flow_netlink.c 77.4 KB
Newer Older
1
/*
2
 * Copyright (c) 2007-2017 Nicira, Inc.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of version 2 of the GNU General Public
 * License as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
 * 02110-1301, USA
 */

19 20
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
#include "flow.h"
#include "datapath.h"
#include <linux/uaccess.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/if_ether.h>
#include <linux/if_vlan.h>
#include <net/llc_pdu.h>
#include <linux/kernel.h>
#include <linux/jhash.h>
#include <linux/jiffies.h>
#include <linux/llc.h>
#include <linux/module.h>
#include <linux/in.h>
#include <linux/rcupdate.h>
#include <linux/if_arp.h>
#include <linux/ip.h>
#include <linux/ipv6.h>
#include <linux/sctp.h>
#include <linux/tcp.h>
#include <linux/udp.h>
#include <linux/icmp.h>
#include <linux/icmpv6.h>
#include <linux/rculist.h>
45
#include <net/geneve.h>
46 47 48
#include <net/ip.h>
#include <net/ipv6.h>
#include <net/ndisc.h>
49
#include <net/mpls.h>
50
#include <net/vxlan.h>
51
#include <net/erspan.h>
52 53 54

#include "flow_netlink.h"

55 56 57 58 59 60
struct ovs_len_tbl {
	int len;
	const struct ovs_len_tbl *next;
};

#define OVS_ATTR_NESTED -1
61
#define OVS_ATTR_VARIABLE -2
62

63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
static bool actions_may_change_flow(const struct nlattr *actions)
{
	struct nlattr *nla;
	int rem;

	nla_for_each_nested(nla, actions, rem) {
		u16 action = nla_type(nla);

		switch (action) {
		case OVS_ACTION_ATTR_OUTPUT:
		case OVS_ACTION_ATTR_RECIRC:
		case OVS_ACTION_ATTR_TRUNC:
		case OVS_ACTION_ATTR_USERSPACE:
			break;

		case OVS_ACTION_ATTR_CT:
		case OVS_ACTION_ATTR_HASH:
		case OVS_ACTION_ATTR_POP_ETH:
		case OVS_ACTION_ATTR_POP_MPLS:
		case OVS_ACTION_ATTR_POP_VLAN:
		case OVS_ACTION_ATTR_PUSH_ETH:
		case OVS_ACTION_ATTR_PUSH_MPLS:
		case OVS_ACTION_ATTR_PUSH_VLAN:
		case OVS_ACTION_ATTR_SAMPLE:
		case OVS_ACTION_ATTR_SET:
		case OVS_ACTION_ATTR_SET_MASKED:
		default:
			return true;
		}
	}
	return false;
}

96 97
static void update_range(struct sw_flow_match *match,
			 size_t offset, size_t size, bool is_mask)
98
{
99
	struct sw_flow_key_range *range;
100 101 102 103 104
	size_t start = rounddown(offset, sizeof(long));
	size_t end = roundup(offset + size, sizeof(long));

	if (!is_mask)
		range = &match->range;
105
	else
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
		range = &match->mask->range;

	if (range->start == range->end) {
		range->start = start;
		range->end = end;
		return;
	}

	if (range->start > start)
		range->start = start;

	if (range->end < end)
		range->end = end;
}

#define SW_FLOW_KEY_PUT(match, field, value, is_mask) \
	do { \
123 124 125 126 127
		update_range(match, offsetof(struct sw_flow_key, field),    \
			     sizeof((match)->key->field), is_mask);	    \
		if (is_mask)						    \
			(match)->mask->key.field = value;		    \
		else							    \
128 129 130
			(match)->key->field = value;		            \
	} while (0)

131 132
#define SW_FLOW_KEY_MEMCPY_OFFSET(match, offset, value_p, len, is_mask)	    \
	do {								    \
133
		update_range(match, offset, len, is_mask);		    \
134 135
		if (is_mask)						    \
			memcpy((u8 *)&(match)->mask->key + offset, value_p, \
136
			       len);					   \
137 138
		else							    \
			memcpy((u8 *)(match)->key + offset, value_p, len);  \
139 140
	} while (0)

141 142 143 144
#define SW_FLOW_KEY_MEMCPY(match, field, value_p, len, is_mask)		      \
	SW_FLOW_KEY_MEMCPY_OFFSET(match, offsetof(struct sw_flow_key, field), \
				  value_p, len, is_mask)

145 146 147 148 149 150 151 152
#define SW_FLOW_KEY_MEMSET_FIELD(match, field, value, is_mask)		    \
	do {								    \
		update_range(match, offsetof(struct sw_flow_key, field),    \
			     sizeof((match)->key->field), is_mask);	    \
		if (is_mask)						    \
			memset((u8 *)&(match)->mask->key.field, value,      \
			       sizeof((match)->mask->key.field));	    \
		else							    \
153 154 155
			memset((u8 *)&(match)->key->field, value,           \
			       sizeof((match)->key->field));                \
	} while (0)
156 157

static bool match_validate(const struct sw_flow_match *match,
158
			   u64 key_attrs, u64 mask_attrs, bool log)
159
{
160
	u64 key_expected = 0;
161 162 163 164 165
	u64 mask_allowed = key_attrs;  /* At most allow all key attributes */

	/* The following mask attributes allowed only if they
	 * pass the validation tests. */
	mask_allowed &= ~((1 << OVS_KEY_ATTR_IPV4)
166
			| (1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4)
167
			| (1 << OVS_KEY_ATTR_IPV6)
168
			| (1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6)
169
			| (1 << OVS_KEY_ATTR_TCP)
170
			| (1 << OVS_KEY_ATTR_TCP_FLAGS)
171 172 173 174 175
			| (1 << OVS_KEY_ATTR_UDP)
			| (1 << OVS_KEY_ATTR_SCTP)
			| (1 << OVS_KEY_ATTR_ICMP)
			| (1 << OVS_KEY_ATTR_ICMPV6)
			| (1 << OVS_KEY_ATTR_ARP)
176 177
			| (1 << OVS_KEY_ATTR_ND)
			| (1 << OVS_KEY_ATTR_MPLS));
178 179 180 181 182 183 184 185 186 187

	/* Always allowed mask fields. */
	mask_allowed |= ((1 << OVS_KEY_ATTR_TUNNEL)
		       | (1 << OVS_KEY_ATTR_IN_PORT)
		       | (1 << OVS_KEY_ATTR_ETHERTYPE));

	/* Check key attributes. */
	if (match->key->eth.type == htons(ETH_P_ARP)
			|| match->key->eth.type == htons(ETH_P_RARP)) {
		key_expected |= 1 << OVS_KEY_ATTR_ARP;
188
		if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
189 190 191
			mask_allowed |= 1 << OVS_KEY_ATTR_ARP;
	}

192 193 194 195 196 197
	if (eth_p_mpls(match->key->eth.type)) {
		key_expected |= 1 << OVS_KEY_ATTR_MPLS;
		if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
			mask_allowed |= 1 << OVS_KEY_ATTR_MPLS;
	}

198 199
	if (match->key->eth.type == htons(ETH_P_IP)) {
		key_expected |= 1 << OVS_KEY_ATTR_IPV4;
200
		if (match->mask && match->mask->key.eth.type == htons(0xffff)) {
201
			mask_allowed |= 1 << OVS_KEY_ATTR_IPV4;
202 203
			mask_allowed |= 1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4;
		}
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219

		if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) {
			if (match->key->ip.proto == IPPROTO_UDP) {
				key_expected |= 1 << OVS_KEY_ATTR_UDP;
				if (match->mask && (match->mask->key.ip.proto == 0xff))
					mask_allowed |= 1 << OVS_KEY_ATTR_UDP;
			}

			if (match->key->ip.proto == IPPROTO_SCTP) {
				key_expected |= 1 << OVS_KEY_ATTR_SCTP;
				if (match->mask && (match->mask->key.ip.proto == 0xff))
					mask_allowed |= 1 << OVS_KEY_ATTR_SCTP;
			}

			if (match->key->ip.proto == IPPROTO_TCP) {
				key_expected |= 1 << OVS_KEY_ATTR_TCP;
220 221
				key_expected |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
				if (match->mask && (match->mask->key.ip.proto == 0xff)) {
222
					mask_allowed |= 1 << OVS_KEY_ATTR_TCP;
223 224
					mask_allowed |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
				}
225 226 227 228 229 230 231 232 233 234 235 236
			}

			if (match->key->ip.proto == IPPROTO_ICMP) {
				key_expected |= 1 << OVS_KEY_ATTR_ICMP;
				if (match->mask && (match->mask->key.ip.proto == 0xff))
					mask_allowed |= 1 << OVS_KEY_ATTR_ICMP;
			}
		}
	}

	if (match->key->eth.type == htons(ETH_P_IPV6)) {
		key_expected |= 1 << OVS_KEY_ATTR_IPV6;
237
		if (match->mask && match->mask->key.eth.type == htons(0xffff)) {
238
			mask_allowed |= 1 << OVS_KEY_ATTR_IPV6;
239 240
			mask_allowed |= 1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6;
		}
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256

		if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) {
			if (match->key->ip.proto == IPPROTO_UDP) {
				key_expected |= 1 << OVS_KEY_ATTR_UDP;
				if (match->mask && (match->mask->key.ip.proto == 0xff))
					mask_allowed |= 1 << OVS_KEY_ATTR_UDP;
			}

			if (match->key->ip.proto == IPPROTO_SCTP) {
				key_expected |= 1 << OVS_KEY_ATTR_SCTP;
				if (match->mask && (match->mask->key.ip.proto == 0xff))
					mask_allowed |= 1 << OVS_KEY_ATTR_SCTP;
			}

			if (match->key->ip.proto == IPPROTO_TCP) {
				key_expected |= 1 << OVS_KEY_ATTR_TCP;
257 258
				key_expected |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
				if (match->mask && (match->mask->key.ip.proto == 0xff)) {
259
					mask_allowed |= 1 << OVS_KEY_ATTR_TCP;
260 261
					mask_allowed |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
				}
262 263 264 265 266 267 268
			}

			if (match->key->ip.proto == IPPROTO_ICMPV6) {
				key_expected |= 1 << OVS_KEY_ATTR_ICMPV6;
				if (match->mask && (match->mask->key.ip.proto == 0xff))
					mask_allowed |= 1 << OVS_KEY_ATTR_ICMPV6;

269
				if (match->key->tp.src ==
270
						htons(NDISC_NEIGHBOUR_SOLICITATION) ||
271
				    match->key->tp.src == htons(NDISC_NEIGHBOUR_ADVERTISEMENT)) {
272
					key_expected |= 1 << OVS_KEY_ATTR_ND;
273 274 275 276 277 278
					/* Original direction conntrack tuple
					 * uses the same space as the ND fields
					 * in the key, so both are not allowed
					 * at the same time.
					 */
					mask_allowed &= ~(1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6);
279
					if (match->mask && (match->mask->key.tp.src == htons(0xff)))
280 281 282 283 284 285 286 287
						mask_allowed |= 1 << OVS_KEY_ATTR_ND;
				}
			}
		}
	}

	if ((key_attrs & key_expected) != key_expected) {
		/* Key attributes check failed. */
288 289 290
		OVS_NLERR(log, "Missing key (keys=%llx, expected=%llx)",
			  (unsigned long long)key_attrs,
			  (unsigned long long)key_expected);
291 292 293 294 295
		return false;
	}

	if ((mask_attrs & mask_allowed) != mask_attrs) {
		/* Mask attributes check failed. */
296 297 298
		OVS_NLERR(log, "Unexpected mask (mask=%llx, allowed=%llx)",
			  (unsigned long long)mask_attrs,
			  (unsigned long long)mask_allowed);
299 300 301 302 303 304
		return false;
	}

	return true;
}

305 306 307 308 309
size_t ovs_tun_key_attr_size(void)
{
	/* Whenever adding new OVS_TUNNEL_KEY_ FIELDS, we should consider
	 * updating this function.
	 */
310
	return    nla_total_size_64bit(8) /* OVS_TUNNEL_KEY_ATTR_ID */
311 312
		+ nla_total_size(16)   /* OVS_TUNNEL_KEY_ATTR_IPV[46]_SRC */
		+ nla_total_size(16)   /* OVS_TUNNEL_KEY_ATTR_IPV[46]_DST */
313 314 315 316 317 318
		+ nla_total_size(1)    /* OVS_TUNNEL_KEY_ATTR_TOS */
		+ nla_total_size(1)    /* OVS_TUNNEL_KEY_ATTR_TTL */
		+ nla_total_size(0)    /* OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT */
		+ nla_total_size(0)    /* OVS_TUNNEL_KEY_ATTR_CSUM */
		+ nla_total_size(0)    /* OVS_TUNNEL_KEY_ATTR_OAM */
		+ nla_total_size(256)  /* OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS */
319 320 321
		/* OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS is mutually exclusive with
		 * OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS and covered by it.
		 */
322
		+ nla_total_size(2)    /* OVS_TUNNEL_KEY_ATTR_TP_SRC */
323 324
		+ nla_total_size(2)    /* OVS_TUNNEL_KEY_ATTR_TP_DST */
		+ nla_total_size(4);   /* OVS_TUNNEL_KEY_ATTR_ERSPAN_OPTS */
325 326
}

327 328 329 330 331
size_t ovs_key_attr_size(void)
{
	/* Whenever adding new OVS_KEY_ FIELDS, we should consider
	 * updating this function.
	 */
332
	BUILD_BUG_ON(OVS_KEY_ATTR_TUNNEL_INFO != 28);
333 334 335

	return    nla_total_size(4)   /* OVS_KEY_ATTR_PRIORITY */
		+ nla_total_size(0)   /* OVS_KEY_ATTR_TUNNEL */
336
		  + ovs_tun_key_attr_size()
337 338 339 340
		+ nla_total_size(4)   /* OVS_KEY_ATTR_IN_PORT */
		+ nla_total_size(4)   /* OVS_KEY_ATTR_SKB_MARK */
		+ nla_total_size(4)   /* OVS_KEY_ATTR_DP_HASH */
		+ nla_total_size(4)   /* OVS_KEY_ATTR_RECIRC_ID */
341
		+ nla_total_size(4)   /* OVS_KEY_ATTR_CT_STATE */
J
Joe Stringer 已提交
342
		+ nla_total_size(2)   /* OVS_KEY_ATTR_CT_ZONE */
343
		+ nla_total_size(4)   /* OVS_KEY_ATTR_CT_MARK */
J
Joe Stringer 已提交
344
		+ nla_total_size(16)  /* OVS_KEY_ATTR_CT_LABELS */
345
		+ nla_total_size(40)  /* OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6 */
346 347 348 349 350 351 352 353 354 355
		+ nla_total_size(12)  /* OVS_KEY_ATTR_ETHERNET */
		+ nla_total_size(2)   /* OVS_KEY_ATTR_ETHERTYPE */
		+ nla_total_size(4)   /* OVS_KEY_ATTR_VLAN */
		+ nla_total_size(0)   /* OVS_KEY_ATTR_ENCAP */
		+ nla_total_size(2)   /* OVS_KEY_ATTR_ETHERTYPE */
		+ nla_total_size(40)  /* OVS_KEY_ATTR_IPV6 */
		+ nla_total_size(2)   /* OVS_KEY_ATTR_ICMPV6 */
		+ nla_total_size(28); /* OVS_KEY_ATTR_ND */
}

356 357 358 359
static const struct ovs_len_tbl ovs_vxlan_ext_key_lens[OVS_VXLAN_EXT_MAX + 1] = {
	[OVS_VXLAN_EXT_GBP]	    = { .len = sizeof(u32) },
};

360 361 362 363 364 365 366 367 368 369 370
static const struct ovs_len_tbl ovs_tunnel_key_lens[OVS_TUNNEL_KEY_ATTR_MAX + 1] = {
	[OVS_TUNNEL_KEY_ATTR_ID]	    = { .len = sizeof(u64) },
	[OVS_TUNNEL_KEY_ATTR_IPV4_SRC]	    = { .len = sizeof(u32) },
	[OVS_TUNNEL_KEY_ATTR_IPV4_DST]	    = { .len = sizeof(u32) },
	[OVS_TUNNEL_KEY_ATTR_TOS]	    = { .len = 1 },
	[OVS_TUNNEL_KEY_ATTR_TTL]	    = { .len = 1 },
	[OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT] = { .len = 0 },
	[OVS_TUNNEL_KEY_ATTR_CSUM]	    = { .len = 0 },
	[OVS_TUNNEL_KEY_ATTR_TP_SRC]	    = { .len = sizeof(u16) },
	[OVS_TUNNEL_KEY_ATTR_TP_DST]	    = { .len = sizeof(u16) },
	[OVS_TUNNEL_KEY_ATTR_OAM]	    = { .len = 0 },
371 372 373
	[OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS]   = { .len = OVS_ATTR_VARIABLE },
	[OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS]    = { .len = OVS_ATTR_NESTED,
						.next = ovs_vxlan_ext_key_lens },
374 375
	[OVS_TUNNEL_KEY_ATTR_IPV6_SRC]      = { .len = sizeof(struct in6_addr) },
	[OVS_TUNNEL_KEY_ATTR_IPV6_DST]      = { .len = sizeof(struct in6_addr) },
376
	[OVS_TUNNEL_KEY_ATTR_ERSPAN_OPTS]   = { .len = sizeof(u32) },
377 378
};

379
/* The size of the argument for each %OVS_KEY_ATTR_* Netlink attribute.  */
380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
static const struct ovs_len_tbl ovs_key_lens[OVS_KEY_ATTR_MAX + 1] = {
	[OVS_KEY_ATTR_ENCAP]	 = { .len = OVS_ATTR_NESTED },
	[OVS_KEY_ATTR_PRIORITY]	 = { .len = sizeof(u32) },
	[OVS_KEY_ATTR_IN_PORT]	 = { .len = sizeof(u32) },
	[OVS_KEY_ATTR_SKB_MARK]	 = { .len = sizeof(u32) },
	[OVS_KEY_ATTR_ETHERNET]	 = { .len = sizeof(struct ovs_key_ethernet) },
	[OVS_KEY_ATTR_VLAN]	 = { .len = sizeof(__be16) },
	[OVS_KEY_ATTR_ETHERTYPE] = { .len = sizeof(__be16) },
	[OVS_KEY_ATTR_IPV4]	 = { .len = sizeof(struct ovs_key_ipv4) },
	[OVS_KEY_ATTR_IPV6]	 = { .len = sizeof(struct ovs_key_ipv6) },
	[OVS_KEY_ATTR_TCP]	 = { .len = sizeof(struct ovs_key_tcp) },
	[OVS_KEY_ATTR_TCP_FLAGS] = { .len = sizeof(__be16) },
	[OVS_KEY_ATTR_UDP]	 = { .len = sizeof(struct ovs_key_udp) },
	[OVS_KEY_ATTR_SCTP]	 = { .len = sizeof(struct ovs_key_sctp) },
	[OVS_KEY_ATTR_ICMP]	 = { .len = sizeof(struct ovs_key_icmp) },
	[OVS_KEY_ATTR_ICMPV6]	 = { .len = sizeof(struct ovs_key_icmpv6) },
	[OVS_KEY_ATTR_ARP]	 = { .len = sizeof(struct ovs_key_arp) },
	[OVS_KEY_ATTR_ND]	 = { .len = sizeof(struct ovs_key_nd) },
	[OVS_KEY_ATTR_RECIRC_ID] = { .len = sizeof(u32) },
	[OVS_KEY_ATTR_DP_HASH]	 = { .len = sizeof(u32) },
	[OVS_KEY_ATTR_TUNNEL]	 = { .len = OVS_ATTR_NESTED,
				     .next = ovs_tunnel_key_lens, },
	[OVS_KEY_ATTR_MPLS]	 = { .len = sizeof(struct ovs_key_mpls) },
403
	[OVS_KEY_ATTR_CT_STATE]	 = { .len = sizeof(u32) },
J
Joe Stringer 已提交
404
	[OVS_KEY_ATTR_CT_ZONE]	 = { .len = sizeof(u16) },
405
	[OVS_KEY_ATTR_CT_MARK]	 = { .len = sizeof(u32) },
J
Joe Stringer 已提交
406
	[OVS_KEY_ATTR_CT_LABELS] = { .len = sizeof(struct ovs_key_ct_labels) },
407 408 409 410
	[OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4] = {
		.len = sizeof(struct ovs_key_ct_tuple_ipv4) },
	[OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6] = {
		.len = sizeof(struct ovs_key_ct_tuple_ipv6) },
411 412
};

413 414 415 416 417 418 419
static bool check_attr_len(unsigned int attr_len, unsigned int expected_len)
{
	return expected_len == attr_len ||
	       expected_len == OVS_ATTR_NESTED ||
	       expected_len == OVS_ATTR_VARIABLE;
}

420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
static bool is_all_zero(const u8 *fp, size_t size)
{
	int i;

	if (!fp)
		return false;

	for (i = 0; i < size; i++)
		if (fp[i])
			return false;

	return true;
}

static int __parse_flow_nlattrs(const struct nlattr *attr,
				const struct nlattr *a[],
436
				u64 *attrsp, bool log, bool nz)
437 438 439 440 441 442 443 444 445 446 447
{
	const struct nlattr *nla;
	u64 attrs;
	int rem;

	attrs = *attrsp;
	nla_for_each_nested(nla, attr, rem) {
		u16 type = nla_type(nla);
		int expected_len;

		if (type > OVS_KEY_ATTR_MAX) {
448
			OVS_NLERR(log, "Key type %d is out of range max %d",
449 450 451 452 453
				  type, OVS_KEY_ATTR_MAX);
			return -EINVAL;
		}

		if (attrs & (1 << type)) {
454
			OVS_NLERR(log, "Duplicate key (type %d).", type);
455 456 457
			return -EINVAL;
		}

458
		expected_len = ovs_key_lens[type].len;
459
		if (!check_attr_len(nla_len(nla), expected_len)) {
460 461
			OVS_NLERR(log, "Key %d has unexpected len %d expected %d",
				  type, nla_len(nla), expected_len);
462 463 464 465 466 467 468 469 470
			return -EINVAL;
		}

		if (!nz || !is_all_zero(nla_data(nla), expected_len)) {
			attrs |= 1 << type;
			a[type] = nla;
		}
	}
	if (rem) {
471
		OVS_NLERR(log, "Message has %d unknown bytes.", rem);
472 473 474 475 476 477 478 479
		return -EINVAL;
	}

	*attrsp = attrs;
	return 0;
}

static int parse_flow_mask_nlattrs(const struct nlattr *attr,
480 481
				   const struct nlattr *a[], u64 *attrsp,
				   bool log)
482
{
483
	return __parse_flow_nlattrs(attr, a, attrsp, log, true);
484 485
}

486 487
int parse_flow_nlattrs(const struct nlattr *attr, const struct nlattr *a[],
		       u64 *attrsp, bool log)
488
{
489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536
	return __parse_flow_nlattrs(attr, a, attrsp, log, false);
}

static int genev_tun_opt_from_nlattr(const struct nlattr *a,
				     struct sw_flow_match *match, bool is_mask,
				     bool log)
{
	unsigned long opt_key_offset;

	if (nla_len(a) > sizeof(match->key->tun_opts)) {
		OVS_NLERR(log, "Geneve option length err (len %d, max %zu).",
			  nla_len(a), sizeof(match->key->tun_opts));
		return -EINVAL;
	}

	if (nla_len(a) % 4 != 0) {
		OVS_NLERR(log, "Geneve opt len %d is not a multiple of 4.",
			  nla_len(a));
		return -EINVAL;
	}

	/* We need to record the length of the options passed
	 * down, otherwise packets with the same format but
	 * additional options will be silently matched.
	 */
	if (!is_mask) {
		SW_FLOW_KEY_PUT(match, tun_opts_len, nla_len(a),
				false);
	} else {
		/* This is somewhat unusual because it looks at
		 * both the key and mask while parsing the
		 * attributes (and by extension assumes the key
		 * is parsed first). Normally, we would verify
		 * that each is the correct length and that the
		 * attributes line up in the validate function.
		 * However, that is difficult because this is
		 * variable length and we won't have the
		 * information later.
		 */
		if (match->key->tun_opts_len != nla_len(a)) {
			OVS_NLERR(log, "Geneve option len %d != mask len %d",
				  match->key->tun_opts_len, nla_len(a));
			return -EINVAL;
		}

		SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true);
	}

537
	opt_key_offset = TUN_METADATA_OFFSET(nla_len(a));
538 539 540
	SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, nla_data(a),
				  nla_len(a), is_mask);
	return 0;
541 542
}

543
static int vxlan_tun_opt_from_nlattr(const struct nlattr *attr,
544 545 546
				     struct sw_flow_match *match, bool is_mask,
				     bool log)
{
547 548
	struct nlattr *a;
	int rem;
549
	unsigned long opt_key_offset;
550
	struct vxlan_metadata opts;
551 552 553 554

	BUILD_BUG_ON(sizeof(opts) > sizeof(match->key->tun_opts));

	memset(&opts, 0, sizeof(opts));
555 556
	nla_for_each_nested(a, attr, rem) {
		int type = nla_type(a);
557

558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586
		if (type > OVS_VXLAN_EXT_MAX) {
			OVS_NLERR(log, "VXLAN extension %d out of range max %d",
				  type, OVS_VXLAN_EXT_MAX);
			return -EINVAL;
		}

		if (!check_attr_len(nla_len(a),
				    ovs_vxlan_ext_key_lens[type].len)) {
			OVS_NLERR(log, "VXLAN extension %d has unexpected len %d expected %d",
				  type, nla_len(a),
				  ovs_vxlan_ext_key_lens[type].len);
			return -EINVAL;
		}

		switch (type) {
		case OVS_VXLAN_EXT_GBP:
			opts.gbp = nla_get_u32(a);
			break;
		default:
			OVS_NLERR(log, "Unknown VXLAN extension attribute %d",
				  type);
			return -EINVAL;
		}
	}
	if (rem) {
		OVS_NLERR(log, "VXLAN extension message has %d unknown bytes.",
			  rem);
		return -EINVAL;
	}
587 588 589 590 591 592 593 594 595 596 597 598

	if (!is_mask)
		SW_FLOW_KEY_PUT(match, tun_opts_len, sizeof(opts), false);
	else
		SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true);

	opt_key_offset = TUN_METADATA_OFFSET(sizeof(opts));
	SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, &opts, sizeof(opts),
				  is_mask);
	return 0;
}

599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625
static int erspan_tun_opt_from_nlattr(const struct nlattr *attr,
				      struct sw_flow_match *match, bool is_mask,
				      bool log)
{
	unsigned long opt_key_offset;
	struct erspan_metadata opts;

	BUILD_BUG_ON(sizeof(opts) > sizeof(match->key->tun_opts));

	memset(&opts, 0, sizeof(opts));
	opts.index = nla_get_be32(attr);

	/* Index has only 20-bit */
	if (ntohl(opts.index) & ~INDEX_MASK) {
		OVS_NLERR(log, "ERSPAN index number %x too large.",
			  ntohl(opts.index));
		return -EINVAL;
	}

	SW_FLOW_KEY_PUT(match, tun_opts_len, sizeof(opts), is_mask);
	opt_key_offset = TUN_METADATA_OFFSET(sizeof(opts));
	SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, &opts, sizeof(opts),
				  is_mask);

	return 0;
}

626 627 628
static int ip_tun_from_nlattr(const struct nlattr *attr,
			      struct sw_flow_match *match, bool is_mask,
			      bool log)
629
{
630 631 632
	bool ttl = false, ipv4 = false, ipv6 = false;
	__be16 tun_flags = 0;
	int opts_type = 0;
633 634 635 636 637
	struct nlattr *a;
	int rem;

	nla_for_each_nested(a, attr, rem) {
		int type = nla_type(a);
638 639
		int err;

640
		if (type > OVS_TUNNEL_KEY_ATTR_MAX) {
641 642
			OVS_NLERR(log, "Tunnel attr %d out of range max %d",
				  type, OVS_TUNNEL_KEY_ATTR_MAX);
643 644 645
			return -EINVAL;
		}

646 647
		if (!check_attr_len(nla_len(a),
				    ovs_tunnel_key_lens[type].len)) {
648
			OVS_NLERR(log, "Tunnel attr %d has unexpected len %d expected %d",
649
				  type, nla_len(a), ovs_tunnel_key_lens[type].len);
650 651 652 653 654 655 656 657 658 659
			return -EINVAL;
		}

		switch (type) {
		case OVS_TUNNEL_KEY_ATTR_ID:
			SW_FLOW_KEY_PUT(match, tun_key.tun_id,
					nla_get_be64(a), is_mask);
			tun_flags |= TUNNEL_KEY;
			break;
		case OVS_TUNNEL_KEY_ATTR_IPV4_SRC:
660
			SW_FLOW_KEY_PUT(match, tun_key.u.ipv4.src,
661
					nla_get_in_addr(a), is_mask);
662
			ipv4 = true;
663 664
			break;
		case OVS_TUNNEL_KEY_ATTR_IPV4_DST:
665
			SW_FLOW_KEY_PUT(match, tun_key.u.ipv4.dst,
666
					nla_get_in_addr(a), is_mask);
667 668 669
			ipv4 = true;
			break;
		case OVS_TUNNEL_KEY_ATTR_IPV6_SRC:
670
			SW_FLOW_KEY_PUT(match, tun_key.u.ipv6.src,
671 672 673 674 675 676 677
					nla_get_in6_addr(a), is_mask);
			ipv6 = true;
			break;
		case OVS_TUNNEL_KEY_ATTR_IPV6_DST:
			SW_FLOW_KEY_PUT(match, tun_key.u.ipv6.dst,
					nla_get_in6_addr(a), is_mask);
			ipv6 = true;
678 679
			break;
		case OVS_TUNNEL_KEY_ATTR_TOS:
680
			SW_FLOW_KEY_PUT(match, tun_key.tos,
681 682 683
					nla_get_u8(a), is_mask);
			break;
		case OVS_TUNNEL_KEY_ATTR_TTL:
684
			SW_FLOW_KEY_PUT(match, tun_key.ttl,
685 686 687 688 689 690 691 692 693
					nla_get_u8(a), is_mask);
			ttl = true;
			break;
		case OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT:
			tun_flags |= TUNNEL_DONT_FRAGMENT;
			break;
		case OVS_TUNNEL_KEY_ATTR_CSUM:
			tun_flags |= TUNNEL_CSUM;
			break;
694 695 696 697 698 699 700 701
		case OVS_TUNNEL_KEY_ATTR_TP_SRC:
			SW_FLOW_KEY_PUT(match, tun_key.tp_src,
					nla_get_be16(a), is_mask);
			break;
		case OVS_TUNNEL_KEY_ATTR_TP_DST:
			SW_FLOW_KEY_PUT(match, tun_key.tp_dst,
					nla_get_be16(a), is_mask);
			break;
702 703 704
		case OVS_TUNNEL_KEY_ATTR_OAM:
			tun_flags |= TUNNEL_OAM;
			break;
705
		case OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS:
706 707 708 709 710
			if (opts_type) {
				OVS_NLERR(log, "Multiple metadata blocks provided");
				return -EINVAL;
			}

711 712 713
			err = genev_tun_opt_from_nlattr(a, match, is_mask, log);
			if (err)
				return err;
714

715 716 717 718 719 720 721 722 723 724 725 726 727 728 729
			tun_flags |= TUNNEL_GENEVE_OPT;
			opts_type = type;
			break;
		case OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS:
			if (opts_type) {
				OVS_NLERR(log, "Multiple metadata blocks provided");
				return -EINVAL;
			}

			err = vxlan_tun_opt_from_nlattr(a, match, is_mask, log);
			if (err)
				return err;

			tun_flags |= TUNNEL_VXLAN_OPT;
			opts_type = type;
730
			break;
731 732
		case OVS_TUNNEL_KEY_ATTR_PAD:
			break;
733 734 735 736 737 738 739 740 741 742 743 744 745
		case OVS_TUNNEL_KEY_ATTR_ERSPAN_OPTS:
			if (opts_type) {
				OVS_NLERR(log, "Multiple metadata blocks provided");
				return -EINVAL;
			}

			err = erspan_tun_opt_from_nlattr(a, match, is_mask, log);
			if (err)
				return err;

			tun_flags |= TUNNEL_ERSPAN_OPT;
			opts_type = type;
			break;
746
		default:
747
			OVS_NLERR(log, "Unknown IP tunnel attribute %d",
748
				  type);
749 750 751 752 753
			return -EINVAL;
		}
	}

	SW_FLOW_KEY_PUT(match, tun_key.tun_flags, tun_flags, is_mask);
754 755 756
	if (is_mask)
		SW_FLOW_KEY_MEMSET_FIELD(match, tun_proto, 0xff, true);
	else
757 758
		SW_FLOW_KEY_PUT(match, tun_proto, ipv6 ? AF_INET6 : AF_INET,
				false);
759 760

	if (rem > 0) {
761
		OVS_NLERR(log, "IP tunnel attribute has %d unknown bytes.",
762
			  rem);
763 764 765
		return -EINVAL;
	}

766 767 768 769 770
	if (ipv4 && ipv6) {
		OVS_NLERR(log, "Mixed IPv4 and IPv6 tunnel attributes");
		return -EINVAL;
	}

771
	if (!is_mask) {
772 773 774 775 776
		if (!ipv4 && !ipv6) {
			OVS_NLERR(log, "IP tunnel dst address not specified");
			return -EINVAL;
		}
		if (ipv4 && !match->key->tun_key.u.ipv4.dst) {
777
			OVS_NLERR(log, "IPv4 tunnel dst address is zero");
778 779
			return -EINVAL;
		}
780 781 782 783
		if (ipv6 && ipv6_addr_any(&match->key->tun_key.u.ipv6.dst)) {
			OVS_NLERR(log, "IPv6 tunnel dst address is zero");
			return -EINVAL;
		}
784 785

		if (!ttl) {
786
			OVS_NLERR(log, "IP tunnel TTL not specified.");
787 788 789 790
			return -EINVAL;
		}
	}

791 792 793 794 795 796
	return opts_type;
}

static int vxlan_opt_to_nlattr(struct sk_buff *skb,
			       const void *tun_opts, int swkey_tun_opts_len)
{
797
	const struct vxlan_metadata *opts = tun_opts;
798 799 800 801 802 803 804 805 806 807
	struct nlattr *nla;

	nla = nla_nest_start(skb, OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS);
	if (!nla)
		return -EMSGSIZE;

	if (nla_put_u32(skb, OVS_VXLAN_EXT_GBP, opts->gbp) < 0)
		return -EMSGSIZE;

	nla_nest_end(skb, nla);
808 809 810
	return 0;
}

811 812 813 814
static int __ip_tun_to_nlattr(struct sk_buff *skb,
			      const struct ip_tunnel_key *output,
			      const void *tun_opts, int swkey_tun_opts_len,
			      unsigned short tun_proto)
815 816
{
	if (output->tun_flags & TUNNEL_KEY &&
817 818
	    nla_put_be64(skb, OVS_TUNNEL_KEY_ATTR_ID, output->tun_id,
			 OVS_TUNNEL_KEY_ATTR_PAD))
819
		return -EMSGSIZE;
820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841
	switch (tun_proto) {
	case AF_INET:
		if (output->u.ipv4.src &&
		    nla_put_in_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV4_SRC,
				    output->u.ipv4.src))
			return -EMSGSIZE;
		if (output->u.ipv4.dst &&
		    nla_put_in_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV4_DST,
				    output->u.ipv4.dst))
			return -EMSGSIZE;
		break;
	case AF_INET6:
		if (!ipv6_addr_any(&output->u.ipv6.src) &&
		    nla_put_in6_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV6_SRC,
				     &output->u.ipv6.src))
			return -EMSGSIZE;
		if (!ipv6_addr_any(&output->u.ipv6.dst) &&
		    nla_put_in6_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV6_DST,
				     &output->u.ipv6.dst))
			return -EMSGSIZE;
		break;
	}
842 843
	if (output->tos &&
	    nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TOS, output->tos))
844
		return -EMSGSIZE;
845
	if (nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TTL, output->ttl))
846 847
		return -EMSGSIZE;
	if ((output->tun_flags & TUNNEL_DONT_FRAGMENT) &&
848
	    nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT))
849 850
		return -EMSGSIZE;
	if ((output->tun_flags & TUNNEL_CSUM) &&
851 852
	    nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_CSUM))
		return -EMSGSIZE;
853 854 855 856 857 858
	if (output->tp_src &&
	    nla_put_be16(skb, OVS_TUNNEL_KEY_ATTR_TP_SRC, output->tp_src))
		return -EMSGSIZE;
	if (output->tp_dst &&
	    nla_put_be16(skb, OVS_TUNNEL_KEY_ATTR_TP_DST, output->tp_dst))
		return -EMSGSIZE;
859 860
	if ((output->tun_flags & TUNNEL_OAM) &&
	    nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_OAM))
861
		return -EMSGSIZE;
862
	if (swkey_tun_opts_len) {
863 864 865 866 867 868 869
		if (output->tun_flags & TUNNEL_GENEVE_OPT &&
		    nla_put(skb, OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS,
			    swkey_tun_opts_len, tun_opts))
			return -EMSGSIZE;
		else if (output->tun_flags & TUNNEL_VXLAN_OPT &&
			 vxlan_opt_to_nlattr(skb, tun_opts, swkey_tun_opts_len))
			return -EMSGSIZE;
870 871 872 873
		else if (output->tun_flags & TUNNEL_ERSPAN_OPT &&
			 nla_put_be32(skb, OVS_TUNNEL_KEY_ATTR_ERSPAN_OPTS,
				      ((struct erspan_metadata *)tun_opts)->index))
			return -EMSGSIZE;
874
	}
875 876 877 878

	return 0;
}

879 880 881 882
static int ip_tun_to_nlattr(struct sk_buff *skb,
			    const struct ip_tunnel_key *output,
			    const void *tun_opts, int swkey_tun_opts_len,
			    unsigned short tun_proto)
883 884 885 886 887 888 889 890
{
	struct nlattr *nla;
	int err;

	nla = nla_nest_start(skb, OVS_KEY_ATTR_TUNNEL);
	if (!nla)
		return -EMSGSIZE;

891 892
	err = __ip_tun_to_nlattr(skb, output, tun_opts, swkey_tun_opts_len,
				 tun_proto);
893 894 895 896 897 898 899
	if (err)
		return err;

	nla_nest_end(skb, nla);
	return 0;
}

900 901
int ovs_nla_put_tunnel_info(struct sk_buff *skb,
			    struct ip_tunnel_info *tun_info)
902
{
903 904 905 906
	return __ip_tun_to_nlattr(skb, &tun_info->key,
				  ip_tunnel_info_opts(tun_info),
				  tun_info->options_len,
				  ip_tunnel_info_af(tun_info));
907 908
}

909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069
static int encode_vlan_from_nlattrs(struct sw_flow_match *match,
				    const struct nlattr *a[],
				    bool is_mask, bool inner)
{
	__be16 tci = 0;
	__be16 tpid = 0;

	if (a[OVS_KEY_ATTR_VLAN])
		tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);

	if (a[OVS_KEY_ATTR_ETHERTYPE])
		tpid = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);

	if (likely(!inner)) {
		SW_FLOW_KEY_PUT(match, eth.vlan.tpid, tpid, is_mask);
		SW_FLOW_KEY_PUT(match, eth.vlan.tci, tci, is_mask);
	} else {
		SW_FLOW_KEY_PUT(match, eth.cvlan.tpid, tpid, is_mask);
		SW_FLOW_KEY_PUT(match, eth.cvlan.tci, tci, is_mask);
	}
	return 0;
}

static int validate_vlan_from_nlattrs(const struct sw_flow_match *match,
				      u64 key_attrs, bool inner,
				      const struct nlattr **a, bool log)
{
	__be16 tci = 0;

	if (!((key_attrs & (1 << OVS_KEY_ATTR_ETHERNET)) &&
	      (key_attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) &&
	       eth_type_vlan(nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE])))) {
		/* Not a VLAN. */
		return 0;
	}

	if (!((key_attrs & (1 << OVS_KEY_ATTR_VLAN)) &&
	      (key_attrs & (1 << OVS_KEY_ATTR_ENCAP)))) {
		OVS_NLERR(log, "Invalid %s frame", (inner) ? "C-VLAN" : "VLAN");
		return -EINVAL;
	}

	if (a[OVS_KEY_ATTR_VLAN])
		tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);

	if (!(tci & htons(VLAN_TAG_PRESENT))) {
		if (tci) {
			OVS_NLERR(log, "%s TCI does not have VLAN_TAG_PRESENT bit set.",
				  (inner) ? "C-VLAN" : "VLAN");
			return -EINVAL;
		} else if (nla_len(a[OVS_KEY_ATTR_ENCAP])) {
			/* Corner case for truncated VLAN header. */
			OVS_NLERR(log, "Truncated %s header has non-zero encap attribute.",
				  (inner) ? "C-VLAN" : "VLAN");
			return -EINVAL;
		}
	}

	return 1;
}

static int validate_vlan_mask_from_nlattrs(const struct sw_flow_match *match,
					   u64 key_attrs, bool inner,
					   const struct nlattr **a, bool log)
{
	__be16 tci = 0;
	__be16 tpid = 0;
	bool encap_valid = !!(match->key->eth.vlan.tci &
			      htons(VLAN_TAG_PRESENT));
	bool i_encap_valid = !!(match->key->eth.cvlan.tci &
				htons(VLAN_TAG_PRESENT));

	if (!(key_attrs & (1 << OVS_KEY_ATTR_ENCAP))) {
		/* Not a VLAN. */
		return 0;
	}

	if ((!inner && !encap_valid) || (inner && !i_encap_valid)) {
		OVS_NLERR(log, "Encap mask attribute is set for non-%s frame.",
			  (inner) ? "C-VLAN" : "VLAN");
		return -EINVAL;
	}

	if (a[OVS_KEY_ATTR_VLAN])
		tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);

	if (a[OVS_KEY_ATTR_ETHERTYPE])
		tpid = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);

	if (tpid != htons(0xffff)) {
		OVS_NLERR(log, "Must have an exact match on %s TPID (mask=%x).",
			  (inner) ? "C-VLAN" : "VLAN", ntohs(tpid));
		return -EINVAL;
	}
	if (!(tci & htons(VLAN_TAG_PRESENT))) {
		OVS_NLERR(log, "%s TCI mask does not have exact match for VLAN_TAG_PRESENT bit.",
			  (inner) ? "C-VLAN" : "VLAN");
		return -EINVAL;
	}

	return 1;
}

static int __parse_vlan_from_nlattrs(struct sw_flow_match *match,
				     u64 *key_attrs, bool inner,
				     const struct nlattr **a, bool is_mask,
				     bool log)
{
	int err;
	const struct nlattr *encap;

	if (!is_mask)
		err = validate_vlan_from_nlattrs(match, *key_attrs, inner,
						 a, log);
	else
		err = validate_vlan_mask_from_nlattrs(match, *key_attrs, inner,
						      a, log);
	if (err <= 0)
		return err;

	err = encode_vlan_from_nlattrs(match, a, is_mask, inner);
	if (err)
		return err;

	*key_attrs &= ~(1 << OVS_KEY_ATTR_ENCAP);
	*key_attrs &= ~(1 << OVS_KEY_ATTR_VLAN);
	*key_attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);

	encap = a[OVS_KEY_ATTR_ENCAP];

	if (!is_mask)
		err = parse_flow_nlattrs(encap, a, key_attrs, log);
	else
		err = parse_flow_mask_nlattrs(encap, a, key_attrs, log);

	return err;
}

static int parse_vlan_from_nlattrs(struct sw_flow_match *match,
				   u64 *key_attrs, const struct nlattr **a,
				   bool is_mask, bool log)
{
	int err;
	bool encap_valid = false;

	err = __parse_vlan_from_nlattrs(match, key_attrs, false, a,
					is_mask, log);
	if (err)
		return err;

	encap_valid = !!(match->key->eth.vlan.tci & htons(VLAN_TAG_PRESENT));
	if (encap_valid) {
		err = __parse_vlan_from_nlattrs(match, key_attrs, true, a,
						is_mask, log);
		if (err)
			return err;
	}

	return 0;
}

1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
static int parse_eth_type_from_nlattrs(struct sw_flow_match *match,
				       u64 *attrs, const struct nlattr **a,
				       bool is_mask, bool log)
{
	__be16 eth_type;

	eth_type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
	if (is_mask) {
		/* Always exact match EtherType. */
		eth_type = htons(0xffff);
	} else if (!eth_proto_is_802_3(eth_type)) {
		OVS_NLERR(log, "EtherType %x is less than min %x",
				ntohs(eth_type), ETH_P_802_3_MIN);
		return -EINVAL;
	}

	SW_FLOW_KEY_PUT(match, eth.type, eth_type, is_mask);
	*attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
	return 0;
}

1091 1092 1093
static int metadata_from_nlattrs(struct net *net, struct sw_flow_match *match,
				 u64 *attrs, const struct nlattr **a,
				 bool is_mask, bool log)
1094
{
1095 1096
	u8 mac_proto = MAC_PROTO_ETHERNET;

1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110
	if (*attrs & (1 << OVS_KEY_ATTR_DP_HASH)) {
		u32 hash_val = nla_get_u32(a[OVS_KEY_ATTR_DP_HASH]);

		SW_FLOW_KEY_PUT(match, ovs_flow_hash, hash_val, is_mask);
		*attrs &= ~(1 << OVS_KEY_ATTR_DP_HASH);
	}

	if (*attrs & (1 << OVS_KEY_ATTR_RECIRC_ID)) {
		u32 recirc_id = nla_get_u32(a[OVS_KEY_ATTR_RECIRC_ID]);

		SW_FLOW_KEY_PUT(match, recirc_id, recirc_id, is_mask);
		*attrs &= ~(1 << OVS_KEY_ATTR_RECIRC_ID);
	}

1111 1112 1113 1114 1115 1116 1117 1118 1119
	if (*attrs & (1 << OVS_KEY_ATTR_PRIORITY)) {
		SW_FLOW_KEY_PUT(match, phy.priority,
			  nla_get_u32(a[OVS_KEY_ATTR_PRIORITY]), is_mask);
		*attrs &= ~(1 << OVS_KEY_ATTR_PRIORITY);
	}

	if (*attrs & (1 << OVS_KEY_ATTR_IN_PORT)) {
		u32 in_port = nla_get_u32(a[OVS_KEY_ATTR_IN_PORT]);

1120
		if (is_mask) {
1121
			in_port = 0xffffffff; /* Always exact match in_port. */
1122
		} else if (in_port >= DP_MAX_PORTS) {
1123
			OVS_NLERR(log, "Port %d exceeds max allowable %d",
1124
				  in_port, DP_MAX_PORTS);
1125
			return -EINVAL;
1126
		}
1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140

		SW_FLOW_KEY_PUT(match, phy.in_port, in_port, is_mask);
		*attrs &= ~(1 << OVS_KEY_ATTR_IN_PORT);
	} else if (!is_mask) {
		SW_FLOW_KEY_PUT(match, phy.in_port, DP_MAX_PORTS, is_mask);
	}

	if (*attrs & (1 << OVS_KEY_ATTR_SKB_MARK)) {
		uint32_t mark = nla_get_u32(a[OVS_KEY_ATTR_SKB_MARK]);

		SW_FLOW_KEY_PUT(match, phy.skb_mark, mark, is_mask);
		*attrs &= ~(1 << OVS_KEY_ATTR_SKB_MARK);
	}
	if (*attrs & (1 << OVS_KEY_ATTR_TUNNEL)) {
1141 1142
		if (ip_tun_from_nlattr(a[OVS_KEY_ATTR_TUNNEL], match,
				       is_mask, log) < 0)
1143 1144 1145
			return -EINVAL;
		*attrs &= ~(1 << OVS_KEY_ATTR_TUNNEL);
	}
J
Joe Stringer 已提交
1146 1147

	if (*attrs & (1 << OVS_KEY_ATTR_CT_STATE) &&
1148
	    ovs_ct_verify(net, OVS_KEY_ATTR_CT_STATE)) {
1149
		u32 ct_state = nla_get_u32(a[OVS_KEY_ATTR_CT_STATE]);
J
Joe Stringer 已提交
1150

1151
		if (ct_state & ~CT_SUPPORTED_MASK) {
1152
			OVS_NLERR(log, "ct_state flags %08x unsupported",
1153 1154 1155
				  ct_state);
			return -EINVAL;
		}
J
Joe Stringer 已提交
1156

1157
		SW_FLOW_KEY_PUT(match, ct_state, ct_state, is_mask);
J
Joe Stringer 已提交
1158 1159 1160
		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_STATE);
	}
	if (*attrs & (1 << OVS_KEY_ATTR_CT_ZONE) &&
1161
	    ovs_ct_verify(net, OVS_KEY_ATTR_CT_ZONE)) {
J
Joe Stringer 已提交
1162 1163
		u16 ct_zone = nla_get_u16(a[OVS_KEY_ATTR_CT_ZONE]);

1164
		SW_FLOW_KEY_PUT(match, ct_zone, ct_zone, is_mask);
J
Joe Stringer 已提交
1165 1166
		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_ZONE);
	}
1167
	if (*attrs & (1 << OVS_KEY_ATTR_CT_MARK) &&
1168
	    ovs_ct_verify(net, OVS_KEY_ATTR_CT_MARK)) {
1169 1170 1171 1172 1173
		u32 mark = nla_get_u32(a[OVS_KEY_ATTR_CT_MARK]);

		SW_FLOW_KEY_PUT(match, ct.mark, mark, is_mask);
		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_MARK);
	}
J
Joe Stringer 已提交
1174 1175 1176
	if (*attrs & (1 << OVS_KEY_ATTR_CT_LABELS) &&
	    ovs_ct_verify(net, OVS_KEY_ATTR_CT_LABELS)) {
		const struct ovs_key_ct_labels *cl;
1177

J
Joe Stringer 已提交
1178 1179
		cl = nla_data(a[OVS_KEY_ATTR_CT_LABELS]);
		SW_FLOW_KEY_MEMCPY(match, ct.labels, cl->ct_labels,
1180
				   sizeof(*cl), is_mask);
J
Joe Stringer 已提交
1181
		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_LABELS);
1182
	}
1183 1184 1185 1186 1187 1188 1189 1190 1191
	if (*attrs & (1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4)) {
		const struct ovs_key_ct_tuple_ipv4 *ct;

		ct = nla_data(a[OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4]);

		SW_FLOW_KEY_PUT(match, ipv4.ct_orig.src, ct->ipv4_src, is_mask);
		SW_FLOW_KEY_PUT(match, ipv4.ct_orig.dst, ct->ipv4_dst, is_mask);
		SW_FLOW_KEY_PUT(match, ct.orig_tp.src, ct->src_port, is_mask);
		SW_FLOW_KEY_PUT(match, ct.orig_tp.dst, ct->dst_port, is_mask);
1192
		SW_FLOW_KEY_PUT(match, ct_orig_proto, ct->ipv4_proto, is_mask);
1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207
		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4);
	}
	if (*attrs & (1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6)) {
		const struct ovs_key_ct_tuple_ipv6 *ct;

		ct = nla_data(a[OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6]);

		SW_FLOW_KEY_MEMCPY(match, ipv6.ct_orig.src, &ct->ipv6_src,
				   sizeof(match->key->ipv6.ct_orig.src),
				   is_mask);
		SW_FLOW_KEY_MEMCPY(match, ipv6.ct_orig.dst, &ct->ipv6_dst,
				   sizeof(match->key->ipv6.ct_orig.dst),
				   is_mask);
		SW_FLOW_KEY_PUT(match, ct.orig_tp.src, ct->src_port, is_mask);
		SW_FLOW_KEY_PUT(match, ct.orig_tp.dst, ct->dst_port, is_mask);
1208
		SW_FLOW_KEY_PUT(match, ct_orig_proto, ct->ipv6_proto, is_mask);
1209 1210
		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6);
	}
1211

1212 1213 1214 1215 1216 1217 1218
	/* For layer 3 packets the Ethernet type is provided
	 * and treated as metadata but no MAC addresses are provided.
	 */
	if (!(*attrs & (1ULL << OVS_KEY_ATTR_ETHERNET)) &&
	    (*attrs & (1ULL << OVS_KEY_ATTR_ETHERTYPE)))
		mac_proto = MAC_PROTO_NONE;

1219
	/* Always exact match mac_proto */
1220 1221 1222 1223 1224
	SW_FLOW_KEY_PUT(match, mac_proto, is_mask ? 0xff : mac_proto, is_mask);

	if (mac_proto == MAC_PROTO_NONE)
		return parse_eth_type_from_nlattrs(match, attrs, a, is_mask,
						   log);
1225

1226 1227 1228
	return 0;
}

1229 1230 1231
static int ovs_key_from_nlattrs(struct net *net, struct sw_flow_match *match,
				u64 attrs, const struct nlattr **a,
				bool is_mask, bool log)
1232 1233 1234
{
	int err;

1235
	err = metadata_from_nlattrs(net, match, &attrs, a, is_mask, log);
1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248
	if (err)
		return err;

	if (attrs & (1 << OVS_KEY_ATTR_ETHERNET)) {
		const struct ovs_key_ethernet *eth_key;

		eth_key = nla_data(a[OVS_KEY_ATTR_ETHERNET]);
		SW_FLOW_KEY_MEMCPY(match, eth.src,
				eth_key->eth_src, ETH_ALEN, is_mask);
		SW_FLOW_KEY_MEMCPY(match, eth.dst,
				eth_key->eth_dst, ETH_ALEN, is_mask);
		attrs &= ~(1 << OVS_KEY_ATTR_ETHERNET);

1249 1250 1251 1252 1253
		if (attrs & (1 << OVS_KEY_ATTR_VLAN)) {
			/* VLAN attribute is always parsed before getting here since it
			 * may occur multiple times.
			 */
			OVS_NLERR(log, "VLAN attribute unexpected.");
1254 1255 1256
			return -EINVAL;
		}

1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267
		if (attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) {
			err = parse_eth_type_from_nlattrs(match, &attrs, a, is_mask,
							  log);
			if (err)
				return err;
		} else if (!is_mask) {
			SW_FLOW_KEY_PUT(match, eth.type, htons(ETH_P_802_2), is_mask);
		}
	} else if (!match->key->eth.type) {
		OVS_NLERR(log, "Either Ethernet header or EtherType is required.");
		return -EINVAL;
1268 1269 1270 1271 1272 1273 1274
	}

	if (attrs & (1 << OVS_KEY_ATTR_IPV4)) {
		const struct ovs_key_ipv4 *ipv4_key;

		ipv4_key = nla_data(a[OVS_KEY_ATTR_IPV4]);
		if (!is_mask && ipv4_key->ipv4_frag > OVS_FRAG_TYPE_MAX) {
1275 1276
			OVS_NLERR(log, "IPv4 frag type %d is out of range max %d",
				  ipv4_key->ipv4_frag, OVS_FRAG_TYPE_MAX);
1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298
			return -EINVAL;
		}
		SW_FLOW_KEY_PUT(match, ip.proto,
				ipv4_key->ipv4_proto, is_mask);
		SW_FLOW_KEY_PUT(match, ip.tos,
				ipv4_key->ipv4_tos, is_mask);
		SW_FLOW_KEY_PUT(match, ip.ttl,
				ipv4_key->ipv4_ttl, is_mask);
		SW_FLOW_KEY_PUT(match, ip.frag,
				ipv4_key->ipv4_frag, is_mask);
		SW_FLOW_KEY_PUT(match, ipv4.addr.src,
				ipv4_key->ipv4_src, is_mask);
		SW_FLOW_KEY_PUT(match, ipv4.addr.dst,
				ipv4_key->ipv4_dst, is_mask);
		attrs &= ~(1 << OVS_KEY_ATTR_IPV4);
	}

	if (attrs & (1 << OVS_KEY_ATTR_IPV6)) {
		const struct ovs_key_ipv6 *ipv6_key;

		ipv6_key = nla_data(a[OVS_KEY_ATTR_IPV6]);
		if (!is_mask && ipv6_key->ipv6_frag > OVS_FRAG_TYPE_MAX) {
1299 1300
			OVS_NLERR(log, "IPv6 frag type %d is out of range max %d",
				  ipv6_key->ipv6_frag, OVS_FRAG_TYPE_MAX);
1301 1302
			return -EINVAL;
		}
1303

1304
		if (!is_mask && ipv6_key->ipv6_label & htonl(0xFFF00000)) {
1305
			OVS_NLERR(log, "IPv6 flow label %x is out of range (max=%x)",
1306 1307 1308 1309
				  ntohl(ipv6_key->ipv6_label), (1 << 20) - 1);
			return -EINVAL;
		}

1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336
		SW_FLOW_KEY_PUT(match, ipv6.label,
				ipv6_key->ipv6_label, is_mask);
		SW_FLOW_KEY_PUT(match, ip.proto,
				ipv6_key->ipv6_proto, is_mask);
		SW_FLOW_KEY_PUT(match, ip.tos,
				ipv6_key->ipv6_tclass, is_mask);
		SW_FLOW_KEY_PUT(match, ip.ttl,
				ipv6_key->ipv6_hlimit, is_mask);
		SW_FLOW_KEY_PUT(match, ip.frag,
				ipv6_key->ipv6_frag, is_mask);
		SW_FLOW_KEY_MEMCPY(match, ipv6.addr.src,
				ipv6_key->ipv6_src,
				sizeof(match->key->ipv6.addr.src),
				is_mask);
		SW_FLOW_KEY_MEMCPY(match, ipv6.addr.dst,
				ipv6_key->ipv6_dst,
				sizeof(match->key->ipv6.addr.dst),
				is_mask);

		attrs &= ~(1 << OVS_KEY_ATTR_IPV6);
	}

	if (attrs & (1 << OVS_KEY_ATTR_ARP)) {
		const struct ovs_key_arp *arp_key;

		arp_key = nla_data(a[OVS_KEY_ATTR_ARP]);
		if (!is_mask && (arp_key->arp_op & htons(0xff00))) {
1337
			OVS_NLERR(log, "Unknown ARP opcode (opcode=%d).",
1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355
				  arp_key->arp_op);
			return -EINVAL;
		}

		SW_FLOW_KEY_PUT(match, ipv4.addr.src,
				arp_key->arp_sip, is_mask);
		SW_FLOW_KEY_PUT(match, ipv4.addr.dst,
			arp_key->arp_tip, is_mask);
		SW_FLOW_KEY_PUT(match, ip.proto,
				ntohs(arp_key->arp_op), is_mask);
		SW_FLOW_KEY_MEMCPY(match, ipv4.arp.sha,
				arp_key->arp_sha, ETH_ALEN, is_mask);
		SW_FLOW_KEY_MEMCPY(match, ipv4.arp.tha,
				arp_key->arp_tha, ETH_ALEN, is_mask);

		attrs &= ~(1 << OVS_KEY_ATTR_ARP);
	}

1356 1357 1358 1359 1360 1361 1362 1363 1364 1365
	if (attrs & (1 << OVS_KEY_ATTR_MPLS)) {
		const struct ovs_key_mpls *mpls_key;

		mpls_key = nla_data(a[OVS_KEY_ATTR_MPLS]);
		SW_FLOW_KEY_PUT(match, mpls.top_lse,
				mpls_key->mpls_lse, is_mask);

		attrs &= ~(1 << OVS_KEY_ATTR_MPLS);
	 }

1366 1367 1368 1369
	if (attrs & (1 << OVS_KEY_ATTR_TCP)) {
		const struct ovs_key_tcp *tcp_key;

		tcp_key = nla_data(a[OVS_KEY_ATTR_TCP]);
1370 1371
		SW_FLOW_KEY_PUT(match, tp.src, tcp_key->tcp_src, is_mask);
		SW_FLOW_KEY_PUT(match, tp.dst, tcp_key->tcp_dst, is_mask);
1372 1373 1374
		attrs &= ~(1 << OVS_KEY_ATTR_TCP);
	}

1375
	if (attrs & (1 << OVS_KEY_ATTR_TCP_FLAGS)) {
1376 1377 1378
		SW_FLOW_KEY_PUT(match, tp.flags,
				nla_get_be16(a[OVS_KEY_ATTR_TCP_FLAGS]),
				is_mask);
1379 1380 1381
		attrs &= ~(1 << OVS_KEY_ATTR_TCP_FLAGS);
	}

1382 1383 1384 1385
	if (attrs & (1 << OVS_KEY_ATTR_UDP)) {
		const struct ovs_key_udp *udp_key;

		udp_key = nla_data(a[OVS_KEY_ATTR_UDP]);
1386 1387
		SW_FLOW_KEY_PUT(match, tp.src, udp_key->udp_src, is_mask);
		SW_FLOW_KEY_PUT(match, tp.dst, udp_key->udp_dst, is_mask);
1388 1389 1390 1391 1392 1393 1394
		attrs &= ~(1 << OVS_KEY_ATTR_UDP);
	}

	if (attrs & (1 << OVS_KEY_ATTR_SCTP)) {
		const struct ovs_key_sctp *sctp_key;

		sctp_key = nla_data(a[OVS_KEY_ATTR_SCTP]);
1395 1396
		SW_FLOW_KEY_PUT(match, tp.src, sctp_key->sctp_src, is_mask);
		SW_FLOW_KEY_PUT(match, tp.dst, sctp_key->sctp_dst, is_mask);
1397 1398 1399 1400 1401 1402 1403
		attrs &= ~(1 << OVS_KEY_ATTR_SCTP);
	}

	if (attrs & (1 << OVS_KEY_ATTR_ICMP)) {
		const struct ovs_key_icmp *icmp_key;

		icmp_key = nla_data(a[OVS_KEY_ATTR_ICMP]);
1404
		SW_FLOW_KEY_PUT(match, tp.src,
1405
				htons(icmp_key->icmp_type), is_mask);
1406
		SW_FLOW_KEY_PUT(match, tp.dst,
1407 1408 1409 1410 1411 1412 1413 1414
				htons(icmp_key->icmp_code), is_mask);
		attrs &= ~(1 << OVS_KEY_ATTR_ICMP);
	}

	if (attrs & (1 << OVS_KEY_ATTR_ICMPV6)) {
		const struct ovs_key_icmpv6 *icmpv6_key;

		icmpv6_key = nla_data(a[OVS_KEY_ATTR_ICMPV6]);
1415
		SW_FLOW_KEY_PUT(match, tp.src,
1416
				htons(icmpv6_key->icmpv6_type), is_mask);
1417
		SW_FLOW_KEY_PUT(match, tp.dst,
1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436
				htons(icmpv6_key->icmpv6_code), is_mask);
		attrs &= ~(1 << OVS_KEY_ATTR_ICMPV6);
	}

	if (attrs & (1 << OVS_KEY_ATTR_ND)) {
		const struct ovs_key_nd *nd_key;

		nd_key = nla_data(a[OVS_KEY_ATTR_ND]);
		SW_FLOW_KEY_MEMCPY(match, ipv6.nd.target,
			nd_key->nd_target,
			sizeof(match->key->ipv6.nd.target),
			is_mask);
		SW_FLOW_KEY_MEMCPY(match, ipv6.nd.sll,
			nd_key->nd_sll, ETH_ALEN, is_mask);
		SW_FLOW_KEY_MEMCPY(match, ipv6.nd.tll,
				nd_key->nd_tll, ETH_ALEN, is_mask);
		attrs &= ~(1 << OVS_KEY_ATTR_ND);
	}

1437
	if (attrs != 0) {
1438
		OVS_NLERR(log, "Unknown key attributes %llx",
1439
			  (unsigned long long)attrs);
1440
		return -EINVAL;
1441
	}
1442 1443 1444 1445

	return 0;
}

1446 1447
static void nlattr_set(struct nlattr *attr, u8 val,
		       const struct ovs_len_tbl *tbl)
1448
{
1449 1450
	struct nlattr *nla;
	int rem;
1451

1452 1453
	/* The nlattr stream should already have been validated */
	nla_for_each_nested(nla, attr, rem) {
1454 1455 1456 1457 1458
		if (tbl[nla_type(nla)].len == OVS_ATTR_NESTED) {
			if (tbl[nla_type(nla)].next)
				tbl = tbl[nla_type(nla)].next;
			nlattr_set(nla, val, tbl);
		} else {
1459
			memset(nla_data(nla), val, nla_len(nla));
1460
		}
1461 1462 1463

		if (nla_type(nla) == OVS_KEY_ATTR_CT_STATE)
			*(u32 *)nla_data(nla) &= CT_SUPPORTED_MASK;
1464 1465 1466 1467 1468
	}
}

static void mask_set_nlattr(struct nlattr *attr, u8 val)
{
1469
	nlattr_set(attr, val, ovs_key_lens);
1470 1471 1472 1473 1474 1475 1476
}

/**
 * ovs_nla_get_match - parses Netlink attributes into a flow key and
 * mask. In case the 'mask' is NULL, the flow is treated as exact match
 * flow. Otherwise, it is treated as a wildcarded flow, except the mask
 * does not include any don't care bit.
1477
 * @net: Used to determine per-namespace field support.
1478 1479 1480 1481 1482 1483
 * @match: receives the extracted flow match information.
 * @key: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
 * sequence. The fields should of the packet that triggered the creation
 * of this flow.
 * @mask: Optional. Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink
 * attribute specifies the mask field of the wildcarded flow.
1484 1485 1486
 * @log: Boolean to allow kernel error logging.  Normally true, but when
 * probing for feature compatibility this should be passed in as false to
 * suppress unnecessary error logging.
1487
 */
1488
int ovs_nla_get_match(struct net *net, struct sw_flow_match *match,
1489
		      const struct nlattr *nla_key,
1490 1491
		      const struct nlattr *nla_mask,
		      bool log)
1492 1493
{
	const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
1494
	struct nlattr *newmask = NULL;
1495 1496 1497 1498
	u64 key_attrs = 0;
	u64 mask_attrs = 0;
	int err;

1499
	err = parse_flow_nlattrs(nla_key, a, &key_attrs, log);
1500 1501 1502
	if (err)
		return err;

1503 1504 1505
	err = parse_vlan_from_nlattrs(match, &key_attrs, a, false, log);
	if (err)
		return err;
1506

1507
	err = ovs_key_from_nlattrs(net, match, key_attrs, a, false, log);
1508 1509 1510
	if (err)
		return err;

1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527
	if (match->mask) {
		if (!nla_mask) {
			/* Create an exact match mask. We need to set to 0xff
			 * all the 'match->mask' fields that have been touched
			 * in 'match->key'. We cannot simply memset
			 * 'match->mask', because padding bytes and fields not
			 * specified in 'match->key' should be left to 0.
			 * Instead, we use a stream of netlink attributes,
			 * copied from 'key' and set to 0xff.
			 * ovs_key_from_nlattrs() will take care of filling
			 * 'match->mask' appropriately.
			 */
			newmask = kmemdup(nla_key,
					  nla_total_size(nla_len(nla_key)),
					  GFP_KERNEL);
			if (!newmask)
				return -ENOMEM;
1528

1529
			mask_set_nlattr(newmask, 0xff);
1530

1531 1532 1533
			/* The userspace does not send tunnel attributes that
			 * are 0, but we should not wildcard them nonetheless.
			 */
1534
			if (match->key->tun_proto)
1535 1536
				SW_FLOW_KEY_MEMSET_FIELD(match, tun_key,
							 0xff, true);
1537

1538 1539
			nla_mask = newmask;
		}
1540

1541
		err = parse_flow_mask_nlattrs(nla_mask, a, &mask_attrs, log);
1542
		if (err)
1543
			goto free_newmask;
1544

1545
		/* Always match on tci. */
1546 1547
		SW_FLOW_KEY_PUT(match, eth.vlan.tci, htons(0xffff), true);
		SW_FLOW_KEY_PUT(match, eth.cvlan.tci, htons(0xffff), true);
1548

1549 1550 1551
		err = parse_vlan_from_nlattrs(match, &mask_attrs, a, true, log);
		if (err)
			goto free_newmask;
1552

1553 1554
		err = ovs_key_from_nlattrs(net, match, mask_attrs, a, true,
					   log);
1555
		if (err)
1556
			goto free_newmask;
1557 1558
	}

1559
	if (!match_validate(match, key_attrs, mask_attrs, log))
1560
		err = -EINVAL;
1561

1562 1563 1564
free_newmask:
	kfree(newmask);
	return err;
1565 1566
}

1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619
static size_t get_ufid_len(const struct nlattr *attr, bool log)
{
	size_t len;

	if (!attr)
		return 0;

	len = nla_len(attr);
	if (len < 1 || len > MAX_UFID_LENGTH) {
		OVS_NLERR(log, "ufid size %u bytes exceeds the range (1, %d)",
			  nla_len(attr), MAX_UFID_LENGTH);
		return 0;
	}

	return len;
}

/* Initializes 'flow->ufid', returning true if 'attr' contains a valid UFID,
 * or false otherwise.
 */
bool ovs_nla_get_ufid(struct sw_flow_id *sfid, const struct nlattr *attr,
		      bool log)
{
	sfid->ufid_len = get_ufid_len(attr, log);
	if (sfid->ufid_len)
		memcpy(sfid->ufid, nla_data(attr), sfid->ufid_len);

	return sfid->ufid_len;
}

int ovs_nla_get_identifier(struct sw_flow_id *sfid, const struct nlattr *ufid,
			   const struct sw_flow_key *key, bool log)
{
	struct sw_flow_key *new_key;

	if (ovs_nla_get_ufid(sfid, ufid, log))
		return 0;

	/* If UFID was not provided, use unmasked key. */
	new_key = kmalloc(sizeof(*new_key), GFP_KERNEL);
	if (!new_key)
		return -ENOMEM;
	memcpy(new_key, key, sizeof(*key));
	sfid->unmasked_key = new_key;

	return 0;
}

u32 ovs_nla_get_ufid_flags(const struct nlattr *attr)
{
	return attr ? nla_get_u32(attr) : 0;
}

1620 1621
/**
 * ovs_nla_get_flow_metadata - parses Netlink attributes into a flow key.
1622 1623 1624 1625 1626 1627
 * @net: Network namespace.
 * @key: Receives extracted in_port, priority, tun_key, skb_mark and conntrack
 * metadata.
 * @a: Array of netlink attributes holding parsed %OVS_KEY_ATTR_* Netlink
 * attributes.
 * @attrs: Bit mask for the netlink attributes included in @a.
1628 1629 1630
 * @log: Boolean to allow kernel error logging.  Normally true, but when
 * probing for feature compatibility this should be passed in as false to
 * suppress unnecessary error logging.
1631 1632 1633 1634 1635
 *
 * This parses a series of Netlink attributes that form a flow key, which must
 * take the same form accepted by flow_from_nlattrs(), but only enough of it to
 * get the metadata, that is, the parts of the flow key that cannot be
 * extracted from the packet itself.
1636 1637
 *
 * This must be called before the packet key fields are filled in 'key'.
1638 1639
 */

1640 1641 1642
int ovs_nla_get_flow_metadata(struct net *net,
			      const struct nlattr *a[OVS_KEY_ATTR_MAX + 1],
			      u64 attrs, struct sw_flow_key *key, bool log)
1643
{
1644
	struct sw_flow_match match;
1645 1646

	memset(&match, 0, sizeof(match));
1647
	match.key = key;
1648

1649 1650 1651
	key->ct_state = 0;
	key->ct_zone = 0;
	key->ct_orig_proto = 0;
J
Joe Stringer 已提交
1652
	memset(&key->ct, 0, sizeof(key->ct));
1653 1654 1655
	memset(&key->ipv4.ct_orig, 0, sizeof(key->ipv4.ct_orig));
	memset(&key->ipv6.ct_orig, 0, sizeof(key->ipv6.ct_orig));

1656
	key->phy.in_port = DP_MAX_PORTS;
1657

1658
	return metadata_from_nlattrs(net, &match, &attrs, a, false, log);
1659 1660
}

1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671
static int ovs_nla_put_vlan(struct sk_buff *skb, const struct vlan_head *vh,
			    bool is_mask)
{
	__be16 eth_type = !is_mask ? vh->tpid : htons(0xffff);

	if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, eth_type) ||
	    nla_put_be16(skb, OVS_KEY_ATTR_VLAN, vh->tci))
		return -EMSGSIZE;
	return 0;
}

1672 1673 1674
static int __ovs_nla_put_key(const struct sw_flow_key *swkey,
			     const struct sw_flow_key *output, bool is_mask,
			     struct sk_buff *skb)
1675 1676
{
	struct ovs_key_ethernet *eth_key;
1677 1678 1679
	struct nlattr *nla;
	struct nlattr *encap = NULL;
	struct nlattr *in_encap = NULL;
1680

1681 1682 1683 1684 1685 1686
	if (nla_put_u32(skb, OVS_KEY_ATTR_RECIRC_ID, output->recirc_id))
		goto nla_put_failure;

	if (nla_put_u32(skb, OVS_KEY_ATTR_DP_HASH, output->ovs_flow_hash))
		goto nla_put_failure;

1687 1688 1689
	if (nla_put_u32(skb, OVS_KEY_ATTR_PRIORITY, output->phy.priority))
		goto nla_put_failure;

1690
	if ((swkey->tun_proto || is_mask)) {
1691
		const void *opts = NULL;
1692 1693

		if (output->tun_key.tun_flags & TUNNEL_OPTIONS_PRESENT)
1694
			opts = TUN_METADATA_OPTS(output, swkey->tun_opts_len);
1695

1696 1697
		if (ip_tun_to_nlattr(skb, &output->tun_key, opts,
				     swkey->tun_opts_len, swkey->tun_proto))
1698 1699
			goto nla_put_failure;
	}
1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716

	if (swkey->phy.in_port == DP_MAX_PORTS) {
		if (is_mask && (output->phy.in_port == 0xffff))
			if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT, 0xffffffff))
				goto nla_put_failure;
	} else {
		u16 upper_u16;
		upper_u16 = !is_mask ? 0 : 0xffff;

		if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT,
				(upper_u16 << 16) | output->phy.in_port))
			goto nla_put_failure;
	}

	if (nla_put_u32(skb, OVS_KEY_ATTR_SKB_MARK, output->phy.skb_mark))
		goto nla_put_failure;

1717
	if (ovs_ct_put_key(swkey, output, skb))
J
Joe Stringer 已提交
1718 1719
		goto nla_put_failure;

1720 1721 1722
	if (ovs_key_mac_proto(swkey) == MAC_PROTO_ETHERNET) {
		nla = nla_reserve(skb, OVS_KEY_ATTR_ETHERNET, sizeof(*eth_key));
		if (!nla)
1723
			goto nla_put_failure;
1724

1725 1726 1727 1728 1729 1730
		eth_key = nla_data(nla);
		ether_addr_copy(eth_key->eth_src, output->eth.src);
		ether_addr_copy(eth_key->eth_dst, output->eth.dst);

		if (swkey->eth.vlan.tci || eth_type_vlan(swkey->eth.type)) {
			if (ovs_nla_put_vlan(skb, &output->eth.vlan, is_mask))
1731
				goto nla_put_failure;
1732 1733
			encap = nla_nest_start(skb, OVS_KEY_ATTR_ENCAP);
			if (!swkey->eth.vlan.tci)
1734
				goto unencap;
1735 1736 1737 1738 1739 1740 1741 1742

			if (swkey->eth.cvlan.tci || eth_type_vlan(swkey->eth.type)) {
				if (ovs_nla_put_vlan(skb, &output->eth.cvlan, is_mask))
					goto nla_put_failure;
				in_encap = nla_nest_start(skb, OVS_KEY_ATTR_ENCAP);
				if (!swkey->eth.cvlan.tci)
					goto unencap;
			}
1743
		}
1744

1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757
		if (swkey->eth.type == htons(ETH_P_802_2)) {
			/*
			* Ethertype 802.2 is represented in the netlink with omitted
			* OVS_KEY_ATTR_ETHERTYPE in the flow key attribute, and
			* 0xffff in the mask attribute.  Ethertype can also
			* be wildcarded.
			*/
			if (is_mask && output->eth.type)
				if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE,
							output->eth.type))
					goto nla_put_failure;
			goto unencap;
		}
1758 1759 1760 1761 1762
	}

	if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, output->eth.type))
		goto nla_put_failure;

1763 1764 1765 1766 1767 1768 1769 1770
	if (eth_type_vlan(swkey->eth.type)) {
		/* There are 3 VLAN tags, we don't know anything about the rest
		 * of the packet, so truncate here.
		 */
		WARN_ON_ONCE(!(encap && in_encap));
		goto unencap;
	}

1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811
	if (swkey->eth.type == htons(ETH_P_IP)) {
		struct ovs_key_ipv4 *ipv4_key;

		nla = nla_reserve(skb, OVS_KEY_ATTR_IPV4, sizeof(*ipv4_key));
		if (!nla)
			goto nla_put_failure;
		ipv4_key = nla_data(nla);
		ipv4_key->ipv4_src = output->ipv4.addr.src;
		ipv4_key->ipv4_dst = output->ipv4.addr.dst;
		ipv4_key->ipv4_proto = output->ip.proto;
		ipv4_key->ipv4_tos = output->ip.tos;
		ipv4_key->ipv4_ttl = output->ip.ttl;
		ipv4_key->ipv4_frag = output->ip.frag;
	} else if (swkey->eth.type == htons(ETH_P_IPV6)) {
		struct ovs_key_ipv6 *ipv6_key;

		nla = nla_reserve(skb, OVS_KEY_ATTR_IPV6, sizeof(*ipv6_key));
		if (!nla)
			goto nla_put_failure;
		ipv6_key = nla_data(nla);
		memcpy(ipv6_key->ipv6_src, &output->ipv6.addr.src,
				sizeof(ipv6_key->ipv6_src));
		memcpy(ipv6_key->ipv6_dst, &output->ipv6.addr.dst,
				sizeof(ipv6_key->ipv6_dst));
		ipv6_key->ipv6_label = output->ipv6.label;
		ipv6_key->ipv6_proto = output->ip.proto;
		ipv6_key->ipv6_tclass = output->ip.tos;
		ipv6_key->ipv6_hlimit = output->ip.ttl;
		ipv6_key->ipv6_frag = output->ip.frag;
	} else if (swkey->eth.type == htons(ETH_P_ARP) ||
		   swkey->eth.type == htons(ETH_P_RARP)) {
		struct ovs_key_arp *arp_key;

		nla = nla_reserve(skb, OVS_KEY_ATTR_ARP, sizeof(*arp_key));
		if (!nla)
			goto nla_put_failure;
		arp_key = nla_data(nla);
		memset(arp_key, 0, sizeof(struct ovs_key_arp));
		arp_key->arp_sip = output->ipv4.addr.src;
		arp_key->arp_tip = output->ipv4.addr.dst;
		arp_key->arp_op = htons(output->ip.proto);
J
Joe Perches 已提交
1812 1813
		ether_addr_copy(arp_key->arp_sha, output->ipv4.arp.sha);
		ether_addr_copy(arp_key->arp_tha, output->ipv4.arp.tha);
1814 1815 1816 1817 1818 1819 1820 1821
	} else if (eth_p_mpls(swkey->eth.type)) {
		struct ovs_key_mpls *mpls_key;

		nla = nla_reserve(skb, OVS_KEY_ATTR_MPLS, sizeof(*mpls_key));
		if (!nla)
			goto nla_put_failure;
		mpls_key = nla_data(nla);
		mpls_key->mpls_lse = output->mpls.top_lse;
1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834
	}

	if ((swkey->eth.type == htons(ETH_P_IP) ||
	     swkey->eth.type == htons(ETH_P_IPV6)) &&
	     swkey->ip.frag != OVS_FRAG_TYPE_LATER) {

		if (swkey->ip.proto == IPPROTO_TCP) {
			struct ovs_key_tcp *tcp_key;

			nla = nla_reserve(skb, OVS_KEY_ATTR_TCP, sizeof(*tcp_key));
			if (!nla)
				goto nla_put_failure;
			tcp_key = nla_data(nla);
1835 1836 1837 1838 1839
			tcp_key->tcp_src = output->tp.src;
			tcp_key->tcp_dst = output->tp.dst;
			if (nla_put_be16(skb, OVS_KEY_ATTR_TCP_FLAGS,
					 output->tp.flags))
				goto nla_put_failure;
1840 1841 1842 1843 1844 1845 1846
		} else if (swkey->ip.proto == IPPROTO_UDP) {
			struct ovs_key_udp *udp_key;

			nla = nla_reserve(skb, OVS_KEY_ATTR_UDP, sizeof(*udp_key));
			if (!nla)
				goto nla_put_failure;
			udp_key = nla_data(nla);
1847 1848
			udp_key->udp_src = output->tp.src;
			udp_key->udp_dst = output->tp.dst;
1849 1850 1851 1852 1853 1854 1855
		} else if (swkey->ip.proto == IPPROTO_SCTP) {
			struct ovs_key_sctp *sctp_key;

			nla = nla_reserve(skb, OVS_KEY_ATTR_SCTP, sizeof(*sctp_key));
			if (!nla)
				goto nla_put_failure;
			sctp_key = nla_data(nla);
1856 1857
			sctp_key->sctp_src = output->tp.src;
			sctp_key->sctp_dst = output->tp.dst;
1858 1859 1860 1861 1862 1863 1864 1865
		} else if (swkey->eth.type == htons(ETH_P_IP) &&
			   swkey->ip.proto == IPPROTO_ICMP) {
			struct ovs_key_icmp *icmp_key;

			nla = nla_reserve(skb, OVS_KEY_ATTR_ICMP, sizeof(*icmp_key));
			if (!nla)
				goto nla_put_failure;
			icmp_key = nla_data(nla);
1866 1867
			icmp_key->icmp_type = ntohs(output->tp.src);
			icmp_key->icmp_code = ntohs(output->tp.dst);
1868 1869 1870 1871 1872 1873 1874 1875 1876
		} else if (swkey->eth.type == htons(ETH_P_IPV6) &&
			   swkey->ip.proto == IPPROTO_ICMPV6) {
			struct ovs_key_icmpv6 *icmpv6_key;

			nla = nla_reserve(skb, OVS_KEY_ATTR_ICMPV6,
						sizeof(*icmpv6_key));
			if (!nla)
				goto nla_put_failure;
			icmpv6_key = nla_data(nla);
1877 1878
			icmpv6_key->icmpv6_type = ntohs(output->tp.src);
			icmpv6_key->icmpv6_code = ntohs(output->tp.dst);
1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889

			if (icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_SOLICITATION ||
			    icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_ADVERTISEMENT) {
				struct ovs_key_nd *nd_key;

				nla = nla_reserve(skb, OVS_KEY_ATTR_ND, sizeof(*nd_key));
				if (!nla)
					goto nla_put_failure;
				nd_key = nla_data(nla);
				memcpy(nd_key->nd_target, &output->ipv6.nd.target,
							sizeof(nd_key->nd_target));
J
Joe Perches 已提交
1890 1891
				ether_addr_copy(nd_key->nd_sll, output->ipv6.nd.sll);
				ether_addr_copy(nd_key->nd_tll, output->ipv6.nd.tll);
1892 1893 1894 1895 1896
			}
		}
	}

unencap:
1897 1898
	if (in_encap)
		nla_nest_end(skb, in_encap);
1899 1900 1901 1902 1903 1904 1905 1906 1907
	if (encap)
		nla_nest_end(skb, encap);

	return 0;

nla_put_failure:
	return -EMSGSIZE;
}

1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926
int ovs_nla_put_key(const struct sw_flow_key *swkey,
		    const struct sw_flow_key *output, int attr, bool is_mask,
		    struct sk_buff *skb)
{
	int err;
	struct nlattr *nla;

	nla = nla_nest_start(skb, attr);
	if (!nla)
		return -EMSGSIZE;
	err = __ovs_nla_put_key(swkey, output, is_mask, skb);
	if (err)
		return err;
	nla_nest_end(skb, nla);

	return 0;
}

/* Called with ovs_mutex or RCU read lock. */
1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938
int ovs_nla_put_identifier(const struct sw_flow *flow, struct sk_buff *skb)
{
	if (ovs_identifier_is_ufid(&flow->id))
		return nla_put(skb, OVS_FLOW_ATTR_UFID, flow->id.ufid_len,
			       flow->id.ufid);

	return ovs_nla_put_key(flow->id.unmasked_key, flow->id.unmasked_key,
			       OVS_FLOW_ATTR_KEY, false, skb);
}

/* Called with ovs_mutex or RCU read lock. */
int ovs_nla_put_masked_key(const struct sw_flow *flow, struct sk_buff *skb)
1939
{
1940
	return ovs_nla_put_key(&flow->key, &flow->key,
1941 1942 1943 1944 1945 1946 1947 1948 1949 1950
				OVS_FLOW_ATTR_KEY, false, skb);
}

/* Called with ovs_mutex or RCU read lock. */
int ovs_nla_put_mask(const struct sw_flow *flow, struct sk_buff *skb)
{
	return ovs_nla_put_key(&flow->key, &flow->mask->key,
				OVS_FLOW_ATTR_MASK, true, skb);
}

1951 1952
#define MAX_ACTIONS_BUFSIZE	(32 * 1024)

1953
static struct sw_flow_actions *nla_alloc_flow_actions(int size, bool log)
1954 1955 1956
{
	struct sw_flow_actions *sfa;

1957
	if (size > MAX_ACTIONS_BUFSIZE) {
1958
		OVS_NLERR(log, "Flow action size %u bytes exceeds max", size);
1959
		return ERR_PTR(-EINVAL);
1960
	}
1961 1962 1963 1964 1965 1966 1967 1968 1969

	sfa = kmalloc(sizeof(*sfa) + size, GFP_KERNEL);
	if (!sfa)
		return ERR_PTR(-ENOMEM);

	sfa->actions_len = 0;
	return sfa;
}

1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995
static void ovs_nla_free_set_action(const struct nlattr *a)
{
	const struct nlattr *ovs_key = nla_data(a);
	struct ovs_tunnel_info *ovs_tun;

	switch (nla_type(ovs_key)) {
	case OVS_KEY_ATTR_TUNNEL_INFO:
		ovs_tun = nla_data(ovs_key);
		dst_release((struct dst_entry *)ovs_tun->tun_dst);
		break;
	}
}

void ovs_nla_free_flow_actions(struct sw_flow_actions *sf_acts)
{
	const struct nlattr *a;
	int rem;

	if (!sf_acts)
		return;

	nla_for_each_attr(a, sf_acts->actions, sf_acts->actions_len, rem) {
		switch (nla_type(a)) {
		case OVS_ACTION_ATTR_SET:
			ovs_nla_free_set_action(a);
			break;
J
Joe Stringer 已提交
1996 1997 1998
		case OVS_ACTION_ATTR_CT:
			ovs_ct_free_action(a);
			break;
1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
		}
	}

	kfree(sf_acts);
}

static void __ovs_nla_free_flow_actions(struct rcu_head *head)
{
	ovs_nla_free_flow_actions(container_of(head, struct sw_flow_actions, rcu));
}

2010 2011
/* Schedules 'sf_acts' to be freed after the next RCU grace period.
 * The caller must hold rcu_read_lock for this to be sensible. */
2012
void ovs_nla_free_flow_actions_rcu(struct sw_flow_actions *sf_acts)
2013
{
2014
	call_rcu(&sf_acts->rcu, __ovs_nla_free_flow_actions);
2015 2016 2017
}

static struct nlattr *reserve_sfa_size(struct sw_flow_actions **sfa,
2018
				       int attr_len, bool log)
2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037
{

	struct sw_flow_actions *acts;
	int new_acts_size;
	int req_size = NLA_ALIGN(attr_len);
	int next_offset = offsetof(struct sw_flow_actions, actions) +
					(*sfa)->actions_len;

	if (req_size <= (ksize(*sfa) - next_offset))
		goto out;

	new_acts_size = ksize(*sfa) * 2;

	if (new_acts_size > MAX_ACTIONS_BUFSIZE) {
		if ((MAX_ACTIONS_BUFSIZE - next_offset) < req_size)
			return ERR_PTR(-EMSGSIZE);
		new_acts_size = MAX_ACTIONS_BUFSIZE;
	}

2038
	acts = nla_alloc_flow_actions(new_acts_size, log);
2039 2040 2041 2042 2043
	if (IS_ERR(acts))
		return (void *)acts;

	memcpy(acts->actions, (*sfa)->actions, (*sfa)->actions_len);
	acts->actions_len = (*sfa)->actions_len;
2044
	acts->orig_len = (*sfa)->orig_len;
2045 2046 2047 2048 2049 2050 2051 2052
	kfree(*sfa);
	*sfa = acts;

out:
	(*sfa)->actions_len += req_size;
	return  (struct nlattr *) ((unsigned char *)(*sfa) + next_offset);
}

2053
static struct nlattr *__add_action(struct sw_flow_actions **sfa,
2054
				   int attrtype, void *data, int len, bool log)
2055 2056 2057
{
	struct nlattr *a;

2058
	a = reserve_sfa_size(sfa, nla_attr_size(len), log);
2059
	if (IS_ERR(a))
2060
		return a;
2061 2062 2063 2064 2065 2066 2067 2068

	a->nla_type = attrtype;
	a->nla_len = nla_attr_size(len);

	if (data)
		memcpy(nla_data(a), data, len);
	memset((unsigned char *) a + a->nla_len, 0, nla_padlen(len));

2069 2070 2071
	return a;
}

J
Joe Stringer 已提交
2072 2073
int ovs_nla_add_action(struct sw_flow_actions **sfa, int attrtype, void *data,
		       int len, bool log)
2074 2075 2076
{
	struct nlattr *a;

2077
	a = __add_action(sfa, attrtype, data, len, log);
2078

2079
	return PTR_ERR_OR_ZERO(a);
2080 2081 2082
}

static inline int add_nested_action_start(struct sw_flow_actions **sfa,
2083
					  int attrtype, bool log)
2084 2085 2086 2087
{
	int used = (*sfa)->actions_len;
	int err;

J
Joe Stringer 已提交
2088
	err = ovs_nla_add_action(sfa, attrtype, NULL, 0, log);
2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103
	if (err)
		return err;

	return used;
}

static inline void add_nested_action_end(struct sw_flow_actions *sfa,
					 int st_offset)
{
	struct nlattr *a = (struct nlattr *) ((unsigned char *)sfa->actions +
							       st_offset);

	a->nla_len = sfa->actions_len - st_offset;
}

J
Joe Stringer 已提交
2104
static int __ovs_nla_copy_actions(struct net *net, const struct nlattr *attr,
2105
				  const struct sw_flow_key *key,
2106
				  struct sw_flow_actions **sfa,
2107
				  __be16 eth_type, __be16 vlan_tci, bool log);
2108

J
Joe Stringer 已提交
2109
static int validate_and_copy_sample(struct net *net, const struct nlattr *attr,
2110
				    const struct sw_flow_key *key,
2111
				    struct sw_flow_actions **sfa,
2112 2113
				    __be16 eth_type, __be16 vlan_tci,
				    bool log, bool last)
2114 2115 2116 2117
{
	const struct nlattr *attrs[OVS_SAMPLE_ATTR_MAX + 1];
	const struct nlattr *probability, *actions;
	const struct nlattr *a;
2118 2119
	int rem, start, err;
	struct sample_arg arg;
2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139

	memset(attrs, 0, sizeof(attrs));
	nla_for_each_nested(a, attr, rem) {
		int type = nla_type(a);
		if (!type || type > OVS_SAMPLE_ATTR_MAX || attrs[type])
			return -EINVAL;
		attrs[type] = a;
	}
	if (rem)
		return -EINVAL;

	probability = attrs[OVS_SAMPLE_ATTR_PROBABILITY];
	if (!probability || nla_len(probability) != sizeof(u32))
		return -EINVAL;

	actions = attrs[OVS_SAMPLE_ATTR_ACTIONS];
	if (!actions || (nla_len(actions) && nla_len(actions) < NLA_HDRLEN))
		return -EINVAL;

	/* validation done, copy sample action. */
2140
	start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SAMPLE, log);
2141 2142
	if (start < 0)
		return start;
2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159

	/* When both skb and flow may be changed, put the sample
	 * into a deferred fifo. On the other hand, if only skb
	 * may be modified, the actions can be executed in place.
	 *
	 * Do this analysis at the flow installation time.
	 * Set 'clone_action->exec' to true if the actions can be
	 * executed without being deferred.
	 *
	 * If the sample is the last action, it can always be excuted
	 * rather than deferred.
	 */
	arg.exec = last || !actions_may_change_flow(actions);
	arg.probability = nla_get_u32(probability);

	err = ovs_nla_add_action(sfa, OVS_SAMPLE_ATTR_ARG, &arg, sizeof(arg),
				 log);
2160 2161 2162
	if (err)
		return err;

2163
	err = __ovs_nla_copy_actions(net, actions, key, sfa,
2164
				     eth_type, vlan_tci, log);
2165

2166 2167 2168 2169 2170 2171 2172 2173 2174 2175
	if (err)
		return err;

	add_nested_action_end(*sfa, start);

	return 0;
}

void ovs_match_init(struct sw_flow_match *match,
		    struct sw_flow_key *key,
2176
		    bool reset_key,
2177 2178 2179 2180 2181 2182
		    struct sw_flow_mask *mask)
{
	memset(match, 0, sizeof(*match));
	match->key = key;
	match->mask = mask;

2183 2184
	if (reset_key)
		memset(key, 0, sizeof(*key));
2185 2186 2187 2188 2189 2190 2191

	if (mask) {
		memset(&mask->key, 0, sizeof(mask->key));
		mask->range.start = mask->range.end = 0;
	}
}

2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219
static int validate_geneve_opts(struct sw_flow_key *key)
{
	struct geneve_opt *option;
	int opts_len = key->tun_opts_len;
	bool crit_opt = false;

	option = (struct geneve_opt *)TUN_METADATA_OPTS(key, key->tun_opts_len);
	while (opts_len > 0) {
		int len;

		if (opts_len < sizeof(*option))
			return -EINVAL;

		len = sizeof(*option) + option->length * 4;
		if (len > opts_len)
			return -EINVAL;

		crit_opt |= !!(option->type & GENEVE_CRIT_OPT_TYPE);

		option = (struct geneve_opt *)((u8 *)option + len);
		opts_len -= len;
	};

	key->tun_key.tun_flags |= crit_opt ? TUNNEL_CRIT_OPT : 0;

	return 0;
}

2220
static int validate_and_copy_set_tun(const struct nlattr *attr,
2221
				     struct sw_flow_actions **sfa, bool log)
2222 2223 2224
{
	struct sw_flow_match match;
	struct sw_flow_key key;
2225
	struct metadata_dst *tun_dst;
2226
	struct ip_tunnel_info *tun_info;
2227
	struct ovs_tunnel_info *ovs_tun;
2228
	struct nlattr *a;
2229
	int err = 0, start, opts_type;
2230

2231
	ovs_match_init(&match, &key, true, NULL);
2232
	opts_type = ip_tun_from_nlattr(nla_data(attr), &match, false, log);
2233 2234
	if (opts_type < 0)
		return opts_type;
2235

2236
	if (key.tun_opts_len) {
2237 2238 2239 2240 2241 2242 2243 2244
		switch (opts_type) {
		case OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS:
			err = validate_geneve_opts(&key);
			if (err < 0)
				return err;
			break;
		case OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS:
			break;
2245 2246
		case OVS_TUNNEL_KEY_ATTR_ERSPAN_OPTS:
			break;
2247
		}
2248 2249
	};

2250
	start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SET, log);
2251 2252 2253
	if (start < 0)
		return start;

2254 2255 2256
	tun_dst = metadata_dst_alloc(key.tun_opts_len, METADATA_IP_TUNNEL,
				     GFP_KERNEL);

2257 2258 2259
	if (!tun_dst)
		return -ENOMEM;

2260 2261 2262 2263 2264 2265
	err = dst_cache_init(&tun_dst->u.tun_info.dst_cache, GFP_KERNEL);
	if (err) {
		dst_release((struct dst_entry *)tun_dst);
		return err;
	}

2266
	a = __add_action(sfa, OVS_KEY_ATTR_TUNNEL_INFO, NULL,
2267 2268 2269
			 sizeof(*ovs_tun), log);
	if (IS_ERR(a)) {
		dst_release((struct dst_entry *)tun_dst);
2270
		return PTR_ERR(a);
2271 2272 2273 2274
	}

	ovs_tun = nla_data(a);
	ovs_tun->tun_dst = tun_dst;
2275

2276 2277
	tun_info = &tun_dst->u.tun_info;
	tun_info->mode = IP_TUNNEL_INFO_TX;
2278 2279
	if (key.tun_proto == AF_INET6)
		tun_info->mode |= IP_TUNNEL_INFO_IPV6;
2280
	tun_info->key = key.tun_key;
2281

2282 2283 2284 2285 2286 2287 2288
	/* We need to store the options in the action itself since
	 * everything else will go away after flow setup. We can append
	 * it to tun_info and then point there.
	 */
	ip_tunnel_info_opts_set(tun_info,
				TUN_METADATA_OPTS(&key, key.tun_opts_len),
				key.tun_opts_len);
2289 2290 2291 2292 2293
	add_nested_action_end(*sfa, start);

	return err;
}

2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307
/* Return false if there are any non-masked bits set.
 * Mask follows data immediately, before any netlink padding.
 */
static bool validate_masked(u8 *data, int len)
{
	u8 *mask = data + len;

	while (len--)
		if (*data++ & ~*mask++)
			return false;

	return true;
}

2308 2309
static int validate_set(const struct nlattr *a,
			const struct sw_flow_key *flow_key,
2310 2311
			struct sw_flow_actions **sfa, bool *skip_copy,
			u8 mac_proto, __be16 eth_type, bool masked, bool log)
2312 2313 2314
{
	const struct nlattr *ovs_key = nla_data(a);
	int key_type = nla_type(ovs_key);
2315
	size_t key_len;
2316 2317 2318 2319 2320

	/* There can be only one key in a action */
	if (nla_total_size(nla_len(ovs_key)) != nla_len(a))
		return -EINVAL;

2321 2322 2323 2324
	key_len = nla_len(ovs_key);
	if (masked)
		key_len /= 2;

2325
	if (key_type > OVS_KEY_ATTR_MAX ||
2326
	    !check_attr_len(key_len, ovs_key_lens[key_type].len))
2327 2328
		return -EINVAL;

2329 2330 2331
	if (masked && !validate_masked(nla_data(ovs_key), key_len))
		return -EINVAL;

2332 2333 2334 2335 2336 2337 2338
	switch (key_type) {
	const struct ovs_key_ipv4 *ipv4_key;
	const struct ovs_key_ipv6 *ipv6_key;
	int err;

	case OVS_KEY_ATTR_PRIORITY:
	case OVS_KEY_ATTR_SKB_MARK:
2339
	case OVS_KEY_ATTR_CT_MARK:
J
Joe Stringer 已提交
2340
	case OVS_KEY_ATTR_CT_LABELS:
2341 2342
		break;

2343 2344 2345
	case OVS_KEY_ATTR_ETHERNET:
		if (mac_proto != MAC_PROTO_ETHERNET)
			return -EINVAL;
2346
		break;
2347

2348
	case OVS_KEY_ATTR_TUNNEL:
2349 2350 2351 2352
		if (masked)
			return -EINVAL; /* Masked tunnel set not supported. */

		*skip_copy = true;
2353
		err = validate_and_copy_set_tun(a, sfa, log);
2354 2355 2356 2357 2358
		if (err)
			return err;
		break;

	case OVS_KEY_ATTR_IPV4:
2359
		if (eth_type != htons(ETH_P_IP))
2360 2361 2362 2363
			return -EINVAL;

		ipv4_key = nla_data(ovs_key);

2364 2365
		if (masked) {
			const struct ovs_key_ipv4 *mask = ipv4_key + 1;
2366

2367 2368 2369 2370 2371 2372 2373 2374 2375 2376
			/* Non-writeable fields. */
			if (mask->ipv4_proto || mask->ipv4_frag)
				return -EINVAL;
		} else {
			if (ipv4_key->ipv4_proto != flow_key->ip.proto)
				return -EINVAL;

			if (ipv4_key->ipv4_frag != flow_key->ip.frag)
				return -EINVAL;
		}
2377 2378 2379
		break;

	case OVS_KEY_ATTR_IPV6:
2380
		if (eth_type != htons(ETH_P_IPV6))
2381 2382 2383 2384
			return -EINVAL;

		ipv6_key = nla_data(ovs_key);

2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397
		if (masked) {
			const struct ovs_key_ipv6 *mask = ipv6_key + 1;

			/* Non-writeable fields. */
			if (mask->ipv6_proto || mask->ipv6_frag)
				return -EINVAL;

			/* Invalid bits in the flow label mask? */
			if (ntohl(mask->ipv6_label) & 0xFFF00000)
				return -EINVAL;
		} else {
			if (ipv6_key->ipv6_proto != flow_key->ip.proto)
				return -EINVAL;
2398

2399 2400 2401
			if (ipv6_key->ipv6_frag != flow_key->ip.frag)
				return -EINVAL;
		}
2402 2403 2404 2405 2406 2407
		if (ntohl(ipv6_key->ipv6_label) & 0xFFF00000)
			return -EINVAL;

		break;

	case OVS_KEY_ATTR_TCP:
2408 2409 2410
		if ((eth_type != htons(ETH_P_IP) &&
		     eth_type != htons(ETH_P_IPV6)) ||
		    flow_key->ip.proto != IPPROTO_TCP)
2411 2412
			return -EINVAL;

2413
		break;
2414 2415

	case OVS_KEY_ATTR_UDP:
2416 2417 2418
		if ((eth_type != htons(ETH_P_IP) &&
		     eth_type != htons(ETH_P_IPV6)) ||
		    flow_key->ip.proto != IPPROTO_UDP)
2419 2420
			return -EINVAL;

2421
		break;
2422 2423 2424 2425 2426

	case OVS_KEY_ATTR_MPLS:
		if (!eth_p_mpls(eth_type))
			return -EINVAL;
		break;
2427 2428

	case OVS_KEY_ATTR_SCTP:
2429 2430 2431
		if ((eth_type != htons(ETH_P_IP) &&
		     eth_type != htons(ETH_P_IPV6)) ||
		    flow_key->ip.proto != IPPROTO_SCTP)
2432 2433
			return -EINVAL;

2434
		break;
2435 2436 2437 2438 2439

	default:
		return -EINVAL;
	}

2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467
	/* Convert non-masked non-tunnel set actions to masked set actions. */
	if (!masked && key_type != OVS_KEY_ATTR_TUNNEL) {
		int start, len = key_len * 2;
		struct nlattr *at;

		*skip_copy = true;

		start = add_nested_action_start(sfa,
						OVS_ACTION_ATTR_SET_TO_MASKED,
						log);
		if (start < 0)
			return start;

		at = __add_action(sfa, key_type, NULL, len, log);
		if (IS_ERR(at))
			return PTR_ERR(at);

		memcpy(nla_data(at), nla_data(ovs_key), key_len); /* Key. */
		memset(nla_data(at) + key_len, 0xff, key_len);    /* Mask. */
		/* Clear non-writeable bits from otherwise writeable fields. */
		if (key_type == OVS_KEY_ATTR_IPV6) {
			struct ovs_key_ipv6 *mask = nla_data(at) + key_len;

			mask->ipv6_label &= htonl(0x000FFFFF);
		}
		add_nested_action_end(*sfa, start);
	}

2468 2469 2470 2471 2472 2473 2474 2475
	return 0;
}

static int validate_userspace(const struct nlattr *attr)
{
	static const struct nla_policy userspace_policy[OVS_USERSPACE_ATTR_MAX + 1] = {
		[OVS_USERSPACE_ATTR_PID] = {.type = NLA_U32 },
		[OVS_USERSPACE_ATTR_USERDATA] = {.type = NLA_UNSPEC },
2476
		[OVS_USERSPACE_ATTR_EGRESS_TUN_PORT] = {.type = NLA_U32 },
2477 2478 2479 2480
	};
	struct nlattr *a[OVS_USERSPACE_ATTR_MAX + 1];
	int error;

2481 2482
	error = nla_parse_nested(a, OVS_USERSPACE_ATTR_MAX, attr,
				 userspace_policy, NULL);
2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493
	if (error)
		return error;

	if (!a[OVS_USERSPACE_ATTR_PID] ||
	    !nla_get_u32(a[OVS_USERSPACE_ATTR_PID]))
		return -EINVAL;

	return 0;
}

static int copy_action(const struct nlattr *from,
2494
		       struct sw_flow_actions **sfa, bool log)
2495 2496 2497 2498
{
	int totlen = NLA_ALIGN(from->nla_len);
	struct nlattr *to;

2499
	to = reserve_sfa_size(sfa, from->nla_len, log);
2500 2501 2502 2503 2504 2505 2506
	if (IS_ERR(to))
		return PTR_ERR(to);

	memcpy(to, from, totlen);
	return 0;
}

J
Joe Stringer 已提交
2507
static int __ovs_nla_copy_actions(struct net *net, const struct nlattr *attr,
2508
				  const struct sw_flow_key *key,
2509
				  struct sw_flow_actions **sfa,
2510
				  __be16 eth_type, __be16 vlan_tci, bool log)
2511
{
2512
	u8 mac_proto = ovs_key_mac_proto(key);
2513 2514 2515 2516 2517 2518 2519
	const struct nlattr *a;
	int rem, err;

	nla_for_each_nested(a, attr, rem) {
		/* Expected argument lengths, (u32)-1 for variable length. */
		static const u32 action_lens[OVS_ACTION_ATTR_MAX + 1] = {
			[OVS_ACTION_ATTR_OUTPUT] = sizeof(u32),
2520
			[OVS_ACTION_ATTR_RECIRC] = sizeof(u32),
2521
			[OVS_ACTION_ATTR_USERSPACE] = (u32)-1,
2522 2523
			[OVS_ACTION_ATTR_PUSH_MPLS] = sizeof(struct ovs_action_push_mpls),
			[OVS_ACTION_ATTR_POP_MPLS] = sizeof(__be16),
2524 2525 2526
			[OVS_ACTION_ATTR_PUSH_VLAN] = sizeof(struct ovs_action_push_vlan),
			[OVS_ACTION_ATTR_POP_VLAN] = 0,
			[OVS_ACTION_ATTR_SET] = (u32)-1,
2527
			[OVS_ACTION_ATTR_SET_MASKED] = (u32)-1,
2528
			[OVS_ACTION_ATTR_SAMPLE] = (u32)-1,
J
Joe Stringer 已提交
2529 2530
			[OVS_ACTION_ATTR_HASH] = sizeof(struct ovs_action_hash),
			[OVS_ACTION_ATTR_CT] = (u32)-1,
2531
			[OVS_ACTION_ATTR_TRUNC] = sizeof(struct ovs_action_trunc),
2532 2533
			[OVS_ACTION_ATTR_PUSH_ETH] = sizeof(struct ovs_action_push_eth),
			[OVS_ACTION_ATTR_POP_ETH] = 0,
2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559
		};
		const struct ovs_action_push_vlan *vlan;
		int type = nla_type(a);
		bool skip_copy;

		if (type > OVS_ACTION_ATTR_MAX ||
		    (action_lens[type] != nla_len(a) &&
		     action_lens[type] != (u32)-1))
			return -EINVAL;

		skip_copy = false;
		switch (type) {
		case OVS_ACTION_ATTR_UNSPEC:
			return -EINVAL;

		case OVS_ACTION_ATTR_USERSPACE:
			err = validate_userspace(a);
			if (err)
				return err;
			break;

		case OVS_ACTION_ATTR_OUTPUT:
			if (nla_get_u32(a) >= DP_MAX_PORTS)
				return -EINVAL;
			break;

2560 2561 2562 2563 2564 2565 2566 2567
		case OVS_ACTION_ATTR_TRUNC: {
			const struct ovs_action_trunc *trunc = nla_data(a);

			if (trunc->max_len < ETH_HLEN)
				return -EINVAL;
			break;
		}

2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579
		case OVS_ACTION_ATTR_HASH: {
			const struct ovs_action_hash *act_hash = nla_data(a);

			switch (act_hash->hash_alg) {
			case OVS_HASH_ALG_L4:
				break;
			default:
				return  -EINVAL;
			}

			break;
		}
2580 2581

		case OVS_ACTION_ATTR_POP_VLAN:
2582 2583
			if (mac_proto != MAC_PROTO_ETHERNET)
				return -EINVAL;
2584
			vlan_tci = htons(0);
2585 2586 2587
			break;

		case OVS_ACTION_ATTR_PUSH_VLAN:
2588 2589
			if (mac_proto != MAC_PROTO_ETHERNET)
				return -EINVAL;
2590
			vlan = nla_data(a);
2591
			if (!eth_type_vlan(vlan->vlan_tpid))
2592 2593 2594
				return -EINVAL;
			if (!(vlan->vlan_tci & htons(VLAN_TAG_PRESENT)))
				return -EINVAL;
2595
			vlan_tci = vlan->vlan_tci;
2596 2597
			break;

2598 2599 2600
		case OVS_ACTION_ATTR_RECIRC:
			break;

2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636
		case OVS_ACTION_ATTR_PUSH_MPLS: {
			const struct ovs_action_push_mpls *mpls = nla_data(a);

			if (!eth_p_mpls(mpls->mpls_ethertype))
				return -EINVAL;
			/* Prohibit push MPLS other than to a white list
			 * for packets that have a known tag order.
			 */
			if (vlan_tci & htons(VLAN_TAG_PRESENT) ||
			    (eth_type != htons(ETH_P_IP) &&
			     eth_type != htons(ETH_P_IPV6) &&
			     eth_type != htons(ETH_P_ARP) &&
			     eth_type != htons(ETH_P_RARP) &&
			     !eth_p_mpls(eth_type)))
				return -EINVAL;
			eth_type = mpls->mpls_ethertype;
			break;
		}

		case OVS_ACTION_ATTR_POP_MPLS:
			if (vlan_tci & htons(VLAN_TAG_PRESENT) ||
			    !eth_p_mpls(eth_type))
				return -EINVAL;

			/* Disallow subsequent L2.5+ set and mpls_pop actions
			 * as there is no check here to ensure that the new
			 * eth_type is valid and thus set actions could
			 * write off the end of the packet or otherwise
			 * corrupt it.
			 *
			 * Support for these actions is planned using packet
			 * recirculation.
			 */
			eth_type = htons(0);
			break;

2637
		case OVS_ACTION_ATTR_SET:
2638
			err = validate_set(a, key, sfa,
2639 2640
					   &skip_copy, mac_proto, eth_type,
					   false, log);
2641 2642 2643 2644 2645 2646
			if (err)
				return err;
			break;

		case OVS_ACTION_ATTR_SET_MASKED:
			err = validate_set(a, key, sfa,
2647 2648
					   &skip_copy, mac_proto, eth_type,
					   true, log);
2649 2650 2651 2652
			if (err)
				return err;
			break;

2653 2654 2655 2656 2657 2658
		case OVS_ACTION_ATTR_SAMPLE: {
			bool last = nla_is_last(a, rem);

			err = validate_and_copy_sample(net, a, key, sfa,
						       eth_type, vlan_tci,
						       log, last);
2659 2660 2661 2662
			if (err)
				return err;
			skip_copy = true;
			break;
2663
		}
2664

J
Joe Stringer 已提交
2665 2666 2667 2668 2669 2670 2671
		case OVS_ACTION_ATTR_CT:
			err = ovs_ct_copy_action(net, a, key, sfa, log);
			if (err)
				return err;
			skip_copy = true;
			break;

2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687
		case OVS_ACTION_ATTR_PUSH_ETH:
			/* Disallow pushing an Ethernet header if one
			 * is already present */
			if (mac_proto != MAC_PROTO_NONE)
				return -EINVAL;
			mac_proto = MAC_PROTO_NONE;
			break;

		case OVS_ACTION_ATTR_POP_ETH:
			if (mac_proto != MAC_PROTO_ETHERNET)
				return -EINVAL;
			if (vlan_tci & htons(VLAN_TAG_PRESENT))
				return -EINVAL;
			mac_proto = MAC_PROTO_ETHERNET;
			break;

2688
		default:
2689
			OVS_NLERR(log, "Unknown Action type %d", type);
2690 2691 2692
			return -EINVAL;
		}
		if (!skip_copy) {
2693
			err = copy_action(a, sfa, log);
2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704
			if (err)
				return err;
		}
	}

	if (rem > 0)
		return -EINVAL;

	return 0;
}

2705
/* 'key' must be the masked key. */
J
Joe Stringer 已提交
2706
int ovs_nla_copy_actions(struct net *net, const struct nlattr *attr,
2707
			 const struct sw_flow_key *key,
2708
			 struct sw_flow_actions **sfa, bool log)
2709
{
2710 2711
	int err;

2712
	*sfa = nla_alloc_flow_actions(nla_len(attr), log);
2713 2714 2715
	if (IS_ERR(*sfa))
		return PTR_ERR(*sfa);

2716
	(*sfa)->orig_len = nla_len(attr);
2717
	err = __ovs_nla_copy_actions(net, attr, key, sfa, key->eth.type,
2718
				     key->eth.vlan.tci, log);
2719
	if (err)
2720
		ovs_nla_free_flow_actions(*sfa);
2721 2722

	return err;
2723 2724
}

2725 2726
static int sample_action_to_attr(const struct nlattr *attr,
				 struct sk_buff *skb)
2727
{
2728 2729 2730 2731
	struct nlattr *start, *ac_start = NULL, *sample_arg;
	int err = 0, rem = nla_len(attr);
	const struct sample_arg *arg;
	struct nlattr *actions;
2732 2733 2734 2735 2736

	start = nla_nest_start(skb, OVS_ACTION_ATTR_SAMPLE);
	if (!start)
		return -EMSGSIZE;

2737 2738 2739
	sample_arg = nla_data(attr);
	arg = nla_data(sample_arg);
	actions = nla_next(sample_arg, &rem);
2740

2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760
	if (nla_put_u32(skb, OVS_SAMPLE_ATTR_PROBABILITY, arg->probability)) {
		err = -EMSGSIZE;
		goto out;
	}

	ac_start = nla_nest_start(skb, OVS_SAMPLE_ATTR_ACTIONS);
	if (!ac_start) {
		err = -EMSGSIZE;
		goto out;
	}

	err = ovs_nla_put_actions(actions, rem, skb);

out:
	if (err) {
		nla_nest_cancel(skb, ac_start);
		nla_nest_cancel(skb, start);
	} else {
		nla_nest_end(skb, ac_start);
		nla_nest_end(skb, start);
2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773
	}

	return err;
}

static int set_action_to_attr(const struct nlattr *a, struct sk_buff *skb)
{
	const struct nlattr *ovs_key = nla_data(a);
	int key_type = nla_type(ovs_key);
	struct nlattr *start;
	int err;

	switch (key_type) {
2774
	case OVS_KEY_ATTR_TUNNEL_INFO: {
2775 2776
		struct ovs_tunnel_info *ovs_tun = nla_data(ovs_key);
		struct ip_tunnel_info *tun_info = &ovs_tun->tun_dst->u.tun_info;
2777

2778 2779 2780 2781
		start = nla_nest_start(skb, OVS_ACTION_ATTR_SET);
		if (!start)
			return -EMSGSIZE;

2782 2783 2784 2785
		err =  ip_tun_to_nlattr(skb, &tun_info->key,
					ip_tunnel_info_opts(tun_info),
					tun_info->options_len,
					ip_tunnel_info_af(tun_info));
2786 2787 2788 2789
		if (err)
			return err;
		nla_nest_end(skb, start);
		break;
2790
	}
2791 2792 2793 2794 2795 2796 2797 2798 2799
	default:
		if (nla_put(skb, OVS_ACTION_ATTR_SET, nla_len(a), ovs_key))
			return -EMSGSIZE;
		break;
	}

	return 0;
}

2800 2801 2802 2803
static int masked_set_action_to_set_action_attr(const struct nlattr *a,
						struct sk_buff *skb)
{
	const struct nlattr *ovs_key = nla_data(a);
2804
	struct nlattr *nla;
2805 2806 2807 2808 2809
	size_t key_len = nla_len(ovs_key) / 2;

	/* Revert the conversion we did from a non-masked set action to
	 * masked set action.
	 */
2810 2811
	nla = nla_nest_start(skb, OVS_ACTION_ATTR_SET);
	if (!nla)
2812 2813
		return -EMSGSIZE;

2814 2815 2816 2817
	if (nla_put(skb, nla_type(ovs_key), key_len, nla_data(ovs_key)))
		return -EMSGSIZE;

	nla_nest_end(skb, nla);
2818 2819 2820
	return 0;
}

2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835
int ovs_nla_put_actions(const struct nlattr *attr, int len, struct sk_buff *skb)
{
	const struct nlattr *a;
	int rem, err;

	nla_for_each_attr(a, attr, len, rem) {
		int type = nla_type(a);

		switch (type) {
		case OVS_ACTION_ATTR_SET:
			err = set_action_to_attr(a, skb);
			if (err)
				return err;
			break;

2836 2837 2838 2839 2840 2841
		case OVS_ACTION_ATTR_SET_TO_MASKED:
			err = masked_set_action_to_set_action_attr(a, skb);
			if (err)
				return err;
			break;

2842 2843 2844 2845 2846
		case OVS_ACTION_ATTR_SAMPLE:
			err = sample_action_to_attr(a, skb);
			if (err)
				return err;
			break;
J
Joe Stringer 已提交
2847 2848 2849 2850 2851 2852 2853

		case OVS_ACTION_ATTR_CT:
			err = ovs_ct_action_to_attr(nla_data(a), skb);
			if (err)
				return err;
			break;

2854 2855 2856 2857 2858 2859 2860 2861 2862
		default:
			if (nla_put(skb, type, nla_len(a), nla_data(a)))
				return -EMSGSIZE;
			break;
		}
	}

	return 0;
}