intel_breadcrumbs.c 25.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/*
 * Copyright © 2015 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 */

25
#include <linux/kthread.h>
26
#include <uapi/linux/sched/types.h>
27

28 29
#include "i915_drv.h"

30
static unsigned int __intel_breadcrumbs_wakeup(struct intel_breadcrumbs *b)
31
{
32
	struct intel_wait *wait;
33 34
	unsigned int result = 0;

35 36 37
	lockdep_assert_held(&b->irq_lock);

	wait = b->irq_wait;
38
	if (wait) {
39
		result = ENGINE_WAKEUP_WAITER;
40 41
		if (wake_up_process(wait->tsk))
			result |= ENGINE_WAKEUP_ASLEEP;
42
	}
43 44 45 46 47 48 49

	return result;
}

unsigned int intel_engine_wakeup(struct intel_engine_cs *engine)
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;
50
	unsigned long flags;
51 52
	unsigned int result;

53
	spin_lock_irqsave(&b->irq_lock, flags);
54
	result = __intel_breadcrumbs_wakeup(b);
55
	spin_unlock_irqrestore(&b->irq_lock, flags);
56 57 58 59

	return result;
}

60 61 62 63 64
static unsigned long wait_timeout(void)
{
	return round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES);
}

65 66
static noinline void missed_breadcrumb(struct intel_engine_cs *engine)
{
67
	DRM_DEBUG_DRIVER("%s missed breadcrumb at %pF, irq posted? %s, current seqno=%x, last=%x\n",
68 69
			 engine->name, __builtin_return_address(0),
			 yesno(test_bit(ENGINE_IRQ_BREADCRUMB,
70 71 72
					&engine->irq_posted)),
			 intel_engine_get_seqno(engine),
			 intel_engine_last_submit(engine));
73 74 75 76

	set_bit(engine->id, &engine->i915->gpu_error.missed_irq_rings);
}

77 78 79 80 81
static void intel_breadcrumbs_hangcheck(unsigned long data)
{
	struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
	struct intel_breadcrumbs *b = &engine->breadcrumbs;

82
	if (!b->irq_armed)
83 84
		return;

85 86 87
	if (b->hangcheck_interrupts != atomic_read(&engine->irq_count)) {
		b->hangcheck_interrupts = atomic_read(&engine->irq_count);
		mod_timer(&b->hangcheck, wait_timeout());
88 89 90
		return;
	}

91
	/* We keep the hangcheck timer alive until we disarm the irq, even
92 93 94
	 * if there are no waiters at present.
	 *
	 * If the waiter was currently running, assume it hasn't had a chance
95 96
	 * to process the pending interrupt (e.g, low priority task on a loaded
	 * system) and wait until it sleeps before declaring a missed interrupt.
97 98 99 100 101
	 *
	 * If the waiter was asleep (and not even pending a wakeup), then we
	 * must have missed an interrupt as the GPU has stopped advancing
	 * but we still have a waiter. Assuming all batches complete within
	 * DRM_I915_HANGCHECK_JIFFIES [1.5s]!
102
	 */
103
	if (intel_engine_wakeup(engine) & ENGINE_WAKEUP_ASLEEP) {
104
		missed_breadcrumb(engine);
105 106
		mod_timer(&engine->breadcrumbs.fake_irq, jiffies + 1);
	} else {
107 108
		mod_timer(&b->hangcheck, wait_timeout());
	}
109 110
}

111 112 113
static void intel_breadcrumbs_fake_irq(unsigned long data)
{
	struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
114
	struct intel_breadcrumbs *b = &engine->breadcrumbs;
115

116
	/* The timer persists in case we cannot enable interrupts,
117
	 * or if we have previously seen seqno/interrupt incoherency
118 119 120
	 * ("missed interrupt" syndrome, better known as a "missed breadcrumb").
	 * Here the worker will wake up every jiffie in order to kick the
	 * oldest waiter to do the coherent seqno check.
121
	 */
122

123
	spin_lock_irq(&b->irq_lock);
124 125
	if (!__intel_breadcrumbs_wakeup(b))
		__intel_engine_disarm_breadcrumbs(engine);
126
	spin_unlock_irq(&b->irq_lock);
127
	if (!b->irq_armed)
128 129
		return;

130
	mod_timer(&b->fake_irq, jiffies + 1);
131 132 133 134 135 136 137 138 139 140 141

	/* Ensure that even if the GPU hangs, we get woken up.
	 *
	 * However, note that if no one is waiting, we never notice
	 * a gpu hang. Eventually, we will have to wait for a resource
	 * held by the GPU and so trigger a hangcheck. In the most
	 * pathological case, this will be upon memory starvation! To
	 * prevent this, we also queue the hangcheck from the retire
	 * worker.
	 */
	i915_queue_hangcheck(engine->i915);
142 143 144 145
}

static void irq_enable(struct intel_engine_cs *engine)
{
146 147 148 149
	/* Enabling the IRQ may miss the generation of the interrupt, but
	 * we still need to force the barrier before reading the seqno,
	 * just in case.
	 */
150
	set_bit(ENGINE_IRQ_BREADCRUMB, &engine->irq_posted);
151

152 153
	/* Caller disables interrupts */
	spin_lock(&engine->i915->irq_lock);
154
	engine->irq_enable(engine);
155
	spin_unlock(&engine->i915->irq_lock);
156 157 158 159
}

static void irq_disable(struct intel_engine_cs *engine)
{
160 161
	/* Caller disables interrupts */
	spin_lock(&engine->i915->irq_lock);
162
	engine->irq_disable(engine);
163
	spin_unlock(&engine->i915->irq_lock);
164 165
}

166 167 168 169
void __intel_engine_disarm_breadcrumbs(struct intel_engine_cs *engine)
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;

170
	lockdep_assert_held(&b->irq_lock);
171
	GEM_BUG_ON(b->irq_wait);
172 173 174 175 176 177 178 179 180 181 182 183

	if (b->irq_enabled) {
		irq_disable(engine);
		b->irq_enabled = false;
	}

	b->irq_armed = false;
}

void intel_engine_disarm_breadcrumbs(struct intel_engine_cs *engine)
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;
184
	struct intel_wait *wait, *n, *first;
185 186 187 188 189

	if (!b->irq_armed)
		return;

	/* We only disarm the irq when we are idle (all requests completed),
190
	 * so if the bottom-half remains asleep, it missed the request
191 192 193
	 * completion.
	 */

194
	spin_lock_irq(&b->rb_lock);
195 196 197 198 199 200

	spin_lock(&b->irq_lock);
	first = fetch_and_zero(&b->irq_wait);
	__intel_engine_disarm_breadcrumbs(engine);
	spin_unlock(&b->irq_lock);

201 202
	rbtree_postorder_for_each_entry_safe(wait, n, &b->waiters, node) {
		RB_CLEAR_NODE(&wait->node);
203
		if (wake_up_process(wait->tsk) && wait == first)
204 205 206 207 208
			missed_breadcrumb(engine);
	}
	b->waiters = RB_ROOT;

	spin_unlock_irq(&b->rb_lock);
209 210
}

211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
static bool use_fake_irq(const struct intel_breadcrumbs *b)
{
	const struct intel_engine_cs *engine =
		container_of(b, struct intel_engine_cs, breadcrumbs);

	if (!test_bit(engine->id, &engine->i915->gpu_error.missed_irq_rings))
		return false;

	/* Only start with the heavy weight fake irq timer if we have not
	 * seen any interrupts since enabling it the first time. If the
	 * interrupts are still arriving, it means we made a mistake in our
	 * engine->seqno_barrier(), a timing error that should be transient
	 * and unlikely to reoccur.
	 */
	return atomic_read(&engine->irq_count) == b->hangcheck_interrupts;
}

228 229 230 231 232 233 234 235 236
static void enable_fake_irq(struct intel_breadcrumbs *b)
{
	/* Ensure we never sleep indefinitely */
	if (!b->irq_enabled || use_fake_irq(b))
		mod_timer(&b->fake_irq, jiffies + 1);
	else
		mod_timer(&b->hangcheck, wait_timeout());
}

237
static bool __intel_breadcrumbs_enable_irq(struct intel_breadcrumbs *b)
238 239 240 241 242
{
	struct intel_engine_cs *engine =
		container_of(b, struct intel_engine_cs, breadcrumbs);
	struct drm_i915_private *i915 = engine->i915;

243
	lockdep_assert_held(&b->irq_lock);
244
	if (b->irq_armed)
245
		return false;
246

247 248 249 250 251 252 253 254
	/* The breadcrumb irq will be disarmed on the interrupt after the
	 * waiters are signaled. This gives us a single interrupt window in
	 * which we can add a new waiter and avoid the cost of re-enabling
	 * the irq.
	 */
	b->irq_armed = true;
	GEM_BUG_ON(b->irq_enabled);

255 256 257 258 259 260 261 262
	if (I915_SELFTEST_ONLY(b->mock)) {
		/* For our mock objects we want to avoid interaction
		 * with the real hardware (which is not set up). So
		 * we simply pretend we have enabled the powerwell
		 * and the irq, and leave it up to the mock
		 * implementation to call intel_engine_wakeup()
		 * itself when it wants to simulate a user interrupt,
		 */
263
		return true;
264 265
	}

266
	/* Since we are waiting on a request, the GPU should be busy
267 268 269 270
	 * and should have its own rpm reference. This is tracked
	 * by i915->gt.awake, we can forgo holding our own wakref
	 * for the interrupt as before i915->gt.awake is released (when
	 * the driver is idle) we disarm the breadcrumbs.
271 272 273 274
	 */

	/* No interrupts? Kick the waiter every jiffie! */
	if (intel_irqs_enabled(i915)) {
275
		if (!test_bit(engine->id, &i915->gpu_error.test_irq_rings))
276 277 278 279
			irq_enable(engine);
		b->irq_enabled = true;
	}

280
	enable_fake_irq(b);
281
	return true;
282 283 284 285
}

static inline struct intel_wait *to_wait(struct rb_node *node)
{
286
	return rb_entry(node, struct intel_wait, node);
287 288 289 290 291
}

static inline void __intel_breadcrumbs_finish(struct intel_breadcrumbs *b,
					      struct intel_wait *wait)
{
292
	lockdep_assert_held(&b->rb_lock);
293
	GEM_BUG_ON(b->irq_wait == wait);
294 295

	/* This request is completed, so remove it from the tree, mark it as
296 297 298 299 300 301
	 * complete, and *then* wake up the associated task. N.B. when the
	 * task wakes up, it will find the empty rb_node, discern that it
	 * has already been removed from the tree and skip the serialisation
	 * of the b->rb_lock and b->irq_lock. This means that the destruction
	 * of the intel_wait is not serialised with the interrupt handler
	 * by the waiter - it must instead be serialised by the caller.
302 303 304 305 306 307 308
	 */
	rb_erase(&wait->node, &b->waiters);
	RB_CLEAR_NODE(&wait->node);

	wake_up_process(wait->tsk); /* implicit smp_wmb() */
}

309 310 311 312 313
static inline void __intel_breadcrumbs_next(struct intel_engine_cs *engine,
					    struct rb_node *next)
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;

314
	spin_lock(&b->irq_lock);
315
	GEM_BUG_ON(!b->irq_armed);
316
	GEM_BUG_ON(!b->irq_wait);
317 318
	b->irq_wait = to_wait(next);
	spin_unlock(&b->irq_lock);
319 320 321 322 323 324 325 326 327

	/* We always wake up the next waiter that takes over as the bottom-half
	 * as we may delegate not only the irq-seqno barrier to the next waiter
	 * but also the task of waking up concurrent waiters.
	 */
	if (next)
		wake_up_process(to_wait(next)->tsk);
}

328 329 330 331 332
static bool __intel_engine_add_wait(struct intel_engine_cs *engine,
				    struct intel_wait *wait)
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;
	struct rb_node **p, *parent, *completed;
333
	bool first, armed;
334 335 336 337 338 339 340 341 342 343 344 345 346 347
	u32 seqno;

	/* Insert the request into the retirement ordered list
	 * of waiters by walking the rbtree. If we are the oldest
	 * seqno in the tree (the first to be retired), then
	 * set ourselves as the bottom-half.
	 *
	 * As we descend the tree, prune completed branches since we hold the
	 * spinlock we know that the first_waiter must be delayed and can
	 * reduce some of the sequential wake up latency if we take action
	 * ourselves and wake up the completed tasks in parallel. Also, by
	 * removing stale elements in the tree, we may be able to reduce the
	 * ping-pong between the old bottom-half and ourselves as first-waiter.
	 */
348
	armed = false;
349 350 351
	first = true;
	parent = NULL;
	completed = NULL;
352
	seqno = intel_engine_get_seqno(engine);
353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393

	 /* If the request completed before we managed to grab the spinlock,
	  * return now before adding ourselves to the rbtree. We let the
	  * current bottom-half handle any pending wakeups and instead
	  * try and get out of the way quickly.
	  */
	if (i915_seqno_passed(seqno, wait->seqno)) {
		RB_CLEAR_NODE(&wait->node);
		return first;
	}

	p = &b->waiters.rb_node;
	while (*p) {
		parent = *p;
		if (wait->seqno == to_wait(parent)->seqno) {
			/* We have multiple waiters on the same seqno, select
			 * the highest priority task (that with the smallest
			 * task->prio) to serve as the bottom-half for this
			 * group.
			 */
			if (wait->tsk->prio > to_wait(parent)->tsk->prio) {
				p = &parent->rb_right;
				first = false;
			} else {
				p = &parent->rb_left;
			}
		} else if (i915_seqno_passed(wait->seqno,
					     to_wait(parent)->seqno)) {
			p = &parent->rb_right;
			if (i915_seqno_passed(seqno, to_wait(parent)->seqno))
				completed = parent;
			else
				first = false;
		} else {
			p = &parent->rb_left;
		}
	}
	rb_link_node(&wait->node, parent, p);
	rb_insert_color(&wait->node, &b->waiters);

	if (first) {
394 395
		spin_lock(&b->irq_lock);
		b->irq_wait = wait;
396 397 398 399 400
		/* After assigning ourselves as the new bottom-half, we must
		 * perform a cursory check to prevent a missed interrupt.
		 * Either we miss the interrupt whilst programming the hardware,
		 * or if there was a previous waiter (for a later seqno) they
		 * may be woken instead of us (due to the inherent race
401 402
		 * in the unlocked read of b->irq_seqno_bh in the irq handler)
		 * and so we miss the wake up.
403
		 */
404
		armed = __intel_breadcrumbs_enable_irq(b);
405
		spin_unlock(&b->irq_lock);
406
	}
407 408

	if (completed) {
409 410 411 412 413
		/* Advance the bottom-half (b->irq_wait) before we wake up
		 * the waiters who may scribble over their intel_wait
		 * just as the interrupt handler is dereferencing it via
		 * b->irq_wait.
		 */
414 415 416 417 418 419 420 421 422 423 424 425 426
		if (!first) {
			struct rb_node *next = rb_next(completed);
			GEM_BUG_ON(next == &wait->node);
			__intel_breadcrumbs_next(engine, next);
		}

		do {
			struct intel_wait *crumb = to_wait(completed);
			completed = rb_prev(completed);
			__intel_breadcrumbs_finish(b, crumb);
		} while (completed);
	}

427
	GEM_BUG_ON(!b->irq_wait);
428
	GEM_BUG_ON(!b->irq_armed);
429
	GEM_BUG_ON(rb_first(&b->waiters) != &b->irq_wait->node);
430

431
	return armed;
432 433 434 435 436 437
}

bool intel_engine_add_wait(struct intel_engine_cs *engine,
			   struct intel_wait *wait)
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;
438
	bool armed;
439

440
	spin_lock_irq(&b->rb_lock);
441
	armed = __intel_engine_add_wait(engine, wait);
442
	spin_unlock_irq(&b->rb_lock);
443 444
	if (armed)
		return armed;
445

446 447 448
	/* Make the caller recheck if its request has already started. */
	return i915_seqno_passed(intel_engine_get_seqno(engine),
				 wait->seqno - 1);
449 450 451 452 453 454 455
}

static inline bool chain_wakeup(struct rb_node *rb, int priority)
{
	return rb && to_wait(rb)->tsk->prio <= priority;
}

456 457 458 459 460 461 462 463 464
static inline int wakeup_priority(struct intel_breadcrumbs *b,
				  struct task_struct *tsk)
{
	if (tsk == b->signaler)
		return INT_MIN;
	else
		return tsk->prio;
}

465 466
static void __intel_engine_remove_wait(struct intel_engine_cs *engine,
				       struct intel_wait *wait)
467 468 469
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;

470
	lockdep_assert_held(&b->rb_lock);
471 472

	if (RB_EMPTY_NODE(&wait->node))
473
		goto out;
474

475
	if (b->irq_wait == wait) {
476
		const int priority = wakeup_priority(b, wait->tsk);
477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498
		struct rb_node *next;

		/* We are the current bottom-half. Find the next candidate,
		 * the first waiter in the queue on the remaining oldest
		 * request. As multiple seqnos may complete in the time it
		 * takes us to wake up and find the next waiter, we have to
		 * wake up that waiter for it to perform its own coherent
		 * completion check.
		 */
		next = rb_next(&wait->node);
		if (chain_wakeup(next, priority)) {
			/* If the next waiter is already complete,
			 * wake it up and continue onto the next waiter. So
			 * if have a small herd, they will wake up in parallel
			 * rather than sequentially, which should reduce
			 * the overall latency in waking all the completed
			 * clients.
			 *
			 * However, waking up a chain adds extra latency to
			 * the first_waiter. This is undesirable if that
			 * waiter is a high priority task.
			 */
499
			u32 seqno = intel_engine_get_seqno(engine);
500 501 502 503 504 505 506 507 508 509 510

			while (i915_seqno_passed(seqno, to_wait(next)->seqno)) {
				struct rb_node *n = rb_next(next);

				__intel_breadcrumbs_finish(b, to_wait(next));
				next = n;
				if (!chain_wakeup(next, priority))
					break;
			}
		}

511
		__intel_breadcrumbs_next(engine, next);
512 513 514 515 516 517 518
	} else {
		GEM_BUG_ON(rb_first(&b->waiters) == &wait->node);
	}

	GEM_BUG_ON(RB_EMPTY_NODE(&wait->node));
	rb_erase(&wait->node, &b->waiters);

519
out:
520
	GEM_BUG_ON(b->irq_wait == wait);
521
	GEM_BUG_ON(rb_first(&b->waiters) !=
522
		   (b->irq_wait ? &b->irq_wait->node : NULL));
523 524 525 526 527 528 529 530 531 532 533
}

void intel_engine_remove_wait(struct intel_engine_cs *engine,
			      struct intel_wait *wait)
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;

	/* Quick check to see if this waiter was already decoupled from
	 * the tree by the bottom-half to avoid contention on the spinlock
	 * by the herd.
	 */
534 535
	if (RB_EMPTY_NODE(&wait->node)) {
		GEM_BUG_ON(READ_ONCE(b->irq_wait) == wait);
536
		return;
537
	}
538

539
	spin_lock_irq(&b->rb_lock);
540
	__intel_engine_remove_wait(engine, wait);
541
	spin_unlock_irq(&b->rb_lock);
542 543
}

544 545 546 547 548 549
static bool signal_valid(const struct drm_i915_gem_request *request)
{
	return intel_wait_check_request(&request->signaling.wait, request);
}

static bool signal_complete(const struct drm_i915_gem_request *request)
550
{
551
	if (!request)
552 553 554 555 556
		return false;

	/* If another process served as the bottom-half it may have already
	 * signalled that this wait is already completed.
	 */
557
	if (intel_wait_complete(&request->signaling.wait))
558
		return signal_valid(request);
559 560 561 562

	/* Carefully check if the request is complete, giving time for the
	 * seqno to be visible or if the GPU hung.
	 */
563
	if (__i915_request_irq_complete(request))
564 565 566 567 568
		return true;

	return false;
}

569
static struct drm_i915_gem_request *to_signaler(struct rb_node *rb)
570
{
571
	return rb_entry(rb, struct drm_i915_gem_request, signaling.node);
572 573 574 575 576 577 578 579 580 581 582 583 584
}

static void signaler_set_rtpriority(void)
{
	 struct sched_param param = { .sched_priority = 1 };

	 sched_setscheduler_nocheck(current, SCHED_FIFO, &param);
}

static int intel_breadcrumbs_signaler(void *arg)
{
	struct intel_engine_cs *engine = arg;
	struct intel_breadcrumbs *b = &engine->breadcrumbs;
585
	struct drm_i915_gem_request *request;
586 587 588 589 590

	/* Install ourselves with high priority to reduce signalling latency */
	signaler_set_rtpriority();

	do {
591 592
		bool do_schedule = true;

593 594 595 596 597 598 599 600 601 602
		set_current_state(TASK_INTERRUPTIBLE);

		/* We are either woken up by the interrupt bottom-half,
		 * or by a client adding a new signaller. In both cases,
		 * the GPU seqno may have advanced beyond our oldest signal.
		 * If it has, propagate the signal, remove the waiter and
		 * check again with the next oldest signal. Otherwise we
		 * need to wait for a new interrupt from the GPU or for
		 * a new client.
		 */
603 604 605 606 607
		rcu_read_lock();
		request = rcu_dereference(b->first_signal);
		if (request)
			request = i915_gem_request_get_rcu(request);
		rcu_read_unlock();
608
		if (signal_complete(request)) {
609 610 611 612
			local_bh_disable();
			dma_fence_signal(&request->fence);
			local_bh_enable(); /* kick start the tasklets */

613
			spin_lock_irq(&b->rb_lock);
614

615 616 617
			/* Wake up all other completed waiters and select the
			 * next bottom-half for the next user interrupt.
			 */
618 619
			__intel_engine_remove_wait(engine,
						   &request->signaling.wait);
620

621 622 623 624 625 626
			/* Find the next oldest signal. Note that as we have
			 * not been holding the lock, another client may
			 * have installed an even older signal than the one
			 * we just completed - so double check we are still
			 * the oldest before picking the next one.
			 */
627
			if (request == rcu_access_pointer(b->first_signal)) {
628 629
				struct rb_node *rb =
					rb_next(&request->signaling.node);
630 631
				rcu_assign_pointer(b->first_signal,
						   rb ? to_signaler(rb) : NULL);
632 633
			}
			rb_erase(&request->signaling.node, &b->signals);
634 635
			RB_CLEAR_NODE(&request->signaling.node);

636
			spin_unlock_irq(&b->rb_lock);
637

638
			i915_gem_request_put(request);
639 640 641 642 643 644 645 646 647 648 649 650

			/* If the engine is saturated we may be continually
			 * processing completed requests. This angers the
			 * NMI watchdog if we never let anything else
			 * have access to the CPU. Let's pretend to be nice
			 * and relinquish the CPU if we burn through the
			 * entire RT timeslice!
			 */
			do_schedule = need_resched();
		}

		if (unlikely(do_schedule)) {
651 652
			DEFINE_WAIT(exec);

653 654 655
			if (kthread_should_park())
				kthread_parkme();

656 657
			if (kthread_should_stop()) {
				GEM_BUG_ON(request);
658
				break;
659
			}
660

661 662 663
			if (request)
				add_wait_queue(&request->execute, &exec);

664
			schedule();
665

666 667
			if (request)
				remove_wait_queue(&request->execute, &exec);
668
		}
669
		i915_gem_request_put(request);
670 671 672 673 674 675
	} while (1);
	__set_current_state(TASK_RUNNING);

	return 0;
}

676 677
void intel_engine_enable_signaling(struct drm_i915_gem_request *request,
				   bool wakeup)
678 679 680
{
	struct intel_engine_cs *engine = request->engine;
	struct intel_breadcrumbs *b = &engine->breadcrumbs;
681
	u32 seqno;
682

683 684 685
	/* Note that we may be called from an interrupt handler on another
	 * device (e.g. nouveau signaling a fence completion causing us
	 * to submit a request, and so enable signaling). As such,
686
	 * we need to make sure that all other users of b->rb_lock protect
687 688 689 690
	 * against interrupts, i.e. use spin_lock_irqsave.
	 */

	/* locked by dma_fence_enable_sw_signaling() (irqsafe fence->lock) */
691
	GEM_BUG_ON(!irqs_disabled());
692
	lockdep_assert_held(&request->lock);
693 694 695

	seqno = i915_gem_request_global_seqno(request);
	if (!seqno)
696
		return;
697

698
	request->signaling.wait.tsk = b->signaler;
699
	request->signaling.wait.request = request;
700
	request->signaling.wait.seqno = seqno;
701
	i915_gem_request_get(request);
702

703
	spin_lock(&b->rb_lock);
704

705 706 707 708 709 710 711 712
	/* First add ourselves into the list of waiters, but register our
	 * bottom-half as the signaller thread. As per usual, only the oldest
	 * waiter (not just signaller) is tasked as the bottom-half waking
	 * up all completed waiters after the user interrupt.
	 *
	 * If we are the oldest waiter, enable the irq (after which we
	 * must double check that the seqno did not complete).
	 */
713
	wakeup &= __intel_engine_add_wait(engine, &request->signaling.wait);
714

715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734
	if (!__i915_gem_request_completed(request, seqno)) {
		struct rb_node *parent, **p;
		bool first;

		/* Now insert ourselves into the retirement ordered list of
		 * signals on this engine. We track the oldest seqno as that
		 * will be the first signal to complete.
		 */
		parent = NULL;
		first = true;
		p = &b->signals.rb_node;
		while (*p) {
			parent = *p;
			if (i915_seqno_passed(seqno,
					      to_signaler(parent)->signaling.wait.seqno)) {
				p = &parent->rb_right;
				first = false;
			} else {
				p = &parent->rb_left;
			}
735
		}
736 737 738 739 740 741 742 743
		rb_link_node(&request->signaling.node, parent, p);
		rb_insert_color(&request->signaling.node, &b->signals);
		if (first)
			rcu_assign_pointer(b->first_signal, request);
	} else {
		__intel_engine_remove_wait(engine, &request->signaling.wait);
		i915_gem_request_put(request);
		wakeup = false;
744
	}
745

746
	spin_unlock(&b->rb_lock);
747 748 749 750 751

	if (wakeup)
		wake_up_process(b->signaler);
}

752 753 754 755 756
void intel_engine_cancel_signaling(struct drm_i915_gem_request *request)
{
	struct intel_engine_cs *engine = request->engine;
	struct intel_breadcrumbs *b = &engine->breadcrumbs;

757
	GEM_BUG_ON(!irqs_disabled());
758
	lockdep_assert_held(&request->lock);
759 760
	GEM_BUG_ON(!request->signaling.wait.seqno);

761
	spin_lock(&b->rb_lock);
762 763 764 765 766 767 768 769 770 771 772 773 774 775 776

	if (!RB_EMPTY_NODE(&request->signaling.node)) {
		if (request == rcu_access_pointer(b->first_signal)) {
			struct rb_node *rb =
				rb_next(&request->signaling.node);
			rcu_assign_pointer(b->first_signal,
					   rb ? to_signaler(rb) : NULL);
		}
		rb_erase(&request->signaling.node, &b->signals);
		RB_CLEAR_NODE(&request->signaling.node);
		i915_gem_request_put(request);
	}

	__intel_engine_remove_wait(engine, &request->signaling.wait);

777
	spin_unlock(&b->rb_lock);
778 779 780 781

	request->signaling.wait.seqno = 0;
}

782 783 784
int intel_engine_init_breadcrumbs(struct intel_engine_cs *engine)
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;
785
	struct task_struct *tsk;
786

787 788 789
	spin_lock_init(&b->rb_lock);
	spin_lock_init(&b->irq_lock);

790 791 792
	setup_timer(&b->fake_irq,
		    intel_breadcrumbs_fake_irq,
		    (unsigned long)engine);
793 794 795
	setup_timer(&b->hangcheck,
		    intel_breadcrumbs_hangcheck,
		    (unsigned long)engine);
796

797 798 799 800 801 802 803 804 805 806 807 808 809
	/* Spawn a thread to provide a common bottom-half for all signals.
	 * As this is an asynchronous interface we cannot steal the current
	 * task for handling the bottom-half to the user interrupt, therefore
	 * we create a thread to do the coherent seqno dance after the
	 * interrupt and then signal the waitqueue (via the dma-buf/fence).
	 */
	tsk = kthread_run(intel_breadcrumbs_signaler, engine,
			  "i915/signal:%d", engine->id);
	if (IS_ERR(tsk))
		return PTR_ERR(tsk);

	b->signaler = tsk;

810 811 812
	return 0;
}

813 814 815 816 817 818 819 820 821 822 823 824 825 826
static void cancel_fake_irq(struct intel_engine_cs *engine)
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;

	del_timer_sync(&b->hangcheck);
	del_timer_sync(&b->fake_irq);
	clear_bit(engine->id, &engine->i915->gpu_error.missed_irq_rings);
}

void intel_engine_reset_breadcrumbs(struct intel_engine_cs *engine)
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;

	cancel_fake_irq(engine);
827
	spin_lock_irq(&b->irq_lock);
828

829 830 831
	if (b->irq_enabled)
		irq_enable(engine);
	else
832
		irq_disable(engine);
833 834 835 836 837 838 839 840 841 842 843 844

	/* We set the IRQ_BREADCRUMB bit when we enable the irq presuming the
	 * GPU is active and may have already executed the MI_USER_INTERRUPT
	 * before the CPU is ready to receive. However, the engine is currently
	 * idle (we haven't started it yet), there is no possibility for a
	 * missed interrupt as we enabled the irq and so we can clear the
	 * immediate wakeup (until a real interrupt arrives for the waiter).
	 */
	clear_bit(ENGINE_IRQ_BREADCRUMB, &engine->irq_posted);

	if (b->irq_armed)
		enable_fake_irq(b);
845

846
	spin_unlock_irq(&b->irq_lock);
847 848
}

849 850 851 852
void intel_engine_fini_breadcrumbs(struct intel_engine_cs *engine)
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;

853
	/* The engines should be idle and all requests accounted for! */
854
	WARN_ON(READ_ONCE(b->irq_wait));
855
	WARN_ON(!RB_EMPTY_ROOT(&b->waiters));
856
	WARN_ON(rcu_access_pointer(b->first_signal));
857 858
	WARN_ON(!RB_EMPTY_ROOT(&b->signals));

859 860 861
	if (!IS_ERR_OR_NULL(b->signaler))
		kthread_stop(b->signaler);

862
	cancel_fake_irq(engine);
863 864
}

865
bool intel_breadcrumbs_busy(struct intel_engine_cs *engine)
866
{
867 868
	struct intel_breadcrumbs *b = &engine->breadcrumbs;
	bool busy = false;
869

870
	spin_lock_irq(&b->rb_lock);
871

872 873
	if (b->irq_wait) {
		wake_up_process(b->irq_wait->tsk);
874
		busy = true;
875
	}
876

877
	if (rcu_access_pointer(b->first_signal)) {
878
		wake_up_process(b->signaler);
879
		busy = true;
880 881
	}

882
	spin_unlock_irq(&b->rb_lock);
883 884

	return busy;
885
}
886 887 888 889

#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/intel_breadcrumbs.c"
#endif