switch.c 16.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * Copyright (C) 2015 - ARM Ltd
 * Author: Marc Zyngier <marc.zyngier@arm.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

18
#include <linux/arm-smccc.h>
19
#include <linux/types.h>
20
#include <linux/jump_label.h>
21
#include <uapi/linux/psci.h>
22

23 24
#include <kvm/arm_psci.h>

25
#include <asm/cpufeature.h>
26
#include <asm/kvm_asm.h>
27
#include <asm/kvm_emulate.h>
28
#include <asm/kvm_host.h>
29
#include <asm/kvm_hyp.h>
30
#include <asm/kvm_mmu.h>
31
#include <asm/fpsimd.h>
32
#include <asm/debug-monitors.h>
33
#include <asm/processor.h>
34
#include <asm/thread_info.h>
35

36 37
/* Check whether the FP regs were dirtied while in the host-side run loop: */
static bool __hyp_text update_fp_enabled(struct kvm_vcpu *vcpu)
38
{
39 40 41
	if (vcpu->arch.host_thread_info->flags & _TIF_FOREIGN_FPSTATE)
		vcpu->arch.flags &= ~(KVM_ARM64_FP_ENABLED |
				      KVM_ARM64_FP_HOST);
42

43
	return !!(vcpu->arch.flags & KVM_ARM64_FP_ENABLED);
44 45
}

46 47 48 49 50 51 52 53 54
/* Save the 32-bit only FPSIMD system register state */
static void __hyp_text __fpsimd_save_fpexc32(struct kvm_vcpu *vcpu)
{
	if (!vcpu_el1_is_32bit(vcpu))
		return;

	vcpu->arch.ctxt.sys_regs[FPEXC32_EL2] = read_sysreg(fpexc32_el2);
}

55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
static void __hyp_text __activate_traps_fpsimd32(struct kvm_vcpu *vcpu)
{
	/*
	 * We are about to set CPTR_EL2.TFP to trap all floating point
	 * register accesses to EL2, however, the ARM ARM clearly states that
	 * traps are only taken to EL2 if the operation would not otherwise
	 * trap to EL1.  Therefore, always make sure that for 32-bit guests,
	 * we set FPEXC.EN to prevent traps to EL1, when setting the TFP bit.
	 * If FP/ASIMD is not implemented, FPEXC is UNDEFINED and any access to
	 * it will cause an exception.
	 */
	if (vcpu_el1_is_32bit(vcpu) && system_supports_fpsimd()) {
		write_sysreg(1 << 30, fpexc32_el2);
		isb();
	}
}

static void __hyp_text __activate_traps_common(struct kvm_vcpu *vcpu)
{
	/* Trap on AArch32 cp15 c15 (impdef sysregs) accesses (EL1 or EL0) */
	write_sysreg(1 << 15, hstr_el2);

	/*
	 * Make sure we trap PMU access from EL0 to EL2. Also sanitize
	 * PMSELR_EL0 to make sure it never contains the cycle
	 * counter, which could make a PMXEVCNTR_EL0 access UNDEF at
	 * EL1 instead of being trapped to EL2.
	 */
	write_sysreg(0, pmselr_el0);
	write_sysreg(ARMV8_PMU_USERENR_MASK, pmuserenr_el0);
	write_sysreg(vcpu->arch.mdcr_el2, mdcr_el2);
}

static void __hyp_text __deactivate_traps_common(void)
{
	write_sysreg(0, hstr_el2);
	write_sysreg(0, pmuserenr_el0);
}

94
static void activate_traps_vhe(struct kvm_vcpu *vcpu)
95 96 97 98 99
{
	u64 val;

	val = read_sysreg(cpacr_el1);
	val |= CPACR_EL1_TTA;
100
	val &= ~CPACR_EL1_ZEN;
101
	if (!update_fp_enabled(vcpu)) {
102
		val &= ~CPACR_EL1_FPEN;
103 104
		__activate_traps_fpsimd32(vcpu);
	}
105

106 107
	write_sysreg(val, cpacr_el1);

108
	write_sysreg(kvm_get_hyp_vector(), vbar_el1);
109 110
}

111
static void __hyp_text __activate_traps_nvhe(struct kvm_vcpu *vcpu)
112 113 114
{
	u64 val;

115 116
	__activate_traps_common(vcpu);

117
	val = CPTR_EL2_DEFAULT;
118
	val |= CPTR_EL2_TTA | CPTR_EL2_TZ;
119
	if (!update_fp_enabled(vcpu)) {
120
		val |= CPTR_EL2_TFP;
121 122
		__activate_traps_fpsimd32(vcpu);
	}
123

124 125 126
	write_sysreg(val, cptr_el2);
}

127 128
static void __hyp_text __activate_traps(struct kvm_vcpu *vcpu)
{
129
	u64 hcr = vcpu->arch.hcr_el2;
130

131
	write_sysreg(hcr, hcr_el2);
132

133
	if (cpus_have_const_cap(ARM64_HAS_RAS_EXTN) && (hcr & HCR_VSE))
134 135
		write_sysreg_s(vcpu->arch.vsesr_el2, SYS_VSESR_EL2);

136 137 138 139
	if (has_vhe())
		activate_traps_vhe(vcpu);
	else
		__activate_traps_nvhe(vcpu);
140
}
141

142
static void deactivate_traps_vhe(void)
143 144 145
{
	extern char vectors[];	/* kernel exception vectors */
	write_sysreg(HCR_HOST_VHE_FLAGS, hcr_el2);
146 147 148 149 150 151 152 153

	/*
	 * ARM erratum 1165522 requires the actual execution of the above
	 * before we can switch to the EL2/EL0 translation regime used by
	 * the host.
	 */
	asm(ALTERNATIVE("nop", "isb", ARM64_WORKAROUND_1165522));

154
	write_sysreg(CPACR_EL1_DEFAULT, cpacr_el1);
155
	write_sysreg(vectors, vbar_el1);
156 157
}

158
static void __hyp_text __deactivate_traps_nvhe(void)
159
{
160 161
	u64 mdcr_el2 = read_sysreg(mdcr_el2);

162 163
	__deactivate_traps_common();

164 165 166 167
	mdcr_el2 &= MDCR_EL2_HPMN_MASK;
	mdcr_el2 |= MDCR_EL2_E2PB_MASK << MDCR_EL2_E2PB_SHIFT;

	write_sysreg(mdcr_el2, mdcr_el2);
168
	write_sysreg(HCR_HOST_NVHE_FLAGS, hcr_el2);
169 170 171 172 173
	write_sysreg(CPTR_EL2_DEFAULT, cptr_el2);
}

static void __hyp_text __deactivate_traps(struct kvm_vcpu *vcpu)
{
174 175 176 177 178 179 180 181 182
	/*
	 * If we pended a virtual abort, preserve it until it gets
	 * cleared. See D1.14.3 (Virtual Interrupts) for details, but
	 * the crucial bit is "On taking a vSError interrupt,
	 * HCR_EL2.VSE is cleared to 0."
	 */
	if (vcpu->arch.hcr_el2 & HCR_VSE)
		vcpu->arch.hcr_el2 = read_sysreg(hcr_el2);

183 184 185 186
	if (has_vhe())
		deactivate_traps_vhe();
	else
		__deactivate_traps_nvhe();
187 188
}

189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
void activate_traps_vhe_load(struct kvm_vcpu *vcpu)
{
	__activate_traps_common(vcpu);
}

void deactivate_traps_vhe_put(void)
{
	u64 mdcr_el2 = read_sysreg(mdcr_el2);

	mdcr_el2 &= MDCR_EL2_HPMN_MASK |
		    MDCR_EL2_E2PB_MASK << MDCR_EL2_E2PB_SHIFT |
		    MDCR_EL2_TPMS;

	write_sysreg(mdcr_el2, mdcr_el2);

	__deactivate_traps_common();
}

207
static void __hyp_text __activate_vm(struct kvm *kvm)
208
{
209
	__load_guest_stage2(kvm);
210 211 212 213 214 215 216
}

static void __hyp_text __deactivate_vm(struct kvm_vcpu *vcpu)
{
	write_sysreg(0, vttbr_el2);
}

217 218
/* Save VGICv3 state on non-VHE systems */
static void __hyp_text __hyp_vgic_save_state(struct kvm_vcpu *vcpu)
219
{
220
	if (static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif)) {
221
		__vgic_v3_save_state(vcpu);
222 223
		__vgic_v3_deactivate_traps(vcpu);
	}
224 225
}

226 227
/* Restore VGICv3 state on non_VEH systems */
static void __hyp_text __hyp_vgic_restore_state(struct kvm_vcpu *vcpu)
228
{
229 230
	if (static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif)) {
		__vgic_v3_activate_traps(vcpu);
231
		__vgic_v3_restore_state(vcpu);
232
	}
233 234
}

235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
static bool __hyp_text __true_value(void)
{
	return true;
}

static bool __hyp_text __false_value(void)
{
	return false;
}

static hyp_alternate_select(__check_arm_834220,
			    __false_value, __true_value,
			    ARM64_WORKAROUND_834220);

static bool __hyp_text __translate_far_to_hpfar(u64 far, u64 *hpfar)
{
	u64 par, tmp;

	/*
	 * Resolve the IPA the hard way using the guest VA.
	 *
	 * Stage-1 translation already validated the memory access
	 * rights. As such, we can use the EL1 translation regime, and
	 * don't have to distinguish between EL0 and EL1 access.
	 *
	 * We do need to save/restore PAR_EL1 though, as we haven't
	 * saved the guest context yet, and we may return early...
	 */
	par = read_sysreg(par_el1);
	asm volatile("at s1e1r, %0" : : "r" (far));
	isb();

	tmp = read_sysreg(par_el1);
	write_sysreg(par, par_el1);

	if (unlikely(tmp & 1))
		return false; /* Translation failed, back to guest */

	/* Convert PAR to HPFAR format */
274
	*hpfar = PAR_TO_HPFAR(tmp);
275 276 277 278 279
	return true;
}

static bool __hyp_text __populate_fault_info(struct kvm_vcpu *vcpu)
{
280 281
	u8 ec;
	u64 esr;
282 283
	u64 hpfar, far;

284 285
	esr = vcpu->arch.fault.esr_el2;
	ec = ESR_ELx_EC(esr);
286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315

	if (ec != ESR_ELx_EC_DABT_LOW && ec != ESR_ELx_EC_IABT_LOW)
		return true;

	far = read_sysreg_el2(far);

	/*
	 * The HPFAR can be invalid if the stage 2 fault did not
	 * happen during a stage 1 page table walk (the ESR_EL2.S1PTW
	 * bit is clear) and one of the two following cases are true:
	 *   1. The fault was due to a permission fault
	 *   2. The processor carries errata 834220
	 *
	 * Therefore, for all non S1PTW faults where we either have a
	 * permission fault or the errata workaround is enabled, we
	 * resolve the IPA using the AT instruction.
	 */
	if (!(esr & ESR_ELx_S1PTW) &&
	    (__check_arm_834220()() || (esr & ESR_ELx_FSC_TYPE) == FSC_PERM)) {
		if (!__translate_far_to_hpfar(far, &hpfar))
			return false;
	} else {
		hpfar = read_sysreg(hpfar_el2);
	}

	vcpu->arch.fault.far_el2 = far;
	vcpu->arch.fault.hpfar_el2 = hpfar;
	return true;
}

316
static bool __hyp_text __hyp_switch_fpsimd(struct kvm_vcpu *vcpu)
317
{
318 319
	struct user_fpsimd_state *host_fpsimd = vcpu->arch.host_fpsimd_state;

320 321 322 323 324 325 326 327 328
	if (has_vhe())
		write_sysreg(read_sysreg(cpacr_el1) | CPACR_EL1_FPEN,
			     cpacr_el1);
	else
		write_sysreg(read_sysreg(cptr_el2) & ~(u64)CPTR_EL2_TFP,
			     cptr_el2);

	isb();

329
	if (vcpu->arch.flags & KVM_ARM64_FP_HOST) {
330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
		/*
		 * In the SVE case, VHE is assumed: it is enforced by
		 * Kconfig and kvm_arch_init().
		 */
		if (system_supports_sve() &&
		    (vcpu->arch.flags & KVM_ARM64_HOST_SVE_IN_USE)) {
			struct thread_struct *thread = container_of(
				host_fpsimd,
				struct thread_struct, uw.fpsimd_state);

			sve_save_state(sve_pffr(thread), &host_fpsimd->fpsr);
		} else {
			__fpsimd_save_state(host_fpsimd);
		}

345 346 347
		vcpu->arch.flags &= ~KVM_ARM64_FP_HOST;
	}

348 349 350 351 352 353
	__fpsimd_restore_state(&vcpu->arch.ctxt.gp_regs.fp_regs);

	/* Skip restoring fpexc32 for AArch64 guests */
	if (!(read_sysreg(hcr_el2) & HCR_RW))
		write_sysreg(vcpu->arch.ctxt.sys_regs[FPEXC32_EL2],
			     fpexc32_el2);
354 355

	vcpu->arch.flags |= KVM_ARM64_FP_ENABLED;
356 357

	return true;
358 359
}

360 361 362 363 364 365
/*
 * Return true when we were able to fixup the guest exit and should return to
 * the guest, false when we should restore the host state and return to the
 * main run loop.
 */
static bool __hyp_text fixup_guest_exit(struct kvm_vcpu *vcpu, u64 *exit_code)
366
{
367
	if (ARM_EXCEPTION_CODE(*exit_code) != ARM_EXCEPTION_IRQ)
368
		vcpu->arch.fault.esr_el2 = read_sysreg_el2(esr);
369

370 371 372 373 374 375
	/*
	 * We're using the raw exception code in order to only process
	 * the trap if no SError is pending. We will come back to the
	 * same PC once the SError has been injected, and replay the
	 * trapping instruction.
	 */
376 377 378
	if (*exit_code != ARM_EXCEPTION_TRAP)
		goto exit;

379 380 381 382 383 384 385 386 387 388
	/*
	 * We trap the first access to the FP/SIMD to save the host context
	 * and restore the guest context lazily.
	 * If FP/SIMD is not implemented, handle the trap and inject an
	 * undefined instruction exception to the guest.
	 */
	if (system_supports_fpsimd() &&
	    kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_FP_ASIMD)
		return __hyp_switch_fpsimd(vcpu);

389
	if (!__populate_fault_info(vcpu))
390
		return true;
391

392
	if (static_branch_unlikely(&vgic_v2_cpuif_trap)) {
393 394 395 396 397 398 399 400
		bool valid;

		valid = kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_DABT_LOW &&
			kvm_vcpu_trap_get_fault_type(vcpu) == FSC_FAULT &&
			kvm_vcpu_dabt_isvalid(vcpu) &&
			!kvm_vcpu_dabt_isextabt(vcpu) &&
			!kvm_vcpu_dabt_iss1tw(vcpu);

401 402 403
		if (valid) {
			int ret = __vgic_v2_perform_cpuif_access(vcpu);

404
			if (ret == 1)
405
				return true;
406

407 408
			/* Promote an illegal access to an SError.*/
			if (ret == -1)
409
				*exit_code = ARM_EXCEPTION_EL1_SERROR;
410 411

			goto exit;
412 413 414
		}
	}

415 416 417 418 419
	if (static_branch_unlikely(&vgic_v3_cpuif_trap) &&
	    (kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_SYS64 ||
	     kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_CP15_32)) {
		int ret = __vgic_v3_perform_cpuif_access(vcpu);

420
		if (ret == 1)
421
			return true;
422 423
	}

424
exit:
425 426 427 428
	/* Return to the host kernel and handle the exit */
	return false;
}

429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
static inline bool __hyp_text __needs_ssbd_off(struct kvm_vcpu *vcpu)
{
	if (!cpus_have_const_cap(ARM64_SSBD))
		return false;

	return !(vcpu->arch.workaround_flags & VCPU_WORKAROUND_2_FLAG);
}

static void __hyp_text __set_guest_arch_workaround_state(struct kvm_vcpu *vcpu)
{
#ifdef CONFIG_ARM64_SSBD
	/*
	 * The host runs with the workaround always present. If the
	 * guest wants it disabled, so be it...
	 */
	if (__needs_ssbd_off(vcpu) &&
	    __hyp_this_cpu_read(arm64_ssbd_callback_required))
		arm_smccc_1_1_smc(ARM_SMCCC_ARCH_WORKAROUND_2, 0, NULL);
#endif
}

static void __hyp_text __set_host_arch_workaround_state(struct kvm_vcpu *vcpu)
{
#ifdef CONFIG_ARM64_SSBD
	/*
	 * If the guest has disabled the workaround, bring it back on.
	 */
	if (__needs_ssbd_off(vcpu) &&
	    __hyp_this_cpu_read(arm64_ssbd_callback_required))
		arm_smccc_1_1_smc(ARM_SMCCC_ARCH_WORKAROUND_2, 1, NULL);
#endif
}

462 463 464 465 466 467 468
/* Switch to the guest for VHE systems running in EL2 */
int kvm_vcpu_run_vhe(struct kvm_vcpu *vcpu)
{
	struct kvm_cpu_context *host_ctxt;
	struct kvm_cpu_context *guest_ctxt;
	u64 exit_code;

469
	host_ctxt = vcpu->arch.host_cpu_context;
470 471 472
	host_ctxt->__hyp_running_vcpu = vcpu;
	guest_ctxt = &vcpu->arch.ctxt;

473
	sysreg_save_host_state_vhe(host_ctxt);
474

475 476 477 478 479 480 481 482 483 484 485
	/*
	 * ARM erratum 1165522 requires us to configure both stage 1 and
	 * stage 2 translation for the guest context before we clear
	 * HCR_EL2.TGE.
	 *
	 * We have already configured the guest's stage 1 translation in
	 * kvm_vcpu_load_sysregs above.  We must now call __activate_vm
	 * before __activate_traps, because __activate_vm configures
	 * stage 2 translation, and __activate_traps clear HCR_EL2.TGE
	 * (among other things).
	 */
486
	__activate_vm(vcpu->kvm);
487
	__activate_traps(vcpu);
488

489
	sysreg_restore_guest_state_vhe(guest_ctxt);
490 491
	__debug_switch_to_guest(vcpu);

492 493
	__set_guest_arch_workaround_state(vcpu);

494 495 496 497 498 499 500
	do {
		/* Jump in the fire! */
		exit_code = __guest_enter(vcpu, host_ctxt);

		/* And we're baaack! */
	} while (fixup_guest_exit(vcpu, &exit_code));

501 502
	__set_host_arch_workaround_state(vcpu);

503
	sysreg_save_guest_state_vhe(guest_ctxt);
504 505 506

	__deactivate_traps(vcpu);

507
	sysreg_restore_host_state_vhe(host_ctxt);
508

509
	if (vcpu->arch.flags & KVM_ARM64_FP_ENABLED)
510
		__fpsimd_save_fpexc32(vcpu);
511 512 513 514 515 516 517 518

	__debug_switch_to_host(vcpu);

	return exit_code;
}

/* Switch to the guest for legacy non-VHE systems */
int __hyp_text __kvm_vcpu_run_nvhe(struct kvm_vcpu *vcpu)
519 520 521 522 523 524 525 526 527 528 529
{
	struct kvm_cpu_context *host_ctxt;
	struct kvm_cpu_context *guest_ctxt;
	u64 exit_code;

	vcpu = kern_hyp_va(vcpu);

	host_ctxt = kern_hyp_va(vcpu->arch.host_cpu_context);
	host_ctxt->__hyp_running_vcpu = vcpu;
	guest_ctxt = &vcpu->arch.ctxt;

530
	__sysreg_save_state_nvhe(host_ctxt);
531

532
	__activate_vm(kern_hyp_va(vcpu->kvm));
533
	__activate_traps(vcpu);
534

535
	__hyp_vgic_restore_state(vcpu);
536 537 538 539 540 541 542
	__timer_enable_traps(vcpu);

	/*
	 * We must restore the 32-bit state before the sysregs, thanks
	 * to erratum #852523 (Cortex-A57) or #853709 (Cortex-A72).
	 */
	__sysreg32_restore_state(vcpu);
543
	__sysreg_restore_state_nvhe(guest_ctxt);
544 545
	__debug_switch_to_guest(vcpu);

546 547
	__set_guest_arch_workaround_state(vcpu);

548 549 550 551 552 553 554
	do {
		/* Jump in the fire! */
		exit_code = __guest_enter(vcpu, host_ctxt);

		/* And we're baaack! */
	} while (fixup_guest_exit(vcpu, &exit_code));

555 556
	__set_host_arch_workaround_state(vcpu);

557
	__sysreg_save_state_nvhe(guest_ctxt);
558
	__sysreg32_save_state(vcpu);
559
	__timer_disable_traps(vcpu);
560
	__hyp_vgic_save_state(vcpu);
561 562 563 564

	__deactivate_traps(vcpu);
	__deactivate_vm(vcpu);

565
	__sysreg_restore_state_nvhe(host_ctxt);
566

567
	if (vcpu->arch.flags & KVM_ARM64_FP_ENABLED)
568
		__fpsimd_save_fpexc32(vcpu);
569

570 571 572 573
	/*
	 * This must come after restoring the host sysregs, since a non-VHE
	 * system may enable SPE here and make use of the TTBRs.
	 */
574
	__debug_switch_to_host(vcpu);
575 576 577

	return exit_code;
}
M
Marc Zyngier 已提交
578 579 580

static const char __hyp_panic_string[] = "HYP panic:\nPS:%08llx PC:%016llx ESR:%08llx\nFAR:%016llx HPFAR:%016llx PAR:%016llx\nVCPU:%p\n";

581
static void __hyp_text __hyp_call_panic_nvhe(u64 spsr, u64 elr, u64 par,
582
					     struct kvm_cpu_context *__host_ctxt)
M
Marc Zyngier 已提交
583
{
584
	struct kvm_vcpu *vcpu;
585
	unsigned long str_va;
586

587 588 589 590 591 592
	vcpu = __host_ctxt->__hyp_running_vcpu;

	if (read_sysreg(vttbr_el2)) {
		__timer_disable_traps(vcpu);
		__deactivate_traps(vcpu);
		__deactivate_vm(vcpu);
593
		__sysreg_restore_state_nvhe(__host_ctxt);
594 595
	}

596 597 598 599 600 601 602 603
	/*
	 * Force the panic string to be loaded from the literal pool,
	 * making sure it is a kernel address and not a PC-relative
	 * reference.
	 */
	asm volatile("ldr %0, =__hyp_panic_string" : "=r" (str_va));

	__hyp_do_panic(str_va,
604 605
		       spsr,  elr,
		       read_sysreg(esr_el2),   read_sysreg_el2(far),
606
		       read_sysreg(hpfar_el2), par, vcpu);
607 608
}

609 610
static void __hyp_call_panic_vhe(u64 spsr, u64 elr, u64 par,
				 struct kvm_cpu_context *host_ctxt)
611
{
612 613 614 615
	struct kvm_vcpu *vcpu;
	vcpu = host_ctxt->__hyp_running_vcpu;

	__deactivate_traps(vcpu);
616
	sysreg_restore_host_state_vhe(host_ctxt);
617

618 619 620
	panic(__hyp_panic_string,
	      spsr,  elr,
	      read_sysreg_el2(esr),   read_sysreg_el2(far),
621
	      read_sysreg(hpfar_el2), par, vcpu);
622 623
}

624
void __hyp_text __noreturn hyp_panic(struct kvm_cpu_context *host_ctxt)
625 626 627
{
	u64 spsr = read_sysreg_el2(spsr);
	u64 elr = read_sysreg_el2(elr);
M
Marc Zyngier 已提交
628 629
	u64 par = read_sysreg(par_el1);

630 631 632 633
	if (!has_vhe())
		__hyp_call_panic_nvhe(spsr, elr, par, host_ctxt);
	else
		__hyp_call_panic_vhe(spsr, elr, par, host_ctxt);
M
Marc Zyngier 已提交
634 635 636

	unreachable();
}