  int attrtype, bool log)
1661 1662 1663 1664
{
	int used = (*sfa)->actions_len;
	int err;

1665
	err = add_action(sfa, attrtype, NULL, 0, log);
1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680
	if (err)
		return err;

	return used;
}

static inline void add_nested_action_end(struct sw_flow_actions *sfa,
					 int st_offset)
{
	struct nlattr *a = (struct nlattr *) ((unsigned char *)sfa->actions +
							       st_offset);

	a->nla_len = sfa->actions_len - st_offset;
}

1681
static int __ovs_nla_copy_actions(const struct nlattr *attr,
1682 1683
				  const struct sw_flow_key *key,
				  int depth, struct sw_flow_actions **sfa,
1684
				  __be16 eth_type, __be16 vlan_tci, bool log);
1685

1686 1687
static int validate_and_copy_sample(const struct nlattr *attr,
				    const struct sw_flow_key *key, int depth,
1688
				    struct sw_flow_actions **sfa,
1689
				    __be16 eth_type, __be16 vlan_tci, bool log)
1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714
{
	const struct nlattr *attrs[OVS_SAMPLE_ATTR_MAX + 1];
	const struct nlattr *probability, *actions;
	const struct nlattr *a;
	int rem, start, err, st_acts;

	memset(attrs, 0, sizeof(attrs));
	nla_for_each_nested(a, attr, rem) {
		int type = nla_type(a);
		if (!type || type > OVS_SAMPLE_ATTR_MAX || attrs[type])
			return -EINVAL;
		attrs[type] = a;
	}
	if (rem)
		return -EINVAL;

	probability = attrs[OVS_SAMPLE_ATTR_PROBABILITY];
	if (!probability || nla_len(probability) != sizeof(u32))
		return -EINVAL;

	actions = attrs[OVS_SAMPLE_ATTR_ACTIONS];
	if (!actions || (nla_len(actions) && nla_len(actions) < NLA_HDRLEN))
		return -EINVAL;

	/* validation done, copy sample action. */
1715
	start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SAMPLE, log);
1716 1717 1718
	if (start < 0)
		return start;
	err = add_action(sfa, OVS_SAMPLE_ATTR_PROBABILITY,
1719
			 nla_data(probability), sizeof(u32), log);
1720 1721
	if (err)
		return err;
1722
	st_acts = add_nested_action_start(sfa, OVS_SAMPLE_ATTR_ACTIONS, log);
1723 1724 1725
	if (st_acts < 0)
		return st_acts;

1726
	err = __ovs_nla_copy_actions(actions, key, depth + 1, sfa,
1727
				     eth_type, vlan_tci, log);
1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752
	if (err)
		return err;

	add_nested_action_end(*sfa, st_acts);
	add_nested_action_end(*sfa, start);

	return 0;
}

void ovs_match_init(struct sw_flow_match *match,
		    struct sw_flow_key *key,
		    struct sw_flow_mask *mask)
{
	memset(match, 0, sizeof(*match));
	match->key = key;
	match->mask = mask;

	memset(key, 0, sizeof(*key));

	if (mask) {
		memset(&mask->key, 0, sizeof(mask->key));
		mask->range.start = mask->range.end = 0;
	}
}

1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780
static int validate_geneve_opts(struct sw_flow_key *key)
{
	struct geneve_opt *option;
	int opts_len = key->tun_opts_len;
	bool crit_opt = false;

	option = (struct geneve_opt *)TUN_METADATA_OPTS(key, key->tun_opts_len);
	while (opts_len > 0) {
		int len;

		if (opts_len < sizeof(*option))
			return -EINVAL;

		len = sizeof(*option) + option->length * 4;
		if (len > opts_len)
			return -EINVAL;

		crit_opt |= !!(option->type & GENEVE_CRIT_OPT_TYPE);

		option = (struct geneve_opt *)((u8 *)option + len);
		opts_len -= len;
	};

	key->tun_key.tun_flags |= crit_opt ? TUNNEL_CRIT_OPT : 0;

	return 0;
}

1781
static int validate_and_copy_set_tun(const struct nlattr *attr,
1782
				     struct sw_flow_actions **sfa, bool log)
1783 1784 1785
{
	struct sw_flow_match match;
	struct sw_flow_key key;
1786
	struct metadata_dst *tun_dst;
1787
	struct ip_tunnel_info *tun_info;
1788
	struct ovs_tunnel_info *ovs_tun;
1789
	struct nlattr *a;
1790
	int err = 0, start, opts_type;
1791 1792

	ovs_match_init(&match, &key, NULL);
1793 1794 1795
	opts_type = ipv4_tun_from_nlattr(nla_data(attr), &match, false, log);
	if (opts_type < 0)
		return opts_type;
1796

1797
	if (key.tun_opts_len) {
1798 1799 1800 1801 1802 1803 1804 1805 1806
		switch (opts_type) {
		case OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS:
			err = validate_geneve_opts(&key);
			if (err < 0)
				return err;
			break;
		case OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS:
			break;
		}
1807 1808
	};

1809
	start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SET, log);
1810 1811 1812
	if (start < 0)
		return start;

1813 1814 1815 1816
	tun_dst = metadata_dst_alloc(key.tun_opts_len, GFP_KERNEL);
	if (!tun_dst)
		return -ENOMEM;

1817
	a = __add_action(sfa, OVS_KEY_ATTR_TUNNEL_INFO, NULL,
1818 1819 1820
			 sizeof(*ovs_tun), log);
	if (IS_ERR(a)) {
		dst_release((struct dst_entry *)tun_dst);
1821
		return PTR_ERR(a);
1822 1823 1824 1825
	}

	ovs_tun = nla_data(a);
	ovs_tun->tun_dst = tun_dst;
1826

1827 1828
	tun_info = &tun_dst->u.tun_info;
	tun_info->mode = IP_TUNNEL_INFO_TX;
1829
	tun_info->key = key.tun_key;
1830 1831 1832 1833 1834 1835 1836
	tun_info->options_len = key.tun_opts_len;

	if (tun_info->options_len) {
		/* We need to store the options in the action itself since
		 * everything else will go away after flow setup. We can append
		 * it to tun_info and then point there.
		 */
1837 1838 1839
		memcpy((tun_info + 1),
		       TUN_METADATA_OPTS(&key, key.tun_opts_len), key.tun_opts_len);
		tun_info->options = (tun_info + 1);
1840 1841 1842
	} else {
		tun_info->options = NULL;
	}
1843

1844 1845 1846 1847 1848
	add_nested_action_end(*sfa, start);

	return err;
}

1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862
/* Return false if there are any non-masked bits set.
 * Mask follows data immediately, before any netlink padding.
 */
static bool validate_masked(u8 *data, int len)
{
	u8 *mask = data + len;

	while (len--)
		if (*data++ & ~*mask++)
			return false;

	return true;
}

1863 1864 1865
static int validate_set(const struct nlattr *a,
			const struct sw_flow_key *flow_key,
			struct sw_flow_actions **sfa,
1866
			bool *skip_copy, __be16 eth_type, bool masked, bool log)
1867 1868 1869
{
	const struct nlattr *ovs_key = nla_data(a);
	int key_type = nla_type(ovs_key);
1870
	size_t key_len;
1871 1872 1873 1874 1875

	/* There can be only one key in a action */
	if (nla_total_size(nla_len(ovs_key)) != nla_len(a))
		return -EINVAL;

1876 1877 1878 1879
	key_len = nla_len(ovs_key);
	if (masked)
		key_len /= 2;

1880
	if (key_type > OVS_KEY_ATTR_MAX ||
1881
	    (ovs_key_lens[key_type].len != key_len &&
1882
	     ovs_key_lens[key_type].len != OVS_ATTR_NESTED))
1883 1884
		return -EINVAL;

1885 1886 1887
	if (masked && !validate_masked(nla_data(ovs_key), key_len))
		return -EINVAL;

1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898
	switch (key_type) {
	const struct ovs_key_ipv4 *ipv4_key;
	const struct ovs_key_ipv6 *ipv6_key;
	int err;

	case OVS_KEY_ATTR_PRIORITY:
	case OVS_KEY_ATTR_SKB_MARK:
	case OVS_KEY_ATTR_ETHERNET:
		break;

	case OVS_KEY_ATTR_TUNNEL:
1899 1900 1901
		if (eth_p_mpls(eth_type))
			return -EINVAL;

1902 1903 1904 1905
		if (masked)
			return -EINVAL; /* Masked tunnel set not supported. */

		*skip_copy = true;
1906
		err = validate_and_copy_set_tun(a, sfa, log);
1907 1908 1909 1910 1911
		if (err)
			return err;
		break;

	case OVS_KEY_ATTR_IPV4:
1912
		if (eth_type != htons(ETH_P_IP))
1913 1914 1915 1916
			return -EINVAL;

		ipv4_key = nla_data(ovs_key);

1917 1918
		if (masked) {
			const struct ovs_key_ipv4 *mask = ipv4_key + 1;
1919

1920 1921 1922 1923 1924 1925 1926 1927 1928 1929
			/* Non-writeable fields. */
			if (mask->ipv4_proto || mask->ipv4_frag)
				return -EINVAL;
		} else {
			if (ipv4_key->ipv4_proto != flow_key->ip.proto)
				return -EINVAL;

			if (ipv4_key->ipv4_frag != flow_key->ip.frag)
				return -EINVAL;
		}
1930 1931 1932
		break;

	case OVS_KEY_ATTR_IPV6:
1933
		if (eth_type != htons(ETH_P_IPV6))
1934 1935 1936 1937
			return -EINVAL;

		ipv6_key = nla_data(ovs_key);

1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950
		if (masked) {
			const struct ovs_key_ipv6 *mask = ipv6_key + 1;

			/* Non-writeable fields. */
			if (mask->ipv6_proto || mask->ipv6_frag)
				return -EINVAL;

			/* Invalid bits in the flow label mask? */
			if (ntohl(mask->ipv6_label) & 0xFFF00000)
				return -EINVAL;
		} else {
			if (ipv6_key->ipv6_proto != flow_key->ip.proto)
				return -EINVAL;
1951

1952 1953 1954
			if (ipv6_key->ipv6_frag != flow_key->ip.frag)
				return -EINVAL;
		}
1955 1956 1957 1958 1959 1960
		if (ntohl(ipv6_key->ipv6_label) & 0xFFF00000)
			return -EINVAL;

		break;

	case OVS_KEY_ATTR_TCP:
1961 1962 1963
		if ((eth_type != htons(ETH_P_IP) &&
		     eth_type != htons(ETH_P_IPV6)) ||
		    flow_key->ip.proto != IPPROTO_TCP)
1964 1965
			return -EINVAL;

1966
		break;
1967 1968

	case OVS_KEY_ATTR_UDP:
1969 1970 1971
		if ((eth_type != htons(ETH_P_IP) &&
		     eth_type != htons(ETH_P_IPV6)) ||
		    flow_key->ip.proto != IPPROTO_UDP)
1972 1973
			return -EINVAL;

1974
		break;
1975 1976 1977 1978 1979

	case OVS_KEY_ATTR_MPLS:
		if (!eth_p_mpls(eth_type))
			return -EINVAL;
		break;
1980 1981

	case OVS_KEY_ATTR_SCTP:
1982 1983 1984
		if ((eth_type != htons(ETH_P_IP) &&
		     eth_type != htons(ETH_P_IPV6)) ||
		    flow_key->ip.proto != IPPROTO_SCTP)
1985 1986
			return -EINVAL;

1987
		break;
1988 1989 1990 1991 1992

	default:
		return -EINVAL;
	}

1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
	/* Convert non-masked non-tunnel set actions to masked set actions. */
	if (!masked && key_type != OVS_KEY_ATTR_TUNNEL) {
		int start, len = key_len * 2;
		struct nlattr *at;

		*skip_copy = true;

		start = add_nested_action_start(sfa,
						OVS_ACTION_ATTR_SET_TO_MASKED,
						log);
		if (start < 0)
			return start;

		at = __add_action(sfa, key_type, NULL, len, log);
		if (IS_ERR(at))
			return PTR_ERR(at);

		memcpy(nla_data(at), nla_data(ovs_key), key_len); /* Key. */
		memset(nla_data(at) + key_len, 0xff, key_len);    /* Mask. */
		/* Clear non-writeable bits from otherwise writeable fields. */
		if (key_type == OVS_KEY_ATTR_IPV6) {
			struct ovs_key_ipv6 *mask = nla_data(at) + key_len;

			mask->ipv6_label &= htonl(0x000FFFFF);
		}
		add_nested_action_end(*sfa, start);
	}

2021 2022 2023 2024 2025 2026 2027 2028
	return 0;
}

static int validate_userspace(const struct nlattr *attr)
{
	static const struct nla_policy userspace_policy[OVS_USERSPACE_ATTR_MAX + 1] = {
		[OVS_USERSPACE_ATTR_PID] = {.type = NLA_U32 },
		[OVS_USERSPACE_ATTR_USERDATA] = {.type = NLA_UNSPEC },
2029
		[OVS_USERSPACE_ATTR_EGRESS_TUN_PORT] = {.type = NLA_U32 },
2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046
	};
	struct nlattr *a[OVS_USERSPACE_ATTR_MAX + 1];
	int error;

	error = nla_parse_nested(a, OVS_USERSPACE_ATTR_MAX,
				 attr, userspace_policy);
	if (error)
		return error;

	if (!a[OVS_USERSPACE_ATTR_PID] ||
	    !nla_get_u32(a[OVS_USERSPACE_ATTR_PID]))
		return -EINVAL;

	return 0;
}

static int copy_action(const struct nlattr *from,
2047
		       struct sw_flow_actions **sfa, bool log)
2048 2049 2050 2051
{
	int totlen = NLA_ALIGN(from->nla_len);
	struct nlattr *to;

2052
	to = reserve_sfa_size(sfa, from->nla_len, log);
2053 2054 2055 2056 2057 2058 2059
	if (IS_ERR(to))
		return PTR_ERR(to);

	memcpy(to, from, totlen);
	return 0;
}

2060
static int __ovs_nla_copy_actions(const struct nlattr *attr,
2061 2062
				  const struct sw_flow_key *key,
				  int depth, struct sw_flow_actions **sfa,
2063
				  __be16 eth_type, __be16 vlan_tci, bool log)
2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074
{
	const struct nlattr *a;
	int rem, err;

	if (depth >= SAMPLE_ACTION_DEPTH)
		return -EOVERFLOW;

	nla_for_each_nested(a, attr, rem) {
		/* Expected argument lengths, (u32)-1 for variable length. */
		static const u32 action_lens[OVS_ACTION_ATTR_MAX + 1] = {
			[OVS_ACTION_ATTR_OUTPUT] = sizeof(u32),
2075
			[OVS_ACTION_ATTR_RECIRC] = sizeof(u32),
2076
			[OVS_ACTION_ATTR_USERSPACE] = (u32)-1,
2077 2078
			[OVS_ACTION_ATTR_PUSH_MPLS] = sizeof(struct ovs_action_push_mpls),
			[OVS_ACTION_ATTR_POP_MPLS] = sizeof(__be16),
2079 2080 2081
			[OVS_ACTION_ATTR_PUSH_VLAN] = sizeof(struct ovs_action_push_vlan),
			[OVS_ACTION_ATTR_POP_VLAN] = 0,
			[OVS_ACTION_ATTR_SET] = (u32)-1,
2082
			[OVS_ACTION_ATTR_SET_MASKED] = (u32)-1,
2083 2084
			[OVS_ACTION_ATTR_SAMPLE] = (u32)-1,
			[OVS_ACTION_ATTR_HASH] = sizeof(struct ovs_action_hash)
2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110
		};
		const struct ovs_action_push_vlan *vlan;
		int type = nla_type(a);
		bool skip_copy;

		if (type > OVS_ACTION_ATTR_MAX ||
		    (action_lens[type] != nla_len(a) &&
		     action_lens[type] != (u32)-1))
			return -EINVAL;

		skip_copy = false;
		switch (type) {
		case OVS_ACTION_ATTR_UNSPEC:
			return -EINVAL;

		case OVS_ACTION_ATTR_USERSPACE:
			err = validate_userspace(a);
			if (err)
				return err;
			break;

		case OVS_ACTION_ATTR_OUTPUT:
			if (nla_get_u32(a) >= DP_MAX_PORTS)
				return -EINVAL;
			break;

2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122
		case OVS_ACTION_ATTR_HASH: {
			const struct ovs_action_hash *act_hash = nla_data(a);

			switch (act_hash->hash_alg) {
			case OVS_HASH_ALG_L4:
				break;
			default:
				return  -EINVAL;
			}

			break;
		}
2123 2124

		case OVS_ACTION_ATTR_POP_VLAN:
2125
			vlan_tci = htons(0);
2126 2127 2128 2129 2130 2131 2132 2133
			break;

		case OVS_ACTION_ATTR_PUSH_VLAN:
			vlan = nla_data(a);
			if (vlan->vlan_tpid != htons(ETH_P_8021Q))
				return -EINVAL;
			if (!(vlan->vlan_tci & htons(VLAN_TAG_PRESENT)))
				return -EINVAL;
2134
			vlan_tci = vlan->vlan_tci;
2135 2136
			break;

2137 2138 2139
		case OVS_ACTION_ATTR_RECIRC:
			break;

2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175
		case OVS_ACTION_ATTR_PUSH_MPLS: {
			const struct ovs_action_push_mpls *mpls = nla_data(a);

			if (!eth_p_mpls(mpls->mpls_ethertype))
				return -EINVAL;
			/* Prohibit push MPLS other than to a white list
			 * for packets that have a known tag order.
			 */
			if (vlan_tci & htons(VLAN_TAG_PRESENT) ||
			    (eth_type != htons(ETH_P_IP) &&
			     eth_type != htons(ETH_P_IPV6) &&
			     eth_type != htons(ETH_P_ARP) &&
			     eth_type != htons(ETH_P_RARP) &&
			     !eth_p_mpls(eth_type)))
				return -EINVAL;
			eth_type = mpls->mpls_ethertype;
			break;
		}

		case OVS_ACTION_ATTR_POP_MPLS:
			if (vlan_tci & htons(VLAN_TAG_PRESENT) ||
			    !eth_p_mpls(eth_type))
				return -EINVAL;

			/* Disallow subsequent L2.5+ set and mpls_pop actions
			 * as there is no check here to ensure that the new
			 * eth_type is valid and thus set actions could
			 * write off the end of the packet or otherwise
			 * corrupt it.
			 *
			 * Support for these actions is planned using packet
			 * recirculation.
			 */
			eth_type = htons(0);
			break;

2176
		case OVS_ACTION_ATTR_SET:
2177
			err = validate_set(a, key, sfa,
2178 2179 2180 2181 2182 2183 2184 2185
					   &skip_copy, eth_type, false, log);
			if (err)
				return err;
			break;

		case OVS_ACTION_ATTR_SET_MASKED:
			err = validate_set(a, key, sfa,
					   &skip_copy, eth_type, true, log);
2186 2187 2188 2189 2190
			if (err)
				return err;
			break;

		case OVS_ACTION_ATTR_SAMPLE:
2191
			err = validate_and_copy_sample(a, key, depth, sfa,
2192
						       eth_type, vlan_tci, log);
2193 2194 2195 2196 2197 2198
			if (err)
				return err;
			skip_copy = true;
			break;

		default:
2199
			OVS_NLERR(log, "Unknown Action type %d", type);
2200 2201 2202
			return -EINVAL;
		}
		if (!skip_copy) {
2203
			err = copy_action(a, sfa, log);
2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214
			if (err)
				return err;
		}
	}

	if (rem > 0)
		return -EINVAL;

	return 0;
}

2215
/* 'key' must be the masked key. */
2216 2217
int ovs_nla_copy_actions(const struct nlattr *attr,
			 const struct sw_flow_key *key,
2218
			 struct sw_flow_actions **sfa, bool log)
2219
{
2220 2221
	int err;

2222
	*sfa = nla_alloc_flow_actions(nla_len(attr), log);
2223 2224 2225 2226
	if (IS_ERR(*sfa))
		return PTR_ERR(*sfa);

	err = __ovs_nla_copy_actions(attr, key, 0, sfa, key->eth.type,
2227
				     key->eth.tci, log);
2228
	if (err)
2229
		ovs_nla_free_flow_actions(*sfa);
2230 2231

	return err;
2232 2233
}

2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277
static int sample_action_to_attr(const struct nlattr *attr, struct sk_buff *skb)
{
	const struct nlattr *a;
	struct nlattr *start;
	int err = 0, rem;

	start = nla_nest_start(skb, OVS_ACTION_ATTR_SAMPLE);
	if (!start)
		return -EMSGSIZE;

	nla_for_each_nested(a, attr, rem) {
		int type = nla_type(a);
		struct nlattr *st_sample;

		switch (type) {
		case OVS_SAMPLE_ATTR_PROBABILITY:
			if (nla_put(skb, OVS_SAMPLE_ATTR_PROBABILITY,
				    sizeof(u32), nla_data(a)))
				return -EMSGSIZE;
			break;
		case OVS_SAMPLE_ATTR_ACTIONS:
			st_sample = nla_nest_start(skb, OVS_SAMPLE_ATTR_ACTIONS);
			if (!st_sample)
				return -EMSGSIZE;
			err = ovs_nla_put_actions(nla_data(a), nla_len(a), skb);
			if (err)
				return err;
			nla_nest_end(skb, st_sample);
			break;
		}
	}

	nla_nest_end(skb, start);
	return err;
}

static int set_action_to_attr(const struct nlattr *a, struct sk_buff *skb)
{
	const struct nlattr *ovs_key = nla_data(a);
	int key_type = nla_type(ovs_key);
	struct nlattr *start;
	int err;

	switch (key_type) {
2278
	case OVS_KEY_ATTR_TUNNEL_INFO: {
2279 2280
		struct ovs_tunnel_info *ovs_tun = nla_data(ovs_key);
		struct ip_tunnel_info *tun_info = &ovs_tun->tun_dst->u.tun_info;
2281

2282 2283 2284 2285
		start = nla_nest_start(skb, OVS_ACTION_ATTR_SET);
		if (!start)
			return -EMSGSIZE;

2286
		err = ipv4_tun_to_nlattr(skb, &tun_info->key,
2287 2288 2289
					 tun_info->options_len ?
						tun_info->options : NULL,
					 tun_info->options_len);
2290 2291 2292 2293
		if (err)
			return err;
		nla_nest_end(skb, start);
		break;
2294
	}
2295 2296 2297 2298 2299 2300 2301 2302 2303
	default:
		if (nla_put(skb, OVS_ACTION_ATTR_SET, nla_len(a), ovs_key))
			return -EMSGSIZE;
		break;
	}

	return 0;
}

2304 2305 2306 2307
static int masked_set_action_to_set_action_attr(const struct nlattr *a,
						struct sk_buff *skb)
{
	const struct nlattr *ovs_key = nla_data(a);
2308
	struct nlattr *nla;
2309 2310 2311 2312 2313
	size_t key_len = nla_len(ovs_key) / 2;

	/* Revert the conversion we did from a non-masked set action to
	 * masked set action.
	 */
2314 2315
	nla = nla_nest_start(skb, OVS_ACTION_ATTR_SET);
	if (!nla)
2316 2317
		return -EMSGSIZE;

2318 2319 2320 2321
	if (nla_put(skb, nla_type(ovs_key), key_len, nla_data(ovs_key)))
		return -EMSGSIZE;

	nla_nest_end(skb, nla);
2322 2323 2324
	return 0;
}

2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339
int ovs_nla_put_actions(const struct nlattr *attr, int len, struct sk_buff *skb)
{
	const struct nlattr *a;
	int rem, err;

	nla_for_each_attr(a, attr, len, rem) {
		int type = nla_type(a);

		switch (type) {
		case OVS_ACTION_ATTR_SET:
			err = set_action_to_attr(a, skb);
			if (err)
				return err;
			break;

2340 2341 2342 2343 2344 2345
		case OVS_ACTION_ATTR_SET_TO_MASKED:
			err = masked_set_action_to_set_action_attr(a, skb);
			if (err)
				return err;
			break;

2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359
		case OVS_ACTION_ATTR_SAMPLE:
			err = sample_action_to_attr(a, skb);
			if (err)
				return err;
			break;
		default:
			if (nla_put(skb, type, nla_len(a), nla_data(a)))
				return -EMSGSIZE;
			break;
		}
	}

	return 0;
}