rdma.c 50.8 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/*
 * NVMe over Fabrics RDMA target.
 * Copyright (c) 2015-2016 HGST, a Western Digital Company.
 */
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/atomic.h>
#include <linux/ctype.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/nvme.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <linux/wait.h>
#include <linux/inet.h>
#include <asm/unaligned.h>

#include <rdma/ib_verbs.h>
#include <rdma/rdma_cm.h>
#include <rdma/rw.h>
23
#include <rdma/ib_cm.h>
24 25 26 27 28

#include <linux/nvme-rdma.h>
#include "nvmet.h"

/*
29
 * We allow at least 1 page, up to 4 SGEs, and up to 16KB of inline data
30
 */
31 32 33
#define NVMET_RDMA_DEFAULT_INLINE_DATA_SIZE	PAGE_SIZE
#define NVMET_RDMA_MAX_INLINE_SGE		4
#define NVMET_RDMA_MAX_INLINE_DATA_SIZE		max_t(int, SZ_16K, PAGE_SIZE)
34

35 36
/* Assume mpsmin == device_page_size == 4KB */
#define NVMET_RDMA_MAX_MDTS			8
37
#define NVMET_RDMA_MAX_METADATA_MDTS		5
38

39 40
struct nvmet_rdma_srq;

41
struct nvmet_rdma_cmd {
42
	struct ib_sge		sge[NVMET_RDMA_MAX_INLINE_SGE + 1];
43 44
	struct ib_cqe		cqe;
	struct ib_recv_wr	wr;
45
	struct scatterlist	inline_sg[NVMET_RDMA_MAX_INLINE_SGE];
46 47
	struct nvme_command     *nvme_cmd;
	struct nvmet_rdma_queue	*queue;
48
	struct nvmet_rdma_srq   *nsrq;
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
};

enum {
	NVMET_RDMA_REQ_INLINE_DATA	= (1 << 0),
	NVMET_RDMA_REQ_INVALIDATE_RKEY	= (1 << 1),
};

struct nvmet_rdma_rsp {
	struct ib_sge		send_sge;
	struct ib_cqe		send_cqe;
	struct ib_send_wr	send_wr;

	struct nvmet_rdma_cmd	*cmd;
	struct nvmet_rdma_queue	*queue;

	struct ib_cqe		read_cqe;
65
	struct ib_cqe		write_cqe;
66 67 68 69
	struct rdma_rw_ctx	rw;

	struct nvmet_req	req;

70
	bool			allocated;
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
	u8			n_rdma;
	u32			flags;
	u32			invalidate_rkey;

	struct list_head	wait_list;
	struct list_head	free_list;
};

enum nvmet_rdma_queue_state {
	NVMET_RDMA_Q_CONNECTING,
	NVMET_RDMA_Q_LIVE,
	NVMET_RDMA_Q_DISCONNECTING,
};

struct nvmet_rdma_queue {
	struct rdma_cm_id	*cm_id;
87
	struct ib_qp		*qp;
88 89 90 91
	struct nvmet_port	*port;
	struct ib_cq		*cq;
	atomic_t		sq_wr_avail;
	struct nvmet_rdma_device *dev;
92
	struct nvmet_rdma_srq   *nsrq;
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
	spinlock_t		state_lock;
	enum nvmet_rdma_queue_state state;
	struct nvmet_cq		nvme_cq;
	struct nvmet_sq		nvme_sq;

	struct nvmet_rdma_rsp	*rsps;
	struct list_head	free_rsps;
	spinlock_t		rsps_lock;
	struct nvmet_rdma_cmd	*cmds;

	struct work_struct	release_work;
	struct list_head	rsp_wait_list;
	struct list_head	rsp_wr_wait_list;
	spinlock_t		rsp_wr_wait_lock;

	int			idx;
	int			host_qid;
110
	int			comp_vector;
111 112 113 114 115 116
	int			recv_queue_size;
	int			send_queue_size;

	struct list_head	queue_list;
};

117 118 119 120 121 122 123
struct nvmet_rdma_port {
	struct nvmet_port	*nport;
	struct sockaddr_storage addr;
	struct rdma_cm_id	*cm_id;
	struct delayed_work	repair_work;
};

124 125 126 127 128 129
struct nvmet_rdma_srq {
	struct ib_srq            *srq;
	struct nvmet_rdma_cmd    *cmds;
	struct nvmet_rdma_device *ndev;
};

130 131 132
struct nvmet_rdma_device {
	struct ib_device	*device;
	struct ib_pd		*pd;
133 134
	struct nvmet_rdma_srq	**srqs;
	int			srq_count;
135 136 137
	size_t			srq_size;
	struct kref		ref;
	struct list_head	entry;
138 139
	int			inline_data_size;
	int			inline_page_count;
140 141 142 143 144 145
};

static bool nvmet_rdma_use_srq;
module_param_named(use_srq, nvmet_rdma_use_srq, bool, 0444);
MODULE_PARM_DESC(use_srq, "Use shared receive queue.");

146 147 148 149 150 151 152 153 154 155
static int srq_size_set(const char *val, const struct kernel_param *kp);
static const struct kernel_param_ops srq_size_ops = {
	.set = srq_size_set,
	.get = param_get_int,
};

static int nvmet_rdma_srq_size = 1024;
module_param_cb(srq_size, &srq_size_ops, &nvmet_rdma_srq_size, 0644);
MODULE_PARM_DESC(srq_size, "set Shared Receive Queue (SRQ) size, should >= 256 (default: 1024)");

156 157 158 159 160 161 162 163 164 165 166
static DEFINE_IDA(nvmet_rdma_queue_ida);
static LIST_HEAD(nvmet_rdma_queue_list);
static DEFINE_MUTEX(nvmet_rdma_queue_mutex);

static LIST_HEAD(device_list);
static DEFINE_MUTEX(device_list_mutex);

static bool nvmet_rdma_execute_command(struct nvmet_rdma_rsp *rsp);
static void nvmet_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc);
static void nvmet_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc);
static void nvmet_rdma_read_data_done(struct ib_cq *cq, struct ib_wc *wc);
167
static void nvmet_rdma_write_data_done(struct ib_cq *cq, struct ib_wc *wc);
168 169
static void nvmet_rdma_qp_event(struct ib_event *event, void *priv);
static void nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue);
170 171 172 173
static void nvmet_rdma_free_rsp(struct nvmet_rdma_device *ndev,
				struct nvmet_rdma_rsp *r);
static int nvmet_rdma_alloc_rsp(struct nvmet_rdma_device *ndev,
				struct nvmet_rdma_rsp *r);
174

175
static const struct nvmet_fabrics_ops nvmet_rdma_ops;
176

177 178 179 180 181 182 183 184 185 186 187
static int srq_size_set(const char *val, const struct kernel_param *kp)
{
	int n = 0, ret;

	ret = kstrtoint(val, 10, &n);
	if (ret != 0 || n < 256)
		return -EINVAL;

	return param_set_int(val, kp);
}

188 189 190 191 192
static int num_pages(int len)
{
	return 1 + (((len - 1) & PAGE_MASK) >> PAGE_SHIFT);
}

193 194 195
static inline bool nvmet_rdma_need_data_in(struct nvmet_rdma_rsp *rsp)
{
	return nvme_is_write(rsp->req.cmd) &&
196
		rsp->req.transfer_len &&
197 198 199 200 201 202
		!(rsp->flags & NVMET_RDMA_REQ_INLINE_DATA);
}

static inline bool nvmet_rdma_need_data_out(struct nvmet_rdma_rsp *rsp)
{
	return !nvme_is_write(rsp->req.cmd) &&
203
		rsp->req.transfer_len &&
204
		!rsp->req.cqe->status &&
205 206 207 208 209 210 211 212 213 214
		!(rsp->flags & NVMET_RDMA_REQ_INLINE_DATA);
}

static inline struct nvmet_rdma_rsp *
nvmet_rdma_get_rsp(struct nvmet_rdma_queue *queue)
{
	struct nvmet_rdma_rsp *rsp;
	unsigned long flags;

	spin_lock_irqsave(&queue->rsps_lock, flags);
215
	rsp = list_first_entry_or_null(&queue->free_rsps,
216
				struct nvmet_rdma_rsp, free_list);
217 218
	if (likely(rsp))
		list_del(&rsp->free_list);
219 220
	spin_unlock_irqrestore(&queue->rsps_lock, flags);

221
	if (unlikely(!rsp)) {
222 223 224
		int ret;

		rsp = kzalloc(sizeof(*rsp), GFP_KERNEL);
225 226
		if (unlikely(!rsp))
			return NULL;
227 228 229 230 231 232
		ret = nvmet_rdma_alloc_rsp(queue->dev, rsp);
		if (unlikely(ret)) {
			kfree(rsp);
			return NULL;
		}

233 234 235
		rsp->allocated = true;
	}

236 237 238 239 240 241 242 243
	return rsp;
}

static inline void
nvmet_rdma_put_rsp(struct nvmet_rdma_rsp *rsp)
{
	unsigned long flags;

244
	if (unlikely(rsp->allocated)) {
245
		nvmet_rdma_free_rsp(rsp->queue->dev, rsp);
246 247 248 249
		kfree(rsp);
		return;
	}

250 251 252 253 254
	spin_lock_irqsave(&rsp->queue->rsps_lock, flags);
	list_add_tail(&rsp->free_list, &rsp->queue->free_rsps);
	spin_unlock_irqrestore(&rsp->queue->rsps_lock, flags);
}

255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
static void nvmet_rdma_free_inline_pages(struct nvmet_rdma_device *ndev,
				struct nvmet_rdma_cmd *c)
{
	struct scatterlist *sg;
	struct ib_sge *sge;
	int i;

	if (!ndev->inline_data_size)
		return;

	sg = c->inline_sg;
	sge = &c->sge[1];

	for (i = 0; i < ndev->inline_page_count; i++, sg++, sge++) {
		if (sge->length)
			ib_dma_unmap_page(ndev->device, sge->addr,
					sge->length, DMA_FROM_DEVICE);
		if (sg_page(sg))
			__free_page(sg_page(sg));
	}
}

static int nvmet_rdma_alloc_inline_pages(struct nvmet_rdma_device *ndev,
				struct nvmet_rdma_cmd *c)
{
	struct scatterlist *sg;
	struct ib_sge *sge;
	struct page *pg;
	int len;
	int i;

	if (!ndev->inline_data_size)
		return 0;

	sg = c->inline_sg;
	sg_init_table(sg, ndev->inline_page_count);
	sge = &c->sge[1];
	len = ndev->inline_data_size;

	for (i = 0; i < ndev->inline_page_count; i++, sg++, sge++) {
		pg = alloc_page(GFP_KERNEL);
		if (!pg)
			goto out_err;
		sg_assign_page(sg, pg);
		sge->addr = ib_dma_map_page(ndev->device,
			pg, 0, PAGE_SIZE, DMA_FROM_DEVICE);
		if (ib_dma_mapping_error(ndev->device, sge->addr))
			goto out_err;
		sge->length = min_t(int, len, PAGE_SIZE);
		sge->lkey = ndev->pd->local_dma_lkey;
		len -= sge->length;
	}

	return 0;
out_err:
	for (; i >= 0; i--, sg--, sge--) {
		if (sge->length)
			ib_dma_unmap_page(ndev->device, sge->addr,
					sge->length, DMA_FROM_DEVICE);
		if (sg_page(sg))
			__free_page(sg_page(sg));
	}
	return -ENOMEM;
}

320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
static int nvmet_rdma_alloc_cmd(struct nvmet_rdma_device *ndev,
			struct nvmet_rdma_cmd *c, bool admin)
{
	/* NVMe command / RDMA RECV */
	c->nvme_cmd = kmalloc(sizeof(*c->nvme_cmd), GFP_KERNEL);
	if (!c->nvme_cmd)
		goto out;

	c->sge[0].addr = ib_dma_map_single(ndev->device, c->nvme_cmd,
			sizeof(*c->nvme_cmd), DMA_FROM_DEVICE);
	if (ib_dma_mapping_error(ndev->device, c->sge[0].addr))
		goto out_free_cmd;

	c->sge[0].length = sizeof(*c->nvme_cmd);
	c->sge[0].lkey = ndev->pd->local_dma_lkey;

336 337
	if (!admin && nvmet_rdma_alloc_inline_pages(ndev, c))
		goto out_unmap_cmd;
338 339 340 341 342

	c->cqe.done = nvmet_rdma_recv_done;

	c->wr.wr_cqe = &c->cqe;
	c->wr.sg_list = c->sge;
343
	c->wr.num_sge = admin ? 1 : ndev->inline_page_count + 1;
344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359

	return 0;

out_unmap_cmd:
	ib_dma_unmap_single(ndev->device, c->sge[0].addr,
			sizeof(*c->nvme_cmd), DMA_FROM_DEVICE);
out_free_cmd:
	kfree(c->nvme_cmd);

out:
	return -ENOMEM;
}

static void nvmet_rdma_free_cmd(struct nvmet_rdma_device *ndev,
		struct nvmet_rdma_cmd *c, bool admin)
{
360 361
	if (!admin)
		nvmet_rdma_free_inline_pages(ndev, c);
362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
	ib_dma_unmap_single(ndev->device, c->sge[0].addr,
				sizeof(*c->nvme_cmd), DMA_FROM_DEVICE);
	kfree(c->nvme_cmd);
}

static struct nvmet_rdma_cmd *
nvmet_rdma_alloc_cmds(struct nvmet_rdma_device *ndev,
		int nr_cmds, bool admin)
{
	struct nvmet_rdma_cmd *cmds;
	int ret = -EINVAL, i;

	cmds = kcalloc(nr_cmds, sizeof(struct nvmet_rdma_cmd), GFP_KERNEL);
	if (!cmds)
		goto out;

	for (i = 0; i < nr_cmds; i++) {
		ret = nvmet_rdma_alloc_cmd(ndev, cmds + i, admin);
		if (ret)
			goto out_free;
	}

	return cmds;

out_free:
	while (--i >= 0)
		nvmet_rdma_free_cmd(ndev, cmds + i, admin);
	kfree(cmds);
out:
	return ERR_PTR(ret);
}

static void nvmet_rdma_free_cmds(struct nvmet_rdma_device *ndev,
		struct nvmet_rdma_cmd *cmds, int nr_cmds, bool admin)
{
	int i;

	for (i = 0; i < nr_cmds; i++)
		nvmet_rdma_free_cmd(ndev, cmds + i, admin);
	kfree(cmds);
}

static int nvmet_rdma_alloc_rsp(struct nvmet_rdma_device *ndev,
		struct nvmet_rdma_rsp *r)
{
	/* NVMe CQE / RDMA SEND */
408 409
	r->req.cqe = kmalloc(sizeof(*r->req.cqe), GFP_KERNEL);
	if (!r->req.cqe)
410 411
		goto out;

412 413
	r->send_sge.addr = ib_dma_map_single(ndev->device, r->req.cqe,
			sizeof(*r->req.cqe), DMA_TO_DEVICE);
414 415 416
	if (ib_dma_mapping_error(ndev->device, r->send_sge.addr))
		goto out_free_rsp;

417 418
	if (!ib_uses_virt_dma(ndev->device))
		r->req.p2p_client = &ndev->device->dev;
419
	r->send_sge.length = sizeof(*r->req.cqe);
420 421 422 423 424 425 426 427 428 429 430
	r->send_sge.lkey = ndev->pd->local_dma_lkey;

	r->send_cqe.done = nvmet_rdma_send_done;

	r->send_wr.wr_cqe = &r->send_cqe;
	r->send_wr.sg_list = &r->send_sge;
	r->send_wr.num_sge = 1;
	r->send_wr.send_flags = IB_SEND_SIGNALED;

	/* Data In / RDMA READ */
	r->read_cqe.done = nvmet_rdma_read_data_done;
431 432 433
	/* Data Out / RDMA WRITE */
	r->write_cqe.done = nvmet_rdma_write_data_done;

434 435 436
	return 0;

out_free_rsp:
437
	kfree(r->req.cqe);
438 439 440 441 442 443 444 445
out:
	return -ENOMEM;
}

static void nvmet_rdma_free_rsp(struct nvmet_rdma_device *ndev,
		struct nvmet_rdma_rsp *r)
{
	ib_dma_unmap_single(ndev->device, r->send_sge.addr,
446 447
				sizeof(*r->req.cqe), DMA_TO_DEVICE);
	kfree(r->req.cqe);
448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
}

static int
nvmet_rdma_alloc_rsps(struct nvmet_rdma_queue *queue)
{
	struct nvmet_rdma_device *ndev = queue->dev;
	int nr_rsps = queue->recv_queue_size * 2;
	int ret = -EINVAL, i;

	queue->rsps = kcalloc(nr_rsps, sizeof(struct nvmet_rdma_rsp),
			GFP_KERNEL);
	if (!queue->rsps)
		goto out;

	for (i = 0; i < nr_rsps; i++) {
		struct nvmet_rdma_rsp *rsp = &queue->rsps[i];

		ret = nvmet_rdma_alloc_rsp(ndev, rsp);
		if (ret)
			goto out_free;

		list_add_tail(&rsp->free_list, &queue->free_rsps);
	}

	return 0;

out_free:
	while (--i >= 0) {
		struct nvmet_rdma_rsp *rsp = &queue->rsps[i];

		list_del(&rsp->free_list);
		nvmet_rdma_free_rsp(ndev, rsp);
	}
	kfree(queue->rsps);
out:
	return ret;
}

static void nvmet_rdma_free_rsps(struct nvmet_rdma_queue *queue)
{
	struct nvmet_rdma_device *ndev = queue->dev;
	int i, nr_rsps = queue->recv_queue_size * 2;

	for (i = 0; i < nr_rsps; i++) {
		struct nvmet_rdma_rsp *rsp = &queue->rsps[i];

		list_del(&rsp->free_list);
		nvmet_rdma_free_rsp(ndev, rsp);
	}
	kfree(queue->rsps);
}

static int nvmet_rdma_post_recv(struct nvmet_rdma_device *ndev,
		struct nvmet_rdma_cmd *cmd)
{
503
	int ret;
504

505 506 507 508
	ib_dma_sync_single_for_device(ndev->device,
		cmd->sge[0].addr, cmd->sge[0].length,
		DMA_FROM_DEVICE);

509 510
	if (cmd->nsrq)
		ret = ib_post_srq_recv(cmd->nsrq->srq, &cmd->wr, NULL);
511
	else
512
		ret = ib_post_recv(cmd->queue->qp, &cmd->wr, NULL);
513 514 515 516 517

	if (unlikely(ret))
		pr_err("post_recv cmd failed\n");

	return ret;
518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542
}

static void nvmet_rdma_process_wr_wait_list(struct nvmet_rdma_queue *queue)
{
	spin_lock(&queue->rsp_wr_wait_lock);
	while (!list_empty(&queue->rsp_wr_wait_list)) {
		struct nvmet_rdma_rsp *rsp;
		bool ret;

		rsp = list_entry(queue->rsp_wr_wait_list.next,
				struct nvmet_rdma_rsp, wait_list);
		list_del(&rsp->wait_list);

		spin_unlock(&queue->rsp_wr_wait_lock);
		ret = nvmet_rdma_execute_command(rsp);
		spin_lock(&queue->rsp_wr_wait_lock);

		if (!ret) {
			list_add(&rsp->wait_list, &queue->rsp_wr_wait_list);
			break;
		}
	}
	spin_unlock(&queue->rsp_wr_wait_lock);
}

543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665
static u16 nvmet_rdma_check_pi_status(struct ib_mr *sig_mr)
{
	struct ib_mr_status mr_status;
	int ret;
	u16 status = 0;

	ret = ib_check_mr_status(sig_mr, IB_MR_CHECK_SIG_STATUS, &mr_status);
	if (ret) {
		pr_err("ib_check_mr_status failed, ret %d\n", ret);
		return NVME_SC_INVALID_PI;
	}

	if (mr_status.fail_status & IB_MR_CHECK_SIG_STATUS) {
		switch (mr_status.sig_err.err_type) {
		case IB_SIG_BAD_GUARD:
			status = NVME_SC_GUARD_CHECK;
			break;
		case IB_SIG_BAD_REFTAG:
			status = NVME_SC_REFTAG_CHECK;
			break;
		case IB_SIG_BAD_APPTAG:
			status = NVME_SC_APPTAG_CHECK;
			break;
		}
		pr_err("PI error found type %d expected 0x%x vs actual 0x%x\n",
		       mr_status.sig_err.err_type,
		       mr_status.sig_err.expected,
		       mr_status.sig_err.actual);
	}

	return status;
}

static void nvmet_rdma_set_sig_domain(struct blk_integrity *bi,
		struct nvme_command *cmd, struct ib_sig_domain *domain,
		u16 control, u8 pi_type)
{
	domain->sig_type = IB_SIG_TYPE_T10_DIF;
	domain->sig.dif.bg_type = IB_T10DIF_CRC;
	domain->sig.dif.pi_interval = 1 << bi->interval_exp;
	domain->sig.dif.ref_tag = le32_to_cpu(cmd->rw.reftag);
	if (control & NVME_RW_PRINFO_PRCHK_REF)
		domain->sig.dif.ref_remap = true;

	domain->sig.dif.app_tag = le16_to_cpu(cmd->rw.apptag);
	domain->sig.dif.apptag_check_mask = le16_to_cpu(cmd->rw.appmask);
	domain->sig.dif.app_escape = true;
	if (pi_type == NVME_NS_DPS_PI_TYPE3)
		domain->sig.dif.ref_escape = true;
}

static void nvmet_rdma_set_sig_attrs(struct nvmet_req *req,
				     struct ib_sig_attrs *sig_attrs)
{
	struct nvme_command *cmd = req->cmd;
	u16 control = le16_to_cpu(cmd->rw.control);
	u8 pi_type = req->ns->pi_type;
	struct blk_integrity *bi;

	bi = bdev_get_integrity(req->ns->bdev);

	memset(sig_attrs, 0, sizeof(*sig_attrs));

	if (control & NVME_RW_PRINFO_PRACT) {
		/* for WRITE_INSERT/READ_STRIP no wire domain */
		sig_attrs->wire.sig_type = IB_SIG_TYPE_NONE;
		nvmet_rdma_set_sig_domain(bi, cmd, &sig_attrs->mem, control,
					  pi_type);
		/* Clear the PRACT bit since HCA will generate/verify the PI */
		control &= ~NVME_RW_PRINFO_PRACT;
		cmd->rw.control = cpu_to_le16(control);
		/* PI is added by the HW */
		req->transfer_len += req->metadata_len;
	} else {
		/* for WRITE_PASS/READ_PASS both wire/memory domains exist */
		nvmet_rdma_set_sig_domain(bi, cmd, &sig_attrs->wire, control,
					  pi_type);
		nvmet_rdma_set_sig_domain(bi, cmd, &sig_attrs->mem, control,
					  pi_type);
	}

	if (control & NVME_RW_PRINFO_PRCHK_REF)
		sig_attrs->check_mask |= IB_SIG_CHECK_REFTAG;
	if (control & NVME_RW_PRINFO_PRCHK_GUARD)
		sig_attrs->check_mask |= IB_SIG_CHECK_GUARD;
	if (control & NVME_RW_PRINFO_PRCHK_APP)
		sig_attrs->check_mask |= IB_SIG_CHECK_APPTAG;
}

static int nvmet_rdma_rw_ctx_init(struct nvmet_rdma_rsp *rsp, u64 addr, u32 key,
				  struct ib_sig_attrs *sig_attrs)
{
	struct rdma_cm_id *cm_id = rsp->queue->cm_id;
	struct nvmet_req *req = &rsp->req;
	int ret;

	if (req->metadata_len)
		ret = rdma_rw_ctx_signature_init(&rsp->rw, cm_id->qp,
			cm_id->port_num, req->sg, req->sg_cnt,
			req->metadata_sg, req->metadata_sg_cnt, sig_attrs,
			addr, key, nvmet_data_dir(req));
	else
		ret = rdma_rw_ctx_init(&rsp->rw, cm_id->qp, cm_id->port_num,
				       req->sg, req->sg_cnt, 0, addr, key,
				       nvmet_data_dir(req));

	return ret;
}

static void nvmet_rdma_rw_ctx_destroy(struct nvmet_rdma_rsp *rsp)
{
	struct rdma_cm_id *cm_id = rsp->queue->cm_id;
	struct nvmet_req *req = &rsp->req;

	if (req->metadata_len)
		rdma_rw_ctx_destroy_signature(&rsp->rw, cm_id->qp,
			cm_id->port_num, req->sg, req->sg_cnt,
			req->metadata_sg, req->metadata_sg_cnt,
			nvmet_data_dir(req));
	else
		rdma_rw_ctx_destroy(&rsp->rw, cm_id->qp, cm_id->port_num,
				    req->sg, req->sg_cnt, nvmet_data_dir(req));
}
666 667 668 669 670 671 672

static void nvmet_rdma_release_rsp(struct nvmet_rdma_rsp *rsp)
{
	struct nvmet_rdma_queue *queue = rsp->queue;

	atomic_add(1 + rsp->n_rdma, &queue->sq_wr_avail);

673 674
	if (rsp->n_rdma)
		nvmet_rdma_rw_ctx_destroy(rsp);
675

676
	if (rsp->req.sg != rsp->cmd->inline_sg)
677
		nvmet_req_free_sgls(&rsp->req);
678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702

	if (unlikely(!list_empty_careful(&queue->rsp_wr_wait_list)))
		nvmet_rdma_process_wr_wait_list(queue);

	nvmet_rdma_put_rsp(rsp);
}

static void nvmet_rdma_error_comp(struct nvmet_rdma_queue *queue)
{
	if (queue->nvme_sq.ctrl) {
		nvmet_ctrl_fatal_error(queue->nvme_sq.ctrl);
	} else {
		/*
		 * we didn't setup the controller yet in case
		 * of admin connect error, just disconnect and
		 * cleanup the queue
		 */
		nvmet_rdma_queue_disconnect(queue);
	}
}

static void nvmet_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc)
{
	struct nvmet_rdma_rsp *rsp =
		container_of(wc->wr_cqe, struct nvmet_rdma_rsp, send_cqe);
703
	struct nvmet_rdma_queue *queue = cq->cq_context;
704 705 706 707 708 709 710

	nvmet_rdma_release_rsp(rsp);

	if (unlikely(wc->status != IB_WC_SUCCESS &&
		     wc->status != IB_WC_WR_FLUSH_ERR)) {
		pr_err("SEND for CQE 0x%p failed with status %s (%d).\n",
			wc->wr_cqe, ib_wc_status_msg(wc->status), wc->status);
711
		nvmet_rdma_error_comp(queue);
712 713 714 715 716 717 718 719
	}
}

static void nvmet_rdma_queue_response(struct nvmet_req *req)
{
	struct nvmet_rdma_rsp *rsp =
		container_of(req, struct nvmet_rdma_rsp, req);
	struct rdma_cm_id *cm_id = rsp->queue->cm_id;
720
	struct ib_send_wr *first_wr;
721 722 723 724 725 726 727 728

	if (rsp->flags & NVMET_RDMA_REQ_INVALIDATE_RKEY) {
		rsp->send_wr.opcode = IB_WR_SEND_WITH_INV;
		rsp->send_wr.ex.invalidate_rkey = rsp->invalidate_rkey;
	} else {
		rsp->send_wr.opcode = IB_WR_SEND;
	}

729 730 731 732 733 734 735 736
	if (nvmet_rdma_need_data_out(rsp)) {
		if (rsp->req.metadata_len)
			first_wr = rdma_rw_ctx_wrs(&rsp->rw, cm_id->qp,
					cm_id->port_num, &rsp->write_cqe, NULL);
		else
			first_wr = rdma_rw_ctx_wrs(&rsp->rw, cm_id->qp,
					cm_id->port_num, NULL, &rsp->send_wr);
	} else {
737
		first_wr = &rsp->send_wr;
738
	}
739 740

	nvmet_rdma_post_recv(rsp->queue->dev, rsp->cmd);
741 742 743 744 745

	ib_dma_sync_single_for_device(rsp->queue->dev->device,
		rsp->send_sge.addr, rsp->send_sge.length,
		DMA_TO_DEVICE);

746
	if (unlikely(ib_post_send(cm_id->qp, first_wr, NULL))) {
747 748 749 750 751 752 753 754 755
		pr_err("sending cmd response failed\n");
		nvmet_rdma_release_rsp(rsp);
	}
}

static void nvmet_rdma_read_data_done(struct ib_cq *cq, struct ib_wc *wc)
{
	struct nvmet_rdma_rsp *rsp =
		container_of(wc->wr_cqe, struct nvmet_rdma_rsp, read_cqe);
756
	struct nvmet_rdma_queue *queue = wc->qp->qp_context;
757
	u16 status = 0;
758 759 760 761 762 763

	WARN_ON(rsp->n_rdma <= 0);
	atomic_add(rsp->n_rdma, &queue->sq_wr_avail);
	rsp->n_rdma = 0;

	if (unlikely(wc->status != IB_WC_SUCCESS)) {
764
		nvmet_rdma_rw_ctx_destroy(rsp);
765
		nvmet_req_uninit(&rsp->req);
766 767 768 769 770 771 772 773 774
		nvmet_rdma_release_rsp(rsp);
		if (wc->status != IB_WC_WR_FLUSH_ERR) {
			pr_info("RDMA READ for CQE 0x%p failed with status %s (%d).\n",
				wc->wr_cqe, ib_wc_status_msg(wc->status), wc->status);
			nvmet_rdma_error_comp(queue);
		}
		return;
	}

775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826
	if (rsp->req.metadata_len)
		status = nvmet_rdma_check_pi_status(rsp->rw.reg->mr);
	nvmet_rdma_rw_ctx_destroy(rsp);

	if (unlikely(status))
		nvmet_req_complete(&rsp->req, status);
	else
		rsp->req.execute(&rsp->req);
}

static void nvmet_rdma_write_data_done(struct ib_cq *cq, struct ib_wc *wc)
{
	struct nvmet_rdma_rsp *rsp =
		container_of(wc->wr_cqe, struct nvmet_rdma_rsp, write_cqe);
	struct nvmet_rdma_queue *queue = cq->cq_context;
	struct rdma_cm_id *cm_id = rsp->queue->cm_id;
	u16 status;

	if (!IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY))
		return;

	WARN_ON(rsp->n_rdma <= 0);
	atomic_add(rsp->n_rdma, &queue->sq_wr_avail);
	rsp->n_rdma = 0;

	if (unlikely(wc->status != IB_WC_SUCCESS)) {
		nvmet_rdma_rw_ctx_destroy(rsp);
		nvmet_req_uninit(&rsp->req);
		nvmet_rdma_release_rsp(rsp);
		if (wc->status != IB_WC_WR_FLUSH_ERR) {
			pr_info("RDMA WRITE for CQE 0x%p failed with status %s (%d).\n",
				wc->wr_cqe, ib_wc_status_msg(wc->status),
				wc->status);
			nvmet_rdma_error_comp(queue);
		}
		return;
	}

	/*
	 * Upon RDMA completion check the signature status
	 * - if succeeded send good NVMe response
	 * - if failed send bad NVMe response with appropriate error
	 */
	status = nvmet_rdma_check_pi_status(rsp->rw.reg->mr);
	if (unlikely(status))
		rsp->req.cqe->status = cpu_to_le16(status << 1);
	nvmet_rdma_rw_ctx_destroy(rsp);

	if (unlikely(ib_post_send(cm_id->qp, &rsp->send_wr, NULL))) {
		pr_err("sending cmd response failed\n");
		nvmet_rdma_release_rsp(rsp);
	}
827 828 829 830 831
}

static void nvmet_rdma_use_inline_sg(struct nvmet_rdma_rsp *rsp, u32 len,
		u64 off)
{
832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850
	int sg_count = num_pages(len);
	struct scatterlist *sg;
	int i;

	sg = rsp->cmd->inline_sg;
	for (i = 0; i < sg_count; i++, sg++) {
		if (i < sg_count - 1)
			sg_unmark_end(sg);
		else
			sg_mark_end(sg);
		sg->offset = off;
		sg->length = min_t(int, len, PAGE_SIZE - off);
		len -= sg->length;
		if (!i)
			off = 0;
	}

	rsp->req.sg = rsp->cmd->inline_sg;
	rsp->req.sg_cnt = sg_count;
851 852 853 854 855 856 857 858
}

static u16 nvmet_rdma_map_sgl_inline(struct nvmet_rdma_rsp *rsp)
{
	struct nvme_sgl_desc *sgl = &rsp->req.cmd->common.dptr.sgl;
	u64 off = le64_to_cpu(sgl->addr);
	u32 len = le32_to_cpu(sgl->length);

859 860 861
	if (!nvme_is_write(rsp->req.cmd)) {
		rsp->req.error_loc =
			offsetof(struct nvme_common_command, opcode);
862
		return NVME_SC_INVALID_FIELD | NVME_SC_DNR;
863
	}
864

865
	if (off + len > rsp->queue->dev->inline_data_size) {
866 867 868 869 870 871 872 873 874 875
		pr_err("invalid inline data offset!\n");
		return NVME_SC_SGL_INVALID_OFFSET | NVME_SC_DNR;
	}

	/* no data command? */
	if (!len)
		return 0;

	nvmet_rdma_use_inline_sg(rsp, len, off);
	rsp->flags |= NVMET_RDMA_REQ_INLINE_DATA;
876
	rsp->req.transfer_len += len;
877 878 879 880 881 882 883 884
	return 0;
}

static u16 nvmet_rdma_map_sgl_keyed(struct nvmet_rdma_rsp *rsp,
		struct nvme_keyed_sgl_desc *sgl, bool invalidate)
{
	u64 addr = le64_to_cpu(sgl->addr);
	u32 key = get_unaligned_le32(sgl->key);
885
	struct ib_sig_attrs sig_attrs;
886 887
	int ret;

888 889
	rsp->req.transfer_len = get_unaligned_le24(sgl->length);

890
	/* no data command? */
891
	if (!rsp->req.transfer_len)
892 893
		return 0;

894 895 896
	if (rsp->req.metadata_len)
		nvmet_rdma_set_sig_attrs(&rsp->req, &sig_attrs);

897
	ret = nvmet_req_alloc_sgls(&rsp->req);
898
	if (unlikely(ret < 0))
899
		goto error_out;
900

901
	ret = nvmet_rdma_rw_ctx_init(rsp, addr, key, &sig_attrs);
902
	if (unlikely(ret < 0))
903
		goto error_out;
904 905 906 907 908 909 910 911
	rsp->n_rdma += ret;

	if (invalidate) {
		rsp->invalidate_rkey = key;
		rsp->flags |= NVMET_RDMA_REQ_INVALIDATE_RKEY;
	}

	return 0;
912 913 914 915

error_out:
	rsp->req.transfer_len = 0;
	return NVME_SC_INTERNAL;
916 917 918 919 920 921 922 923 924 925 926 927 928
}

static u16 nvmet_rdma_map_sgl(struct nvmet_rdma_rsp *rsp)
{
	struct nvme_keyed_sgl_desc *sgl = &rsp->req.cmd->common.dptr.ksgl;

	switch (sgl->type >> 4) {
	case NVME_SGL_FMT_DATA_DESC:
		switch (sgl->type & 0xf) {
		case NVME_SGL_FMT_OFFSET:
			return nvmet_rdma_map_sgl_inline(rsp);
		default:
			pr_err("invalid SGL subtype: %#x\n", sgl->type);
929 930
			rsp->req.error_loc =
				offsetof(struct nvme_common_command, dptr);
931 932 933 934 935 936 937 938 939 940
			return NVME_SC_INVALID_FIELD | NVME_SC_DNR;
		}
	case NVME_KEY_SGL_FMT_DATA_DESC:
		switch (sgl->type & 0xf) {
		case NVME_SGL_FMT_ADDRESS | NVME_SGL_FMT_INVALIDATE:
			return nvmet_rdma_map_sgl_keyed(rsp, sgl, true);
		case NVME_SGL_FMT_ADDRESS:
			return nvmet_rdma_map_sgl_keyed(rsp, sgl, false);
		default:
			pr_err("invalid SGL subtype: %#x\n", sgl->type);
941 942
			rsp->req.error_loc =
				offsetof(struct nvme_common_command, dptr);
943 944 945 946
			return NVME_SC_INVALID_FIELD | NVME_SC_DNR;
		}
	default:
		pr_err("invalid SGL type: %#x\n", sgl->type);
947
		rsp->req.error_loc = offsetof(struct nvme_common_command, dptr);
948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965
		return NVME_SC_SGL_INVALID_TYPE | NVME_SC_DNR;
	}
}

static bool nvmet_rdma_execute_command(struct nvmet_rdma_rsp *rsp)
{
	struct nvmet_rdma_queue *queue = rsp->queue;

	if (unlikely(atomic_sub_return(1 + rsp->n_rdma,
			&queue->sq_wr_avail) < 0)) {
		pr_debug("IB send queue full (needed %d): queue %u cntlid %u\n",
				1 + rsp->n_rdma, queue->idx,
				queue->nvme_sq.ctrl->cntlid);
		atomic_add(1 + rsp->n_rdma, &queue->sq_wr_avail);
		return false;
	}

	if (nvmet_rdma_need_data_in(rsp)) {
966
		if (rdma_rw_ctx_post(&rsp->rw, queue->qp,
967 968 969
				queue->cm_id->port_num, &rsp->read_cqe, NULL))
			nvmet_req_complete(&rsp->req, NVME_SC_DATA_XFER_ERROR);
	} else {
970
		rsp->req.execute(&rsp->req);
971 972 973 974 975 976 977 978 979 980
	}

	return true;
}

static void nvmet_rdma_handle_command(struct nvmet_rdma_queue *queue,
		struct nvmet_rdma_rsp *cmd)
{
	u16 status;

981 982 983 984 985 986 987
	ib_dma_sync_single_for_cpu(queue->dev->device,
		cmd->cmd->sge[0].addr, cmd->cmd->sge[0].length,
		DMA_FROM_DEVICE);
	ib_dma_sync_single_for_cpu(queue->dev->device,
		cmd->send_sge.addr, cmd->send_sge.length,
		DMA_TO_DEVICE);

988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011
	if (!nvmet_req_init(&cmd->req, &queue->nvme_cq,
			&queue->nvme_sq, &nvmet_rdma_ops))
		return;

	status = nvmet_rdma_map_sgl(cmd);
	if (status)
		goto out_err;

	if (unlikely(!nvmet_rdma_execute_command(cmd))) {
		spin_lock(&queue->rsp_wr_wait_lock);
		list_add_tail(&cmd->wait_list, &queue->rsp_wr_wait_list);
		spin_unlock(&queue->rsp_wr_wait_lock);
	}

	return;

out_err:
	nvmet_req_complete(&cmd->req, status);
}

static void nvmet_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc)
{
	struct nvmet_rdma_cmd *cmd =
		container_of(wc->wr_cqe, struct nvmet_rdma_cmd, cqe);
1012
	struct nvmet_rdma_queue *queue = wc->qp->qp_context;
1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
	struct nvmet_rdma_rsp *rsp;

	if (unlikely(wc->status != IB_WC_SUCCESS)) {
		if (wc->status != IB_WC_WR_FLUSH_ERR) {
			pr_err("RECV for CQE 0x%p failed with status %s (%d)\n",
				wc->wr_cqe, ib_wc_status_msg(wc->status),
				wc->status);
			nvmet_rdma_error_comp(queue);
		}
		return;
	}

	if (unlikely(wc->byte_len < sizeof(struct nvme_command))) {
		pr_err("Ctrl Fatal Error: capsule size less than 64 bytes\n");
		nvmet_rdma_error_comp(queue);
		return;
	}

	cmd->queue = queue;
	rsp = nvmet_rdma_get_rsp(queue);
1033 1034 1035 1036 1037 1038 1039 1040 1041
	if (unlikely(!rsp)) {
		/*
		 * we get here only under memory pressure,
		 * silently drop and have the host retry
		 * as we can't even fail it.
		 */
		nvmet_rdma_post_recv(queue->dev, cmd);
		return;
	}
1042
	rsp->queue = queue;
1043 1044 1045
	rsp->cmd = cmd;
	rsp->flags = 0;
	rsp->req.cmd = cmd->nvme_cmd;
1046 1047
	rsp->req.port = queue->port;
	rsp->n_rdma = 0;
1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063

	if (unlikely(queue->state != NVMET_RDMA_Q_LIVE)) {
		unsigned long flags;

		spin_lock_irqsave(&queue->state_lock, flags);
		if (queue->state == NVMET_RDMA_Q_CONNECTING)
			list_add_tail(&rsp->wait_list, &queue->rsp_wait_list);
		else
			nvmet_rdma_put_rsp(rsp);
		spin_unlock_irqrestore(&queue->state_lock, flags);
		return;
	}

	nvmet_rdma_handle_command(queue, rsp);
}

1064 1065 1066 1067 1068 1069 1070 1071 1072 1073
static void nvmet_rdma_destroy_srq(struct nvmet_rdma_srq *nsrq)
{
	nvmet_rdma_free_cmds(nsrq->ndev, nsrq->cmds, nsrq->ndev->srq_size,
			     false);
	ib_destroy_srq(nsrq->srq);

	kfree(nsrq);
}

static void nvmet_rdma_destroy_srqs(struct nvmet_rdma_device *ndev)
1074
{
1075 1076 1077
	int i;

	if (!ndev->srqs)
1078 1079
		return;

1080 1081 1082 1083
	for (i = 0; i < ndev->srq_count; i++)
		nvmet_rdma_destroy_srq(ndev->srqs[i]);

	kfree(ndev->srqs);
1084 1085
}

1086 1087
static struct nvmet_rdma_srq *
nvmet_rdma_init_srq(struct nvmet_rdma_device *ndev)
1088 1089
{
	struct ib_srq_init_attr srq_attr = { NULL, };
1090 1091
	size_t srq_size = ndev->srq_size;
	struct nvmet_rdma_srq *nsrq;
1092 1093 1094
	struct ib_srq *srq;
	int ret, i;

1095 1096 1097
	nsrq = kzalloc(sizeof(*nsrq), GFP_KERNEL);
	if (!nsrq)
		return ERR_PTR(-ENOMEM);
1098 1099

	srq_attr.attr.max_wr = srq_size;
1100
	srq_attr.attr.max_sge = 1 + ndev->inline_page_count;
1101 1102 1103 1104
	srq_attr.attr.srq_limit = 0;
	srq_attr.srq_type = IB_SRQT_BASIC;
	srq = ib_create_srq(ndev->pd, &srq_attr);
	if (IS_ERR(srq)) {
1105 1106
		ret = PTR_ERR(srq);
		goto out_free;
1107 1108
	}

1109 1110 1111
	nsrq->cmds = nvmet_rdma_alloc_cmds(ndev, srq_size, false);
	if (IS_ERR(nsrq->cmds)) {
		ret = PTR_ERR(nsrq->cmds);
1112 1113 1114
		goto out_destroy_srq;
	}

1115 1116
	nsrq->srq = srq;
	nsrq->ndev = ndev;
1117

1118
	for (i = 0; i < srq_size; i++) {
1119 1120
		nsrq->cmds[i].nsrq = nsrq;
		ret = nvmet_rdma_post_recv(ndev, &nsrq->cmds[i]);
1121 1122 1123
		if (ret)
			goto out_free_cmds;
	}
1124

1125
	return nsrq;
1126

1127
out_free_cmds:
1128
	nvmet_rdma_free_cmds(ndev, nsrq->cmds, srq_size, false);
1129 1130
out_destroy_srq:
	ib_destroy_srq(srq);
1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171
out_free:
	kfree(nsrq);
	return ERR_PTR(ret);
}

static int nvmet_rdma_init_srqs(struct nvmet_rdma_device *ndev)
{
	int i, ret;

	if (!ndev->device->attrs.max_srq_wr || !ndev->device->attrs.max_srq) {
		/*
		 * If SRQs aren't supported we just go ahead and use normal
		 * non-shared receive queues.
		 */
		pr_info("SRQ requested but not supported.\n");
		return 0;
	}

	ndev->srq_size = min(ndev->device->attrs.max_srq_wr,
			     nvmet_rdma_srq_size);
	ndev->srq_count = min(ndev->device->num_comp_vectors,
			      ndev->device->attrs.max_srq);

	ndev->srqs = kcalloc(ndev->srq_count, sizeof(*ndev->srqs), GFP_KERNEL);
	if (!ndev->srqs)
		return -ENOMEM;

	for (i = 0; i < ndev->srq_count; i++) {
		ndev->srqs[i] = nvmet_rdma_init_srq(ndev);
		if (IS_ERR(ndev->srqs[i])) {
			ret = PTR_ERR(ndev->srqs[i]);
			goto err_srq;
		}
	}

	return 0;

err_srq:
	while (--i >= 0)
		nvmet_rdma_destroy_srq(ndev->srqs[i]);
	kfree(ndev->srqs);
1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
	return ret;
}

static void nvmet_rdma_free_dev(struct kref *ref)
{
	struct nvmet_rdma_device *ndev =
		container_of(ref, struct nvmet_rdma_device, ref);

	mutex_lock(&device_list_mutex);
	list_del(&ndev->entry);
	mutex_unlock(&device_list_mutex);

1184
	nvmet_rdma_destroy_srqs(ndev);
1185 1186 1187 1188 1189 1190 1191 1192
	ib_dealloc_pd(ndev->pd);

	kfree(ndev);
}

static struct nvmet_rdma_device *
nvmet_rdma_find_get_device(struct rdma_cm_id *cm_id)
{
1193 1194
	struct nvmet_rdma_port *port = cm_id->context;
	struct nvmet_port *nport = port->nport;
1195
	struct nvmet_rdma_device *ndev;
1196 1197
	int inline_page_count;
	int inline_sge_count;
1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210
	int ret;

	mutex_lock(&device_list_mutex);
	list_for_each_entry(ndev, &device_list, entry) {
		if (ndev->device->node_guid == cm_id->device->node_guid &&
		    kref_get_unless_zero(&ndev->ref))
			goto out_unlock;
	}

	ndev = kzalloc(sizeof(*ndev), GFP_KERNEL);
	if (!ndev)
		goto out_err;

1211
	inline_page_count = num_pages(nport->inline_data_size);
1212
	inline_sge_count = max(cm_id->device->attrs.max_sge_rd,
1213
				cm_id->device->attrs.max_recv_sge) - 1;
1214 1215
	if (inline_page_count > inline_sge_count) {
		pr_warn("inline_data_size %d cannot be supported by device %s. Reducing to %lu.\n",
1216
			nport->inline_data_size, cm_id->device->name,
1217
			inline_sge_count * PAGE_SIZE);
1218
		nport->inline_data_size = inline_sge_count * PAGE_SIZE;
1219 1220
		inline_page_count = inline_sge_count;
	}
1221
	ndev->inline_data_size = nport->inline_data_size;
1222
	ndev->inline_page_count = inline_page_count;
1223 1224 1225 1226 1227 1228 1229 1230

	if (nport->pi_enable && !(cm_id->device->attrs.device_cap_flags &
				  IB_DEVICE_INTEGRITY_HANDOVER)) {
		pr_warn("T10-PI is not supported by device %s. Disabling it\n",
			cm_id->device->name);
		nport->pi_enable = false;
	}

1231 1232 1233
	ndev->device = cm_id->device;
	kref_init(&ndev->ref);

1234
	ndev->pd = ib_alloc_pd(ndev->device, 0);
1235 1236 1237 1238
	if (IS_ERR(ndev->pd))
		goto out_free_dev;

	if (nvmet_rdma_use_srq) {
1239
		ret = nvmet_rdma_init_srqs(ndev);
1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262
		if (ret)
			goto out_free_pd;
	}

	list_add(&ndev->entry, &device_list);
out_unlock:
	mutex_unlock(&device_list_mutex);
	pr_debug("added %s.\n", ndev->device->name);
	return ndev;

out_free_pd:
	ib_dealloc_pd(ndev->pd);
out_free_dev:
	kfree(ndev);
out_err:
	mutex_unlock(&device_list_mutex);
	return NULL;
}

static int nvmet_rdma_create_queue_ib(struct nvmet_rdma_queue *queue)
{
	struct ib_qp_init_attr qp_attr;
	struct nvmet_rdma_device *ndev = queue->dev;
1263
	int nr_cqe, ret, i, factor;
1264 1265 1266 1267 1268 1269

	/*
	 * Reserve CQ slots for RECV + RDMA_READ/RDMA_WRITE + RDMA_SEND.
	 */
	nr_cqe = queue->recv_queue_size + 2 * queue->send_queue_size;

1270 1271
	queue->cq = ib_cq_pool_get(ndev->device, nr_cqe + 1,
				   queue->comp_vector, IB_POLL_WORKQUEUE);
1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287
	if (IS_ERR(queue->cq)) {
		ret = PTR_ERR(queue->cq);
		pr_err("failed to create CQ cqe= %d ret= %d\n",
		       nr_cqe + 1, ret);
		goto out;
	}

	memset(&qp_attr, 0, sizeof(qp_attr));
	qp_attr.qp_context = queue;
	qp_attr.event_handler = nvmet_rdma_qp_event;
	qp_attr.send_cq = queue->cq;
	qp_attr.recv_cq = queue->cq;
	qp_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
	qp_attr.qp_type = IB_QPT_RC;
	/* +1 for drain */
	qp_attr.cap.max_send_wr = queue->send_queue_size + 1;
1288 1289 1290
	factor = rdma_rw_mr_factor(ndev->device, queue->cm_id->port_num,
				   1 << NVMET_RDMA_MAX_MDTS);
	qp_attr.cap.max_rdma_ctxs = queue->send_queue_size * factor;
1291
	qp_attr.cap.max_send_sge = max(ndev->device->attrs.max_sge_rd,
1292
					ndev->device->attrs.max_send_sge);
1293

1294 1295
	if (queue->nsrq) {
		qp_attr.srq = queue->nsrq->srq;
1296 1297 1298
	} else {
		/* +1 for drain */
		qp_attr.cap.max_recv_wr = 1 + queue->recv_queue_size;
1299
		qp_attr.cap.max_recv_sge = 1 + ndev->inline_page_count;
1300 1301
	}

1302 1303 1304
	if (queue->port->pi_enable && queue->host_qid)
		qp_attr.create_flags |= IB_QP_CREATE_INTEGRITY_EN;

1305 1306 1307 1308 1309
	ret = rdma_create_qp(queue->cm_id, ndev->pd, &qp_attr);
	if (ret) {
		pr_err("failed to create_qp ret= %d\n", ret);
		goto err_destroy_cq;
	}
1310
	queue->qp = queue->cm_id->qp;
1311 1312 1313 1314 1315 1316 1317

	atomic_set(&queue->sq_wr_avail, qp_attr.cap.max_send_wr);

	pr_debug("%s: max_cqe= %d max_sge= %d sq_size = %d cm_id= %p\n",
		 __func__, queue->cq->cqe, qp_attr.cap.max_send_sge,
		 qp_attr.cap.max_send_wr, queue->cm_id);

1318
	if (!queue->nsrq) {
1319 1320
		for (i = 0; i < queue->recv_queue_size; i++) {
			queue->cmds[i].queue = queue;
1321 1322 1323
			ret = nvmet_rdma_post_recv(ndev, &queue->cmds[i]);
			if (ret)
				goto err_destroy_qp;
1324 1325 1326 1327 1328 1329
		}
	}

out:
	return ret;

1330 1331
err_destroy_qp:
	rdma_destroy_qp(queue->cm_id);
1332
err_destroy_cq:
1333
	ib_cq_pool_put(queue->cq, nr_cqe + 1);
1334 1335 1336 1337 1338
	goto out;
}

static void nvmet_rdma_destroy_queue_ib(struct nvmet_rdma_queue *queue)
{
1339 1340 1341 1342
	ib_drain_qp(queue->qp);
	if (queue->cm_id)
		rdma_destroy_id(queue->cm_id);
	ib_destroy_qp(queue->qp);
1343 1344
	ib_cq_pool_put(queue->cq, queue->recv_queue_size + 2 *
		       queue->send_queue_size + 1);
1345 1346 1347 1348
}

static void nvmet_rdma_free_queue(struct nvmet_rdma_queue *queue)
{
1349
	pr_debug("freeing queue %d\n", queue->idx);
1350 1351 1352 1353

	nvmet_sq_destroy(&queue->nvme_sq);

	nvmet_rdma_destroy_queue_ib(queue);
1354
	if (!queue->nsrq) {
1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
		nvmet_rdma_free_cmds(queue->dev, queue->cmds,
				queue->recv_queue_size,
				!queue->host_qid);
	}
	nvmet_rdma_free_rsps(queue);
	ida_simple_remove(&nvmet_rdma_queue_ida, queue->idx);
	kfree(queue);
}

static void nvmet_rdma_release_queue_work(struct work_struct *w)
{
	struct nvmet_rdma_queue *queue =
		container_of(w, struct nvmet_rdma_queue, release_work);
	struct nvmet_rdma_device *dev = queue->dev;

	nvmet_rdma_free_queue(queue);
1371

1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390
	kref_put(&dev->ref, nvmet_rdma_free_dev);
}

static int
nvmet_rdma_parse_cm_connect_req(struct rdma_conn_param *conn,
				struct nvmet_rdma_queue *queue)
{
	struct nvme_rdma_cm_req *req;

	req = (struct nvme_rdma_cm_req *)conn->private_data;
	if (!req || conn->private_data_len == 0)
		return NVME_RDMA_CM_INVALID_LEN;

	if (le16_to_cpu(req->recfmt) != NVME_RDMA_CM_FMT_1_0)
		return NVME_RDMA_CM_INVALID_RECFMT;

	queue->host_qid = le16_to_cpu(req->qid);

	/*
1391
	 * req->hsqsize corresponds to our recv queue size plus 1
1392 1393
	 * req->hrqsize corresponds to our send queue size
	 */
1394
	queue->recv_queue_size = le16_to_cpu(req->hsqsize) + 1;
1395 1396
	queue->send_queue_size = le16_to_cpu(req->hrqsize);

1397
	if (!queue->host_qid && queue->recv_queue_size > NVME_AQ_DEPTH)
1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409
		return NVME_RDMA_CM_INVALID_HSQSIZE;

	/* XXX: Should we enforce some kind of max for IO queues? */

	return 0;
}

static int nvmet_rdma_cm_reject(struct rdma_cm_id *cm_id,
				enum nvme_rdma_cm_status status)
{
	struct nvme_rdma_cm_rej rej;

1410 1411 1412
	pr_debug("rejecting connect request: status %d (%s)\n",
		 status, nvme_rdma_cm_msg(status));

1413 1414 1415
	rej.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
	rej.sts = cpu_to_le16(status);

1416 1417
	return rdma_reject(cm_id, (void *)&rej, sizeof(rej),
			   IB_CM_REJ_CONSUMER_DEFINED);
1418 1419 1420 1421 1422 1423 1424
}

static struct nvmet_rdma_queue *
nvmet_rdma_alloc_queue(struct nvmet_rdma_device *ndev,
		struct rdma_cm_id *cm_id,
		struct rdma_cm_event *event)
{
1425
	struct nvmet_rdma_port *port = cm_id->context;
1426 1427 1428 1429 1430 1431 1432 1433 1434 1435
	struct nvmet_rdma_queue *queue;
	int ret;

	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
	if (!queue) {
		ret = NVME_RDMA_CM_NO_RSC;
		goto out_reject;
	}

	ret = nvmet_sq_init(&queue->nvme_sq);
B
Bart Van Assche 已提交
1436 1437
	if (ret) {
		ret = NVME_RDMA_CM_NO_RSC;
1438
		goto out_free_queue;
B
Bart Van Assche 已提交
1439
	}
1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451

	ret = nvmet_rdma_parse_cm_connect_req(&event->param.conn, queue);
	if (ret)
		goto out_destroy_sq;

	/*
	 * Schedules the actual release because calling rdma_destroy_id from
	 * inside a CM callback would trigger a deadlock. (great API design..)
	 */
	INIT_WORK(&queue->release_work, nvmet_rdma_release_queue_work);
	queue->dev = ndev;
	queue->cm_id = cm_id;
1452
	queue->port = port->nport;
1453 1454 1455 1456 1457 1458 1459 1460

	spin_lock_init(&queue->state_lock);
	queue->state = NVMET_RDMA_Q_CONNECTING;
	INIT_LIST_HEAD(&queue->rsp_wait_list);
	INIT_LIST_HEAD(&queue->rsp_wr_wait_list);
	spin_lock_init(&queue->rsp_wr_wait_lock);
	INIT_LIST_HEAD(&queue->free_rsps);
	spin_lock_init(&queue->rsps_lock);
1461
	INIT_LIST_HEAD(&queue->queue_list);
1462 1463 1464 1465

	queue->idx = ida_simple_get(&nvmet_rdma_queue_ida, 0, 0, GFP_KERNEL);
	if (queue->idx < 0) {
		ret = NVME_RDMA_CM_NO_RSC;
1466
		goto out_destroy_sq;
1467 1468
	}

1469 1470 1471 1472 1473 1474 1475 1476
	/*
	 * Spread the io queues across completion vectors,
	 * but still keep all admin queues on vector 0.
	 */
	queue->comp_vector = !queue->host_qid ? 0 :
		queue->idx % ndev->device->num_comp_vectors;


1477 1478 1479 1480 1481 1482
	ret = nvmet_rdma_alloc_rsps(queue);
	if (ret) {
		ret = NVME_RDMA_CM_NO_RSC;
		goto out_ida_remove;
	}

1483 1484 1485
	if (ndev->srqs) {
		queue->nsrq = ndev->srqs[queue->comp_vector % ndev->srq_count];
	} else {
1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505
		queue->cmds = nvmet_rdma_alloc_cmds(ndev,
				queue->recv_queue_size,
				!queue->host_qid);
		if (IS_ERR(queue->cmds)) {
			ret = NVME_RDMA_CM_NO_RSC;
			goto out_free_responses;
		}
	}

	ret = nvmet_rdma_create_queue_ib(queue);
	if (ret) {
		pr_err("%s: creating RDMA queue failed (%d).\n",
			__func__, ret);
		ret = NVME_RDMA_CM_NO_RSC;
		goto out_free_cmds;
	}

	return queue;

out_free_cmds:
1506
	if (!queue->nsrq) {
1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531
		nvmet_rdma_free_cmds(queue->dev, queue->cmds,
				queue->recv_queue_size,
				!queue->host_qid);
	}
out_free_responses:
	nvmet_rdma_free_rsps(queue);
out_ida_remove:
	ida_simple_remove(&nvmet_rdma_queue_ida, queue->idx);
out_destroy_sq:
	nvmet_sq_destroy(&queue->nvme_sq);
out_free_queue:
	kfree(queue);
out_reject:
	nvmet_rdma_cm_reject(cm_id, ret);
	return NULL;
}

static void nvmet_rdma_qp_event(struct ib_event *event, void *priv)
{
	struct nvmet_rdma_queue *queue = priv;

	switch (event->event) {
	case IB_EVENT_COMM_EST:
		rdma_notify(queue->cm_id, event->event);
		break;
1532 1533 1534 1535
	case IB_EVENT_QP_LAST_WQE_REACHED:
		pr_debug("received last WQE reached event for queue=0x%p\n",
			 queue);
		break;
1536
	default:
1537 1538
		pr_err("received IB QP event: %s (%d)\n",
		       ib_event_msg(event->event), event->event);
1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585
		break;
	}
}

static int nvmet_rdma_cm_accept(struct rdma_cm_id *cm_id,
		struct nvmet_rdma_queue *queue,
		struct rdma_conn_param *p)
{
	struct rdma_conn_param  param = { };
	struct nvme_rdma_cm_rep priv = { };
	int ret = -ENOMEM;

	param.rnr_retry_count = 7;
	param.flow_control = 1;
	param.initiator_depth = min_t(u8, p->initiator_depth,
		queue->dev->device->attrs.max_qp_init_rd_atom);
	param.private_data = &priv;
	param.private_data_len = sizeof(priv);
	priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
	priv.crqsize = cpu_to_le16(queue->recv_queue_size);

	ret = rdma_accept(cm_id, &param);
	if (ret)
		pr_err("rdma_accept failed (error code = %d)\n", ret);

	return ret;
}

static int nvmet_rdma_queue_connect(struct rdma_cm_id *cm_id,
		struct rdma_cm_event *event)
{
	struct nvmet_rdma_device *ndev;
	struct nvmet_rdma_queue *queue;
	int ret = -EINVAL;

	ndev = nvmet_rdma_find_get_device(cm_id);
	if (!ndev) {
		nvmet_rdma_cm_reject(cm_id, NVME_RDMA_CM_NO_RSC);
		return -ECONNREFUSED;
	}

	queue = nvmet_rdma_alloc_queue(ndev, cm_id, event);
	if (!queue) {
		ret = -ENOMEM;
		goto put_device;
	}

1586 1587
	if (queue->host_qid == 0) {
		/* Let inflight controller teardown complete */
1588
		flush_scheduled_work();
1589 1590
	}

1591
	ret = nvmet_rdma_cm_accept(cm_id, queue, &event->param.conn);
1592
	if (ret) {
1593 1594 1595 1596 1597 1598
		/*
		 * Don't destroy the cm_id in free path, as we implicitly
		 * destroy the cm_id here with non-zero ret code.
		 */
		queue->cm_id = NULL;
		goto free_queue;
1599
	}
1600 1601 1602 1603 1604 1605 1606

	mutex_lock(&nvmet_rdma_queue_mutex);
	list_add_tail(&queue->queue_list, &nvmet_rdma_queue_list);
	mutex_unlock(&nvmet_rdma_queue_mutex);

	return 0;

1607 1608
free_queue:
	nvmet_rdma_free_queue(queue);
1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651
put_device:
	kref_put(&ndev->ref, nvmet_rdma_free_dev);

	return ret;
}

static void nvmet_rdma_queue_established(struct nvmet_rdma_queue *queue)
{
	unsigned long flags;

	spin_lock_irqsave(&queue->state_lock, flags);
	if (queue->state != NVMET_RDMA_Q_CONNECTING) {
		pr_warn("trying to establish a connected queue\n");
		goto out_unlock;
	}
	queue->state = NVMET_RDMA_Q_LIVE;

	while (!list_empty(&queue->rsp_wait_list)) {
		struct nvmet_rdma_rsp *cmd;

		cmd = list_first_entry(&queue->rsp_wait_list,
					struct nvmet_rdma_rsp, wait_list);
		list_del(&cmd->wait_list);

		spin_unlock_irqrestore(&queue->state_lock, flags);
		nvmet_rdma_handle_command(queue, cmd);
		spin_lock_irqsave(&queue->state_lock, flags);
	}

out_unlock:
	spin_unlock_irqrestore(&queue->state_lock, flags);
}

static void __nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue)
{
	bool disconnect = false;
	unsigned long flags;

	pr_debug("cm_id= %p queue->state= %d\n", queue->cm_id, queue->state);

	spin_lock_irqsave(&queue->state_lock, flags);
	switch (queue->state) {
	case NVMET_RDMA_Q_CONNECTING:
1652 1653 1654 1655 1656 1657 1658 1659 1660 1661
		while (!list_empty(&queue->rsp_wait_list)) {
			struct nvmet_rdma_rsp *rsp;

			rsp = list_first_entry(&queue->rsp_wait_list,
					       struct nvmet_rdma_rsp,
					       wait_list);
			list_del(&rsp->wait_list);
			nvmet_rdma_put_rsp(rsp);
		}
		fallthrough;
1662 1663
	case NVMET_RDMA_Q_LIVE:
		queue->state = NVMET_RDMA_Q_DISCONNECTING;
1664
		disconnect = true;
1665 1666 1667 1668 1669 1670 1671 1672
		break;
	case NVMET_RDMA_Q_DISCONNECTING:
		break;
	}
	spin_unlock_irqrestore(&queue->state_lock, flags);

	if (disconnect) {
		rdma_disconnect(queue->cm_id);
1673
		schedule_work(&queue->release_work);
1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696
	}
}

static void nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue)
{
	bool disconnect = false;

	mutex_lock(&nvmet_rdma_queue_mutex);
	if (!list_empty(&queue->queue_list)) {
		list_del_init(&queue->queue_list);
		disconnect = true;
	}
	mutex_unlock(&nvmet_rdma_queue_mutex);

	if (disconnect)
		__nvmet_rdma_queue_disconnect(queue);
}

static void nvmet_rdma_queue_connect_fail(struct rdma_cm_id *cm_id,
		struct nvmet_rdma_queue *queue)
{
	WARN_ON_ONCE(queue->state != NVMET_RDMA_Q_CONNECTING);

1697 1698 1699 1700 1701 1702
	mutex_lock(&nvmet_rdma_queue_mutex);
	if (!list_empty(&queue->queue_list))
		list_del_init(&queue->queue_list);
	mutex_unlock(&nvmet_rdma_queue_mutex);

	pr_err("failed to connect queue %d\n", queue->idx);
1703
	schedule_work(&queue->release_work);
1704 1705
}

1706 1707
/**
 * nvme_rdma_device_removal() - Handle RDMA device removal
1708
 * @cm_id:	rdma_cm id, used for nvmet port
1709 1710 1711
 * @queue:      nvmet rdma queue (cm id qp_context)
 *
 * DEVICE_REMOVAL event notifies us that the RDMA device is about
1712 1713 1714
 * to unplug. Note that this event can be generated on a normal
 * queue cm_id and/or a device bound listener cm_id (where in this
 * case queue will be null).
1715
 *
1716 1717
 * We registered an ib_client to handle device removal for queues,
 * so we only need to handle the listening port cm_ids. In this case
1718 1719 1720 1721 1722 1723
 * we nullify the priv to prevent double cm_id destruction and destroying
 * the cm_id implicitely by returning a non-zero rc to the callout.
 */
static int nvmet_rdma_device_removal(struct rdma_cm_id *cm_id,
		struct nvmet_rdma_queue *queue)
{
1724
	struct nvmet_rdma_port *port;
1725

1726
	if (queue) {
1727
		/*
1728 1729 1730
		 * This is a queue cm_id. we have registered
		 * an ib_client to handle queues removal
		 * so don't interfear and just return.
1731
		 */
1732
		return 0;
1733 1734
	}

1735 1736 1737 1738 1739 1740 1741 1742
	port = cm_id->context;

	/*
	 * This is a listener cm_id. Make sure that
	 * future remove_port won't invoke a double
	 * cm_id destroy. use atomic xchg to make sure
	 * we don't compete with remove_port.
	 */
1743
	if (xchg(&port->cm_id, NULL) != cm_id)
1744 1745
		return 0;

1746 1747 1748 1749 1750 1751 1752
	/*
	 * We need to return 1 so that the core will destroy
	 * it's own ID.  What a great API design..
	 */
	return 1;
}

1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773
static int nvmet_rdma_cm_handler(struct rdma_cm_id *cm_id,
		struct rdma_cm_event *event)
{
	struct nvmet_rdma_queue *queue = NULL;
	int ret = 0;

	if (cm_id->qp)
		queue = cm_id->qp->qp_context;

	pr_debug("%s (%d): status %d id %p\n",
		rdma_event_msg(event->event), event->event,
		event->status, cm_id);

	switch (event->event) {
	case RDMA_CM_EVENT_CONNECT_REQUEST:
		ret = nvmet_rdma_queue_connect(cm_id, event);
		break;
	case RDMA_CM_EVENT_ESTABLISHED:
		nvmet_rdma_queue_established(queue);
		break;
	case RDMA_CM_EVENT_ADDR_CHANGE:
1774 1775 1776 1777 1778 1779
		if (!queue) {
			struct nvmet_rdma_port *port = cm_id->context;

			schedule_delayed_work(&port->repair_work, 0);
			break;
		}
1780
		fallthrough;
1781 1782
	case RDMA_CM_EVENT_DISCONNECTED:
	case RDMA_CM_EVENT_TIMEWAIT_EXIT:
1783
		nvmet_rdma_queue_disconnect(queue);
1784 1785 1786
		break;
	case RDMA_CM_EVENT_DEVICE_REMOVAL:
		ret = nvmet_rdma_device_removal(cm_id, queue);
1787 1788
		break;
	case RDMA_CM_EVENT_REJECTED:
1789 1790
		pr_debug("Connection rejected: %s\n",
			 rdma_reject_msg(cm_id, event->status));
1791
		fallthrough;
1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822
	case RDMA_CM_EVENT_UNREACHABLE:
	case RDMA_CM_EVENT_CONNECT_ERROR:
		nvmet_rdma_queue_connect_fail(cm_id, queue);
		break;
	default:
		pr_err("received unrecognized RDMA CM event %d\n",
			event->event);
		break;
	}

	return ret;
}

static void nvmet_rdma_delete_ctrl(struct nvmet_ctrl *ctrl)
{
	struct nvmet_rdma_queue *queue;

restart:
	mutex_lock(&nvmet_rdma_queue_mutex);
	list_for_each_entry(queue, &nvmet_rdma_queue_list, queue_list) {
		if (queue->nvme_sq.ctrl == ctrl) {
			list_del_init(&queue->queue_list);
			mutex_unlock(&nvmet_rdma_queue_mutex);

			__nvmet_rdma_queue_disconnect(queue);
			goto restart;
		}
	}
	mutex_unlock(&nvmet_rdma_queue_mutex);
}

1823
static void nvmet_rdma_disable_port(struct nvmet_rdma_port *port)
1824
{
1825
	struct rdma_cm_id *cm_id = xchg(&port->cm_id, NULL);
1826

1827 1828 1829
	if (cm_id)
		rdma_destroy_id(cm_id);
}
1830

1831 1832 1833 1834 1835
static int nvmet_rdma_enable_port(struct nvmet_rdma_port *port)
{
	struct sockaddr *addr = (struct sockaddr *)&port->addr;
	struct rdma_cm_id *cm_id;
	int ret;
1836 1837 1838 1839 1840 1841 1842 1843

	cm_id = rdma_create_id(&init_net, nvmet_rdma_cm_handler, port,
			RDMA_PS_TCP, IB_QPT_RC);
	if (IS_ERR(cm_id)) {
		pr_err("CM ID creation failed\n");
		return PTR_ERR(cm_id);
	}

1844 1845 1846 1847 1848 1849 1850 1851 1852 1853
	/*
	 * Allow both IPv4 and IPv6 sockets to bind a single port
	 * at the same time.
	 */
	ret = rdma_set_afonly(cm_id, 1);
	if (ret) {
		pr_err("rdma_set_afonly failed (%d)\n", ret);
		goto out_destroy_id;
	}

1854
	ret = rdma_bind_addr(cm_id, addr);
1855
	if (ret) {
1856
		pr_err("binding CM ID to %pISpcs failed (%d)\n", addr, ret);
1857 1858 1859 1860 1861
		goto out_destroy_id;
	}

	ret = rdma_listen(cm_id, 128);
	if (ret) {
1862
		pr_err("listening to %pISpcs failed (%d)\n", addr, ret);
1863 1864 1865
		goto out_destroy_id;
	}

1866
	port->cm_id = cm_id;
1867 1868 1869 1870 1871 1872 1873
	return 0;

out_destroy_id:
	rdma_destroy_id(cm_id);
	return ret;
}

1874
static void nvmet_rdma_repair_port_work(struct work_struct *w)
1875
{
1876 1877 1878
	struct nvmet_rdma_port *port = container_of(to_delayed_work(w),
			struct nvmet_rdma_port, repair_work);
	int ret;
1879

1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946
	nvmet_rdma_disable_port(port);
	ret = nvmet_rdma_enable_port(port);
	if (ret)
		schedule_delayed_work(&port->repair_work, 5 * HZ);
}

static int nvmet_rdma_add_port(struct nvmet_port *nport)
{
	struct nvmet_rdma_port *port;
	__kernel_sa_family_t af;
	int ret;

	port = kzalloc(sizeof(*port), GFP_KERNEL);
	if (!port)
		return -ENOMEM;

	nport->priv = port;
	port->nport = nport;
	INIT_DELAYED_WORK(&port->repair_work, nvmet_rdma_repair_port_work);

	switch (nport->disc_addr.adrfam) {
	case NVMF_ADDR_FAMILY_IP4:
		af = AF_INET;
		break;
	case NVMF_ADDR_FAMILY_IP6:
		af = AF_INET6;
		break;
	default:
		pr_err("address family %d not supported\n",
			nport->disc_addr.adrfam);
		ret = -EINVAL;
		goto out_free_port;
	}

	if (nport->inline_data_size < 0) {
		nport->inline_data_size = NVMET_RDMA_DEFAULT_INLINE_DATA_SIZE;
	} else if (nport->inline_data_size > NVMET_RDMA_MAX_INLINE_DATA_SIZE) {
		pr_warn("inline_data_size %u is too large, reducing to %u\n",
			nport->inline_data_size,
			NVMET_RDMA_MAX_INLINE_DATA_SIZE);
		nport->inline_data_size = NVMET_RDMA_MAX_INLINE_DATA_SIZE;
	}

	ret = inet_pton_with_scope(&init_net, af, nport->disc_addr.traddr,
			nport->disc_addr.trsvcid, &port->addr);
	if (ret) {
		pr_err("malformed ip/port passed: %s:%s\n",
			nport->disc_addr.traddr, nport->disc_addr.trsvcid);
		goto out_free_port;
	}

	ret = nvmet_rdma_enable_port(port);
	if (ret)
		goto out_free_port;

	pr_info("enabling port %d (%pISpcs)\n",
		le16_to_cpu(nport->disc_addr.portid),
		(struct sockaddr *)&port->addr);

	return 0;

out_free_port:
	kfree(port);
	return ret;
}

static void nvmet_rdma_remove_port(struct nvmet_port *nport)
1947
{
1948
	struct nvmet_rdma_port *port = nport->priv;
1949

1950 1951 1952
	cancel_delayed_work_sync(&port->repair_work);
	nvmet_rdma_disable_port(port);
	kfree(port);
1953 1954
}

1955
static void nvmet_rdma_disc_port_addr(struct nvmet_req *req,
1956
		struct nvmet_port *nport, char *traddr)
1957
{
1958 1959
	struct nvmet_rdma_port *port = nport->priv;
	struct rdma_cm_id *cm_id = port->cm_id;
1960 1961 1962 1963 1964 1965 1966 1967 1968

	if (inet_addr_is_any((struct sockaddr *)&cm_id->route.addr.src_addr)) {
		struct nvmet_rdma_rsp *rsp =
			container_of(req, struct nvmet_rdma_rsp, req);
		struct rdma_cm_id *req_cm_id = rsp->queue->cm_id;
		struct sockaddr *addr = (void *)&req_cm_id->route.addr.src_addr;

		sprintf(traddr, "%pISc", addr);
	} else {
1969
		memcpy(traddr, nport->disc_addr.traddr, NVMF_TRADDR_SIZE);
1970 1971 1972
	}
}

1973 1974
static u8 nvmet_rdma_get_mdts(const struct nvmet_ctrl *ctrl)
{
1975 1976
	if (ctrl->pi_support)
		return NVMET_RDMA_MAX_METADATA_MDTS;
1977 1978 1979
	return NVMET_RDMA_MAX_MDTS;
}

1980
static const struct nvmet_fabrics_ops nvmet_rdma_ops = {
1981 1982 1983
	.owner			= THIS_MODULE,
	.type			= NVMF_TRTYPE_RDMA,
	.msdbd			= 1,
1984
	.flags			= NVMF_KEYED_SGLS | NVMF_METADATA_SUPPORTED,
1985 1986 1987 1988
	.add_port		= nvmet_rdma_add_port,
	.remove_port		= nvmet_rdma_remove_port,
	.queue_response		= nvmet_rdma_queue_response,
	.delete_ctrl		= nvmet_rdma_delete_ctrl,
1989
	.disc_traddr		= nvmet_rdma_disc_port_addr,
1990
	.get_mdts		= nvmet_rdma_get_mdts,
1991 1992
};

1993 1994
static void nvmet_rdma_remove_one(struct ib_device *ib_device, void *client_data)
{
1995
	struct nvmet_rdma_queue *queue, *tmp;
1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
	struct nvmet_rdma_device *ndev;
	bool found = false;

	mutex_lock(&device_list_mutex);
	list_for_each_entry(ndev, &device_list, entry) {
		if (ndev->device == ib_device) {
			found = true;
			break;
		}
	}
	mutex_unlock(&device_list_mutex);

	if (!found)
		return;
2010

2011 2012 2013 2014
	/*
	 * IB Device that is used by nvmet controllers is being removed,
	 * delete all queues using this device.
	 */
2015
	mutex_lock(&nvmet_rdma_queue_mutex);
2016 2017
	list_for_each_entry_safe(queue, tmp, &nvmet_rdma_queue_list,
				 queue_list) {
2018 2019 2020 2021
		if (queue->dev->device != ib_device)
			continue;

		pr_info("Removing queue %d\n", queue->idx);
2022
		list_del_init(&queue->queue_list);
2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034
		__nvmet_rdma_queue_disconnect(queue);
	}
	mutex_unlock(&nvmet_rdma_queue_mutex);

	flush_scheduled_work();
}

static struct ib_client nvmet_rdma_ib_client = {
	.name   = "nvmet_rdma",
	.remove = nvmet_rdma_remove_one
};

2035 2036
static int __init nvmet_rdma_init(void)
{
2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051
	int ret;

	ret = ib_register_client(&nvmet_rdma_ib_client);
	if (ret)
		return ret;

	ret = nvmet_register_transport(&nvmet_rdma_ops);
	if (ret)
		goto err_ib_client;

	return 0;

err_ib_client:
	ib_unregister_client(&nvmet_rdma_ib_client);
	return ret;
2052 2053 2054 2055 2056
}

static void __exit nvmet_rdma_exit(void)
{
	nvmet_unregister_transport(&nvmet_rdma_ops);
2057
	ib_unregister_client(&nvmet_rdma_ib_client);
2058
	WARN_ON_ONCE(!list_empty(&nvmet_rdma_queue_list));
2059 2060 2061 2062 2063 2064 2065 2066
	ida_destroy(&nvmet_rdma_queue_ida);
}

module_init(nvmet_rdma_init);
module_exit(nvmet_rdma_exit);

MODULE_LICENSE("GPL v2");
MODULE_ALIAS("nvmet-transport-1"); /* 1 == NVMF_TRTYPE_RDMA */