switch.c 16.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * Copyright (C) 2015 - ARM Ltd
 * Author: Marc Zyngier <marc.zyngier@arm.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

18
#include <linux/arm-smccc.h>
19
#include <linux/types.h>
20
#include <linux/jump_label.h>
21
#include <uapi/linux/psci.h>
22

23 24
#include <kvm/arm_psci.h>

25
#include <asm/cpufeature.h>
26
#include <asm/kvm_asm.h>
27
#include <asm/kvm_emulate.h>
28
#include <asm/kvm_host.h>
29
#include <asm/kvm_hyp.h>
30
#include <asm/kvm_mmu.h>
31
#include <asm/fpsimd.h>
32
#include <asm/debug-monitors.h>
33
#include <asm/processor.h>
34
#include <asm/thread_info.h>
35

36 37
/* Check whether the FP regs were dirtied while in the host-side run loop: */
static bool __hyp_text update_fp_enabled(struct kvm_vcpu *vcpu)
38
{
39 40 41
	if (vcpu->arch.host_thread_info->flags & _TIF_FOREIGN_FPSTATE)
		vcpu->arch.flags &= ~(KVM_ARM64_FP_ENABLED |
				      KVM_ARM64_FP_HOST);
42

43
	return !!(vcpu->arch.flags & KVM_ARM64_FP_ENABLED);
44 45
}

46 47 48 49 50 51 52 53 54
/* Save the 32-bit only FPSIMD system register state */
static void __hyp_text __fpsimd_save_fpexc32(struct kvm_vcpu *vcpu)
{
	if (!vcpu_el1_is_32bit(vcpu))
		return;

	vcpu->arch.ctxt.sys_regs[FPEXC32_EL2] = read_sysreg(fpexc32_el2);
}

55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
static void __hyp_text __activate_traps_fpsimd32(struct kvm_vcpu *vcpu)
{
	/*
	 * We are about to set CPTR_EL2.TFP to trap all floating point
	 * register accesses to EL2, however, the ARM ARM clearly states that
	 * traps are only taken to EL2 if the operation would not otherwise
	 * trap to EL1.  Therefore, always make sure that for 32-bit guests,
	 * we set FPEXC.EN to prevent traps to EL1, when setting the TFP bit.
	 * If FP/ASIMD is not implemented, FPEXC is UNDEFINED and any access to
	 * it will cause an exception.
	 */
	if (vcpu_el1_is_32bit(vcpu) && system_supports_fpsimd()) {
		write_sysreg(1 << 30, fpexc32_el2);
		isb();
	}
}

static void __hyp_text __activate_traps_common(struct kvm_vcpu *vcpu)
{
	/* Trap on AArch32 cp15 c15 (impdef sysregs) accesses (EL1 or EL0) */
	write_sysreg(1 << 15, hstr_el2);

	/*
	 * Make sure we trap PMU access from EL0 to EL2. Also sanitize
	 * PMSELR_EL0 to make sure it never contains the cycle
	 * counter, which could make a PMXEVCNTR_EL0 access UNDEF at
	 * EL1 instead of being trapped to EL2.
	 */
	write_sysreg(0, pmselr_el0);
	write_sysreg(ARMV8_PMU_USERENR_MASK, pmuserenr_el0);
	write_sysreg(vcpu->arch.mdcr_el2, mdcr_el2);
}

static void __hyp_text __deactivate_traps_common(void)
{
	write_sysreg(0, hstr_el2);
	write_sysreg(0, pmuserenr_el0);
}

94
static void activate_traps_vhe(struct kvm_vcpu *vcpu)
95 96 97 98 99
{
	u64 val;

	val = read_sysreg(cpacr_el1);
	val |= CPACR_EL1_TTA;
100
	val &= ~CPACR_EL1_ZEN;
101
	if (!update_fp_enabled(vcpu)) {
102
		val &= ~CPACR_EL1_FPEN;
103 104
		__activate_traps_fpsimd32(vcpu);
	}
105

106 107
	write_sysreg(val, cpacr_el1);

108
	write_sysreg(kvm_get_hyp_vector(), vbar_el1);
109 110
}

111
static void __hyp_text __activate_traps_nvhe(struct kvm_vcpu *vcpu)
112 113 114
{
	u64 val;

115 116
	__activate_traps_common(vcpu);

117
	val = CPTR_EL2_DEFAULT;
118
	val |= CPTR_EL2_TTA | CPTR_EL2_TZ;
119
	if (!update_fp_enabled(vcpu)) {
120
		val |= CPTR_EL2_TFP;
121 122
		__activate_traps_fpsimd32(vcpu);
	}
123

124 125 126
	write_sysreg(val, cptr_el2);
}

127 128
static void __hyp_text __activate_traps(struct kvm_vcpu *vcpu)
{
129
	u64 hcr = vcpu->arch.hcr_el2;
130

131
	write_sysreg(hcr, hcr_el2);
132

133
	if (cpus_have_const_cap(ARM64_HAS_RAS_EXTN) && (hcr & HCR_VSE))
134 135
		write_sysreg_s(vcpu->arch.vsesr_el2, SYS_VSESR_EL2);

136 137 138 139
	if (has_vhe())
		activate_traps_vhe(vcpu);
	else
		__activate_traps_nvhe(vcpu);
140
}
141

142
static void deactivate_traps_vhe(void)
143 144 145
{
	extern char vectors[];	/* kernel exception vectors */
	write_sysreg(HCR_HOST_VHE_FLAGS, hcr_el2);
146
	write_sysreg(CPACR_EL1_DEFAULT, cpacr_el1);
147
	write_sysreg(vectors, vbar_el1);
148 149
}

150
static void __hyp_text __deactivate_traps_nvhe(void)
151
{
152 153
	u64 mdcr_el2 = read_sysreg(mdcr_el2);

154 155
	__deactivate_traps_common();

156 157 158 159
	mdcr_el2 &= MDCR_EL2_HPMN_MASK;
	mdcr_el2 |= MDCR_EL2_E2PB_MASK << MDCR_EL2_E2PB_SHIFT;

	write_sysreg(mdcr_el2, mdcr_el2);
160
	write_sysreg(HCR_RW, hcr_el2);
161 162 163 164 165
	write_sysreg(CPTR_EL2_DEFAULT, cptr_el2);
}

static void __hyp_text __deactivate_traps(struct kvm_vcpu *vcpu)
{
166 167 168 169 170 171 172 173 174
	/*
	 * If we pended a virtual abort, preserve it until it gets
	 * cleared. See D1.14.3 (Virtual Interrupts) for details, but
	 * the crucial bit is "On taking a vSError interrupt,
	 * HCR_EL2.VSE is cleared to 0."
	 */
	if (vcpu->arch.hcr_el2 & HCR_VSE)
		vcpu->arch.hcr_el2 = read_sysreg(hcr_el2);

175 176 177 178
	if (has_vhe())
		deactivate_traps_vhe();
	else
		__deactivate_traps_nvhe();
179 180
}

181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
void activate_traps_vhe_load(struct kvm_vcpu *vcpu)
{
	__activate_traps_common(vcpu);
}

void deactivate_traps_vhe_put(void)
{
	u64 mdcr_el2 = read_sysreg(mdcr_el2);

	mdcr_el2 &= MDCR_EL2_HPMN_MASK |
		    MDCR_EL2_E2PB_MASK << MDCR_EL2_E2PB_SHIFT |
		    MDCR_EL2_TPMS;

	write_sysreg(mdcr_el2, mdcr_el2);

	__deactivate_traps_common();
}

199
static void __hyp_text __activate_vm(struct kvm *kvm)
200
{
201
	__load_guest_stage2(kvm);
202 203 204 205 206 207 208
}

static void __hyp_text __deactivate_vm(struct kvm_vcpu *vcpu)
{
	write_sysreg(0, vttbr_el2);
}

209 210
/* Save VGICv3 state on non-VHE systems */
static void __hyp_text __hyp_vgic_save_state(struct kvm_vcpu *vcpu)
211
{
212
	if (static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif)) {
213
		__vgic_v3_save_state(vcpu);
214 215
		__vgic_v3_deactivate_traps(vcpu);
	}
216 217
}

218 219
/* Restore VGICv3 state on non_VEH systems */
static void __hyp_text __hyp_vgic_restore_state(struct kvm_vcpu *vcpu)
220
{
221 222
	if (static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif)) {
		__vgic_v3_activate_traps(vcpu);
223
		__vgic_v3_restore_state(vcpu);
224
	}
225 226
}

227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
static bool __hyp_text __true_value(void)
{
	return true;
}

static bool __hyp_text __false_value(void)
{
	return false;
}

static hyp_alternate_select(__check_arm_834220,
			    __false_value, __true_value,
			    ARM64_WORKAROUND_834220);

static bool __hyp_text __translate_far_to_hpfar(u64 far, u64 *hpfar)
{
	u64 par, tmp;

	/*
	 * Resolve the IPA the hard way using the guest VA.
	 *
	 * Stage-1 translation already validated the memory access
	 * rights. As such, we can use the EL1 translation regime, and
	 * don't have to distinguish between EL0 and EL1 access.
	 *
	 * We do need to save/restore PAR_EL1 though, as we haven't
	 * saved the guest context yet, and we may return early...
	 */
	par = read_sysreg(par_el1);
	asm volatile("at s1e1r, %0" : : "r" (far));
	isb();

	tmp = read_sysreg(par_el1);
	write_sysreg(par, par_el1);

	if (unlikely(tmp & 1))
		return false; /* Translation failed, back to guest */

	/* Convert PAR to HPFAR format */
266
	*hpfar = PAR_TO_HPFAR(tmp);
267 268 269 270 271
	return true;
}

static bool __hyp_text __populate_fault_info(struct kvm_vcpu *vcpu)
{
272 273
	u8 ec;
	u64 esr;
274 275
	u64 hpfar, far;

276 277
	esr = vcpu->arch.fault.esr_el2;
	ec = ESR_ELx_EC(esr);
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307

	if (ec != ESR_ELx_EC_DABT_LOW && ec != ESR_ELx_EC_IABT_LOW)
		return true;

	far = read_sysreg_el2(far);

	/*
	 * The HPFAR can be invalid if the stage 2 fault did not
	 * happen during a stage 1 page table walk (the ESR_EL2.S1PTW
	 * bit is clear) and one of the two following cases are true:
	 *   1. The fault was due to a permission fault
	 *   2. The processor carries errata 834220
	 *
	 * Therefore, for all non S1PTW faults where we either have a
	 * permission fault or the errata workaround is enabled, we
	 * resolve the IPA using the AT instruction.
	 */
	if (!(esr & ESR_ELx_S1PTW) &&
	    (__check_arm_834220()() || (esr & ESR_ELx_FSC_TYPE) == FSC_PERM)) {
		if (!__translate_far_to_hpfar(far, &hpfar))
			return false;
	} else {
		hpfar = read_sysreg(hpfar_el2);
	}

	vcpu->arch.fault.far_el2 = far;
	vcpu->arch.fault.hpfar_el2 = hpfar;
	return true;
}

308 309 310 311 312
/* Skip an instruction which has been emulated. Returns true if
 * execution can continue or false if we need to exit hyp mode because
 * single-step was in effect.
 */
static bool __hyp_text __skip_instr(struct kvm_vcpu *vcpu)
313 314 315 316 317 318 319 320 321 322 323 324
{
	*vcpu_pc(vcpu) = read_sysreg_el2(elr);

	if (vcpu_mode_is_32bit(vcpu)) {
		vcpu->arch.ctxt.gp_regs.regs.pstate = read_sysreg_el2(spsr);
		kvm_skip_instr32(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
		write_sysreg_el2(vcpu->arch.ctxt.gp_regs.regs.pstate, spsr);
	} else {
		*vcpu_pc(vcpu) += 4;
	}

	write_sysreg_el2(*vcpu_pc(vcpu), elr);
325 326 327 328 329 330 331 332

	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
		vcpu->arch.fault.esr_el2 =
			(ESR_ELx_EC_SOFTSTP_LOW << ESR_ELx_EC_SHIFT) | 0x22;
		return false;
	} else {
		return true;
	}
333 334
}

335
static bool __hyp_text __hyp_switch_fpsimd(struct kvm_vcpu *vcpu)
336
{
337 338
	struct user_fpsimd_state *host_fpsimd = vcpu->arch.host_fpsimd_state;

339 340 341 342 343 344 345 346 347
	if (has_vhe())
		write_sysreg(read_sysreg(cpacr_el1) | CPACR_EL1_FPEN,
			     cpacr_el1);
	else
		write_sysreg(read_sysreg(cptr_el2) & ~(u64)CPTR_EL2_TFP,
			     cptr_el2);

	isb();

348
	if (vcpu->arch.flags & KVM_ARM64_FP_HOST) {
349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
		/*
		 * In the SVE case, VHE is assumed: it is enforced by
		 * Kconfig and kvm_arch_init().
		 */
		if (system_supports_sve() &&
		    (vcpu->arch.flags & KVM_ARM64_HOST_SVE_IN_USE)) {
			struct thread_struct *thread = container_of(
				host_fpsimd,
				struct thread_struct, uw.fpsimd_state);

			sve_save_state(sve_pffr(thread), &host_fpsimd->fpsr);
		} else {
			__fpsimd_save_state(host_fpsimd);
		}

364 365 366
		vcpu->arch.flags &= ~KVM_ARM64_FP_HOST;
	}

367 368 369 370 371 372
	__fpsimd_restore_state(&vcpu->arch.ctxt.gp_regs.fp_regs);

	/* Skip restoring fpexc32 for AArch64 guests */
	if (!(read_sysreg(hcr_el2) & HCR_RW))
		write_sysreg(vcpu->arch.ctxt.sys_regs[FPEXC32_EL2],
			     fpexc32_el2);
373 374

	vcpu->arch.flags |= KVM_ARM64_FP_ENABLED;
375 376

	return true;
377 378
}

379 380 381 382 383 384
/*
 * Return true when we were able to fixup the guest exit and should return to
 * the guest, false when we should restore the host state and return to the
 * main run loop.
 */
static bool __hyp_text fixup_guest_exit(struct kvm_vcpu *vcpu, u64 *exit_code)
385
{
386
	if (ARM_EXCEPTION_CODE(*exit_code) != ARM_EXCEPTION_IRQ)
387
		vcpu->arch.fault.esr_el2 = read_sysreg_el2(esr);
388

389 390 391 392 393 394
	/*
	 * We're using the raw exception code in order to only process
	 * the trap if no SError is pending. We will come back to the
	 * same PC once the SError has been injected, and replay the
	 * trapping instruction.
	 */
395 396 397
	if (*exit_code != ARM_EXCEPTION_TRAP)
		goto exit;

398 399 400 401 402 403 404 405 406 407
	/*
	 * We trap the first access to the FP/SIMD to save the host context
	 * and restore the guest context lazily.
	 * If FP/SIMD is not implemented, handle the trap and inject an
	 * undefined instruction exception to the guest.
	 */
	if (system_supports_fpsimd() &&
	    kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_FP_ASIMD)
		return __hyp_switch_fpsimd(vcpu);

408
	if (!__populate_fault_info(vcpu))
409
		return true;
410

411
	if (static_branch_unlikely(&vgic_v2_cpuif_trap)) {
412 413 414 415 416 417 418 419
		bool valid;

		valid = kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_DABT_LOW &&
			kvm_vcpu_trap_get_fault_type(vcpu) == FSC_FAULT &&
			kvm_vcpu_dabt_isvalid(vcpu) &&
			!kvm_vcpu_dabt_isextabt(vcpu) &&
			!kvm_vcpu_dabt_iss1tw(vcpu);

420 421 422
		if (valid) {
			int ret = __vgic_v2_perform_cpuif_access(vcpu);

423 424
			if (ret ==  1 && __skip_instr(vcpu))
				return true;
425 426

			if (ret == -1) {
427 428 429 430 431 432 433 434
				/* Promote an illegal access to an
				 * SError. If we would be returning
				 * due to single-step clear the SS
				 * bit so handle_exit knows what to
				 * do after dealing with the error.
				 */
				if (!__skip_instr(vcpu))
					*vcpu_cpsr(vcpu) &= ~DBG_SPSR_SS;
435
				*exit_code = ARM_EXCEPTION_EL1_SERROR;
436
			}
437 438

			goto exit;
439 440 441
		}
	}

442 443 444 445 446
	if (static_branch_unlikely(&vgic_v3_cpuif_trap) &&
	    (kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_SYS64 ||
	     kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_CP15_32)) {
		int ret = __vgic_v3_perform_cpuif_access(vcpu);

447 448
		if (ret == 1 && __skip_instr(vcpu))
			return true;
449 450
	}

451
exit:
452 453 454 455
	/* Return to the host kernel and handle the exit */
	return false;
}

456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488
static inline bool __hyp_text __needs_ssbd_off(struct kvm_vcpu *vcpu)
{
	if (!cpus_have_const_cap(ARM64_SSBD))
		return false;

	return !(vcpu->arch.workaround_flags & VCPU_WORKAROUND_2_FLAG);
}

static void __hyp_text __set_guest_arch_workaround_state(struct kvm_vcpu *vcpu)
{
#ifdef CONFIG_ARM64_SSBD
	/*
	 * The host runs with the workaround always present. If the
	 * guest wants it disabled, so be it...
	 */
	if (__needs_ssbd_off(vcpu) &&
	    __hyp_this_cpu_read(arm64_ssbd_callback_required))
		arm_smccc_1_1_smc(ARM_SMCCC_ARCH_WORKAROUND_2, 0, NULL);
#endif
}

static void __hyp_text __set_host_arch_workaround_state(struct kvm_vcpu *vcpu)
{
#ifdef CONFIG_ARM64_SSBD
	/*
	 * If the guest has disabled the workaround, bring it back on.
	 */
	if (__needs_ssbd_off(vcpu) &&
	    __hyp_this_cpu_read(arm64_ssbd_callback_required))
		arm_smccc_1_1_smc(ARM_SMCCC_ARCH_WORKAROUND_2, 1, NULL);
#endif
}

489 490 491 492 493 494 495
/* Switch to the guest for VHE systems running in EL2 */
int kvm_vcpu_run_vhe(struct kvm_vcpu *vcpu)
{
	struct kvm_cpu_context *host_ctxt;
	struct kvm_cpu_context *guest_ctxt;
	u64 exit_code;

496
	host_ctxt = vcpu->arch.host_cpu_context;
497 498 499
	host_ctxt->__hyp_running_vcpu = vcpu;
	guest_ctxt = &vcpu->arch.ctxt;

500
	sysreg_save_host_state_vhe(host_ctxt);
501

502
	__activate_vm(vcpu->kvm);
503
	__activate_traps(vcpu);
504

505
	sysreg_restore_guest_state_vhe(guest_ctxt);
506 507
	__debug_switch_to_guest(vcpu);

508 509
	__set_guest_arch_workaround_state(vcpu);

510 511 512 513 514 515 516
	do {
		/* Jump in the fire! */
		exit_code = __guest_enter(vcpu, host_ctxt);

		/* And we're baaack! */
	} while (fixup_guest_exit(vcpu, &exit_code));

517 518
	__set_host_arch_workaround_state(vcpu);

519
	sysreg_save_guest_state_vhe(guest_ctxt);
520 521 522

	__deactivate_traps(vcpu);

523
	sysreg_restore_host_state_vhe(host_ctxt);
524

525
	if (vcpu->arch.flags & KVM_ARM64_FP_ENABLED)
526
		__fpsimd_save_fpexc32(vcpu);
527 528 529 530 531 532 533 534

	__debug_switch_to_host(vcpu);

	return exit_code;
}

/* Switch to the guest for legacy non-VHE systems */
int __hyp_text __kvm_vcpu_run_nvhe(struct kvm_vcpu *vcpu)
535 536 537 538 539 540 541 542 543 544 545
{
	struct kvm_cpu_context *host_ctxt;
	struct kvm_cpu_context *guest_ctxt;
	u64 exit_code;

	vcpu = kern_hyp_va(vcpu);

	host_ctxt = kern_hyp_va(vcpu->arch.host_cpu_context);
	host_ctxt->__hyp_running_vcpu = vcpu;
	guest_ctxt = &vcpu->arch.ctxt;

546
	__sysreg_save_state_nvhe(host_ctxt);
547

548
	__activate_vm(kern_hyp_va(vcpu->kvm));
549
	__activate_traps(vcpu);
550

551
	__hyp_vgic_restore_state(vcpu);
552 553 554 555 556 557 558
	__timer_enable_traps(vcpu);

	/*
	 * We must restore the 32-bit state before the sysregs, thanks
	 * to erratum #852523 (Cortex-A57) or #853709 (Cortex-A72).
	 */
	__sysreg32_restore_state(vcpu);
559
	__sysreg_restore_state_nvhe(guest_ctxt);
560 561
	__debug_switch_to_guest(vcpu);

562 563
	__set_guest_arch_workaround_state(vcpu);

564 565 566 567 568 569 570
	do {
		/* Jump in the fire! */
		exit_code = __guest_enter(vcpu, host_ctxt);

		/* And we're baaack! */
	} while (fixup_guest_exit(vcpu, &exit_code));

571 572
	__set_host_arch_workaround_state(vcpu);

573
	__sysreg_save_state_nvhe(guest_ctxt);
574
	__sysreg32_save_state(vcpu);
575
	__timer_disable_traps(vcpu);
576
	__hyp_vgic_save_state(vcpu);
577 578 579 580

	__deactivate_traps(vcpu);
	__deactivate_vm(vcpu);

581
	__sysreg_restore_state_nvhe(host_ctxt);
582

583
	if (vcpu->arch.flags & KVM_ARM64_FP_ENABLED)
584
		__fpsimd_save_fpexc32(vcpu);
585

586 587 588 589
	/*
	 * This must come after restoring the host sysregs, since a non-VHE
	 * system may enable SPE here and make use of the TTBRs.
	 */
590
	__debug_switch_to_host(vcpu);
591 592 593

	return exit_code;
}
M
Marc Zyngier 已提交
594 595 596

static const char __hyp_panic_string[] = "HYP panic:\nPS:%08llx PC:%016llx ESR:%08llx\nFAR:%016llx HPFAR:%016llx PAR:%016llx\nVCPU:%p\n";

597
static void __hyp_text __hyp_call_panic_nvhe(u64 spsr, u64 elr, u64 par,
598
					     struct kvm_cpu_context *__host_ctxt)
M
Marc Zyngier 已提交
599
{
600
	struct kvm_vcpu *vcpu;
601
	unsigned long str_va;
602

603 604 605 606 607 608
	vcpu = __host_ctxt->__hyp_running_vcpu;

	if (read_sysreg(vttbr_el2)) {
		__timer_disable_traps(vcpu);
		__deactivate_traps(vcpu);
		__deactivate_vm(vcpu);
609
		__sysreg_restore_state_nvhe(__host_ctxt);
610 611
	}

612 613 614 615 616 617 618 619
	/*
	 * Force the panic string to be loaded from the literal pool,
	 * making sure it is a kernel address and not a PC-relative
	 * reference.
	 */
	asm volatile("ldr %0, =__hyp_panic_string" : "=r" (str_va));

	__hyp_do_panic(str_va,
620 621
		       spsr,  elr,
		       read_sysreg(esr_el2),   read_sysreg_el2(far),
622
		       read_sysreg(hpfar_el2), par, vcpu);
623 624
}

625 626
static void __hyp_call_panic_vhe(u64 spsr, u64 elr, u64 par,
				 struct kvm_cpu_context *host_ctxt)
627
{
628 629 630 631
	struct kvm_vcpu *vcpu;
	vcpu = host_ctxt->__hyp_running_vcpu;

	__deactivate_traps(vcpu);
632
	sysreg_restore_host_state_vhe(host_ctxt);
633

634 635 636
	panic(__hyp_panic_string,
	      spsr,  elr,
	      read_sysreg_el2(esr),   read_sysreg_el2(far),
637
	      read_sysreg(hpfar_el2), par, vcpu);
638 639
}

640
void __hyp_text __noreturn hyp_panic(struct kvm_cpu_context *host_ctxt)
641 642 643
{
	u64 spsr = read_sysreg_el2(spsr);
	u64 elr = read_sysreg_el2(elr);
M
Marc Zyngier 已提交
644 645
	u64 par = read_sysreg(par_el1);

646 647 648 649
	if (!has_vhe())
		__hyp_call_panic_nvhe(spsr, elr, par, host_ctxt);
	else
		__hyp_call_panic_vhe(spsr, elr, par, host_ctxt);
M
Marc Zyngier 已提交
650 651 652

	unreachable();
}