switch.c 17.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * Copyright (C) 2015 - ARM Ltd
 * Author: Marc Zyngier <marc.zyngier@arm.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

18
#include <linux/arm-smccc.h>
19
#include <linux/types.h>
20
#include <linux/jump_label.h>
21
#include <uapi/linux/psci.h>
22

23 24
#include <kvm/arm_psci.h>

25
#include <asm/arch_gicv3.h>
26
#include <asm/cpufeature.h>
27
#include <asm/kprobes.h>
28
#include <asm/kvm_asm.h>
29
#include <asm/kvm_emulate.h>
30
#include <asm/kvm_host.h>
31
#include <asm/kvm_hyp.h>
32
#include <asm/kvm_mmu.h>
33
#include <asm/fpsimd.h>
34
#include <asm/debug-monitors.h>
35
#include <asm/processor.h>
36
#include <asm/thread_info.h>
37

38 39
/* Check whether the FP regs were dirtied while in the host-side run loop: */
static bool __hyp_text update_fp_enabled(struct kvm_vcpu *vcpu)
40
{
41 42 43
	if (vcpu->arch.host_thread_info->flags & _TIF_FOREIGN_FPSTATE)
		vcpu->arch.flags &= ~(KVM_ARM64_FP_ENABLED |
				      KVM_ARM64_FP_HOST);
44

45
	return !!(vcpu->arch.flags & KVM_ARM64_FP_ENABLED);
46 47
}

48 49 50 51 52 53 54 55 56
/* Save the 32-bit only FPSIMD system register state */
static void __hyp_text __fpsimd_save_fpexc32(struct kvm_vcpu *vcpu)
{
	if (!vcpu_el1_is_32bit(vcpu))
		return;

	vcpu->arch.ctxt.sys_regs[FPEXC32_EL2] = read_sysreg(fpexc32_el2);
}

57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
static void __hyp_text __activate_traps_fpsimd32(struct kvm_vcpu *vcpu)
{
	/*
	 * We are about to set CPTR_EL2.TFP to trap all floating point
	 * register accesses to EL2, however, the ARM ARM clearly states that
	 * traps are only taken to EL2 if the operation would not otherwise
	 * trap to EL1.  Therefore, always make sure that for 32-bit guests,
	 * we set FPEXC.EN to prevent traps to EL1, when setting the TFP bit.
	 * If FP/ASIMD is not implemented, FPEXC is UNDEFINED and any access to
	 * it will cause an exception.
	 */
	if (vcpu_el1_is_32bit(vcpu) && system_supports_fpsimd()) {
		write_sysreg(1 << 30, fpexc32_el2);
		isb();
	}
}

static void __hyp_text __activate_traps_common(struct kvm_vcpu *vcpu)
{
	/* Trap on AArch32 cp15 c15 (impdef sysregs) accesses (EL1 or EL0) */
	write_sysreg(1 << 15, hstr_el2);

	/*
	 * Make sure we trap PMU access from EL0 to EL2. Also sanitize
	 * PMSELR_EL0 to make sure it never contains the cycle
	 * counter, which could make a PMXEVCNTR_EL0 access UNDEF at
	 * EL1 instead of being trapped to EL2.
	 */
	write_sysreg(0, pmselr_el0);
	write_sysreg(ARMV8_PMU_USERENR_MASK, pmuserenr_el0);
	write_sysreg(vcpu->arch.mdcr_el2, mdcr_el2);
}

static void __hyp_text __deactivate_traps_common(void)
{
	write_sysreg(0, hstr_el2);
	write_sysreg(0, pmuserenr_el0);
}

96
static void activate_traps_vhe(struct kvm_vcpu *vcpu)
97 98 99 100 101
{
	u64 val;

	val = read_sysreg(cpacr_el1);
	val |= CPACR_EL1_TTA;
102
	val &= ~CPACR_EL1_ZEN;
103
	if (!update_fp_enabled(vcpu)) {
104
		val &= ~CPACR_EL1_FPEN;
105 106
		__activate_traps_fpsimd32(vcpu);
	}
107

108 109
	write_sysreg(val, cpacr_el1);

110
	write_sysreg(kvm_get_hyp_vector(), vbar_el1);
111
}
112
NOKPROBE_SYMBOL(activate_traps_vhe);
113

114
static void __hyp_text __activate_traps_nvhe(struct kvm_vcpu *vcpu)
115 116 117
{
	u64 val;

118 119
	__activate_traps_common(vcpu);

120
	val = CPTR_EL2_DEFAULT;
121
	val |= CPTR_EL2_TTA | CPTR_EL2_TZ;
122
	if (!update_fp_enabled(vcpu)) {
123
		val |= CPTR_EL2_TFP;
124 125
		__activate_traps_fpsimd32(vcpu);
	}
126

127 128 129
	write_sysreg(val, cptr_el2);
}

130 131
static void __hyp_text __activate_traps(struct kvm_vcpu *vcpu)
{
132
	u64 hcr = vcpu->arch.hcr_el2;
133

134
	write_sysreg(hcr, hcr_el2);
135

136
	if (cpus_have_const_cap(ARM64_HAS_RAS_EXTN) && (hcr & HCR_VSE))
137 138
		write_sysreg_s(vcpu->arch.vsesr_el2, SYS_VSESR_EL2);

139 140 141 142
	if (has_vhe())
		activate_traps_vhe(vcpu);
	else
		__activate_traps_nvhe(vcpu);
143
}
144

145
static void deactivate_traps_vhe(void)
146 147 148
{
	extern char vectors[];	/* kernel exception vectors */
	write_sysreg(HCR_HOST_VHE_FLAGS, hcr_el2);
149 150 151 152 153 154 155 156

	/*
	 * ARM erratum 1165522 requires the actual execution of the above
	 * before we can switch to the EL2/EL0 translation regime used by
	 * the host.
	 */
	asm(ALTERNATIVE("nop", "isb", ARM64_WORKAROUND_1165522));

157
	write_sysreg(CPACR_EL1_DEFAULT, cpacr_el1);
158
	write_sysreg(vectors, vbar_el1);
159
}
160
NOKPROBE_SYMBOL(deactivate_traps_vhe);
161

162
static void __hyp_text __deactivate_traps_nvhe(void)
163
{
164 165
	u64 mdcr_el2 = read_sysreg(mdcr_el2);

166 167
	__deactivate_traps_common();

168 169 170 171
	mdcr_el2 &= MDCR_EL2_HPMN_MASK;
	mdcr_el2 |= MDCR_EL2_E2PB_MASK << MDCR_EL2_E2PB_SHIFT;

	write_sysreg(mdcr_el2, mdcr_el2);
172
	write_sysreg(HCR_HOST_NVHE_FLAGS, hcr_el2);
173 174 175 176 177
	write_sysreg(CPTR_EL2_DEFAULT, cptr_el2);
}

static void __hyp_text __deactivate_traps(struct kvm_vcpu *vcpu)
{
178 179 180 181 182 183 184 185 186
	/*
	 * If we pended a virtual abort, preserve it until it gets
	 * cleared. See D1.14.3 (Virtual Interrupts) for details, but
	 * the crucial bit is "On taking a vSError interrupt,
	 * HCR_EL2.VSE is cleared to 0."
	 */
	if (vcpu->arch.hcr_el2 & HCR_VSE)
		vcpu->arch.hcr_el2 = read_sysreg(hcr_el2);

187 188 189 190
	if (has_vhe())
		deactivate_traps_vhe();
	else
		__deactivate_traps_nvhe();
191 192
}

193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
void activate_traps_vhe_load(struct kvm_vcpu *vcpu)
{
	__activate_traps_common(vcpu);
}

void deactivate_traps_vhe_put(void)
{
	u64 mdcr_el2 = read_sysreg(mdcr_el2);

	mdcr_el2 &= MDCR_EL2_HPMN_MASK |
		    MDCR_EL2_E2PB_MASK << MDCR_EL2_E2PB_SHIFT |
		    MDCR_EL2_TPMS;

	write_sysreg(mdcr_el2, mdcr_el2);

	__deactivate_traps_common();
}

211
static void __hyp_text __activate_vm(struct kvm *kvm)
212
{
213
	__load_guest_stage2(kvm);
214 215 216 217 218 219 220
}

static void __hyp_text __deactivate_vm(struct kvm_vcpu *vcpu)
{
	write_sysreg(0, vttbr_el2);
}

221 222
/* Save VGICv3 state on non-VHE systems */
static void __hyp_text __hyp_vgic_save_state(struct kvm_vcpu *vcpu)
223
{
224
	if (static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif)) {
225
		__vgic_v3_save_state(vcpu);
226 227
		__vgic_v3_deactivate_traps(vcpu);
	}
228 229
}

230 231
/* Restore VGICv3 state on non_VEH systems */
static void __hyp_text __hyp_vgic_restore_state(struct kvm_vcpu *vcpu)
232
{
233 234
	if (static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif)) {
		__vgic_v3_activate_traps(vcpu);
235
		__vgic_v3_restore_state(vcpu);
236
	}
237 238
}

239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
static bool __hyp_text __true_value(void)
{
	return true;
}

static bool __hyp_text __false_value(void)
{
	return false;
}

static hyp_alternate_select(__check_arm_834220,
			    __false_value, __true_value,
			    ARM64_WORKAROUND_834220);

static bool __hyp_text __translate_far_to_hpfar(u64 far, u64 *hpfar)
{
	u64 par, tmp;

	/*
	 * Resolve the IPA the hard way using the guest VA.
	 *
	 * Stage-1 translation already validated the memory access
	 * rights. As such, we can use the EL1 translation regime, and
	 * don't have to distinguish between EL0 and EL1 access.
	 *
	 * We do need to save/restore PAR_EL1 though, as we haven't
	 * saved the guest context yet, and we may return early...
	 */
	par = read_sysreg(par_el1);
	asm volatile("at s1e1r, %0" : : "r" (far));
	isb();

	tmp = read_sysreg(par_el1);
	write_sysreg(par, par_el1);

	if (unlikely(tmp & 1))
		return false; /* Translation failed, back to guest */

	/* Convert PAR to HPFAR format */
278
	*hpfar = PAR_TO_HPFAR(tmp);
279 280 281 282 283
	return true;
}

static bool __hyp_text __populate_fault_info(struct kvm_vcpu *vcpu)
{
284 285
	u8 ec;
	u64 esr;
286 287
	u64 hpfar, far;

288 289
	esr = vcpu->arch.fault.esr_el2;
	ec = ESR_ELx_EC(esr);
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319

	if (ec != ESR_ELx_EC_DABT_LOW && ec != ESR_ELx_EC_IABT_LOW)
		return true;

	far = read_sysreg_el2(far);

	/*
	 * The HPFAR can be invalid if the stage 2 fault did not
	 * happen during a stage 1 page table walk (the ESR_EL2.S1PTW
	 * bit is clear) and one of the two following cases are true:
	 *   1. The fault was due to a permission fault
	 *   2. The processor carries errata 834220
	 *
	 * Therefore, for all non S1PTW faults where we either have a
	 * permission fault or the errata workaround is enabled, we
	 * resolve the IPA using the AT instruction.
	 */
	if (!(esr & ESR_ELx_S1PTW) &&
	    (__check_arm_834220()() || (esr & ESR_ELx_FSC_TYPE) == FSC_PERM)) {
		if (!__translate_far_to_hpfar(far, &hpfar))
			return false;
	} else {
		hpfar = read_sysreg(hpfar_el2);
	}

	vcpu->arch.fault.far_el2 = far;
	vcpu->arch.fault.hpfar_el2 = hpfar;
	return true;
}

320
static bool __hyp_text __hyp_switch_fpsimd(struct kvm_vcpu *vcpu)
321
{
322 323
	struct user_fpsimd_state *host_fpsimd = vcpu->arch.host_fpsimd_state;

324 325 326 327 328 329 330 331 332
	if (has_vhe())
		write_sysreg(read_sysreg(cpacr_el1) | CPACR_EL1_FPEN,
			     cpacr_el1);
	else
		write_sysreg(read_sysreg(cptr_el2) & ~(u64)CPTR_EL2_TFP,
			     cptr_el2);

	isb();

333
	if (vcpu->arch.flags & KVM_ARM64_FP_HOST) {
334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
		/*
		 * In the SVE case, VHE is assumed: it is enforced by
		 * Kconfig and kvm_arch_init().
		 */
		if (system_supports_sve() &&
		    (vcpu->arch.flags & KVM_ARM64_HOST_SVE_IN_USE)) {
			struct thread_struct *thread = container_of(
				host_fpsimd,
				struct thread_struct, uw.fpsimd_state);

			sve_save_state(sve_pffr(thread), &host_fpsimd->fpsr);
		} else {
			__fpsimd_save_state(host_fpsimd);
		}

349 350 351
		vcpu->arch.flags &= ~KVM_ARM64_FP_HOST;
	}

352 353
	__fpsimd_restore_state(&vcpu->arch.ctxt.gp_regs.fp_regs);

354 355 356
	if (vcpu_has_sve(vcpu))
		write_sysreg_s(vcpu->arch.ctxt.sys_regs[ZCR_EL1], SYS_ZCR_EL12);

357 358 359 360
	/* Skip restoring fpexc32 for AArch64 guests */
	if (!(read_sysreg(hcr_el2) & HCR_RW))
		write_sysreg(vcpu->arch.ctxt.sys_regs[FPEXC32_EL2],
			     fpexc32_el2);
361 362

	vcpu->arch.flags |= KVM_ARM64_FP_ENABLED;
363 364

	return true;
365 366
}

367 368 369 370 371 372
/*
 * Return true when we were able to fixup the guest exit and should return to
 * the guest, false when we should restore the host state and return to the
 * main run loop.
 */
static bool __hyp_text fixup_guest_exit(struct kvm_vcpu *vcpu, u64 *exit_code)
373
{
374
	if (ARM_EXCEPTION_CODE(*exit_code) != ARM_EXCEPTION_IRQ)
375
		vcpu->arch.fault.esr_el2 = read_sysreg_el2(esr);
376

377 378 379 380 381 382
	/*
	 * We're using the raw exception code in order to only process
	 * the trap if no SError is pending. We will come back to the
	 * same PC once the SError has been injected, and replay the
	 * trapping instruction.
	 */
383 384 385
	if (*exit_code != ARM_EXCEPTION_TRAP)
		goto exit;

386 387 388 389 390 391 392 393 394 395
	/*
	 * We trap the first access to the FP/SIMD to save the host context
	 * and restore the guest context lazily.
	 * If FP/SIMD is not implemented, handle the trap and inject an
	 * undefined instruction exception to the guest.
	 */
	if (system_supports_fpsimd() &&
	    kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_FP_ASIMD)
		return __hyp_switch_fpsimd(vcpu);

396
	if (!__populate_fault_info(vcpu))
397
		return true;
398

399
	if (static_branch_unlikely(&vgic_v2_cpuif_trap)) {
400 401 402 403 404 405 406 407
		bool valid;

		valid = kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_DABT_LOW &&
			kvm_vcpu_trap_get_fault_type(vcpu) == FSC_FAULT &&
			kvm_vcpu_dabt_isvalid(vcpu) &&
			!kvm_vcpu_dabt_isextabt(vcpu) &&
			!kvm_vcpu_dabt_iss1tw(vcpu);

408 409 410
		if (valid) {
			int ret = __vgic_v2_perform_cpuif_access(vcpu);

411
			if (ret == 1)
412
				return true;
413

414 415
			/* Promote an illegal access to an SError.*/
			if (ret == -1)
416
				*exit_code = ARM_EXCEPTION_EL1_SERROR;
417 418

			goto exit;
419 420 421
		}
	}

422 423 424 425 426
	if (static_branch_unlikely(&vgic_v3_cpuif_trap) &&
	    (kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_SYS64 ||
	     kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_CP15_32)) {
		int ret = __vgic_v3_perform_cpuif_access(vcpu);

427
		if (ret == 1)
428
			return true;
429 430
	}

431
exit:
432 433 434 435
	/* Return to the host kernel and handle the exit */
	return false;
}

436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
static inline bool __hyp_text __needs_ssbd_off(struct kvm_vcpu *vcpu)
{
	if (!cpus_have_const_cap(ARM64_SSBD))
		return false;

	return !(vcpu->arch.workaround_flags & VCPU_WORKAROUND_2_FLAG);
}

static void __hyp_text __set_guest_arch_workaround_state(struct kvm_vcpu *vcpu)
{
#ifdef CONFIG_ARM64_SSBD
	/*
	 * The host runs with the workaround always present. If the
	 * guest wants it disabled, so be it...
	 */
	if (__needs_ssbd_off(vcpu) &&
	    __hyp_this_cpu_read(arm64_ssbd_callback_required))
		arm_smccc_1_1_smc(ARM_SMCCC_ARCH_WORKAROUND_2, 0, NULL);
#endif
}

static void __hyp_text __set_host_arch_workaround_state(struct kvm_vcpu *vcpu)
{
#ifdef CONFIG_ARM64_SSBD
	/*
	 * If the guest has disabled the workaround, bring it back on.
	 */
	if (__needs_ssbd_off(vcpu) &&
	    __hyp_this_cpu_read(arm64_ssbd_callback_required))
		arm_smccc_1_1_smc(ARM_SMCCC_ARCH_WORKAROUND_2, 1, NULL);
#endif
}

469 470 471 472 473 474 475
/* Switch to the guest for VHE systems running in EL2 */
int kvm_vcpu_run_vhe(struct kvm_vcpu *vcpu)
{
	struct kvm_cpu_context *host_ctxt;
	struct kvm_cpu_context *guest_ctxt;
	u64 exit_code;

476
	host_ctxt = vcpu->arch.host_cpu_context;
477 478 479
	host_ctxt->__hyp_running_vcpu = vcpu;
	guest_ctxt = &vcpu->arch.ctxt;

480
	sysreg_save_host_state_vhe(host_ctxt);
481

482 483 484 485 486 487 488 489 490 491 492
	/*
	 * ARM erratum 1165522 requires us to configure both stage 1 and
	 * stage 2 translation for the guest context before we clear
	 * HCR_EL2.TGE.
	 *
	 * We have already configured the guest's stage 1 translation in
	 * kvm_vcpu_load_sysregs above.  We must now call __activate_vm
	 * before __activate_traps, because __activate_vm configures
	 * stage 2 translation, and __activate_traps clear HCR_EL2.TGE
	 * (among other things).
	 */
493
	__activate_vm(vcpu->kvm);
494
	__activate_traps(vcpu);
495

496
	sysreg_restore_guest_state_vhe(guest_ctxt);
497 498
	__debug_switch_to_guest(vcpu);

499 500
	__set_guest_arch_workaround_state(vcpu);

501 502 503 504 505 506 507
	do {
		/* Jump in the fire! */
		exit_code = __guest_enter(vcpu, host_ctxt);

		/* And we're baaack! */
	} while (fixup_guest_exit(vcpu, &exit_code));

508 509
	__set_host_arch_workaround_state(vcpu);

510
	sysreg_save_guest_state_vhe(guest_ctxt);
511 512 513

	__deactivate_traps(vcpu);

514
	sysreg_restore_host_state_vhe(host_ctxt);
515

516
	if (vcpu->arch.flags & KVM_ARM64_FP_ENABLED)
517
		__fpsimd_save_fpexc32(vcpu);
518 519 520 521 522

	__debug_switch_to_host(vcpu);

	return exit_code;
}
523
NOKPROBE_SYMBOL(kvm_vcpu_run_vhe);
524 525 526

/* Switch to the guest for legacy non-VHE systems */
int __hyp_text __kvm_vcpu_run_nvhe(struct kvm_vcpu *vcpu)
527 528 529 530 531
{
	struct kvm_cpu_context *host_ctxt;
	struct kvm_cpu_context *guest_ctxt;
	u64 exit_code;

532 533 534 535 536 537 538 539 540 541 542
	/*
	 * Having IRQs masked via PMR when entering the guest means the GIC
	 * will not signal the CPU of interrupts of lower priority, and the
	 * only way to get out will be via guest exceptions.
	 * Naturally, we want to avoid this.
	 */
	if (system_uses_irq_prio_masking()) {
		gic_write_pmr(GIC_PRIO_IRQON);
		dsb(sy);
	}

543 544 545 546 547 548
	vcpu = kern_hyp_va(vcpu);

	host_ctxt = kern_hyp_va(vcpu->arch.host_cpu_context);
	host_ctxt->__hyp_running_vcpu = vcpu;
	guest_ctxt = &vcpu->arch.ctxt;

549
	__sysreg_save_state_nvhe(host_ctxt);
550

551
	__activate_vm(kern_hyp_va(vcpu->kvm));
552
	__activate_traps(vcpu);
553

554
	__hyp_vgic_restore_state(vcpu);
555 556 557 558 559 560 561
	__timer_enable_traps(vcpu);

	/*
	 * We must restore the 32-bit state before the sysregs, thanks
	 * to erratum #852523 (Cortex-A57) or #853709 (Cortex-A72).
	 */
	__sysreg32_restore_state(vcpu);
562
	__sysreg_restore_state_nvhe(guest_ctxt);
563 564
	__debug_switch_to_guest(vcpu);

565 566
	__set_guest_arch_workaround_state(vcpu);

567 568 569 570 571 572 573
	do {
		/* Jump in the fire! */
		exit_code = __guest_enter(vcpu, host_ctxt);

		/* And we're baaack! */
	} while (fixup_guest_exit(vcpu, &exit_code));

574 575
	__set_host_arch_workaround_state(vcpu);

576
	__sysreg_save_state_nvhe(guest_ctxt);
577
	__sysreg32_save_state(vcpu);
578
	__timer_disable_traps(vcpu);
579
	__hyp_vgic_save_state(vcpu);
580 581 582 583

	__deactivate_traps(vcpu);
	__deactivate_vm(vcpu);

584
	__sysreg_restore_state_nvhe(host_ctxt);
585

586
	if (vcpu->arch.flags & KVM_ARM64_FP_ENABLED)
587
		__fpsimd_save_fpexc32(vcpu);
588

589 590 591 592
	/*
	 * This must come after restoring the host sysregs, since a non-VHE
	 * system may enable SPE here and make use of the TTBRs.
	 */
593
	__debug_switch_to_host(vcpu);
594

595 596 597 598
	/* Returning to host will clear PSR.I, remask PMR if needed */
	if (system_uses_irq_prio_masking())
		gic_write_pmr(GIC_PRIO_IRQOFF);

599 600
	return exit_code;
}
M
Marc Zyngier 已提交
601 602 603

static const char __hyp_panic_string[] = "HYP panic:\nPS:%08llx PC:%016llx ESR:%08llx\nFAR:%016llx HPFAR:%016llx PAR:%016llx\nVCPU:%p\n";

604
static void __hyp_text __hyp_call_panic_nvhe(u64 spsr, u64 elr, u64 par,
605
					     struct kvm_cpu_context *__host_ctxt)
M
Marc Zyngier 已提交
606
{
607
	struct kvm_vcpu *vcpu;
608
	unsigned long str_va;
609

610 611 612 613 614 615
	vcpu = __host_ctxt->__hyp_running_vcpu;

	if (read_sysreg(vttbr_el2)) {
		__timer_disable_traps(vcpu);
		__deactivate_traps(vcpu);
		__deactivate_vm(vcpu);
616
		__sysreg_restore_state_nvhe(__host_ctxt);
617 618
	}

619 620 621 622 623 624 625 626
	/*
	 * Force the panic string to be loaded from the literal pool,
	 * making sure it is a kernel address and not a PC-relative
	 * reference.
	 */
	asm volatile("ldr %0, =__hyp_panic_string" : "=r" (str_va));

	__hyp_do_panic(str_va,
627 628
		       spsr,  elr,
		       read_sysreg(esr_el2),   read_sysreg_el2(far),
629
		       read_sysreg(hpfar_el2), par, vcpu);
630 631
}

632 633
static void __hyp_call_panic_vhe(u64 spsr, u64 elr, u64 par,
				 struct kvm_cpu_context *host_ctxt)
634
{
635 636 637 638
	struct kvm_vcpu *vcpu;
	vcpu = host_ctxt->__hyp_running_vcpu;

	__deactivate_traps(vcpu);
639
	sysreg_restore_host_state_vhe(host_ctxt);
640

641 642 643
	panic(__hyp_panic_string,
	      spsr,  elr,
	      read_sysreg_el2(esr),   read_sysreg_el2(far),
644
	      read_sysreg(hpfar_el2), par, vcpu);
645
}
646
NOKPROBE_SYMBOL(__hyp_call_panic_vhe);
647

648
void __hyp_text __noreturn hyp_panic(struct kvm_cpu_context *host_ctxt)
649 650 651
{
	u64 spsr = read_sysreg_el2(spsr);
	u64 elr = read_sysreg_el2(elr);
M
Marc Zyngier 已提交
652 653
	u64 par = read_sysreg(par_el1);

654 655 656 657
	if (!has_vhe())
		__hyp_call_panic_nvhe(spsr, elr, par, host_ctxt);
	else
		__hyp_call_panic_vhe(spsr, elr, par, host_ctxt);
M
Marc Zyngier 已提交
658 659 660

	unreachable();
}