intel_pm.c 210.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Copyright © 2012 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eugeni Dodonov <eugeni.dodonov@intel.com>
 *
 */

28
#include <linux/cpufreq.h>
29 30
#include "i915_drv.h"
#include "intel_drv.h"
31 32
#include "../../../platform/x86/intel_ips.h"
#include <linux/module.h>
33

B
Ben Widawsky 已提交
34
/**
35 36
 * DOC: RC6
 *
B
Ben Widawsky 已提交
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
 * RC6 is a special power stage which allows the GPU to enter an very
 * low-voltage mode when idle, using down to 0V while at this stage.  This
 * stage is entered automatically when the GPU is idle when RC6 support is
 * enabled, and as soon as new workload arises GPU wakes up automatically as well.
 *
 * There are different RC6 modes available in Intel GPU, which differentiate
 * among each other with the latency required to enter and leave RC6 and
 * voltage consumed by the GPU in different states.
 *
 * The combination of the following flags define which states GPU is allowed
 * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
 * RC6pp is deepest RC6. Their support by hardware varies according to the
 * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
 * which brings the most power savings; deeper states save more power, but
 * require higher latency to switch to and wake up.
 */
#define INTEL_RC6_ENABLE			(1<<0)
#define INTEL_RC6p_ENABLE			(1<<1)
#define INTEL_RC6pp_ENABLE			(1<<2)

57
static void gen9_init_clock_gating(struct drm_device *dev)
58
{
59 60
	struct drm_i915_private *dev_priv = dev->dev_private;

61
	/* See Bspec note for PSR2_CTL bit 31, Wa#828:skl,bxt,kbl */
62 63 64
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | SKL_EDP_PSR_FIX_RDWRAP);

65 66
	I915_WRITE(GEN8_CONFIG0,
		   I915_READ(GEN8_CONFIG0) | GEN9_DEFAULT_FIXES);
67 68 69 70

	/* WaEnableChickenDCPR:skl,bxt,kbl */
	I915_WRITE(GEN8_CHICKEN_DCPR_1,
		   I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
71 72 73 74 75 76 77 78
}

static void bxt_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	gen9_init_clock_gating(dev);

79 80 81 82
	/* WaDisableSDEUnitClockGating:bxt */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);

83 84
	/*
	 * FIXME:
85
	 * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
86 87
	 */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
88
		   GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
89 90 91 92 93 94 95 96

	/*
	 * Wa: Backlight PWM may stop in the asserted state, causing backlight
	 * to stay fully on.
	 */
	if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER))
		I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
			   PWM1_GATING_DIS | PWM2_GATING_DIS);
97 98
}

99 100
static void i915_pineview_get_mem_freq(struct drm_device *dev)
{
101
	struct drm_i915_private *dev_priv = dev->dev_private;
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
	u32 tmp;

	tmp = I915_READ(CLKCFG);

	switch (tmp & CLKCFG_FSB_MASK) {
	case CLKCFG_FSB_533:
		dev_priv->fsb_freq = 533; /* 133*4 */
		break;
	case CLKCFG_FSB_800:
		dev_priv->fsb_freq = 800; /* 200*4 */
		break;
	case CLKCFG_FSB_667:
		dev_priv->fsb_freq =  667; /* 167*4 */
		break;
	case CLKCFG_FSB_400:
		dev_priv->fsb_freq = 400; /* 100*4 */
		break;
	}

	switch (tmp & CLKCFG_MEM_MASK) {
	case CLKCFG_MEM_533:
		dev_priv->mem_freq = 533;
		break;
	case CLKCFG_MEM_667:
		dev_priv->mem_freq = 667;
		break;
	case CLKCFG_MEM_800:
		dev_priv->mem_freq = 800;
		break;
	}

	/* detect pineview DDR3 setting */
	tmp = I915_READ(CSHRDDR3CTL);
	dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
}

static void i915_ironlake_get_mem_freq(struct drm_device *dev)
{
140
	struct drm_i915_private *dev_priv = dev->dev_private;
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
	u16 ddrpll, csipll;

	ddrpll = I915_READ16(DDRMPLL1);
	csipll = I915_READ16(CSIPLL0);

	switch (ddrpll & 0xff) {
	case 0xc:
		dev_priv->mem_freq = 800;
		break;
	case 0x10:
		dev_priv->mem_freq = 1066;
		break;
	case 0x14:
		dev_priv->mem_freq = 1333;
		break;
	case 0x18:
		dev_priv->mem_freq = 1600;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
				 ddrpll & 0xff);
		dev_priv->mem_freq = 0;
		break;
	}

166
	dev_priv->ips.r_t = dev_priv->mem_freq;
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197

	switch (csipll & 0x3ff) {
	case 0x00c:
		dev_priv->fsb_freq = 3200;
		break;
	case 0x00e:
		dev_priv->fsb_freq = 3733;
		break;
	case 0x010:
		dev_priv->fsb_freq = 4266;
		break;
	case 0x012:
		dev_priv->fsb_freq = 4800;
		break;
	case 0x014:
		dev_priv->fsb_freq = 5333;
		break;
	case 0x016:
		dev_priv->fsb_freq = 5866;
		break;
	case 0x018:
		dev_priv->fsb_freq = 6400;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
				 csipll & 0x3ff);
		dev_priv->fsb_freq = 0;
		break;
	}

	if (dev_priv->fsb_freq == 3200) {
198
		dev_priv->ips.c_m = 0;
199
	} else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
200
		dev_priv->ips.c_m = 1;
201
	} else {
202
		dev_priv->ips.c_m = 2;
203 204 205
	}
}

206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
static const struct cxsr_latency cxsr_latency_table[] = {
	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */

	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */

	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */

	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */

	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */

	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
};

244
static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
							 int is_ddr3,
							 int fsb,
							 int mem)
{
	const struct cxsr_latency *latency;
	int i;

	if (fsb == 0 || mem == 0)
		return NULL;

	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
		latency = &cxsr_latency_table[i];
		if (is_desktop == latency->is_desktop &&
		    is_ddr3 == latency->is_ddr3 &&
		    fsb == latency->fsb_freq && mem == latency->mem_freq)
			return latency;
	}

	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");

	return NULL;
}

268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

	mutex_lock(&dev_priv->rps.hw_lock);

	val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
	if (enable)
		val &= ~FORCE_DDR_HIGH_FREQ;
	else
		val |= FORCE_DDR_HIGH_FREQ;
	val &= ~FORCE_DDR_LOW_FREQ;
	val |= FORCE_DDR_FREQ_REQ_ACK;
	vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

	if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
		      FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
		DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");

	mutex_unlock(&dev_priv->rps.hw_lock);
}

290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

	mutex_lock(&dev_priv->rps.hw_lock);

	val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
	if (enable)
		val |= DSP_MAXFIFO_PM5_ENABLE;
	else
		val &= ~DSP_MAXFIFO_PM5_ENABLE;
	vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);

	mutex_unlock(&dev_priv->rps.hw_lock);
}

306 307 308
#define FW_WM(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)

309
void intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
310
{
311 312
	struct drm_device *dev = dev_priv->dev;
	u32 val;
313

314
	if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
315
		I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
316
		POSTING_READ(FW_BLC_SELF_VLV);
317
		dev_priv->wm.vlv.cxsr = enable;
318 319
	} else if (IS_G4X(dev) || IS_CRESTLINE(dev)) {
		I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
320
		POSTING_READ(FW_BLC_SELF);
321 322 323 324
	} else if (IS_PINEVIEW(dev)) {
		val = I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN;
		val |= enable ? PINEVIEW_SELF_REFRESH_EN : 0;
		I915_WRITE(DSPFW3, val);
325
		POSTING_READ(DSPFW3);
326 327 328 329
	} else if (IS_I945G(dev) || IS_I945GM(dev)) {
		val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
			       _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
		I915_WRITE(FW_BLC_SELF, val);
330
		POSTING_READ(FW_BLC_SELF);
331 332 333 334
	} else if (IS_I915GM(dev)) {
		val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
			       _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
		I915_WRITE(INSTPM, val);
335
		POSTING_READ(INSTPM);
336 337 338
	} else {
		return;
	}
339

340 341
	DRM_DEBUG_KMS("memory self-refresh is %s\n",
		      enable ? "enabled" : "disabled");
342 343
}

344

345 346 347 348 349 350 351 352 353 354 355 356 357 358
/*
 * Latency for FIFO fetches is dependent on several factors:
 *   - memory configuration (speed, channels)
 *   - chipset
 *   - current MCH state
 * It can be fairly high in some situations, so here we assume a fairly
 * pessimal value.  It's a tradeoff between extra memory fetches (if we
 * set this value too high, the FIFO will fetch frequently to stay full)
 * and power consumption (set it too low to save power and we might see
 * FIFO underruns and display "flicker").
 *
 * A value of 5us seems to be a good balance; safe for very low end
 * platforms but not overly aggressive on lower latency configs.
 */
359
static const int pessimal_latency_ns = 5000;
360

361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
#define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
	((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))

static int vlv_get_fifo_size(struct drm_device *dev,
			      enum pipe pipe, int plane)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int sprite0_start, sprite1_start, size;

	switch (pipe) {
		uint32_t dsparb, dsparb2, dsparb3;
	case PIPE_A:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
		break;
	case PIPE_B:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
		break;
	case PIPE_C:
		dsparb2 = I915_READ(DSPARB2);
		dsparb3 = I915_READ(DSPARB3);
		sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
		sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
		break;
	default:
		return 0;
	}

	switch (plane) {
	case 0:
		size = sprite0_start;
		break;
	case 1:
		size = sprite1_start - sprite0_start;
		break;
	case 2:
		size = 512 - 1 - sprite1_start;
		break;
	default:
		return 0;
	}

	DRM_DEBUG_KMS("Pipe %c %s %c FIFO size: %d\n",
		      pipe_name(pipe), plane == 0 ? "primary" : "sprite",
		      plane == 0 ? plane_name(pipe) : sprite_name(pipe, plane - 1),
		      size);

	return size;
}

416
static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	if (plane)
		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

432
static int i830_get_fifo_size(struct drm_device *dev, int plane)
433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x1ff;
	if (plane)
		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
	size >>= 1; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

449
static int i845_get_fifo_size(struct drm_device *dev, int plane)
450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	size >>= 2; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A",
		      size);

	return size;
}

/* Pineview has different values for various configs */
static const struct intel_watermark_params pineview_display_wm = {
467 468 469 470 471
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
472 473
};
static const struct intel_watermark_params pineview_display_hplloff_wm = {
474 475 476 477 478
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_HPLLOFF_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
479 480
};
static const struct intel_watermark_params pineview_cursor_wm = {
481 482 483 484 485
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
486 487
};
static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
488 489 490 491 492
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
493 494
};
static const struct intel_watermark_params g4x_wm_info = {
495 496 497 498 499
	.fifo_size = G4X_FIFO_SIZE,
	.max_wm = G4X_MAX_WM,
	.default_wm = G4X_MAX_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
500 501
};
static const struct intel_watermark_params g4x_cursor_wm_info = {
502 503 504 505 506
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
507 508
};
static const struct intel_watermark_params i965_cursor_wm_info = {
509 510 511 512 513
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
514 515
};
static const struct intel_watermark_params i945_wm_info = {
516 517 518 519 520
	.fifo_size = I945_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
521 522
};
static const struct intel_watermark_params i915_wm_info = {
523 524 525 526 527
	.fifo_size = I915_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
528
};
529
static const struct intel_watermark_params i830_a_wm_info = {
530 531 532 533 534
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
535
};
536 537 538 539 540 541 542
static const struct intel_watermark_params i830_bc_wm_info = {
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM/2,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
};
543
static const struct intel_watermark_params i845_wm_info = {
544 545 546 547 548
	.fifo_size = I830_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
549 550 551 552 553 554
};

/**
 * intel_calculate_wm - calculate watermark level
 * @clock_in_khz: pixel clock
 * @wm: chip FIFO params
555
 * @cpp: bytes per pixel
556 557 558 559 560 561 562 563 564 565 566 567 568 569 570
 * @latency_ns: memory latency for the platform
 *
 * Calculate the watermark level (the level at which the display plane will
 * start fetching from memory again).  Each chip has a different display
 * FIFO size and allocation, so the caller needs to figure that out and pass
 * in the correct intel_watermark_params structure.
 *
 * As the pixel clock runs, the FIFO will be drained at a rate that depends
 * on the pixel size.  When it reaches the watermark level, it'll start
 * fetching FIFO line sized based chunks from memory until the FIFO fills
 * past the watermark point.  If the FIFO drains completely, a FIFO underrun
 * will occur, and a display engine hang could result.
 */
static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
					const struct intel_watermark_params *wm,
571
					int fifo_size, int cpp,
572 573 574 575 576 577 578 579 580 581
					unsigned long latency_ns)
{
	long entries_required, wm_size;

	/*
	 * Note: we need to make sure we don't overflow for various clock &
	 * latency values.
	 * clocks go from a few thousand to several hundred thousand.
	 * latency is usually a few thousand
	 */
582
	entries_required = ((clock_in_khz / 1000) * cpp * latency_ns) /
583 584 585 586 587 588 589 590 591 592 593 594 595 596
		1000;
	entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);

	DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);

	wm_size = fifo_size - (entries_required + wm->guard_size);

	DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);

	/* Don't promote wm_size to unsigned... */
	if (wm_size > (long)wm->max_wm)
		wm_size = wm->max_wm;
	if (wm_size <= 0)
		wm_size = wm->default_wm;
597 598 599 600 601 602 603 604 605 606 607

	/*
	 * Bspec seems to indicate that the value shouldn't be lower than
	 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
	 * Lets go for 8 which is the burst size since certain platforms
	 * already use a hardcoded 8 (which is what the spec says should be
	 * done).
	 */
	if (wm_size <= 8)
		wm_size = 8;

608 609 610 611 612 613 614
	return wm_size;
}

static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
{
	struct drm_crtc *crtc, *enabled = NULL;

615
	for_each_crtc(dev, crtc) {
616
		if (intel_crtc_active(crtc)) {
617 618 619 620 621 622 623 624 625
			if (enabled)
				return NULL;
			enabled = crtc;
		}
	}

	return enabled;
}

626
static void pineview_update_wm(struct drm_crtc *unused_crtc)
627
{
628
	struct drm_device *dev = unused_crtc->dev;
629 630 631 632 633 634 635 636 637 638
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_crtc *crtc;
	const struct cxsr_latency *latency;
	u32 reg;
	unsigned long wm;

	latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
					 dev_priv->fsb_freq, dev_priv->mem_freq);
	if (!latency) {
		DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
639
		intel_set_memory_cxsr(dev_priv, false);
640 641 642 643 644
		return;
	}

	crtc = single_enabled_crtc(dev);
	if (crtc) {
645
		const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
646
		int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
647
		int clock = adjusted_mode->crtc_clock;
648 649 650 651

		/* Display SR */
		wm = intel_calculate_wm(clock, &pineview_display_wm,
					pineview_display_wm.fifo_size,
652
					cpp, latency->display_sr);
653 654
		reg = I915_READ(DSPFW1);
		reg &= ~DSPFW_SR_MASK;
655
		reg |= FW_WM(wm, SR);
656 657 658 659 660 661
		I915_WRITE(DSPFW1, reg);
		DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);

		/* cursor SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_wm,
					pineview_display_wm.fifo_size,
662
					cpp, latency->cursor_sr);
663 664
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_CURSOR_SR_MASK;
665
		reg |= FW_WM(wm, CURSOR_SR);
666 667 668 669 670
		I915_WRITE(DSPFW3, reg);

		/* Display HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
671
					cpp, latency->display_hpll_disable);
672 673
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_SR_MASK;
674
		reg |= FW_WM(wm, HPLL_SR);
675 676 677 678 679
		I915_WRITE(DSPFW3, reg);

		/* cursor HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
680
					cpp, latency->cursor_hpll_disable);
681 682
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_CURSOR_MASK;
683
		reg |= FW_WM(wm, HPLL_CURSOR);
684 685 686
		I915_WRITE(DSPFW3, reg);
		DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);

687
		intel_set_memory_cxsr(dev_priv, true);
688
	} else {
689
		intel_set_memory_cxsr(dev_priv, false);
690 691 692 693 694 695 696 697 698 699 700 701 702
	}
}

static bool g4x_compute_wm0(struct drm_device *dev,
			    int plane,
			    const struct intel_watermark_params *display,
			    int display_latency_ns,
			    const struct intel_watermark_params *cursor,
			    int cursor_latency_ns,
			    int *plane_wm,
			    int *cursor_wm)
{
	struct drm_crtc *crtc;
703
	const struct drm_display_mode *adjusted_mode;
704
	int htotal, hdisplay, clock, cpp;
705 706 707 708
	int line_time_us, line_count;
	int entries, tlb_miss;

	crtc = intel_get_crtc_for_plane(dev, plane);
709
	if (!intel_crtc_active(crtc)) {
710 711 712 713 714
		*cursor_wm = cursor->guard_size;
		*plane_wm = display->guard_size;
		return false;
	}

715
	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
716
	clock = adjusted_mode->crtc_clock;
717
	htotal = adjusted_mode->crtc_htotal;
718
	hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
719
	cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
720 721

	/* Use the small buffer method to calculate plane watermark */
722
	entries = ((clock * cpp / 1000) * display_latency_ns) / 1000;
723 724 725 726 727 728 729 730 731
	tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
	if (tlb_miss > 0)
		entries += tlb_miss;
	entries = DIV_ROUND_UP(entries, display->cacheline_size);
	*plane_wm = entries + display->guard_size;
	if (*plane_wm > (int)display->max_wm)
		*plane_wm = display->max_wm;

	/* Use the large buffer method to calculate cursor watermark */
732
	line_time_us = max(htotal * 1000 / clock, 1);
733
	line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
734
	entries = line_count * crtc->cursor->state->crtc_w * cpp;
735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788
	tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
	if (tlb_miss > 0)
		entries += tlb_miss;
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
	*cursor_wm = entries + cursor->guard_size;
	if (*cursor_wm > (int)cursor->max_wm)
		*cursor_wm = (int)cursor->max_wm;

	return true;
}

/*
 * Check the wm result.
 *
 * If any calculated watermark values is larger than the maximum value that
 * can be programmed into the associated watermark register, that watermark
 * must be disabled.
 */
static bool g4x_check_srwm(struct drm_device *dev,
			   int display_wm, int cursor_wm,
			   const struct intel_watermark_params *display,
			   const struct intel_watermark_params *cursor)
{
	DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
		      display_wm, cursor_wm);

	if (display_wm > display->max_wm) {
		DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
			      display_wm, display->max_wm);
		return false;
	}

	if (cursor_wm > cursor->max_wm) {
		DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
			      cursor_wm, cursor->max_wm);
		return false;
	}

	if (!(display_wm || cursor_wm)) {
		DRM_DEBUG_KMS("SR latency is 0, disabling\n");
		return false;
	}

	return true;
}

static bool g4x_compute_srwm(struct drm_device *dev,
			     int plane,
			     int latency_ns,
			     const struct intel_watermark_params *display,
			     const struct intel_watermark_params *cursor,
			     int *display_wm, int *cursor_wm)
{
	struct drm_crtc *crtc;
789
	const struct drm_display_mode *adjusted_mode;
790
	int hdisplay, htotal, cpp, clock;
791 792 793 794 795 796 797 798 799 800 801
	unsigned long line_time_us;
	int line_count, line_size;
	int small, large;
	int entries;

	if (!latency_ns) {
		*display_wm = *cursor_wm = 0;
		return false;
	}

	crtc = intel_get_crtc_for_plane(dev, plane);
802
	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
803
	clock = adjusted_mode->crtc_clock;
804
	htotal = adjusted_mode->crtc_htotal;
805
	hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
806
	cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
807

808
	line_time_us = max(htotal * 1000 / clock, 1);
809
	line_count = (latency_ns / line_time_us + 1000) / 1000;
810
	line_size = hdisplay * cpp;
811 812

	/* Use the minimum of the small and large buffer method for primary */
813
	small = ((clock * cpp / 1000) * latency_ns) / 1000;
814 815 816 817 818 819
	large = line_count * line_size;

	entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
	*display_wm = entries + display->guard_size;

	/* calculate the self-refresh watermark for display cursor */
820
	entries = line_count * cpp * crtc->cursor->state->crtc_w;
821 822 823 824 825 826 827 828
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
	*cursor_wm = entries + cursor->guard_size;

	return g4x_check_srwm(dev,
			      *display_wm, *cursor_wm,
			      display, cursor);
}

829 830 831
#define FW_WM_VLV(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)

832 833 834 835 836 837 838 839 840 841 842 843
static void vlv_write_wm_values(struct intel_crtc *crtc,
				const struct vlv_wm_values *wm)
{
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	enum pipe pipe = crtc->pipe;

	I915_WRITE(VLV_DDL(pipe),
		   (wm->ddl[pipe].cursor << DDL_CURSOR_SHIFT) |
		   (wm->ddl[pipe].sprite[1] << DDL_SPRITE_SHIFT(1)) |
		   (wm->ddl[pipe].sprite[0] << DDL_SPRITE_SHIFT(0)) |
		   (wm->ddl[pipe].primary << DDL_PLANE_SHIFT));

844
	I915_WRITE(DSPFW1,
845 846 847 848
		   FW_WM(wm->sr.plane, SR) |
		   FW_WM(wm->pipe[PIPE_B].cursor, CURSORB) |
		   FW_WM_VLV(wm->pipe[PIPE_B].primary, PLANEB) |
		   FW_WM_VLV(wm->pipe[PIPE_A].primary, PLANEA));
849
	I915_WRITE(DSPFW2,
850 851 852
		   FW_WM_VLV(wm->pipe[PIPE_A].sprite[1], SPRITEB) |
		   FW_WM(wm->pipe[PIPE_A].cursor, CURSORA) |
		   FW_WM_VLV(wm->pipe[PIPE_A].sprite[0], SPRITEA));
853
	I915_WRITE(DSPFW3,
854
		   FW_WM(wm->sr.cursor, CURSOR_SR));
855 856 857

	if (IS_CHERRYVIEW(dev_priv)) {
		I915_WRITE(DSPFW7_CHV,
858 859
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
860
		I915_WRITE(DSPFW8_CHV,
861 862
			   FW_WM_VLV(wm->pipe[PIPE_C].sprite[1], SPRITEF) |
			   FW_WM_VLV(wm->pipe[PIPE_C].sprite[0], SPRITEE));
863
		I915_WRITE(DSPFW9_CHV,
864 865
			   FW_WM_VLV(wm->pipe[PIPE_C].primary, PLANEC) |
			   FW_WM(wm->pipe[PIPE_C].cursor, CURSORC));
866
		I915_WRITE(DSPHOWM,
867 868 869 870 871 872 873 874 875 876
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
			   FW_WM(wm->pipe[PIPE_C].sprite[1] >> 8, SPRITEF_HI) |
			   FW_WM(wm->pipe[PIPE_C].sprite[0] >> 8, SPRITEE_HI) |
			   FW_WM(wm->pipe[PIPE_C].primary >> 8, PLANEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
877 878
	} else {
		I915_WRITE(DSPFW7,
879 880
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
881
		I915_WRITE(DSPHOWM,
882 883 884 885 886 887 888
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
889 890
	}

891 892 893 894 895 896
	/* zero (unused) WM1 watermarks */
	I915_WRITE(DSPFW4, 0);
	I915_WRITE(DSPFW5, 0);
	I915_WRITE(DSPFW6, 0);
	I915_WRITE(DSPHOWM1, 0);

897
	POSTING_READ(DSPFW1);
898 899
}

900 901
#undef FW_WM_VLV

902 903 904 905 906 907
enum vlv_wm_level {
	VLV_WM_LEVEL_PM2,
	VLV_WM_LEVEL_PM5,
	VLV_WM_LEVEL_DDR_DVFS,
};

908 909 910 911
/* latency must be in 0.1us units. */
static unsigned int vlv_wm_method2(unsigned int pixel_rate,
				   unsigned int pipe_htotal,
				   unsigned int horiz_pixels,
912
				   unsigned int cpp,
913 914 915 916 917
				   unsigned int latency)
{
	unsigned int ret;

	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
918
	ret = (ret + 1) * horiz_pixels * cpp;
919 920 921 922 923 924 925 926 927 928 929 930
	ret = DIV_ROUND_UP(ret, 64);

	return ret;
}

static void vlv_setup_wm_latency(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	/* all latencies in usec */
	dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;

931 932
	dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;

933 934 935
	if (IS_CHERRYVIEW(dev_priv)) {
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
936 937

		dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
938 939 940 941 942 943 944 945 946
	}
}

static uint16_t vlv_compute_wm_level(struct intel_plane *plane,
				     struct intel_crtc *crtc,
				     const struct intel_plane_state *state,
				     int level)
{
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
947
	int clock, htotal, cpp, width, wm;
948 949 950 951 952 953 954

	if (dev_priv->wm.pri_latency[level] == 0)
		return USHRT_MAX;

	if (!state->visible)
		return 0;

955
	cpp = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
956 957 958 959 960 961 962 963 964 965 966 967 968 969 970
	clock = crtc->config->base.adjusted_mode.crtc_clock;
	htotal = crtc->config->base.adjusted_mode.crtc_htotal;
	width = crtc->config->pipe_src_w;
	if (WARN_ON(htotal == 0))
		htotal = 1;

	if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
		/*
		 * FIXME the formula gives values that are
		 * too big for the cursor FIFO, and hence we
		 * would never be able to use cursors. For
		 * now just hardcode the watermark.
		 */
		wm = 63;
	} else {
971
		wm = vlv_wm_method2(clock, htotal, width, cpp,
972 973 974 975 976 977
				    dev_priv->wm.pri_latency[level] * 10);
	}

	return min_t(int, wm, USHRT_MAX);
}

978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
static void vlv_compute_fifo(struct intel_crtc *crtc)
{
	struct drm_device *dev = crtc->base.dev;
	struct vlv_wm_state *wm_state = &crtc->wm_state;
	struct intel_plane *plane;
	unsigned int total_rate = 0;
	const int fifo_size = 512 - 1;
	int fifo_extra, fifo_left = fifo_size;

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		struct intel_plane_state *state =
			to_intel_plane_state(plane->base.state);

		if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
			continue;

		if (state->visible) {
			wm_state->num_active_planes++;
			total_rate += drm_format_plane_cpp(state->base.fb->pixel_format, 0);
		}
	}

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		struct intel_plane_state *state =
			to_intel_plane_state(plane->base.state);
		unsigned int rate;

		if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
			plane->wm.fifo_size = 63;
			continue;
		}

		if (!state->visible) {
			plane->wm.fifo_size = 0;
			continue;
		}

		rate = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
		plane->wm.fifo_size = fifo_size * rate / total_rate;
		fifo_left -= plane->wm.fifo_size;
	}

	fifo_extra = DIV_ROUND_UP(fifo_left, wm_state->num_active_planes ?: 1);

	/* spread the remainder evenly */
	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		int plane_extra;

		if (fifo_left == 0)
			break;

		if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
			continue;

		/* give it all to the first plane if none are active */
		if (plane->wm.fifo_size == 0 &&
		    wm_state->num_active_planes)
			continue;

		plane_extra = min(fifo_extra, fifo_left);
		plane->wm.fifo_size += plane_extra;
		fifo_left -= plane_extra;
	}

	WARN_ON(fifo_left != 0);
}

1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078
static void vlv_invert_wms(struct intel_crtc *crtc)
{
	struct vlv_wm_state *wm_state = &crtc->wm_state;
	int level;

	for (level = 0; level < wm_state->num_levels; level++) {
		struct drm_device *dev = crtc->base.dev;
		const int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
		struct intel_plane *plane;

		wm_state->sr[level].plane = sr_fifo_size - wm_state->sr[level].plane;
		wm_state->sr[level].cursor = 63 - wm_state->sr[level].cursor;

		for_each_intel_plane_on_crtc(dev, crtc, plane) {
			switch (plane->base.type) {
				int sprite;
			case DRM_PLANE_TYPE_CURSOR:
				wm_state->wm[level].cursor = plane->wm.fifo_size -
					wm_state->wm[level].cursor;
				break;
			case DRM_PLANE_TYPE_PRIMARY:
				wm_state->wm[level].primary = plane->wm.fifo_size -
					wm_state->wm[level].primary;
				break;
			case DRM_PLANE_TYPE_OVERLAY:
				sprite = plane->plane;
				wm_state->wm[level].sprite[sprite] = plane->wm.fifo_size -
					wm_state->wm[level].sprite[sprite];
				break;
			}
		}
	}
}

1079
static void vlv_compute_wm(struct intel_crtc *crtc)
1080 1081 1082 1083 1084 1085 1086 1087 1088
{
	struct drm_device *dev = crtc->base.dev;
	struct vlv_wm_state *wm_state = &crtc->wm_state;
	struct intel_plane *plane;
	int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
	int level;

	memset(wm_state, 0, sizeof(*wm_state));

1089
	wm_state->cxsr = crtc->pipe != PIPE_C && crtc->wm.cxsr_allowed;
1090
	wm_state->num_levels = to_i915(dev)->wm.max_level + 1;
1091 1092 1093

	wm_state->num_active_planes = 0;

1094
	vlv_compute_fifo(crtc);
1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150

	if (wm_state->num_active_planes != 1)
		wm_state->cxsr = false;

	if (wm_state->cxsr) {
		for (level = 0; level < wm_state->num_levels; level++) {
			wm_state->sr[level].plane = sr_fifo_size;
			wm_state->sr[level].cursor = 63;
		}
	}

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		struct intel_plane_state *state =
			to_intel_plane_state(plane->base.state);

		if (!state->visible)
			continue;

		/* normal watermarks */
		for (level = 0; level < wm_state->num_levels; level++) {
			int wm = vlv_compute_wm_level(plane, crtc, state, level);
			int max_wm = plane->base.type == DRM_PLANE_TYPE_CURSOR ? 63 : 511;

			/* hack */
			if (WARN_ON(level == 0 && wm > max_wm))
				wm = max_wm;

			if (wm > plane->wm.fifo_size)
				break;

			switch (plane->base.type) {
				int sprite;
			case DRM_PLANE_TYPE_CURSOR:
				wm_state->wm[level].cursor = wm;
				break;
			case DRM_PLANE_TYPE_PRIMARY:
				wm_state->wm[level].primary = wm;
				break;
			case DRM_PLANE_TYPE_OVERLAY:
				sprite = plane->plane;
				wm_state->wm[level].sprite[sprite] = wm;
				break;
			}
		}

		wm_state->num_levels = level;

		if (!wm_state->cxsr)
			continue;

		/* maxfifo watermarks */
		switch (plane->base.type) {
			int sprite, level;
		case DRM_PLANE_TYPE_CURSOR:
			for (level = 0; level < wm_state->num_levels; level++)
				wm_state->sr[level].cursor =
1151
					wm_state->wm[level].cursor;
1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169
			break;
		case DRM_PLANE_TYPE_PRIMARY:
			for (level = 0; level < wm_state->num_levels; level++)
				wm_state->sr[level].plane =
					min(wm_state->sr[level].plane,
					    wm_state->wm[level].primary);
			break;
		case DRM_PLANE_TYPE_OVERLAY:
			sprite = plane->plane;
			for (level = 0; level < wm_state->num_levels; level++)
				wm_state->sr[level].plane =
					min(wm_state->sr[level].plane,
					    wm_state->wm[level].sprite[sprite]);
			break;
		}
	}

	/* clear any (partially) filled invalid levels */
1170
	for (level = wm_state->num_levels; level < to_i915(dev)->wm.max_level + 1; level++) {
1171 1172 1173 1174 1175 1176 1177
		memset(&wm_state->wm[level], 0, sizeof(wm_state->wm[level]));
		memset(&wm_state->sr[level], 0, sizeof(wm_state->sr[level]));
	}

	vlv_invert_wms(crtc);
}

1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267
#define VLV_FIFO(plane, value) \
	(((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)

static void vlv_pipe_set_fifo_size(struct intel_crtc *crtc)
{
	struct drm_device *dev = crtc->base.dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_plane *plane;
	int sprite0_start = 0, sprite1_start = 0, fifo_size = 0;

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
			WARN_ON(plane->wm.fifo_size != 63);
			continue;
		}

		if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
			sprite0_start = plane->wm.fifo_size;
		else if (plane->plane == 0)
			sprite1_start = sprite0_start + plane->wm.fifo_size;
		else
			fifo_size = sprite1_start + plane->wm.fifo_size;
	}

	WARN_ON(fifo_size != 512 - 1);

	DRM_DEBUG_KMS("Pipe %c FIFO split %d / %d / %d\n",
		      pipe_name(crtc->pipe), sprite0_start,
		      sprite1_start, fifo_size);

	switch (crtc->pipe) {
		uint32_t dsparb, dsparb2, dsparb3;
	case PIPE_A:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);

		dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
			    VLV_FIFO(SPRITEB, 0xff));
		dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
			   VLV_FIFO(SPRITEB, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
			     VLV_FIFO(SPRITEB_HI, 0x1));
		dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));

		I915_WRITE(DSPARB, dsparb);
		I915_WRITE(DSPARB2, dsparb2);
		break;
	case PIPE_B:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);

		dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
			    VLV_FIFO(SPRITED, 0xff));
		dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
			   VLV_FIFO(SPRITED, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
			     VLV_FIFO(SPRITED_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITED_HI, sprite1_start >> 8));

		I915_WRITE(DSPARB, dsparb);
		I915_WRITE(DSPARB2, dsparb2);
		break;
	case PIPE_C:
		dsparb3 = I915_READ(DSPARB3);
		dsparb2 = I915_READ(DSPARB2);

		dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
			     VLV_FIFO(SPRITEF, 0xff));
		dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
			    VLV_FIFO(SPRITEF, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
			     VLV_FIFO(SPRITEF_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));

		I915_WRITE(DSPARB3, dsparb3);
		I915_WRITE(DSPARB2, dsparb2);
		break;
	default:
		break;
	}
}

#undef VLV_FIFO

1268 1269 1270 1271 1272 1273
static void vlv_merge_wm(struct drm_device *dev,
			 struct vlv_wm_values *wm)
{
	struct intel_crtc *crtc;
	int num_active_crtcs = 0;

1274
	wm->level = to_i915(dev)->wm.max_level;
1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292
	wm->cxsr = true;

	for_each_intel_crtc(dev, crtc) {
		const struct vlv_wm_state *wm_state = &crtc->wm_state;

		if (!crtc->active)
			continue;

		if (!wm_state->cxsr)
			wm->cxsr = false;

		num_active_crtcs++;
		wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
	}

	if (num_active_crtcs != 1)
		wm->cxsr = false;

1293 1294 1295
	if (num_active_crtcs > 1)
		wm->level = VLV_WM_LEVEL_PM2;

1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321
	for_each_intel_crtc(dev, crtc) {
		struct vlv_wm_state *wm_state = &crtc->wm_state;
		enum pipe pipe = crtc->pipe;

		if (!crtc->active)
			continue;

		wm->pipe[pipe] = wm_state->wm[wm->level];
		if (wm->cxsr)
			wm->sr = wm_state->sr[wm->level];

		wm->ddl[pipe].primary = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].sprite[0] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].sprite[1] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].cursor = DDL_PRECISION_HIGH | 2;
	}
}

static void vlv_update_wm(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	enum pipe pipe = intel_crtc->pipe;
	struct vlv_wm_values wm = {};

1322
	vlv_compute_wm(intel_crtc);
1323 1324
	vlv_merge_wm(dev, &wm);

1325 1326 1327
	if (memcmp(&dev_priv->wm.vlv, &wm, sizeof(wm)) == 0) {
		/* FIXME should be part of crtc atomic commit */
		vlv_pipe_set_fifo_size(intel_crtc);
1328
		return;
1329
	}
1330 1331 1332 1333 1334 1335 1336 1337 1338

	if (wm.level < VLV_WM_LEVEL_DDR_DVFS &&
	    dev_priv->wm.vlv.level >= VLV_WM_LEVEL_DDR_DVFS)
		chv_set_memory_dvfs(dev_priv, false);

	if (wm.level < VLV_WM_LEVEL_PM5 &&
	    dev_priv->wm.vlv.level >= VLV_WM_LEVEL_PM5)
		chv_set_memory_pm5(dev_priv, false);

1339
	if (!wm.cxsr && dev_priv->wm.vlv.cxsr)
1340 1341
		intel_set_memory_cxsr(dev_priv, false);

1342 1343 1344
	/* FIXME should be part of crtc atomic commit */
	vlv_pipe_set_fifo_size(intel_crtc);

1345 1346 1347 1348 1349 1350 1351 1352
	vlv_write_wm_values(intel_crtc, &wm);

	DRM_DEBUG_KMS("Setting FIFO watermarks - %c: plane=%d, cursor=%d, "
		      "sprite0=%d, sprite1=%d, SR: plane=%d, cursor=%d level=%d cxsr=%d\n",
		      pipe_name(pipe), wm.pipe[pipe].primary, wm.pipe[pipe].cursor,
		      wm.pipe[pipe].sprite[0], wm.pipe[pipe].sprite[1],
		      wm.sr.plane, wm.sr.cursor, wm.level, wm.cxsr);

1353
	if (wm.cxsr && !dev_priv->wm.vlv.cxsr)
1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364
		intel_set_memory_cxsr(dev_priv, true);

	if (wm.level >= VLV_WM_LEVEL_PM5 &&
	    dev_priv->wm.vlv.level < VLV_WM_LEVEL_PM5)
		chv_set_memory_pm5(dev_priv, true);

	if (wm.level >= VLV_WM_LEVEL_DDR_DVFS &&
	    dev_priv->wm.vlv.level < VLV_WM_LEVEL_DDR_DVFS)
		chv_set_memory_dvfs(dev_priv, true);

	dev_priv->wm.vlv = wm;
1365 1366
}

1367 1368
#define single_plane_enabled(mask) is_power_of_2(mask)

1369
static void g4x_update_wm(struct drm_crtc *crtc)
1370
{
1371
	struct drm_device *dev = crtc->dev;
1372 1373 1374 1375 1376
	static const int sr_latency_ns = 12000;
	struct drm_i915_private *dev_priv = dev->dev_private;
	int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
	int plane_sr, cursor_sr;
	unsigned int enabled = 0;
1377
	bool cxsr_enabled;
1378

1379
	if (g4x_compute_wm0(dev, PIPE_A,
1380 1381
			    &g4x_wm_info, pessimal_latency_ns,
			    &g4x_cursor_wm_info, pessimal_latency_ns,
1382
			    &planea_wm, &cursora_wm))
1383
		enabled |= 1 << PIPE_A;
1384

1385
	if (g4x_compute_wm0(dev, PIPE_B,
1386 1387
			    &g4x_wm_info, pessimal_latency_ns,
			    &g4x_cursor_wm_info, pessimal_latency_ns,
1388
			    &planeb_wm, &cursorb_wm))
1389
		enabled |= 1 << PIPE_B;
1390 1391 1392 1393 1394 1395

	if (single_plane_enabled(enabled) &&
	    g4x_compute_srwm(dev, ffs(enabled) - 1,
			     sr_latency_ns,
			     &g4x_wm_info,
			     &g4x_cursor_wm_info,
1396
			     &plane_sr, &cursor_sr)) {
1397
		cxsr_enabled = true;
1398
	} else {
1399
		cxsr_enabled = false;
1400
		intel_set_memory_cxsr(dev_priv, false);
1401 1402
		plane_sr = cursor_sr = 0;
	}
1403

1404 1405
	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
		      "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1406 1407 1408 1409 1410
		      planea_wm, cursora_wm,
		      planeb_wm, cursorb_wm,
		      plane_sr, cursor_sr);

	I915_WRITE(DSPFW1,
1411 1412 1413 1414
		   FW_WM(plane_sr, SR) |
		   FW_WM(cursorb_wm, CURSORB) |
		   FW_WM(planeb_wm, PLANEB) |
		   FW_WM(planea_wm, PLANEA));
1415
	I915_WRITE(DSPFW2,
1416
		   (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1417
		   FW_WM(cursora_wm, CURSORA));
1418 1419
	/* HPLL off in SR has some issues on G4x... disable it */
	I915_WRITE(DSPFW3,
1420
		   (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1421
		   FW_WM(cursor_sr, CURSOR_SR));
1422 1423 1424

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
1425 1426
}

1427
static void i965_update_wm(struct drm_crtc *unused_crtc)
1428
{
1429
	struct drm_device *dev = unused_crtc->dev;
1430 1431 1432 1433
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_crtc *crtc;
	int srwm = 1;
	int cursor_sr = 16;
1434
	bool cxsr_enabled;
1435 1436 1437 1438 1439 1440

	/* Calc sr entries for one plane configs */
	crtc = single_enabled_crtc(dev);
	if (crtc) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 12000;
1441
		const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1442
		int clock = adjusted_mode->crtc_clock;
1443
		int htotal = adjusted_mode->crtc_htotal;
1444
		int hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
1445
		int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
1446 1447 1448
		unsigned long line_time_us;
		int entries;

1449
		line_time_us = max(htotal * 1000 / clock, 1);
1450 1451 1452

		/* Use ns/us then divide to preserve precision */
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1453
			cpp * hdisplay;
1454 1455 1456 1457 1458 1459 1460 1461 1462
		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
		srwm = I965_FIFO_SIZE - entries;
		if (srwm < 0)
			srwm = 1;
		srwm &= 0x1ff;
		DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
			      entries, srwm);

		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1463
			cpp * crtc->cursor->state->crtc_w;
1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474
		entries = DIV_ROUND_UP(entries,
					  i965_cursor_wm_info.cacheline_size);
		cursor_sr = i965_cursor_wm_info.fifo_size -
			(entries + i965_cursor_wm_info.guard_size);

		if (cursor_sr > i965_cursor_wm_info.max_wm)
			cursor_sr = i965_cursor_wm_info.max_wm;

		DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
			      "cursor %d\n", srwm, cursor_sr);

1475
		cxsr_enabled = true;
1476
	} else {
1477
		cxsr_enabled = false;
1478
		/* Turn off self refresh if both pipes are enabled */
1479
		intel_set_memory_cxsr(dev_priv, false);
1480 1481 1482 1483 1484 1485
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
		      srwm);

	/* 965 has limitations... */
1486 1487 1488 1489 1490 1491
	I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
		   FW_WM(8, CURSORB) |
		   FW_WM(8, PLANEB) |
		   FW_WM(8, PLANEA));
	I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
		   FW_WM(8, PLANEC_OLD));
1492
	/* update cursor SR watermark */
1493
	I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
1494 1495 1496

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
1497 1498
}

1499 1500
#undef FW_WM

1501
static void i9xx_update_wm(struct drm_crtc *unused_crtc)
1502
{
1503
	struct drm_device *dev = unused_crtc->dev;
1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517
	struct drm_i915_private *dev_priv = dev->dev_private;
	const struct intel_watermark_params *wm_info;
	uint32_t fwater_lo;
	uint32_t fwater_hi;
	int cwm, srwm = 1;
	int fifo_size;
	int planea_wm, planeb_wm;
	struct drm_crtc *crtc, *enabled = NULL;

	if (IS_I945GM(dev))
		wm_info = &i945_wm_info;
	else if (!IS_GEN2(dev))
		wm_info = &i915_wm_info;
	else
1518
		wm_info = &i830_a_wm_info;
1519 1520 1521

	fifo_size = dev_priv->display.get_fifo_size(dev, 0);
	crtc = intel_get_crtc_for_plane(dev, 0);
1522
	if (intel_crtc_active(crtc)) {
1523
		const struct drm_display_mode *adjusted_mode;
1524
		int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
1525 1526 1527
		if (IS_GEN2(dev))
			cpp = 4;

1528
		adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1529
		planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1530
					       wm_info, fifo_size, cpp,
1531
					       pessimal_latency_ns);
1532
		enabled = crtc;
1533
	} else {
1534
		planea_wm = fifo_size - wm_info->guard_size;
1535 1536 1537 1538 1539 1540
		if (planea_wm > (long)wm_info->max_wm)
			planea_wm = wm_info->max_wm;
	}

	if (IS_GEN2(dev))
		wm_info = &i830_bc_wm_info;
1541 1542 1543

	fifo_size = dev_priv->display.get_fifo_size(dev, 1);
	crtc = intel_get_crtc_for_plane(dev, 1);
1544
	if (intel_crtc_active(crtc)) {
1545
		const struct drm_display_mode *adjusted_mode;
1546
		int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
1547 1548 1549
		if (IS_GEN2(dev))
			cpp = 4;

1550
		adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1551
		planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1552
					       wm_info, fifo_size, cpp,
1553
					       pessimal_latency_ns);
1554 1555 1556 1557
		if (enabled == NULL)
			enabled = crtc;
		else
			enabled = NULL;
1558
	} else {
1559
		planeb_wm = fifo_size - wm_info->guard_size;
1560 1561 1562
		if (planeb_wm > (long)wm_info->max_wm)
			planeb_wm = wm_info->max_wm;
	}
1563 1564 1565

	DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);

1566
	if (IS_I915GM(dev) && enabled) {
1567
		struct drm_i915_gem_object *obj;
1568

1569
		obj = intel_fb_obj(enabled->primary->state->fb);
1570 1571

		/* self-refresh seems busted with untiled */
1572
		if (obj->tiling_mode == I915_TILING_NONE)
1573 1574 1575
			enabled = NULL;
	}

1576 1577 1578 1579 1580 1581
	/*
	 * Overlay gets an aggressive default since video jitter is bad.
	 */
	cwm = 2;

	/* Play safe and disable self-refresh before adjusting watermarks. */
1582
	intel_set_memory_cxsr(dev_priv, false);
1583 1584 1585 1586 1587

	/* Calc sr entries for one plane configs */
	if (HAS_FW_BLC(dev) && enabled) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 6000;
1588
		const struct drm_display_mode *adjusted_mode = &to_intel_crtc(enabled)->config->base.adjusted_mode;
1589
		int clock = adjusted_mode->crtc_clock;
1590
		int htotal = adjusted_mode->crtc_htotal;
1591
		int hdisplay = to_intel_crtc(enabled)->config->pipe_src_w;
1592
		int cpp = drm_format_plane_cpp(enabled->primary->state->fb->pixel_format, 0);
1593 1594 1595
		unsigned long line_time_us;
		int entries;

1596
		line_time_us = max(htotal * 1000 / clock, 1);
1597 1598 1599

		/* Use ns/us then divide to preserve precision */
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1600
			cpp * hdisplay;
1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626
		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
		DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
		srwm = wm_info->fifo_size - entries;
		if (srwm < 0)
			srwm = 1;

		if (IS_I945G(dev) || IS_I945GM(dev))
			I915_WRITE(FW_BLC_SELF,
				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
		else if (IS_I915GM(dev))
			I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
		      planea_wm, planeb_wm, cwm, srwm);

	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
	fwater_hi = (cwm & 0x1f);

	/* Set request length to 8 cachelines per fetch */
	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
	fwater_hi = fwater_hi | (1 << 8);

	I915_WRITE(FW_BLC, fwater_lo);
	I915_WRITE(FW_BLC2, fwater_hi);

1627 1628
	if (enabled)
		intel_set_memory_cxsr(dev_priv, true);
1629 1630
}

1631
static void i845_update_wm(struct drm_crtc *unused_crtc)
1632
{
1633
	struct drm_device *dev = unused_crtc->dev;
1634 1635
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_crtc *crtc;
1636
	const struct drm_display_mode *adjusted_mode;
1637 1638 1639 1640 1641 1642 1643
	uint32_t fwater_lo;
	int planea_wm;

	crtc = single_enabled_crtc(dev);
	if (crtc == NULL)
		return;

1644
	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1645
	planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1646
				       &i845_wm_info,
1647
				       dev_priv->display.get_fifo_size(dev, 0),
1648
				       4, pessimal_latency_ns);
1649 1650 1651 1652 1653 1654 1655 1656
	fwater_lo = I915_READ(FW_BLC) & ~0xfff;
	fwater_lo |= (3<<8) | planea_wm;

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);

	I915_WRITE(FW_BLC, fwater_lo);
}

1657
uint32_t ilk_pipe_pixel_rate(const struct intel_crtc_state *pipe_config)
1658
{
1659
	uint32_t pixel_rate;
1660

1661
	pixel_rate = pipe_config->base.adjusted_mode.crtc_clock;
1662 1663 1664 1665

	/* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
	 * adjust the pixel_rate here. */

1666
	if (pipe_config->pch_pfit.enabled) {
1667
		uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
1668 1669 1670 1671
		uint32_t pfit_size = pipe_config->pch_pfit.size;

		pipe_w = pipe_config->pipe_src_w;
		pipe_h = pipe_config->pipe_src_h;
1672 1673 1674 1675 1676 1677 1678 1679

		pfit_w = (pfit_size >> 16) & 0xFFFF;
		pfit_h = pfit_size & 0xFFFF;
		if (pipe_w < pfit_w)
			pipe_w = pfit_w;
		if (pipe_h < pfit_h)
			pipe_h = pfit_h;

1680 1681 1682
		if (WARN_ON(!pfit_w || !pfit_h))
			return pixel_rate;

1683 1684 1685 1686 1687 1688 1689
		pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
				     pfit_w * pfit_h);
	}

	return pixel_rate;
}

1690
/* latency must be in 0.1us units. */
1691
static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t cpp, uint32_t latency)
1692 1693 1694
{
	uint64_t ret;

1695 1696 1697
	if (WARN(latency == 0, "Latency value missing\n"))
		return UINT_MAX;

1698
	ret = (uint64_t) pixel_rate * cpp * latency;
1699 1700 1701 1702 1703
	ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;

	return ret;
}

1704
/* latency must be in 0.1us units. */
1705
static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1706
			       uint32_t horiz_pixels, uint8_t cpp,
1707 1708 1709 1710
			       uint32_t latency)
{
	uint32_t ret;

1711 1712
	if (WARN(latency == 0, "Latency value missing\n"))
		return UINT_MAX;
1713 1714
	if (WARN_ON(!pipe_htotal))
		return UINT_MAX;
1715

1716
	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
1717
	ret = (ret + 1) * horiz_pixels * cpp;
1718 1719 1720 1721
	ret = DIV_ROUND_UP(ret, 64) + 2;
	return ret;
}

1722
static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1723
			   uint8_t cpp)
1724
{
1725 1726 1727 1728 1729 1730
	/*
	 * Neither of these should be possible since this function shouldn't be
	 * called if the CRTC is off or the plane is invisible.  But let's be
	 * extra paranoid to avoid a potential divide-by-zero if we screw up
	 * elsewhere in the driver.
	 */
1731
	if (WARN_ON(!cpp))
1732 1733 1734 1735
		return 0;
	if (WARN_ON(!horiz_pixels))
		return 0;

1736
	return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
1737 1738
}

1739
struct ilk_wm_maximums {
1740 1741 1742 1743 1744 1745
	uint16_t pri;
	uint16_t spr;
	uint16_t cur;
	uint16_t fbc;
};

1746 1747 1748 1749
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1750
static uint32_t ilk_compute_pri_wm(const struct intel_crtc_state *cstate,
1751
				   const struct intel_plane_state *pstate,
1752 1753
				   uint32_t mem_value,
				   bool is_lp)
1754
{
1755 1756
	int cpp = pstate->base.fb ?
		drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1757 1758
	uint32_t method1, method2;

1759
	if (!cstate->base.active || !pstate->visible)
1760 1761
		return 0;

1762
	method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), cpp, mem_value);
1763 1764 1765 1766

	if (!is_lp)
		return method1;

1767 1768
	method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
				 cstate->base.adjusted_mode.crtc_htotal,
1769
				 drm_rect_width(&pstate->dst),
1770
				 cpp, mem_value);
1771 1772

	return min(method1, method2);
1773 1774
}

1775 1776 1777 1778
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1779
static uint32_t ilk_compute_spr_wm(const struct intel_crtc_state *cstate,
1780
				   const struct intel_plane_state *pstate,
1781 1782
				   uint32_t mem_value)
{
1783 1784
	int cpp = pstate->base.fb ?
		drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1785 1786
	uint32_t method1, method2;

1787
	if (!cstate->base.active || !pstate->visible)
1788 1789
		return 0;

1790
	method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), cpp, mem_value);
1791 1792
	method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
				 cstate->base.adjusted_mode.crtc_htotal,
1793
				 drm_rect_width(&pstate->dst),
1794
				 cpp, mem_value);
1795 1796 1797
	return min(method1, method2);
}

1798 1799 1800 1801
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1802
static uint32_t ilk_compute_cur_wm(const struct intel_crtc_state *cstate,
1803
				   const struct intel_plane_state *pstate,
1804 1805
				   uint32_t mem_value)
{
1806 1807 1808 1809 1810 1811 1812
	/*
	 * We treat the cursor plane as always-on for the purposes of watermark
	 * calculation.  Until we have two-stage watermark programming merged,
	 * this is necessary to avoid flickering.
	 */
	int cpp = 4;
	int width = pstate->visible ? pstate->base.crtc_w : 64;
1813

1814
	if (!cstate->base.active)
1815 1816
		return 0;

1817 1818
	return ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
			      cstate->base.adjusted_mode.crtc_htotal,
1819
			      width, cpp, mem_value);
1820 1821
}

1822
/* Only for WM_LP. */
1823
static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
1824
				   const struct intel_plane_state *pstate,
1825
				   uint32_t pri_val)
1826
{
1827 1828
	int cpp = pstate->base.fb ?
		drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1829

1830
	if (!cstate->base.active || !pstate->visible)
1831 1832
		return 0;

1833
	return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->dst), cpp);
1834 1835
}

1836 1837
static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
{
1838 1839 1840
	if (INTEL_INFO(dev)->gen >= 8)
		return 3072;
	else if (INTEL_INFO(dev)->gen >= 7)
1841 1842 1843 1844 1845
		return 768;
	else
		return 512;
}

1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879
static unsigned int ilk_plane_wm_reg_max(const struct drm_device *dev,
					 int level, bool is_sprite)
{
	if (INTEL_INFO(dev)->gen >= 8)
		/* BDW primary/sprite plane watermarks */
		return level == 0 ? 255 : 2047;
	else if (INTEL_INFO(dev)->gen >= 7)
		/* IVB/HSW primary/sprite plane watermarks */
		return level == 0 ? 127 : 1023;
	else if (!is_sprite)
		/* ILK/SNB primary plane watermarks */
		return level == 0 ? 127 : 511;
	else
		/* ILK/SNB sprite plane watermarks */
		return level == 0 ? 63 : 255;
}

static unsigned int ilk_cursor_wm_reg_max(const struct drm_device *dev,
					  int level)
{
	if (INTEL_INFO(dev)->gen >= 7)
		return level == 0 ? 63 : 255;
	else
		return level == 0 ? 31 : 63;
}

static unsigned int ilk_fbc_wm_reg_max(const struct drm_device *dev)
{
	if (INTEL_INFO(dev)->gen >= 8)
		return 31;
	else
		return 15;
}

1880 1881 1882
/* Calculate the maximum primary/sprite plane watermark */
static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
				     int level,
1883
				     const struct intel_wm_config *config,
1884 1885 1886 1887 1888 1889
				     enum intel_ddb_partitioning ddb_partitioning,
				     bool is_sprite)
{
	unsigned int fifo_size = ilk_display_fifo_size(dev);

	/* if sprites aren't enabled, sprites get nothing */
1890
	if (is_sprite && !config->sprites_enabled)
1891 1892 1893
		return 0;

	/* HSW allows LP1+ watermarks even with multiple pipes */
1894
	if (level == 0 || config->num_pipes_active > 1) {
1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905
		fifo_size /= INTEL_INFO(dev)->num_pipes;

		/*
		 * For some reason the non self refresh
		 * FIFO size is only half of the self
		 * refresh FIFO size on ILK/SNB.
		 */
		if (INTEL_INFO(dev)->gen <= 6)
			fifo_size /= 2;
	}

1906
	if (config->sprites_enabled) {
1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917
		/* level 0 is always calculated with 1:1 split */
		if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
			if (is_sprite)
				fifo_size *= 5;
			fifo_size /= 6;
		} else {
			fifo_size /= 2;
		}
	}

	/* clamp to max that the registers can hold */
1918
	return min(fifo_size, ilk_plane_wm_reg_max(dev, level, is_sprite));
1919 1920 1921 1922
}

/* Calculate the maximum cursor plane watermark */
static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
1923 1924
				      int level,
				      const struct intel_wm_config *config)
1925 1926
{
	/* HSW LP1+ watermarks w/ multiple pipes */
1927
	if (level > 0 && config->num_pipes_active > 1)
1928 1929 1930
		return 64;

	/* otherwise just report max that registers can hold */
1931
	return ilk_cursor_wm_reg_max(dev, level);
1932 1933
}

1934
static void ilk_compute_wm_maximums(const struct drm_device *dev,
1935 1936 1937
				    int level,
				    const struct intel_wm_config *config,
				    enum intel_ddb_partitioning ddb_partitioning,
1938
				    struct ilk_wm_maximums *max)
1939
{
1940 1941 1942
	max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
	max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
	max->cur = ilk_cursor_wm_max(dev, level, config);
1943
	max->fbc = ilk_fbc_wm_reg_max(dev);
1944 1945
}

1946 1947 1948 1949 1950 1951 1952 1953 1954 1955
static void ilk_compute_wm_reg_maximums(struct drm_device *dev,
					int level,
					struct ilk_wm_maximums *max)
{
	max->pri = ilk_plane_wm_reg_max(dev, level, false);
	max->spr = ilk_plane_wm_reg_max(dev, level, true);
	max->cur = ilk_cursor_wm_reg_max(dev, level);
	max->fbc = ilk_fbc_wm_reg_max(dev);
}

1956
static bool ilk_validate_wm_level(int level,
1957
				  const struct ilk_wm_maximums *max,
1958
				  struct intel_wm_level *result)
1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996
{
	bool ret;

	/* already determined to be invalid? */
	if (!result->enable)
		return false;

	result->enable = result->pri_val <= max->pri &&
			 result->spr_val <= max->spr &&
			 result->cur_val <= max->cur;

	ret = result->enable;

	/*
	 * HACK until we can pre-compute everything,
	 * and thus fail gracefully if LP0 watermarks
	 * are exceeded...
	 */
	if (level == 0 && !result->enable) {
		if (result->pri_val > max->pri)
			DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
				      level, result->pri_val, max->pri);
		if (result->spr_val > max->spr)
			DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
				      level, result->spr_val, max->spr);
		if (result->cur_val > max->cur)
			DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
				      level, result->cur_val, max->cur);

		result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
		result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
		result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
		result->enable = true;
	}

	return ret;
}

1997
static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
1998
				 const struct intel_crtc *intel_crtc,
1999
				 int level,
2000
				 struct intel_crtc_state *cstate,
2001 2002 2003
				 struct intel_plane_state *pristate,
				 struct intel_plane_state *sprstate,
				 struct intel_plane_state *curstate,
2004
				 struct intel_wm_level *result)
2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016
{
	uint16_t pri_latency = dev_priv->wm.pri_latency[level];
	uint16_t spr_latency = dev_priv->wm.spr_latency[level];
	uint16_t cur_latency = dev_priv->wm.cur_latency[level];

	/* WM1+ latency values stored in 0.5us units */
	if (level > 0) {
		pri_latency *= 5;
		spr_latency *= 5;
		cur_latency *= 5;
	}

2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028
	if (pristate) {
		result->pri_val = ilk_compute_pri_wm(cstate, pristate,
						     pri_latency, level);
		result->fbc_val = ilk_compute_fbc_wm(cstate, pristate, result->pri_val);
	}

	if (sprstate)
		result->spr_val = ilk_compute_spr_wm(cstate, sprstate, spr_latency);

	if (curstate)
		result->cur_val = ilk_compute_cur_wm(cstate, curstate, cur_latency);

2029 2030 2031
	result->enable = true;
}

2032
static uint32_t
2033 2034
hsw_compute_linetime_wm(struct drm_device *dev,
			struct intel_crtc_state *cstate)
2035 2036
{
	struct drm_i915_private *dev_priv = dev->dev_private;
2037 2038
	const struct drm_display_mode *adjusted_mode =
		&cstate->base.adjusted_mode;
2039
	u32 linetime, ips_linetime;
2040

2041 2042 2043 2044 2045
	if (!cstate->base.active)
		return 0;
	if (WARN_ON(adjusted_mode->crtc_clock == 0))
		return 0;
	if (WARN_ON(dev_priv->cdclk_freq == 0))
2046
		return 0;
2047

2048 2049 2050
	/* The WM are computed with base on how long it takes to fill a single
	 * row at the given clock rate, multiplied by 8.
	 * */
2051 2052 2053
	linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
				     adjusted_mode->crtc_clock);
	ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2054
					 dev_priv->cdclk_freq);
2055

2056 2057
	return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
	       PIPE_WM_LINETIME_TIME(linetime);
2058 2059
}

2060
static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[8])
2061 2062 2063
{
	struct drm_i915_private *dev_priv = dev->dev_private;

2064 2065
	if (IS_GEN9(dev)) {
		uint32_t val;
2066
		int ret, i;
2067
		int level, max_level = ilk_wm_max_level(dev);
2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109

		/* read the first set of memory latencies[0:3] */
		val = 0; /* data0 to be programmed to 0 for first set */
		mutex_lock(&dev_priv->rps.hw_lock);
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
					     &val);
		mutex_unlock(&dev_priv->rps.hw_lock);

		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

		/* read the second set of memory latencies[4:7] */
		val = 1; /* data0 to be programmed to 1 for second set */
		mutex_lock(&dev_priv->rps.hw_lock);
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
					     &val);
		mutex_unlock(&dev_priv->rps.hw_lock);
		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

2110
		/*
2111 2112
		 * WaWmMemoryReadLatency:skl
		 *
2113 2114 2115 2116 2117 2118 2119 2120
		 * punit doesn't take into account the read latency so we need
		 * to add 2us to the various latency levels we retrieve from
		 * the punit.
		 *   - W0 is a bit special in that it's the only level that
		 *   can't be disabled if we want to have display working, so
		 *   we always add 2us there.
		 *   - For levels >=1, punit returns 0us latency when they are
		 *   disabled, so we respect that and don't add 2us then
2121 2122 2123 2124 2125
		 *
		 * Additionally, if a level n (n > 1) has a 0us latency, all
		 * levels m (m >= n) need to be disabled. We make sure to
		 * sanitize the values out of the punit to satisfy this
		 * requirement.
2126 2127 2128 2129 2130
		 */
		wm[0] += 2;
		for (level = 1; level <= max_level; level++)
			if (wm[level] != 0)
				wm[level] += 2;
2131 2132 2133
			else {
				for (i = level + 1; i <= max_level; i++)
					wm[i] = 0;
2134

2135 2136
				break;
			}
2137
	} else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2138 2139 2140 2141 2142
		uint64_t sskpd = I915_READ64(MCH_SSKPD);

		wm[0] = (sskpd >> 56) & 0xFF;
		if (wm[0] == 0)
			wm[0] = sskpd & 0xF;
2143 2144 2145 2146
		wm[1] = (sskpd >> 4) & 0xFF;
		wm[2] = (sskpd >> 12) & 0xFF;
		wm[3] = (sskpd >> 20) & 0x1FF;
		wm[4] = (sskpd >> 32) & 0x1FF;
2147 2148 2149 2150 2151 2152 2153
	} else if (INTEL_INFO(dev)->gen >= 6) {
		uint32_t sskpd = I915_READ(MCH_SSKPD);

		wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
		wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
		wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
		wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2154 2155 2156 2157 2158 2159 2160
	} else if (INTEL_INFO(dev)->gen >= 5) {
		uint32_t mltr = I915_READ(MLTR_ILK);

		/* ILK primary LP0 latency is 700 ns */
		wm[0] = 7;
		wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
		wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2161 2162 2163
	}
}

2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181
static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
{
	/* ILK sprite LP0 latency is 1300 ns */
	if (INTEL_INFO(dev)->gen == 5)
		wm[0] = 13;
}

static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
{
	/* ILK cursor LP0 latency is 1300 ns */
	if (INTEL_INFO(dev)->gen == 5)
		wm[0] = 13;

	/* WaDoubleCursorLP3Latency:ivb */
	if (IS_IVYBRIDGE(dev))
		wm[3] *= 2;
}

2182
int ilk_wm_max_level(const struct drm_device *dev)
2183 2184
{
	/* how many WM levels are we expecting */
2185
	if (INTEL_INFO(dev)->gen >= 9)
2186 2187
		return 7;
	else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2188
		return 4;
2189
	else if (INTEL_INFO(dev)->gen >= 6)
2190
		return 3;
2191
	else
2192 2193
		return 2;
}
2194

2195 2196
static void intel_print_wm_latency(struct drm_device *dev,
				   const char *name,
2197
				   const uint16_t wm[8])
2198 2199
{
	int level, max_level = ilk_wm_max_level(dev);
2200 2201 2202 2203 2204 2205 2206 2207 2208 2209

	for (level = 0; level <= max_level; level++) {
		unsigned int latency = wm[level];

		if (latency == 0) {
			DRM_ERROR("%s WM%d latency not provided\n",
				  name, level);
			continue;
		}

2210 2211 2212 2213 2214 2215 2216
		/*
		 * - latencies are in us on gen9.
		 * - before then, WM1+ latency values are in 0.5us units
		 */
		if (IS_GEN9(dev))
			latency *= 10;
		else if (level > 0)
2217 2218 2219 2220 2221 2222 2223 2224
			latency *= 5;

		DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
			      name, level, wm[level],
			      latency / 10, latency % 10);
	}
}

2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261
static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
				    uint16_t wm[5], uint16_t min)
{
	int level, max_level = ilk_wm_max_level(dev_priv->dev);

	if (wm[0] >= min)
		return false;

	wm[0] = max(wm[0], min);
	for (level = 1; level <= max_level; level++)
		wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));

	return true;
}

static void snb_wm_latency_quirk(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	bool changed;

	/*
	 * The BIOS provided WM memory latency values are often
	 * inadequate for high resolution displays. Adjust them.
	 */
	changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);

	if (!changed)
		return;

	DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
	intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
}

2262
static void ilk_setup_wm_latency(struct drm_device *dev)
2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	intel_read_wm_latency(dev, dev_priv->wm.pri_latency);

	memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));
	memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));

	intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
	intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
2275 2276 2277 2278

	intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2279 2280 2281

	if (IS_GEN6(dev))
		snb_wm_latency_quirk(dev);
2282 2283
}

2284 2285 2286 2287 2288 2289 2290 2291
static void skl_setup_wm_latency(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	intel_read_wm_latency(dev, dev_priv->wm.skl_latency);
	intel_print_wm_latency(dev, "Gen9 Plane", dev_priv->wm.skl_latency);
}

2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314
static bool ilk_validate_pipe_wm(struct drm_device *dev,
				 struct intel_pipe_wm *pipe_wm)
{
	/* LP0 watermark maximums depend on this pipe alone */
	const struct intel_wm_config config = {
		.num_pipes_active = 1,
		.sprites_enabled = pipe_wm->sprites_enabled,
		.sprites_scaled = pipe_wm->sprites_scaled,
	};
	struct ilk_wm_maximums max;

	/* LP0 watermarks always use 1/2 DDB partitioning */
	ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);

	/* At least LP0 must be valid */
	if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) {
		DRM_DEBUG_KMS("LP0 watermark invalid\n");
		return false;
	}

	return true;
}

2315
/* Compute new watermarks for the pipe */
2316
static int ilk_compute_pipe_wm(struct intel_crtc_state *cstate)
2317
{
2318 2319
	struct drm_atomic_state *state = cstate->base.state;
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
2320
	struct intel_pipe_wm *pipe_wm;
2321
	struct drm_device *dev = state->dev;
2322
	const struct drm_i915_private *dev_priv = dev->dev_private;
2323
	struct intel_plane *intel_plane;
2324
	struct intel_plane_state *pristate = NULL;
2325
	struct intel_plane_state *sprstate = NULL;
2326
	struct intel_plane_state *curstate = NULL;
2327
	int level, max_level = ilk_wm_max_level(dev), usable_level;
2328
	struct ilk_wm_maximums max;
2329

2330 2331
	pipe_wm = &cstate->wm.optimal.ilk;

2332
	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
2333 2334 2335 2336 2337 2338
		struct intel_plane_state *ps;

		ps = intel_atomic_get_existing_plane_state(state,
							   intel_plane);
		if (!ps)
			continue;
2339 2340

		if (intel_plane->base.type == DRM_PLANE_TYPE_PRIMARY)
2341
			pristate = ps;
2342
		else if (intel_plane->base.type == DRM_PLANE_TYPE_OVERLAY)
2343
			sprstate = ps;
2344
		else if (intel_plane->base.type == DRM_PLANE_TYPE_CURSOR)
2345
			curstate = ps;
2346 2347
	}

2348
	pipe_wm->pipe_enabled = cstate->base.active;
2349 2350 2351 2352 2353 2354 2355
	if (sprstate) {
		pipe_wm->sprites_enabled = sprstate->visible;
		pipe_wm->sprites_scaled = sprstate->visible &&
			(drm_rect_width(&sprstate->dst) != drm_rect_width(&sprstate->src) >> 16 ||
			 drm_rect_height(&sprstate->dst) != drm_rect_height(&sprstate->src) >> 16);
	}

2356
	usable_level = max_level;
2357

2358
	/* ILK/SNB: LP2+ watermarks only w/o sprites */
2359
	if (INTEL_INFO(dev)->gen <= 6 && pipe_wm->sprites_enabled)
2360
		usable_level = 1;
2361 2362

	/* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
2363
	if (pipe_wm->sprites_scaled)
2364
		usable_level = 0;
2365

2366
	ilk_compute_wm_level(dev_priv, intel_crtc, 0, cstate,
2367 2368 2369 2370
			     pristate, sprstate, curstate, &pipe_wm->raw_wm[0]);

	memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm));
	pipe_wm->wm[0] = pipe_wm->raw_wm[0];
2371

2372
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2373
		pipe_wm->linetime = hsw_compute_linetime_wm(dev, cstate);
2374

2375
	if (!ilk_validate_pipe_wm(dev, pipe_wm))
2376
		return -EINVAL;
2377 2378 2379 2380

	ilk_compute_wm_reg_maximums(dev, 1, &max);

	for (level = 1; level <= max_level; level++) {
2381
		struct intel_wm_level *wm = &pipe_wm->raw_wm[level];
2382

2383
		ilk_compute_wm_level(dev_priv, intel_crtc, level, cstate,
2384
				     pristate, sprstate, curstate, wm);
2385 2386 2387 2388 2389 2390

		/*
		 * Disable any watermark level that exceeds the
		 * register maximums since such watermarks are
		 * always invalid.
		 */
2391 2392
		if (level > usable_level)
			continue;
2393

2394 2395 2396
		if (ilk_validate_wm_level(level, &max, wm))
			pipe_wm->wm[level] = *wm;
		else
2397
			usable_level = level;
2398 2399
	}

2400
	return 0;
2401 2402
}

2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455
/*
 * Build a set of 'intermediate' watermark values that satisfy both the old
 * state and the new state.  These can be programmed to the hardware
 * immediately.
 */
static int ilk_compute_intermediate_wm(struct drm_device *dev,
				       struct intel_crtc *intel_crtc,
				       struct intel_crtc_state *newstate)
{
	struct intel_pipe_wm *a = &newstate->wm.intermediate;
	struct intel_pipe_wm *b = &intel_crtc->wm.active.ilk;
	int level, max_level = ilk_wm_max_level(dev);

	/*
	 * Start with the final, target watermarks, then combine with the
	 * currently active watermarks to get values that are safe both before
	 * and after the vblank.
	 */
	*a = newstate->wm.optimal.ilk;
	a->pipe_enabled |= b->pipe_enabled;
	a->sprites_enabled |= b->sprites_enabled;
	a->sprites_scaled |= b->sprites_scaled;

	for (level = 0; level <= max_level; level++) {
		struct intel_wm_level *a_wm = &a->wm[level];
		const struct intel_wm_level *b_wm = &b->wm[level];

		a_wm->enable &= b_wm->enable;
		a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val);
		a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val);
		a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val);
		a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val);
	}

	/*
	 * We need to make sure that these merged watermark values are
	 * actually a valid configuration themselves.  If they're not,
	 * there's no safe way to transition from the old state to
	 * the new state, so we need to fail the atomic transaction.
	 */
	if (!ilk_validate_pipe_wm(dev, a))
		return -EINVAL;

	/*
	 * If our intermediate WM are identical to the final WM, then we can
	 * omit the post-vblank programming; only update if it's different.
	 */
	if (memcmp(a, &newstate->wm.optimal.ilk, sizeof(*a)) == 0)
		newstate->wm.need_postvbl_update = false;

	return 0;
}

2456 2457 2458 2459 2460 2461 2462 2463 2464
/*
 * Merge the watermarks from all active pipes for a specific level.
 */
static void ilk_merge_wm_level(struct drm_device *dev,
			       int level,
			       struct intel_wm_level *ret_wm)
{
	const struct intel_crtc *intel_crtc;

2465 2466
	ret_wm->enable = true;

2467
	for_each_intel_crtc(dev, intel_crtc) {
2468
		const struct intel_pipe_wm *active = &intel_crtc->wm.active.ilk;
2469 2470 2471 2472
		const struct intel_wm_level *wm = &active->wm[level];

		if (!active->pipe_enabled)
			continue;
2473

2474 2475 2476 2477 2478
		/*
		 * The watermark values may have been used in the past,
		 * so we must maintain them in the registers for some
		 * time even if the level is now disabled.
		 */
2479
		if (!wm->enable)
2480
			ret_wm->enable = false;
2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492

		ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
		ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
		ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
		ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
	}
}

/*
 * Merge all low power watermarks for all active pipes.
 */
static void ilk_wm_merge(struct drm_device *dev,
2493
			 const struct intel_wm_config *config,
2494
			 const struct ilk_wm_maximums *max,
2495 2496
			 struct intel_pipe_wm *merged)
{
2497
	struct drm_i915_private *dev_priv = dev->dev_private;
2498
	int level, max_level = ilk_wm_max_level(dev);
2499
	int last_enabled_level = max_level;
2500

2501 2502 2503
	/* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
	if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
	    config->num_pipes_active > 1)
2504
		last_enabled_level = 0;
2505

2506 2507
	/* ILK: FBC WM must be disabled always */
	merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
2508 2509 2510 2511 2512 2513 2514

	/* merge each WM1+ level */
	for (level = 1; level <= max_level; level++) {
		struct intel_wm_level *wm = &merged->wm[level];

		ilk_merge_wm_level(dev, level, wm);

2515 2516 2517 2518 2519
		if (level > last_enabled_level)
			wm->enable = false;
		else if (!ilk_validate_wm_level(level, max, wm))
			/* make sure all following levels get disabled */
			last_enabled_level = level - 1;
2520 2521 2522 2523 2524 2525

		/*
		 * The spec says it is preferred to disable
		 * FBC WMs instead of disabling a WM level.
		 */
		if (wm->fbc_val > max->fbc) {
2526 2527
			if (wm->enable)
				merged->fbc_wm_enabled = false;
2528 2529 2530
			wm->fbc_val = 0;
		}
	}
2531 2532 2533 2534 2535 2536 2537

	/* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
	/*
	 * FIXME this is racy. FBC might get enabled later.
	 * What we should check here is whether FBC can be
	 * enabled sometime later.
	 */
2538
	if (IS_GEN5(dev) && !merged->fbc_wm_enabled &&
2539
	    intel_fbc_is_active(dev_priv)) {
2540 2541 2542 2543 2544 2545
		for (level = 2; level <= max_level; level++) {
			struct intel_wm_level *wm = &merged->wm[level];

			wm->enable = false;
		}
	}
2546 2547
}

2548 2549 2550 2551 2552 2553
static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
{
	/* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
	return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
}

2554 2555 2556 2557 2558
/* The value we need to program into the WM_LPx latency field */
static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

2559
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2560 2561 2562 2563 2564
		return 2 * level;
	else
		return dev_priv->wm.pri_latency[level];
}

2565
static void ilk_compute_wm_results(struct drm_device *dev,
2566
				   const struct intel_pipe_wm *merged,
2567
				   enum intel_ddb_partitioning partitioning,
2568
				   struct ilk_wm_values *results)
2569
{
2570 2571
	struct intel_crtc *intel_crtc;
	int level, wm_lp;
2572

2573
	results->enable_fbc_wm = merged->fbc_wm_enabled;
2574
	results->partitioning = partitioning;
2575

2576
	/* LP1+ register values */
2577
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2578
		const struct intel_wm_level *r;
2579

2580
		level = ilk_wm_lp_to_level(wm_lp, merged);
2581

2582
		r = &merged->wm[level];
2583

2584 2585 2586 2587 2588
		/*
		 * Maintain the watermark values even if the level is
		 * disabled. Doing otherwise could cause underruns.
		 */
		results->wm_lp[wm_lp - 1] =
2589
			(ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2590 2591 2592
			(r->pri_val << WM1_LP_SR_SHIFT) |
			r->cur_val;

2593 2594 2595
		if (r->enable)
			results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;

2596 2597 2598 2599 2600 2601 2602
		if (INTEL_INFO(dev)->gen >= 8)
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
		else
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT;

2603 2604 2605 2606
		/*
		 * Always set WM1S_LP_EN when spr_val != 0, even if the
		 * level is disabled. Doing otherwise could cause underruns.
		 */
2607 2608 2609 2610 2611
		if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
			WARN_ON(wm_lp != 1);
			results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
		} else
			results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2612
	}
2613

2614
	/* LP0 register values */
2615
	for_each_intel_crtc(dev, intel_crtc) {
2616
		enum pipe pipe = intel_crtc->pipe;
2617 2618
		const struct intel_wm_level *r =
			&intel_crtc->wm.active.ilk.wm[0];
2619 2620 2621 2622

		if (WARN_ON(!r->enable))
			continue;

2623
		results->wm_linetime[pipe] = intel_crtc->wm.active.ilk.linetime;
2624

2625 2626 2627 2628
		results->wm_pipe[pipe] =
			(r->pri_val << WM0_PIPE_PLANE_SHIFT) |
			(r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
			r->cur_val;
2629 2630 2631
	}
}

2632 2633
/* Find the result with the highest level enabled. Check for enable_fbc_wm in
 * case both are at the same level. Prefer r1 in case they're the same. */
2634
static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2635 2636
						  struct intel_pipe_wm *r1,
						  struct intel_pipe_wm *r2)
2637
{
2638 2639
	int level, max_level = ilk_wm_max_level(dev);
	int level1 = 0, level2 = 0;
2640

2641 2642 2643 2644 2645
	for (level = 1; level <= max_level; level++) {
		if (r1->wm[level].enable)
			level1 = level;
		if (r2->wm[level].enable)
			level2 = level;
2646 2647
	}

2648 2649
	if (level1 == level2) {
		if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2650 2651 2652
			return r2;
		else
			return r1;
2653
	} else if (level1 > level2) {
2654 2655 2656 2657 2658 2659
		return r1;
	} else {
		return r2;
	}
}

2660 2661 2662 2663 2664 2665 2666 2667
/* dirty bits used to track which watermarks need changes */
#define WM_DIRTY_PIPE(pipe) (1 << (pipe))
#define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
#define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
#define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
#define WM_DIRTY_FBC (1 << 24)
#define WM_DIRTY_DDB (1 << 25)

2668
static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
2669 2670
					 const struct ilk_wm_values *old,
					 const struct ilk_wm_values *new)
2671 2672 2673 2674 2675
{
	unsigned int dirty = 0;
	enum pipe pipe;
	int wm_lp;

2676
	for_each_pipe(dev_priv, pipe) {
2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719
		if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
			dirty |= WM_DIRTY_LINETIME(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}

		if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
			dirty |= WM_DIRTY_PIPE(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}
	}

	if (old->enable_fbc_wm != new->enable_fbc_wm) {
		dirty |= WM_DIRTY_FBC;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	if (old->partitioning != new->partitioning) {
		dirty |= WM_DIRTY_DDB;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	/* LP1+ watermarks already deemed dirty, no need to continue */
	if (dirty & WM_DIRTY_LP_ALL)
		return dirty;

	/* Find the lowest numbered LP1+ watermark in need of an update... */
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
		if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
		    old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
			break;
	}

	/* ...and mark it and all higher numbered LP1+ watermarks as dirty */
	for (; wm_lp <= 3; wm_lp++)
		dirty |= WM_DIRTY_LP(wm_lp);

	return dirty;
}

2720 2721
static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
			       unsigned int dirty)
2722
{
2723
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2724
	bool changed = false;
2725

2726 2727 2728
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
		previous->wm_lp[2] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2729
		changed = true;
2730 2731 2732 2733
	}
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
		previous->wm_lp[1] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2734
		changed = true;
2735 2736 2737 2738
	}
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
		previous->wm_lp[0] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2739
		changed = true;
2740
	}
2741

2742 2743 2744 2745
	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
2746

2747 2748 2749 2750 2751 2752 2753
	return changed;
}

/*
 * The spec says we shouldn't write when we don't need, because every write
 * causes WMs to be re-evaluated, expending some power.
 */
2754 2755
static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
				struct ilk_wm_values *results)
2756 2757
{
	struct drm_device *dev = dev_priv->dev;
2758
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2759 2760 2761
	unsigned int dirty;
	uint32_t val;

2762
	dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
2763 2764 2765 2766 2767
	if (!dirty)
		return;

	_ilk_disable_lp_wm(dev_priv, dirty);

2768
	if (dirty & WM_DIRTY_PIPE(PIPE_A))
2769
		I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2770
	if (dirty & WM_DIRTY_PIPE(PIPE_B))
2771
		I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2772
	if (dirty & WM_DIRTY_PIPE(PIPE_C))
2773 2774
		I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);

2775
	if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2776
		I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2777
	if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2778
		I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2779
	if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2780 2781
		I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);

2782
	if (dirty & WM_DIRTY_DDB) {
2783
		if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797
			val = I915_READ(WM_MISC);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~WM_MISC_DATA_PARTITION_5_6;
			else
				val |= WM_MISC_DATA_PARTITION_5_6;
			I915_WRITE(WM_MISC, val);
		} else {
			val = I915_READ(DISP_ARB_CTL2);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~DISP_DATA_PARTITION_5_6;
			else
				val |= DISP_DATA_PARTITION_5_6;
			I915_WRITE(DISP_ARB_CTL2, val);
		}
2798 2799
	}

2800
	if (dirty & WM_DIRTY_FBC) {
2801 2802 2803 2804 2805 2806 2807 2808
		val = I915_READ(DISP_ARB_CTL);
		if (results->enable_fbc_wm)
			val &= ~DISP_FBC_WM_DIS;
		else
			val |= DISP_FBC_WM_DIS;
		I915_WRITE(DISP_ARB_CTL, val);
	}

2809 2810 2811 2812 2813
	if (dirty & WM_DIRTY_LP(1) &&
	    previous->wm_lp_spr[0] != results->wm_lp_spr[0])
		I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);

	if (INTEL_INFO(dev)->gen >= 7) {
2814 2815 2816 2817 2818
		if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
			I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
		if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
			I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
	}
2819

2820
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
2821
		I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2822
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
2823
		I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2824
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
2825
		I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2826 2827

	dev_priv->wm.hw = *results;
2828 2829
}

2830
bool ilk_disable_lp_wm(struct drm_device *dev)
2831 2832 2833 2834 2835 2836
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
}

2837 2838 2839 2840 2841 2842
/*
 * On gen9, we need to allocate Display Data Buffer (DDB) portions to the
 * different active planes.
 */

#define SKL_DDB_SIZE		896	/* in blocks */
2843
#define BXT_DDB_SIZE		512
2844

2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866
/*
 * Return the index of a plane in the SKL DDB and wm result arrays.  Primary
 * plane is always in slot 0, cursor is always in slot I915_MAX_PLANES-1, and
 * other universal planes are in indices 1..n.  Note that this may leave unused
 * indices between the top "sprite" plane and the cursor.
 */
static int
skl_wm_plane_id(const struct intel_plane *plane)
{
	switch (plane->base.type) {
	case DRM_PLANE_TYPE_PRIMARY:
		return 0;
	case DRM_PLANE_TYPE_CURSOR:
		return PLANE_CURSOR;
	case DRM_PLANE_TYPE_OVERLAY:
		return plane->plane + 1;
	default:
		MISSING_CASE(plane->base.type);
		return plane->plane;
	}
}

2867 2868
static void
skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
2869
				   const struct intel_crtc_state *cstate,
2870 2871 2872
				   const struct intel_wm_config *config,
				   struct skl_ddb_entry *alloc /* out */)
{
2873
	struct drm_crtc *for_crtc = cstate->base.crtc;
2874 2875 2876 2877
	struct drm_crtc *crtc;
	unsigned int pipe_size, ddb_size;
	int nth_active_pipe;

2878
	if (!cstate->base.active) {
2879 2880 2881 2882 2883
		alloc->start = 0;
		alloc->end = 0;
		return;
	}

2884 2885 2886 2887
	if (IS_BROXTON(dev))
		ddb_size = BXT_DDB_SIZE;
	else
		ddb_size = SKL_DDB_SIZE;
2888 2889 2890 2891 2892

	ddb_size -= 4; /* 4 blocks for bypass path allocation */

	nth_active_pipe = 0;
	for_each_crtc(dev, crtc) {
2893
		if (!to_intel_crtc(crtc)->active)
2894 2895 2896 2897 2898 2899 2900 2901 2902 2903
			continue;

		if (crtc == for_crtc)
			break;

		nth_active_pipe++;
	}

	pipe_size = ddb_size / config->num_pipes_active;
	alloc->start = nth_active_pipe * ddb_size / config->num_pipes_active;
2904
	alloc->end = alloc->start + pipe_size;
2905 2906 2907 2908 2909 2910 2911 2912 2913 2914
}

static unsigned int skl_cursor_allocation(const struct intel_wm_config *config)
{
	if (config->num_pipes_active == 1)
		return 32;

	return 8;
}

2915 2916 2917 2918
static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
{
	entry->start = reg & 0x3ff;
	entry->end = (reg >> 16) & 0x3ff;
2919 2920
	if (entry->end)
		entry->end += 1;
2921 2922
}

2923 2924
void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
			  struct skl_ddb_allocation *ddb /* out */)
2925 2926 2927 2928 2929
{
	enum pipe pipe;
	int plane;
	u32 val;

2930 2931
	memset(ddb, 0, sizeof(*ddb));

2932
	for_each_pipe(dev_priv, pipe) {
2933 2934 2935 2936
		enum intel_display_power_domain power_domain;

		power_domain = POWER_DOMAIN_PIPE(pipe);
		if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
2937 2938
			continue;

2939
		for_each_plane(dev_priv, pipe, plane) {
2940 2941 2942 2943 2944 2945
			val = I915_READ(PLANE_BUF_CFG(pipe, plane));
			skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane],
						   val);
		}

		val = I915_READ(CUR_BUF_CFG(pipe));
2946 2947
		skl_ddb_entry_init_from_hw(&ddb->plane[pipe][PLANE_CURSOR],
					   val);
2948 2949

		intel_display_power_put(dev_priv, power_domain);
2950 2951 2952
	}
}

2953
static unsigned int
2954 2955 2956
skl_plane_relative_data_rate(const struct intel_crtc_state *cstate,
			     const struct drm_plane_state *pstate,
			     int y)
2957
{
2958
	struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
2959
	struct drm_framebuffer *fb = pstate->fb;
2960 2961 2962 2963 2964 2965 2966
	uint32_t width = 0, height = 0;

	width = drm_rect_width(&intel_pstate->src) >> 16;
	height = drm_rect_height(&intel_pstate->src) >> 16;

	if (intel_rotation_90_or_270(pstate->rotation))
		swap(width, height);
2967 2968

	/* for planar format */
2969
	if (fb->pixel_format == DRM_FORMAT_NV12) {
2970
		if (y)  /* y-plane data rate */
2971
			return width * height *
2972
				drm_format_plane_cpp(fb->pixel_format, 0);
2973
		else    /* uv-plane data rate */
2974
			return (width / 2) * (height / 2) *
2975
				drm_format_plane_cpp(fb->pixel_format, 1);
2976 2977 2978
	}

	/* for packed formats */
2979
	return width * height * drm_format_plane_cpp(fb->pixel_format, 0);
2980 2981 2982 2983 2984 2985 2986 2987
}

/*
 * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
 * a 8192x4096@32bpp framebuffer:
 *   3 * 4096 * 8192  * 4 < 2^32
 */
static unsigned int
2988
skl_get_total_relative_data_rate(const struct intel_crtc_state *cstate)
2989
{
2990 2991 2992
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
	struct drm_device *dev = intel_crtc->base.dev;
	const struct intel_plane *intel_plane;
2993 2994
	unsigned int total_data_rate = 0;

2995 2996
	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
		const struct drm_plane_state *pstate = intel_plane->base.state;
2997

2998
		if (pstate->fb == NULL)
2999 3000
			continue;

3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013
		if (intel_plane->base.type == DRM_PLANE_TYPE_CURSOR)
			continue;

		/* packed/uv */
		total_data_rate += skl_plane_relative_data_rate(cstate,
								pstate,
								0);

		if (pstate->fb->pixel_format == DRM_FORMAT_NV12)
			/* y-plane */
			total_data_rate += skl_plane_relative_data_rate(cstate,
									pstate,
									1);
3014 3015 3016 3017 3018 3019
	}

	return total_data_rate;
}

static void
3020
skl_allocate_pipe_ddb(struct intel_crtc_state *cstate,
3021 3022
		      struct skl_ddb_allocation *ddb /* out */)
{
3023
	struct drm_crtc *crtc = cstate->base.crtc;
3024
	struct drm_device *dev = crtc->dev;
3025 3026
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_wm_config *config = &dev_priv->wm.config;
3027
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3028
	struct intel_plane *intel_plane;
3029
	enum pipe pipe = intel_crtc->pipe;
3030
	struct skl_ddb_entry *alloc = &ddb->pipe[pipe];
3031
	uint16_t alloc_size, start, cursor_blocks;
3032
	uint16_t minimum[I915_MAX_PLANES];
3033
	uint16_t y_minimum[I915_MAX_PLANES];
3034 3035
	unsigned int total_data_rate;

3036
	skl_ddb_get_pipe_allocation_limits(dev, cstate, config, alloc);
3037
	alloc_size = skl_ddb_entry_size(alloc);
3038 3039
	if (alloc_size == 0) {
		memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
3040 3041
		memset(&ddb->plane[pipe][PLANE_CURSOR], 0,
		       sizeof(ddb->plane[pipe][PLANE_CURSOR]));
3042 3043 3044 3045
		return;
	}

	cursor_blocks = skl_cursor_allocation(config);
3046 3047
	ddb->plane[pipe][PLANE_CURSOR].start = alloc->end - cursor_blocks;
	ddb->plane[pipe][PLANE_CURSOR].end = alloc->end;
3048 3049

	alloc_size -= cursor_blocks;
3050
	alloc->end -= cursor_blocks;
3051

3052
	/* 1. Allocate the mininum required blocks for each active plane */
3053 3054 3055 3056
	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
		struct drm_plane *plane = &intel_plane->base;
		struct drm_framebuffer *fb = plane->state->fb;
		int id = skl_wm_plane_id(intel_plane);
3057

3058
		if (!to_intel_plane_state(plane->state)->visible)
3059
			continue;
3060

3061
		if (plane->type == DRM_PLANE_TYPE_CURSOR)
3062 3063
			continue;

3064 3065 3066 3067
		minimum[id] = 8;
		alloc_size -= minimum[id];
		y_minimum[id] = (fb->pixel_format == DRM_FORMAT_NV12) ? 8 : 0;
		alloc_size -= y_minimum[id];
3068 3069
	}

3070
	/*
3071 3072
	 * 2. Distribute the remaining space in proportion to the amount of
	 * data each plane needs to fetch from memory.
3073 3074 3075
	 *
	 * FIXME: we may not allocate every single block here.
	 */
3076
	total_data_rate = skl_get_total_relative_data_rate(cstate);
3077

3078
	start = alloc->start;
3079 3080 3081
	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
		struct drm_plane *plane = &intel_plane->base;
		struct drm_plane_state *pstate = intel_plane->base.state;
3082 3083
		unsigned int data_rate, y_data_rate;
		uint16_t plane_blocks, y_plane_blocks = 0;
3084
		int id = skl_wm_plane_id(intel_plane);
3085

3086
		if (!to_intel_plane_state(pstate)->visible)
3087 3088
			continue;
		if (plane->type == DRM_PLANE_TYPE_CURSOR)
3089 3090
			continue;

3091
		data_rate = skl_plane_relative_data_rate(cstate, pstate, 0);
3092 3093

		/*
3094
		 * allocation for (packed formats) or (uv-plane part of planar format):
3095 3096 3097
		 * promote the expression to 64 bits to avoid overflowing, the
		 * result is < available as data_rate / total_data_rate < 1
		 */
3098
		plane_blocks = minimum[id];
3099 3100
		plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
					total_data_rate);
3101

3102 3103
		ddb->plane[pipe][id].start = start;
		ddb->plane[pipe][id].end = start + plane_blocks;
3104 3105

		start += plane_blocks;
3106 3107 3108 3109

		/*
		 * allocation for y_plane part of planar format:
		 */
3110 3111 3112 3113 3114
		if (pstate->fb->pixel_format == DRM_FORMAT_NV12) {
			y_data_rate = skl_plane_relative_data_rate(cstate,
								   pstate,
								   1);
			y_plane_blocks = y_minimum[id];
3115 3116 3117
			y_plane_blocks += div_u64((uint64_t)alloc_size * y_data_rate,
						total_data_rate);

3118 3119
			ddb->y_plane[pipe][id].start = start;
			ddb->y_plane[pipe][id].end = start + y_plane_blocks;
3120 3121 3122 3123

			start += y_plane_blocks;
		}

3124 3125 3126 3127
	}

}

3128
static uint32_t skl_pipe_pixel_rate(const struct intel_crtc_state *config)
3129 3130
{
	/* TODO: Take into account the scalers once we support them */
3131
	return config->base.adjusted_mode.crtc_clock;
3132 3133 3134 3135
}

/*
 * The max latency should be 257 (max the punit can code is 255 and we add 2us
3136
 * for the read latency) and cpp should always be <= 8, so that
3137 3138 3139
 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
*/
3140
static uint32_t skl_wm_method1(uint32_t pixel_rate, uint8_t cpp, uint32_t latency)
3141 3142 3143 3144 3145 3146
{
	uint32_t wm_intermediate_val, ret;

	if (latency == 0)
		return UINT_MAX;

3147
	wm_intermediate_val = latency * pixel_rate * cpp / 512;
3148 3149 3150 3151 3152 3153
	ret = DIV_ROUND_UP(wm_intermediate_val, 1000);

	return ret;
}

static uint32_t skl_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
3154
			       uint32_t horiz_pixels, uint8_t cpp,
3155
			       uint64_t tiling, uint32_t latency)
3156
{
3157 3158 3159
	uint32_t ret;
	uint32_t plane_bytes_per_line, plane_blocks_per_line;
	uint32_t wm_intermediate_val;
3160 3161 3162 3163

	if (latency == 0)
		return UINT_MAX;

3164
	plane_bytes_per_line = horiz_pixels * cpp;
3165 3166 3167 3168 3169 3170 3171 3172 3173 3174

	if (tiling == I915_FORMAT_MOD_Y_TILED ||
	    tiling == I915_FORMAT_MOD_Yf_TILED) {
		plane_bytes_per_line *= 4;
		plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
		plane_blocks_per_line /= 4;
	} else {
		plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
	}

3175 3176
	wm_intermediate_val = latency * pixel_rate;
	ret = DIV_ROUND_UP(wm_intermediate_val, pipe_htotal * 1000) *
3177
				plane_blocks_per_line;
3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188

	return ret;
}

static bool skl_ddb_allocation_changed(const struct skl_ddb_allocation *new_ddb,
				       const struct intel_crtc *intel_crtc)
{
	struct drm_device *dev = intel_crtc->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	const struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;

3189 3190 3191 3192 3193
	/*
	 * If ddb allocation of pipes changed, it may require recalculation of
	 * watermarks
	 */
	if (memcmp(new_ddb->pipe, cur_ddb->pipe, sizeof(new_ddb->pipe)))
3194 3195 3196 3197 3198
		return true;

	return false;
}

3199
static bool skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
3200 3201
				 struct intel_crtc_state *cstate,
				 struct intel_plane *intel_plane,
3202
				 uint16_t ddb_allocation,
3203
				 int level,
3204 3205
				 uint16_t *out_blocks, /* out */
				 uint8_t *out_lines /* out */)
3206
{
3207 3208
	struct drm_plane *plane = &intel_plane->base;
	struct drm_framebuffer *fb = plane->state->fb;
3209 3210
	struct intel_plane_state *intel_pstate =
					to_intel_plane_state(plane->state);
3211 3212 3213 3214 3215
	uint32_t latency = dev_priv->wm.skl_latency[level];
	uint32_t method1, method2;
	uint32_t plane_bytes_per_line, plane_blocks_per_line;
	uint32_t res_blocks, res_lines;
	uint32_t selected_result;
3216
	uint8_t cpp;
3217
	uint32_t width = 0, height = 0;
3218

3219
	if (latency == 0 || !cstate->base.active || !intel_pstate->visible)
3220 3221
		return false;

3222 3223 3224 3225 3226 3227
	width = drm_rect_width(&intel_pstate->src) >> 16;
	height = drm_rect_height(&intel_pstate->src) >> 16;

	if (intel_rotation_90_or_270(plane->state->rotation))
		swap(width, height);

3228
	cpp = drm_format_plane_cpp(fb->pixel_format, 0);
3229
	method1 = skl_wm_method1(skl_pipe_pixel_rate(cstate),
3230
				 cpp, latency);
3231 3232
	method2 = skl_wm_method2(skl_pipe_pixel_rate(cstate),
				 cstate->base.adjusted_mode.crtc_htotal,
3233 3234 3235
				 width,
				 cpp,
				 fb->modifier[0],
3236
				 latency);
3237

3238
	plane_bytes_per_line = width * cpp;
3239
	plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3240

3241 3242
	if (fb->modifier[0] == I915_FORMAT_MOD_Y_TILED ||
	    fb->modifier[0] == I915_FORMAT_MOD_Yf_TILED) {
3243 3244
		uint32_t min_scanlines = 4;
		uint32_t y_tile_minimum;
3245
		if (intel_rotation_90_or_270(plane->state->rotation)) {
3246
			int cpp = (fb->pixel_format == DRM_FORMAT_NV12) ?
3247 3248 3249
				drm_format_plane_cpp(fb->pixel_format, 1) :
				drm_format_plane_cpp(fb->pixel_format, 0);

3250
			switch (cpp) {
3251 3252 3253 3254 3255 3256 3257 3258
			case 1:
				min_scanlines = 16;
				break;
			case 2:
				min_scanlines = 8;
				break;
			case 8:
				WARN(1, "Unsupported pixel depth for rotation");
3259
			}
3260 3261
		}
		y_tile_minimum = plane_blocks_per_line * min_scanlines;
3262 3263 3264 3265 3266 3267 3268
		selected_result = max(method2, y_tile_minimum);
	} else {
		if ((ddb_allocation / plane_blocks_per_line) >= 1)
			selected_result = min(method1, method2);
		else
			selected_result = method1;
	}
3269

3270 3271
	res_blocks = selected_result + 1;
	res_lines = DIV_ROUND_UP(selected_result, plane_blocks_per_line);
3272

3273
	if (level >= 1 && level <= 7) {
3274 3275
		if (fb->modifier[0] == I915_FORMAT_MOD_Y_TILED ||
		    fb->modifier[0] == I915_FORMAT_MOD_Yf_TILED)
3276 3277 3278 3279
			res_lines += 4;
		else
			res_blocks++;
	}
3280

3281
	if (res_blocks >= ddb_allocation || res_lines > 31)
3282 3283 3284 3285
		return false;

	*out_blocks = res_blocks;
	*out_lines = res_lines;
3286 3287 3288 3289 3290 3291

	return true;
}

static void skl_compute_wm_level(const struct drm_i915_private *dev_priv,
				 struct skl_ddb_allocation *ddb,
3292
				 struct intel_crtc_state *cstate,
3293 3294 3295
				 int level,
				 struct skl_wm_level *result)
{
3296 3297 3298
	struct drm_device *dev = dev_priv->dev;
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
	struct intel_plane *intel_plane;
3299
	uint16_t ddb_blocks;
3300 3301 3302 3303
	enum pipe pipe = intel_crtc->pipe;

	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
		int i = skl_wm_plane_id(intel_plane);
3304 3305 3306

		ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][i]);

3307
		result->plane_en[i] = skl_compute_plane_wm(dev_priv,
3308 3309
						cstate,
						intel_plane,
3310
						ddb_blocks,
3311
						level,
3312 3313 3314 3315 3316
						&result->plane_res_b[i],
						&result->plane_res_l[i]);
	}
}

3317
static uint32_t
3318
skl_compute_linetime_wm(struct intel_crtc_state *cstate)
3319
{
3320
	if (!cstate->base.active)
3321 3322
		return 0;

3323
	if (WARN_ON(skl_pipe_pixel_rate(cstate) == 0))
3324
		return 0;
3325

3326 3327
	return DIV_ROUND_UP(8 * cstate->base.adjusted_mode.crtc_htotal * 1000,
			    skl_pipe_pixel_rate(cstate));
3328 3329
}

3330
static void skl_compute_transition_wm(struct intel_crtc_state *cstate,
3331
				      struct skl_wm_level *trans_wm /* out */)
3332
{
3333
	struct drm_crtc *crtc = cstate->base.crtc;
3334
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3335
	struct intel_plane *intel_plane;
3336

3337
	if (!cstate->base.active)
3338
		return;
3339 3340

	/* Until we know more, just disable transition WMs */
3341 3342 3343
	for_each_intel_plane_on_crtc(crtc->dev, intel_crtc, intel_plane) {
		int i = skl_wm_plane_id(intel_plane);

3344
		trans_wm->plane_en[i] = false;
3345
	}
3346 3347
}

3348
static void skl_compute_pipe_wm(struct intel_crtc_state *cstate,
3349 3350 3351
				struct skl_ddb_allocation *ddb,
				struct skl_pipe_wm *pipe_wm)
{
3352
	struct drm_device *dev = cstate->base.crtc->dev;
3353 3354 3355 3356
	const struct drm_i915_private *dev_priv = dev->dev_private;
	int level, max_level = ilk_wm_max_level(dev);

	for (level = 0; level <= max_level; level++) {
3357 3358
		skl_compute_wm_level(dev_priv, ddb, cstate,
				     level, &pipe_wm->wm[level]);
3359
	}
3360
	pipe_wm->linetime = skl_compute_linetime_wm(cstate);
3361

3362
	skl_compute_transition_wm(cstate, &pipe_wm->trans_wm);
3363 3364 3365 3366 3367 3368 3369 3370 3371
}

static void skl_compute_wm_results(struct drm_device *dev,
				   struct skl_pipe_wm *p_wm,
				   struct skl_wm_values *r,
				   struct intel_crtc *intel_crtc)
{
	int level, max_level = ilk_wm_max_level(dev);
	enum pipe pipe = intel_crtc->pipe;
3372 3373
	uint32_t temp;
	int i;
3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389

	for (level = 0; level <= max_level; level++) {
		for (i = 0; i < intel_num_planes(intel_crtc); i++) {
			temp = 0;

			temp |= p_wm->wm[level].plane_res_l[i] <<
					PLANE_WM_LINES_SHIFT;
			temp |= p_wm->wm[level].plane_res_b[i];
			if (p_wm->wm[level].plane_en[i])
				temp |= PLANE_WM_EN;

			r->plane[pipe][i][level] = temp;
		}

		temp = 0;

3390 3391
		temp |= p_wm->wm[level].plane_res_l[PLANE_CURSOR] << PLANE_WM_LINES_SHIFT;
		temp |= p_wm->wm[level].plane_res_b[PLANE_CURSOR];
3392

3393
		if (p_wm->wm[level].plane_en[PLANE_CURSOR])
3394 3395
			temp |= PLANE_WM_EN;

3396
		r->plane[pipe][PLANE_CURSOR][level] = temp;
3397 3398 3399

	}

3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411
	/* transition WMs */
	for (i = 0; i < intel_num_planes(intel_crtc); i++) {
		temp = 0;
		temp |= p_wm->trans_wm.plane_res_l[i] << PLANE_WM_LINES_SHIFT;
		temp |= p_wm->trans_wm.plane_res_b[i];
		if (p_wm->trans_wm.plane_en[i])
			temp |= PLANE_WM_EN;

		r->plane_trans[pipe][i] = temp;
	}

	temp = 0;
3412 3413 3414
	temp |= p_wm->trans_wm.plane_res_l[PLANE_CURSOR] << PLANE_WM_LINES_SHIFT;
	temp |= p_wm->trans_wm.plane_res_b[PLANE_CURSOR];
	if (p_wm->trans_wm.plane_en[PLANE_CURSOR])
3415 3416
		temp |= PLANE_WM_EN;

3417
	r->plane_trans[pipe][PLANE_CURSOR] = temp;
3418

3419 3420 3421
	r->wm_linetime[pipe] = p_wm->linetime;
}

3422 3423
static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
				i915_reg_t reg,
3424 3425 3426 3427 3428 3429 3430 3431
				const struct skl_ddb_entry *entry)
{
	if (entry->end)
		I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
	else
		I915_WRITE(reg, 0);
}

3432 3433 3434 3435 3436 3437
static void skl_write_wm_values(struct drm_i915_private *dev_priv,
				const struct skl_wm_values *new)
{
	struct drm_device *dev = dev_priv->dev;
	struct intel_crtc *crtc;

3438
	for_each_intel_crtc(dev, crtc) {
3439 3440 3441
		int i, level, max_level = ilk_wm_max_level(dev);
		enum pipe pipe = crtc->pipe;

3442 3443
		if (!new->dirty[pipe])
			continue;
3444

3445
		I915_WRITE(PIPE_WM_LINETIME(pipe), new->wm_linetime[pipe]);
3446

3447 3448 3449 3450 3451
		for (level = 0; level <= max_level; level++) {
			for (i = 0; i < intel_num_planes(crtc); i++)
				I915_WRITE(PLANE_WM(pipe, i, level),
					   new->plane[pipe][i][level]);
			I915_WRITE(CUR_WM(pipe, level),
3452
				   new->plane[pipe][PLANE_CURSOR][level]);
3453
		}
3454 3455 3456
		for (i = 0; i < intel_num_planes(crtc); i++)
			I915_WRITE(PLANE_WM_TRANS(pipe, i),
				   new->plane_trans[pipe][i]);
3457 3458
		I915_WRITE(CUR_WM_TRANS(pipe),
			   new->plane_trans[pipe][PLANE_CURSOR]);
3459

3460
		for (i = 0; i < intel_num_planes(crtc); i++) {
3461 3462 3463
			skl_ddb_entry_write(dev_priv,
					    PLANE_BUF_CFG(pipe, i),
					    &new->ddb.plane[pipe][i]);
3464 3465 3466 3467
			skl_ddb_entry_write(dev_priv,
					    PLANE_NV12_BUF_CFG(pipe, i),
					    &new->ddb.y_plane[pipe][i]);
		}
3468 3469

		skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
3470
				    &new->ddb.plane[pipe][PLANE_CURSOR]);
3471 3472 3473
	}
}

3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497
/*
 * When setting up a new DDB allocation arrangement, we need to correctly
 * sequence the times at which the new allocations for the pipes are taken into
 * account or we'll have pipes fetching from space previously allocated to
 * another pipe.
 *
 * Roughly the sequence looks like:
 *  1. re-allocate the pipe(s) with the allocation being reduced and not
 *     overlapping with a previous light-up pipe (another way to put it is:
 *     pipes with their new allocation strickly included into their old ones).
 *  2. re-allocate the other pipes that get their allocation reduced
 *  3. allocate the pipes having their allocation increased
 *
 * Steps 1. and 2. are here to take care of the following case:
 * - Initially DDB looks like this:
 *     |   B    |   C    |
 * - enable pipe A.
 * - pipe B has a reduced DDB allocation that overlaps with the old pipe C
 *   allocation
 *     |  A  |  B  |  C  |
 *
 * We need to sequence the re-allocation: C, B, A (and not B, C, A).
 */

3498 3499
static void
skl_wm_flush_pipe(struct drm_i915_private *dev_priv, enum pipe pipe, int pass)
3500 3501 3502
{
	int plane;

3503 3504
	DRM_DEBUG_KMS("flush pipe %c (pass %d)\n", pipe_name(pipe), pass);

3505
	for_each_plane(dev_priv, pipe, plane) {
3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531
		I915_WRITE(PLANE_SURF(pipe, plane),
			   I915_READ(PLANE_SURF(pipe, plane)));
	}
	I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
}

static bool
skl_ddb_allocation_included(const struct skl_ddb_allocation *old,
			    const struct skl_ddb_allocation *new,
			    enum pipe pipe)
{
	uint16_t old_size, new_size;

	old_size = skl_ddb_entry_size(&old->pipe[pipe]);
	new_size = skl_ddb_entry_size(&new->pipe[pipe]);

	return old_size != new_size &&
	       new->pipe[pipe].start >= old->pipe[pipe].start &&
	       new->pipe[pipe].end <= old->pipe[pipe].end;
}

static void skl_flush_wm_values(struct drm_i915_private *dev_priv,
				struct skl_wm_values *new_values)
{
	struct drm_device *dev = dev_priv->dev;
	struct skl_ddb_allocation *cur_ddb, *new_ddb;
3532
	bool reallocated[I915_MAX_PIPES] = {};
3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554
	struct intel_crtc *crtc;
	enum pipe pipe;

	new_ddb = &new_values->ddb;
	cur_ddb = &dev_priv->wm.skl_hw.ddb;

	/*
	 * First pass: flush the pipes with the new allocation contained into
	 * the old space.
	 *
	 * We'll wait for the vblank on those pipes to ensure we can safely
	 * re-allocate the freed space without this pipe fetching from it.
	 */
	for_each_intel_crtc(dev, crtc) {
		if (!crtc->active)
			continue;

		pipe = crtc->pipe;

		if (!skl_ddb_allocation_included(cur_ddb, new_ddb, pipe))
			continue;

3555
		skl_wm_flush_pipe(dev_priv, pipe, 1);
3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579
		intel_wait_for_vblank(dev, pipe);

		reallocated[pipe] = true;
	}


	/*
	 * Second pass: flush the pipes that are having their allocation
	 * reduced, but overlapping with a previous allocation.
	 *
	 * Here as well we need to wait for the vblank to make sure the freed
	 * space is not used anymore.
	 */
	for_each_intel_crtc(dev, crtc) {
		if (!crtc->active)
			continue;

		pipe = crtc->pipe;

		if (reallocated[pipe])
			continue;

		if (skl_ddb_entry_size(&new_ddb->pipe[pipe]) <
		    skl_ddb_entry_size(&cur_ddb->pipe[pipe])) {
3580
			skl_wm_flush_pipe(dev_priv, pipe, 2);
3581
			intel_wait_for_vblank(dev, pipe);
3582
			reallocated[pipe] = true;
3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604
		}
	}

	/*
	 * Third pass: flush the pipes that got more space allocated.
	 *
	 * We don't need to actively wait for the update here, next vblank
	 * will just get more DDB space with the correct WM values.
	 */
	for_each_intel_crtc(dev, crtc) {
		if (!crtc->active)
			continue;

		pipe = crtc->pipe;

		/*
		 * At this point, only the pipes more space than before are
		 * left to re-allocate.
		 */
		if (reallocated[pipe])
			continue;

3605
		skl_wm_flush_pipe(dev_priv, pipe, 3);
3606 3607 3608
	}
}

3609 3610 3611 3612 3613
static bool skl_update_pipe_wm(struct drm_crtc *crtc,
			       struct skl_ddb_allocation *ddb, /* out */
			       struct skl_pipe_wm *pipe_wm /* out */)
{
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3614
	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
3615

3616
	skl_allocate_pipe_ddb(cstate, ddb);
3617
	skl_compute_pipe_wm(cstate, ddb, pipe_wm);
3618

3619
	if (!memcmp(&intel_crtc->wm.active.skl, pipe_wm, sizeof(*pipe_wm)))
3620 3621
		return false;

3622
	intel_crtc->wm.active.skl = *pipe_wm;
3623

3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646
	return true;
}

static void skl_update_other_pipe_wm(struct drm_device *dev,
				     struct drm_crtc *crtc,
				     struct skl_wm_values *r)
{
	struct intel_crtc *intel_crtc;
	struct intel_crtc *this_crtc = to_intel_crtc(crtc);

	/*
	 * If the WM update hasn't changed the allocation for this_crtc (the
	 * crtc we are currently computing the new WM values for), other
	 * enabled crtcs will keep the same allocation and we don't need to
	 * recompute anything for them.
	 */
	if (!skl_ddb_allocation_changed(&r->ddb, this_crtc))
		return;

	/*
	 * Otherwise, because of this_crtc being freshly enabled/disabled, the
	 * other active pipes need new DDB allocation and WM values.
	 */
3647
	for_each_intel_crtc(dev, intel_crtc) {
3648 3649 3650 3651 3652 3653 3654 3655 3656
		struct skl_pipe_wm pipe_wm = {};
		bool wm_changed;

		if (this_crtc->pipe == intel_crtc->pipe)
			continue;

		if (!intel_crtc->active)
			continue;

3657
		wm_changed = skl_update_pipe_wm(&intel_crtc->base,
3658 3659 3660 3661 3662 3663 3664 3665 3666
						&r->ddb, &pipe_wm);

		/*
		 * If we end up re-computing the other pipe WM values, it's
		 * because it was really needed, so we expect the WM values to
		 * be different.
		 */
		WARN_ON(!wm_changed);

3667
		skl_compute_wm_results(dev, &pipe_wm, r, intel_crtc);
3668 3669 3670 3671
		r->dirty[intel_crtc->pipe] = true;
	}
}

3672 3673 3674 3675 3676 3677 3678
static void skl_clear_wm(struct skl_wm_values *watermarks, enum pipe pipe)
{
	watermarks->wm_linetime[pipe] = 0;
	memset(watermarks->plane[pipe], 0,
	       sizeof(uint32_t) * 8 * I915_MAX_PLANES);
	memset(watermarks->plane_trans[pipe],
	       0, sizeof(uint32_t) * I915_MAX_PLANES);
3679
	watermarks->plane_trans[pipe][PLANE_CURSOR] = 0;
3680 3681 3682 3683 3684 3685 3686

	/* Clear ddb entries for pipe */
	memset(&watermarks->ddb.pipe[pipe], 0, sizeof(struct skl_ddb_entry));
	memset(&watermarks->ddb.plane[pipe], 0,
	       sizeof(struct skl_ddb_entry) * I915_MAX_PLANES);
	memset(&watermarks->ddb.y_plane[pipe], 0,
	       sizeof(struct skl_ddb_entry) * I915_MAX_PLANES);
3687 3688
	memset(&watermarks->ddb.plane[pipe][PLANE_CURSOR], 0,
	       sizeof(struct skl_ddb_entry));
3689 3690 3691

}

3692 3693 3694 3695 3696 3697
static void skl_update_wm(struct drm_crtc *crtc)
{
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct skl_wm_values *results = &dev_priv->wm.skl_results;
3698 3699
	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
	struct skl_pipe_wm *pipe_wm = &cstate->wm.optimal.skl;
3700

3701 3702 3703 3704 3705

	/* Clear all dirty flags */
	memset(results->dirty, 0, sizeof(bool) * I915_MAX_PIPES);

	skl_clear_wm(results, intel_crtc->pipe);
3706

3707
	if (!skl_update_pipe_wm(crtc, &results->ddb, pipe_wm))
3708 3709
		return;

3710
	skl_compute_wm_results(dev, pipe_wm, results, intel_crtc);
3711 3712
	results->dirty[intel_crtc->pipe] = true;

3713
	skl_update_other_pipe_wm(dev, crtc, results);
3714
	skl_write_wm_values(dev_priv, results);
3715
	skl_flush_wm_values(dev_priv, results);
3716 3717 3718

	/* store the new configuration */
	dev_priv->wm.skl_hw = *results;
3719 3720
}

3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738
static void ilk_compute_wm_config(struct drm_device *dev,
				  struct intel_wm_config *config)
{
	struct intel_crtc *crtc;

	/* Compute the currently _active_ config */
	for_each_intel_crtc(dev, crtc) {
		const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;

		if (!wm->pipe_enabled)
			continue;

		config->sprites_enabled |= wm->sprites_enabled;
		config->sprites_scaled |= wm->sprites_scaled;
		config->num_pipes_active++;
	}
}

3739
static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
3740
{
3741
	struct drm_device *dev = dev_priv->dev;
3742
	struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
3743
	struct ilk_wm_maximums max;
3744
	struct intel_wm_config config = {};
3745
	struct ilk_wm_values results = {};
3746
	enum intel_ddb_partitioning partitioning;
3747

3748 3749 3750 3751
	ilk_compute_wm_config(dev, &config);

	ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
	ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
3752 3753

	/* 5/6 split only in single pipe config on IVB+ */
3754
	if (INTEL_INFO(dev)->gen >= 7 &&
3755 3756 3757
	    config.num_pipes_active == 1 && config.sprites_enabled) {
		ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
		ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
3758

3759
		best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
3760
	} else {
3761
		best_lp_wm = &lp_wm_1_2;
3762 3763
	}

3764
	partitioning = (best_lp_wm == &lp_wm_1_2) ?
3765
		       INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
3766

3767
	ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
3768

3769
	ilk_write_wm_values(dev_priv, &results);
3770 3771
}

3772
static void ilk_initial_watermarks(struct intel_crtc_state *cstate)
3773
{
3774 3775
	struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
3776

3777 3778 3779 3780 3781
	mutex_lock(&dev_priv->wm.wm_mutex);
	intel_crtc->wm.active.ilk = cstate->wm.intermediate;
	ilk_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}
3782

3783 3784 3785 3786
static void ilk_optimize_watermarks(struct intel_crtc_state *cstate)
{
	struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
3787

3788 3789 3790 3791 3792 3793
	mutex_lock(&dev_priv->wm.wm_mutex);
	if (cstate->wm.need_postvbl_update) {
		intel_crtc->wm.active.ilk = cstate->wm.optimal.ilk;
		ilk_program_watermarks(dev_priv);
	}
	mutex_unlock(&dev_priv->wm.wm_mutex);
3794 3795
}

3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813
static void skl_pipe_wm_active_state(uint32_t val,
				     struct skl_pipe_wm *active,
				     bool is_transwm,
				     bool is_cursor,
				     int i,
				     int level)
{
	bool is_enabled = (val & PLANE_WM_EN) != 0;

	if (!is_transwm) {
		if (!is_cursor) {
			active->wm[level].plane_en[i] = is_enabled;
			active->wm[level].plane_res_b[i] =
					val & PLANE_WM_BLOCKS_MASK;
			active->wm[level].plane_res_l[i] =
					(val >> PLANE_WM_LINES_SHIFT) &
						PLANE_WM_LINES_MASK;
		} else {
3814 3815
			active->wm[level].plane_en[PLANE_CURSOR] = is_enabled;
			active->wm[level].plane_res_b[PLANE_CURSOR] =
3816
					val & PLANE_WM_BLOCKS_MASK;
3817
			active->wm[level].plane_res_l[PLANE_CURSOR] =
3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829
					(val >> PLANE_WM_LINES_SHIFT) &
						PLANE_WM_LINES_MASK;
		}
	} else {
		if (!is_cursor) {
			active->trans_wm.plane_en[i] = is_enabled;
			active->trans_wm.plane_res_b[i] =
					val & PLANE_WM_BLOCKS_MASK;
			active->trans_wm.plane_res_l[i] =
					(val >> PLANE_WM_LINES_SHIFT) &
						PLANE_WM_LINES_MASK;
		} else {
3830 3831
			active->trans_wm.plane_en[PLANE_CURSOR] = is_enabled;
			active->trans_wm.plane_res_b[PLANE_CURSOR] =
3832
					val & PLANE_WM_BLOCKS_MASK;
3833
			active->trans_wm.plane_res_l[PLANE_CURSOR] =
3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845
					(val >> PLANE_WM_LINES_SHIFT) &
						PLANE_WM_LINES_MASK;
		}
	}
}

static void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3846 3847
	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
	struct skl_pipe_wm *active = &cstate->wm.optimal.skl;
3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859
	enum pipe pipe = intel_crtc->pipe;
	int level, i, max_level;
	uint32_t temp;

	max_level = ilk_wm_max_level(dev);

	hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));

	for (level = 0; level <= max_level; level++) {
		for (i = 0; i < intel_num_planes(intel_crtc); i++)
			hw->plane[pipe][i][level] =
					I915_READ(PLANE_WM(pipe, i, level));
3860
		hw->plane[pipe][PLANE_CURSOR][level] = I915_READ(CUR_WM(pipe, level));
3861 3862 3863 3864
	}

	for (i = 0; i < intel_num_planes(intel_crtc); i++)
		hw->plane_trans[pipe][i] = I915_READ(PLANE_WM_TRANS(pipe, i));
3865
	hw->plane_trans[pipe][PLANE_CURSOR] = I915_READ(CUR_WM_TRANS(pipe));
3866

3867
	if (!intel_crtc->active)
3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879
		return;

	hw->dirty[pipe] = true;

	active->linetime = hw->wm_linetime[pipe];

	for (level = 0; level <= max_level; level++) {
		for (i = 0; i < intel_num_planes(intel_crtc); i++) {
			temp = hw->plane[pipe][i][level];
			skl_pipe_wm_active_state(temp, active, false,
						false, i, level);
		}
3880
		temp = hw->plane[pipe][PLANE_CURSOR][level];
3881 3882 3883 3884 3885 3886 3887 3888
		skl_pipe_wm_active_state(temp, active, false, true, i, level);
	}

	for (i = 0; i < intel_num_planes(intel_crtc); i++) {
		temp = hw->plane_trans[pipe][i];
		skl_pipe_wm_active_state(temp, active, true, false, i, 0);
	}

3889
	temp = hw->plane_trans[pipe][PLANE_CURSOR];
3890
	skl_pipe_wm_active_state(temp, active, true, true, i, 0);
3891 3892

	intel_crtc->wm.active.skl = *active;
3893 3894 3895 3896
}

void skl_wm_get_hw_state(struct drm_device *dev)
{
3897 3898
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
3899 3900
	struct drm_crtc *crtc;

3901
	skl_ddb_get_hw_state(dev_priv, ddb);
3902 3903 3904 3905
	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
		skl_pipe_wm_get_hw_state(crtc);
}

3906 3907 3908 3909
static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
3910
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
3911
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3912 3913
	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
	struct intel_pipe_wm *active = &cstate->wm.optimal.ilk;
3914
	enum pipe pipe = intel_crtc->pipe;
3915
	static const i915_reg_t wm0_pipe_reg[] = {
3916 3917 3918 3919 3920 3921
		[PIPE_A] = WM0_PIPEA_ILK,
		[PIPE_B] = WM0_PIPEB_ILK,
		[PIPE_C] = WM0_PIPEC_IVB,
	};

	hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
3922
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
3923
		hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
3924

3925 3926
	memset(active, 0, sizeof(*active));

3927
	active->pipe_enabled = intel_crtc->active;
3928 3929

	if (active->pipe_enabled) {
3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953
		u32 tmp = hw->wm_pipe[pipe];

		/*
		 * For active pipes LP0 watermark is marked as
		 * enabled, and LP1+ watermaks as disabled since
		 * we can't really reverse compute them in case
		 * multiple pipes are active.
		 */
		active->wm[0].enable = true;
		active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
		active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
		active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
		active->linetime = hw->wm_linetime[pipe];
	} else {
		int level, max_level = ilk_wm_max_level(dev);

		/*
		 * For inactive pipes, all watermark levels
		 * should be marked as enabled but zeroed,
		 * which is what we'd compute them to.
		 */
		for (level = 0; level <= max_level; level++)
			active->wm[level].enable = true;
	}
3954 3955

	intel_crtc->wm.active.ilk = *active;
3956 3957
}

3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074
#define _FW_WM(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
#define _FW_WM_VLV(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)

static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
			       struct vlv_wm_values *wm)
{
	enum pipe pipe;
	uint32_t tmp;

	for_each_pipe(dev_priv, pipe) {
		tmp = I915_READ(VLV_DDL(pipe));

		wm->ddl[pipe].primary =
			(tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
		wm->ddl[pipe].cursor =
			(tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
		wm->ddl[pipe].sprite[0] =
			(tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
		wm->ddl[pipe].sprite[1] =
			(tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
	}

	tmp = I915_READ(DSPFW1);
	wm->sr.plane = _FW_WM(tmp, SR);
	wm->pipe[PIPE_B].cursor = _FW_WM(tmp, CURSORB);
	wm->pipe[PIPE_B].primary = _FW_WM_VLV(tmp, PLANEB);
	wm->pipe[PIPE_A].primary = _FW_WM_VLV(tmp, PLANEA);

	tmp = I915_READ(DSPFW2);
	wm->pipe[PIPE_A].sprite[1] = _FW_WM_VLV(tmp, SPRITEB);
	wm->pipe[PIPE_A].cursor = _FW_WM(tmp, CURSORA);
	wm->pipe[PIPE_A].sprite[0] = _FW_WM_VLV(tmp, SPRITEA);

	tmp = I915_READ(DSPFW3);
	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);

	if (IS_CHERRYVIEW(dev_priv)) {
		tmp = I915_READ(DSPFW7_CHV);
		wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);

		tmp = I915_READ(DSPFW8_CHV);
		wm->pipe[PIPE_C].sprite[1] = _FW_WM_VLV(tmp, SPRITEF);
		wm->pipe[PIPE_C].sprite[0] = _FW_WM_VLV(tmp, SPRITEE);

		tmp = I915_READ(DSPFW9_CHV);
		wm->pipe[PIPE_C].primary = _FW_WM_VLV(tmp, PLANEC);
		wm->pipe[PIPE_C].cursor = _FW_WM(tmp, CURSORC);

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
		wm->pipe[PIPE_C].sprite[1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
		wm->pipe[PIPE_C].sprite[0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
		wm->pipe[PIPE_C].primary |= _FW_WM(tmp, PLANEC_HI) << 8;
		wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
	} else {
		tmp = I915_READ(DSPFW7);
		wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
		wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
	}
}

#undef _FW_WM
#undef _FW_WM_VLV

void vlv_wm_get_hw_state(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct vlv_wm_values *wm = &dev_priv->wm.vlv;
	struct intel_plane *plane;
	enum pipe pipe;
	u32 val;

	vlv_read_wm_values(dev_priv, wm);

	for_each_intel_plane(dev, plane) {
		switch (plane->base.type) {
			int sprite;
		case DRM_PLANE_TYPE_CURSOR:
			plane->wm.fifo_size = 63;
			break;
		case DRM_PLANE_TYPE_PRIMARY:
			plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, 0);
			break;
		case DRM_PLANE_TYPE_OVERLAY:
			sprite = plane->plane;
			plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, sprite + 1);
			break;
		}
	}

	wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
	wm->level = VLV_WM_LEVEL_PM2;

	if (IS_CHERRYVIEW(dev_priv)) {
		mutex_lock(&dev_priv->rps.hw_lock);

		val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
		if (val & DSP_MAXFIFO_PM5_ENABLE)
			wm->level = VLV_WM_LEVEL_PM5;

4075 4076 4077 4078 4079 4080 4081 4082 4083
		/*
		 * If DDR DVFS is disabled in the BIOS, Punit
		 * will never ack the request. So if that happens
		 * assume we don't have to enable/disable DDR DVFS
		 * dynamically. To test that just set the REQ_ACK
		 * bit to poke the Punit, but don't change the
		 * HIGH/LOW bits so that we don't actually change
		 * the current state.
		 */
4084
		val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097
		val |= FORCE_DDR_FREQ_REQ_ACK;
		vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

		if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
			      FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
			DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
				      "assuming DDR DVFS is disabled\n");
			dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
		} else {
			val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
			if ((val & FORCE_DDR_HIGH_FREQ) == 0)
				wm->level = VLV_WM_LEVEL_DDR_DVFS;
		}
4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110

		mutex_unlock(&dev_priv->rps.hw_lock);
	}

	for_each_pipe(dev_priv, pipe)
		DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
			      pipe_name(pipe), wm->pipe[pipe].primary, wm->pipe[pipe].cursor,
			      wm->pipe[pipe].sprite[0], wm->pipe[pipe].sprite[1]);

	DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
		      wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
}

4111 4112 4113
void ilk_wm_get_hw_state(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4114
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
4115 4116
	struct drm_crtc *crtc;

4117
	for_each_crtc(dev, crtc)
4118 4119 4120 4121 4122 4123 4124
		ilk_pipe_wm_get_hw_state(crtc);

	hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
	hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
	hw->wm_lp[2] = I915_READ(WM3_LP_ILK);

	hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
4125 4126 4127 4128
	if (INTEL_INFO(dev)->gen >= 7) {
		hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
		hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
	}
4129

4130
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4131 4132 4133 4134 4135
		hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
	else if (IS_IVYBRIDGE(dev))
		hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4136 4137 4138 4139 4140

	hw->enable_fbc_wm =
		!(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
}

4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172
/**
 * intel_update_watermarks - update FIFO watermark values based on current modes
 *
 * Calculate watermark values for the various WM regs based on current mode
 * and plane configuration.
 *
 * There are several cases to deal with here:
 *   - normal (i.e. non-self-refresh)
 *   - self-refresh (SR) mode
 *   - lines are large relative to FIFO size (buffer can hold up to 2)
 *   - lines are small relative to FIFO size (buffer can hold more than 2
 *     lines), so need to account for TLB latency
 *
 *   The normal calculation is:
 *     watermark = dotclock * bytes per pixel * latency
 *   where latency is platform & configuration dependent (we assume pessimal
 *   values here).
 *
 *   The SR calculation is:
 *     watermark = (trunc(latency/line time)+1) * surface width *
 *       bytes per pixel
 *   where
 *     line time = htotal / dotclock
 *     surface width = hdisplay for normal plane and 64 for cursor
 *   and latency is assumed to be high, as above.
 *
 * The final value programmed to the register should always be rounded up,
 * and include an extra 2 entries to account for clock crossings.
 *
 * We don't use the sprite, so we can ignore that.  And on Crestline we have
 * to set the non-SR watermarks to 8.
 */
4173
void intel_update_watermarks(struct drm_crtc *crtc)
4174
{
4175
	struct drm_i915_private *dev_priv = crtc->dev->dev_private;
4176 4177

	if (dev_priv->display.update_wm)
4178
		dev_priv->display.update_wm(crtc);
4179 4180
}

4181
/*
4182 4183 4184 4185 4186 4187 4188 4189
 * Lock protecting IPS related data structures
 */
DEFINE_SPINLOCK(mchdev_lock);

/* Global for IPS driver to get at the current i915 device. Protected by
 * mchdev_lock. */
static struct drm_i915_private *i915_mch_dev;

4190 4191 4192 4193 4194
bool ironlake_set_drps(struct drm_device *dev, u8 val)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u16 rgvswctl;

4195 4196
	assert_spin_locked(&mchdev_lock);

4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213
	rgvswctl = I915_READ16(MEMSWCTL);
	if (rgvswctl & MEMCTL_CMD_STS) {
		DRM_DEBUG("gpu busy, RCS change rejected\n");
		return false; /* still busy with another command */
	}

	rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
		(val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
	I915_WRITE16(MEMSWCTL, rgvswctl);
	POSTING_READ16(MEMSWCTL);

	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE16(MEMSWCTL, rgvswctl);

	return true;
}

4214
static void ironlake_enable_drps(struct drm_device *dev)
4215 4216
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4217
	u32 rgvmodectl;
4218 4219
	u8 fmax, fmin, fstart, vstart;

4220 4221
	spin_lock_irq(&mchdev_lock);

4222 4223
	rgvmodectl = I915_READ(MEMMODECTL);

4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243
	/* Enable temp reporting */
	I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
	I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);

	/* 100ms RC evaluation intervals */
	I915_WRITE(RCUPEI, 100000);
	I915_WRITE(RCDNEI, 100000);

	/* Set max/min thresholds to 90ms and 80ms respectively */
	I915_WRITE(RCBMAXAVG, 90000);
	I915_WRITE(RCBMINAVG, 80000);

	I915_WRITE(MEMIHYST, 1);

	/* Set up min, max, and cur for interrupt handling */
	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
		MEMMODE_FSTART_SHIFT;

4244
	vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >>
4245 4246
		PXVFREQ_PX_SHIFT;

4247 4248
	dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
	dev_priv->ips.fstart = fstart;
4249

4250 4251 4252
	dev_priv->ips.max_delay = fstart;
	dev_priv->ips.min_delay = fmin;
	dev_priv->ips.cur_delay = fstart;
4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268

	DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
			 fmax, fmin, fstart);

	I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);

	/*
	 * Interrupts will be enabled in ironlake_irq_postinstall
	 */

	I915_WRITE(VIDSTART, vstart);
	POSTING_READ(VIDSTART);

	rgvmodectl |= MEMMODE_SWMODE_EN;
	I915_WRITE(MEMMODECTL, rgvmodectl);

4269
	if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
4270
		DRM_ERROR("stuck trying to change perf mode\n");
4271
	mdelay(1);
4272 4273 4274

	ironlake_set_drps(dev, fstart);

4275 4276
	dev_priv->ips.last_count1 = I915_READ(DMIEC) +
		I915_READ(DDREC) + I915_READ(CSIEC);
4277
	dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
4278
	dev_priv->ips.last_count2 = I915_READ(GFXEC);
4279
	dev_priv->ips.last_time2 = ktime_get_raw_ns();
4280 4281

	spin_unlock_irq(&mchdev_lock);
4282 4283
}

4284
static void ironlake_disable_drps(struct drm_device *dev)
4285 4286
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4287 4288 4289 4290 4291
	u16 rgvswctl;

	spin_lock_irq(&mchdev_lock);

	rgvswctl = I915_READ16(MEMSWCTL);
4292 4293 4294 4295 4296 4297 4298 4299 4300

	/* Ack interrupts, disable EFC interrupt */
	I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
	I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
	I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
	I915_WRITE(DEIIR, DE_PCU_EVENT);
	I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);

	/* Go back to the starting frequency */
4301
	ironlake_set_drps(dev, dev_priv->ips.fstart);
4302
	mdelay(1);
4303 4304
	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE(MEMSWCTL, rgvswctl);
4305
	mdelay(1);
4306

4307
	spin_unlock_irq(&mchdev_lock);
4308 4309
}

4310 4311 4312 4313 4314
/* There's a funny hw issue where the hw returns all 0 when reading from
 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
 * ourselves, instead of doing a rmw cycle (which might result in us clearing
 * all limits and the gpu stuck at whatever frequency it is at atm).
 */
4315
static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
4316
{
4317
	u32 limits;
4318

4319 4320 4321 4322 4323 4324
	/* Only set the down limit when we've reached the lowest level to avoid
	 * getting more interrupts, otherwise leave this clear. This prevents a
	 * race in the hw when coming out of rc6: There's a tiny window where
	 * the hw runs at the minimal clock before selecting the desired
	 * frequency, if the down threshold expires in that window we will not
	 * receive a down interrupt. */
4325
	if (IS_GEN9(dev_priv)) {
4326 4327 4328 4329 4330 4331 4332 4333
		limits = (dev_priv->rps.max_freq_softlimit) << 23;
		if (val <= dev_priv->rps.min_freq_softlimit)
			limits |= (dev_priv->rps.min_freq_softlimit) << 14;
	} else {
		limits = dev_priv->rps.max_freq_softlimit << 24;
		if (val <= dev_priv->rps.min_freq_softlimit)
			limits |= dev_priv->rps.min_freq_softlimit << 16;
	}
4334 4335 4336 4337

	return limits;
}

4338 4339 4340
static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
{
	int new_power;
4341 4342
	u32 threshold_up = 0, threshold_down = 0; /* in % */
	u32 ei_up = 0, ei_down = 0;
4343 4344 4345 4346

	new_power = dev_priv->rps.power;
	switch (dev_priv->rps.power) {
	case LOW_POWER:
4347
		if (val > dev_priv->rps.efficient_freq + 1 && val > dev_priv->rps.cur_freq)
4348 4349 4350 4351
			new_power = BETWEEN;
		break;

	case BETWEEN:
4352
		if (val <= dev_priv->rps.efficient_freq && val < dev_priv->rps.cur_freq)
4353
			new_power = LOW_POWER;
4354
		else if (val >= dev_priv->rps.rp0_freq && val > dev_priv->rps.cur_freq)
4355 4356 4357 4358
			new_power = HIGH_POWER;
		break;

	case HIGH_POWER:
4359
		if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 && val < dev_priv->rps.cur_freq)
4360 4361 4362 4363
			new_power = BETWEEN;
		break;
	}
	/* Max/min bins are special */
4364
	if (val <= dev_priv->rps.min_freq_softlimit)
4365
		new_power = LOW_POWER;
4366
	if (val >= dev_priv->rps.max_freq_softlimit)
4367 4368 4369 4370 4371 4372 4373 4374
		new_power = HIGH_POWER;
	if (new_power == dev_priv->rps.power)
		return;

	/* Note the units here are not exactly 1us, but 1280ns. */
	switch (new_power) {
	case LOW_POWER:
		/* Upclock if more than 95% busy over 16ms */
4375 4376
		ei_up = 16000;
		threshold_up = 95;
4377 4378

		/* Downclock if less than 85% busy over 32ms */
4379 4380
		ei_down = 32000;
		threshold_down = 85;
4381 4382 4383 4384
		break;

	case BETWEEN:
		/* Upclock if more than 90% busy over 13ms */
4385 4386
		ei_up = 13000;
		threshold_up = 90;
4387 4388

		/* Downclock if less than 75% busy over 32ms */
4389 4390
		ei_down = 32000;
		threshold_down = 75;
4391 4392 4393 4394
		break;

	case HIGH_POWER:
		/* Upclock if more than 85% busy over 10ms */
4395 4396
		ei_up = 10000;
		threshold_up = 85;
4397 4398

		/* Downclock if less than 60% busy over 32ms */
4399 4400
		ei_down = 32000;
		threshold_down = 60;
4401 4402 4403
		break;
	}

4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421
	I915_WRITE(GEN6_RP_UP_EI,
		GT_INTERVAL_FROM_US(dev_priv, ei_up));
	I915_WRITE(GEN6_RP_UP_THRESHOLD,
		GT_INTERVAL_FROM_US(dev_priv, (ei_up * threshold_up / 100)));

	I915_WRITE(GEN6_RP_DOWN_EI,
		GT_INTERVAL_FROM_US(dev_priv, ei_down));
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
		GT_INTERVAL_FROM_US(dev_priv, (ei_down * threshold_down / 100)));

	 I915_WRITE(GEN6_RP_CONTROL,
		    GEN6_RP_MEDIA_TURBO |
		    GEN6_RP_MEDIA_HW_NORMAL_MODE |
		    GEN6_RP_MEDIA_IS_GFX |
		    GEN6_RP_ENABLE |
		    GEN6_RP_UP_BUSY_AVG |
		    GEN6_RP_DOWN_IDLE_AVG);

4422
	dev_priv->rps.power = new_power;
4423 4424
	dev_priv->rps.up_threshold = threshold_up;
	dev_priv->rps.down_threshold = threshold_down;
4425 4426 4427
	dev_priv->rps.last_adj = 0;
}

4428 4429 4430 4431 4432
static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
{
	u32 mask = 0;

	if (val > dev_priv->rps.min_freq_softlimit)
4433
		mask |= GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
4434
	if (val < dev_priv->rps.max_freq_softlimit)
4435
		mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
4436

4437 4438
	mask &= dev_priv->pm_rps_events;

4439
	return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
4440 4441
}

4442 4443 4444
/* gen6_set_rps is called to update the frequency request, but should also be
 * called when the range (min_delay and max_delay) is modified so that we can
 * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
4445
static void gen6_set_rps(struct drm_device *dev, u8 val)
4446 4447
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4448

4449
	/* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
4450
	if (IS_BXT_REVID(dev, 0, BXT_REVID_A1))
4451 4452
		return;

4453
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4454 4455
	WARN_ON(val > dev_priv->rps.max_freq);
	WARN_ON(val < dev_priv->rps.min_freq);
4456

C
Chris Wilson 已提交
4457 4458 4459 4460 4461
	/* min/max delay may still have been modified so be sure to
	 * write the limits value.
	 */
	if (val != dev_priv->rps.cur_freq) {
		gen6_set_rps_thresholds(dev_priv, val);
4462

4463 4464 4465 4466
		if (IS_GEN9(dev))
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN9_FREQUENCY(val));
		else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
C
Chris Wilson 已提交
4467 4468 4469 4470 4471 4472 4473
			I915_WRITE(GEN6_RPNSWREQ,
				   HSW_FREQUENCY(val));
		else
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN6_FREQUENCY(val) |
				   GEN6_OFFSET(0) |
				   GEN6_AGGRESSIVE_TURBO);
4474
	}
4475 4476 4477 4478

	/* Make sure we continue to get interrupts
	 * until we hit the minimum or maximum frequencies.
	 */
4479
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
4480
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
4481

4482 4483
	POSTING_READ(GEN6_RPNSWREQ);

4484
	dev_priv->rps.cur_freq = val;
4485
	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
4486 4487
}

4488 4489 4490 4491 4492
static void valleyview_set_rps(struct drm_device *dev, u8 val)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4493 4494
	WARN_ON(val > dev_priv->rps.max_freq);
	WARN_ON(val < dev_priv->rps.min_freq);
4495 4496 4497 4498 4499

	if (WARN_ONCE(IS_CHERRYVIEW(dev) && (val & 1),
		      "Odd GPU freq value\n"))
		val &= ~1;

4500 4501
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));

4502
	if (val != dev_priv->rps.cur_freq) {
4503
		vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
4504 4505 4506
		if (!IS_CHERRYVIEW(dev_priv))
			gen6_set_rps_thresholds(dev_priv, val);
	}
4507 4508 4509 4510 4511

	dev_priv->rps.cur_freq = val;
	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
}

4512
/* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
4513 4514
 *
 * * If Gfx is Idle, then
4515 4516 4517
 * 1. Forcewake Media well.
 * 2. Request idle freq.
 * 3. Release Forcewake of Media well.
4518 4519 4520
*/
static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
{
4521
	u32 val = dev_priv->rps.idle_freq;
4522

4523
	if (dev_priv->rps.cur_freq <= val)
4524 4525
		return;

4526 4527 4528 4529 4530
	/* Wake up the media well, as that takes a lot less
	 * power than the Render well. */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
	valleyview_set_rps(dev_priv->dev, val);
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
4531 4532
}

4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544
void gen6_rps_busy(struct drm_i915_private *dev_priv)
{
	mutex_lock(&dev_priv->rps.hw_lock);
	if (dev_priv->rps.enabled) {
		if (dev_priv->pm_rps_events & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED))
			gen6_rps_reset_ei(dev_priv);
		I915_WRITE(GEN6_PMINTRMSK,
			   gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
	}
	mutex_unlock(&dev_priv->rps.hw_lock);
}

4545 4546
void gen6_rps_idle(struct drm_i915_private *dev_priv)
{
4547 4548
	struct drm_device *dev = dev_priv->dev;

4549
	mutex_lock(&dev_priv->rps.hw_lock);
4550
	if (dev_priv->rps.enabled) {
4551
		if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
4552
			vlv_set_rps_idle(dev_priv);
4553
		else
4554
			gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
4555
		dev_priv->rps.last_adj = 0;
4556
		I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
4557
	}
4558
	mutex_unlock(&dev_priv->rps.hw_lock);
4559

4560
	spin_lock(&dev_priv->rps.client_lock);
4561 4562
	while (!list_empty(&dev_priv->rps.clients))
		list_del_init(dev_priv->rps.clients.next);
4563
	spin_unlock(&dev_priv->rps.client_lock);
4564 4565
}

4566
void gen6_rps_boost(struct drm_i915_private *dev_priv,
4567 4568
		    struct intel_rps_client *rps,
		    unsigned long submitted)
4569
{
4570 4571 4572 4573 4574 4575 4576
	/* This is intentionally racy! We peek at the state here, then
	 * validate inside the RPS worker.
	 */
	if (!(dev_priv->mm.busy &&
	      dev_priv->rps.enabled &&
	      dev_priv->rps.cur_freq < dev_priv->rps.max_freq_softlimit))
		return;
4577

4578 4579 4580
	/* Force a RPS boost (and don't count it against the client) if
	 * the GPU is severely congested.
	 */
4581
	if (rps && time_after(jiffies, submitted + DRM_I915_THROTTLE_JIFFIES))
4582 4583
		rps = NULL;

4584 4585 4586 4587 4588 4589 4590 4591
	spin_lock(&dev_priv->rps.client_lock);
	if (rps == NULL || list_empty(&rps->link)) {
		spin_lock_irq(&dev_priv->irq_lock);
		if (dev_priv->rps.interrupts_enabled) {
			dev_priv->rps.client_boost = true;
			queue_work(dev_priv->wq, &dev_priv->rps.work);
		}
		spin_unlock_irq(&dev_priv->irq_lock);
4592

4593 4594 4595
		if (rps != NULL) {
			list_add(&rps->link, &dev_priv->rps.clients);
			rps->boosts++;
4596 4597
		} else
			dev_priv->rps.boosts++;
4598
	}
4599
	spin_unlock(&dev_priv->rps.client_lock);
4600 4601
}

4602
void intel_set_rps(struct drm_device *dev, u8 val)
4603
{
4604
	if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
4605 4606 4607
		valleyview_set_rps(dev, val);
	else
		gen6_set_rps(dev, val);
4608 4609
}

4610
static void gen9_disable_rc6(struct drm_device *dev)
Z
Zhe Wang 已提交
4611 4612 4613 4614
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(GEN6_RC_CONTROL, 0);
4615
	I915_WRITE(GEN9_PG_ENABLE, 0);
Z
Zhe Wang 已提交
4616 4617
}

4618 4619 4620 4621 4622 4623 4624
static void gen9_disable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(GEN6_RP_CONTROL, 0);
}

4625
static void gen6_disable_rps(struct drm_device *dev)
4626 4627 4628 4629
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(GEN6_RC_CONTROL, 0);
4630
	I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
4631
	I915_WRITE(GEN6_RP_CONTROL, 0);
4632 4633
}

4634 4635 4636 4637 4638 4639 4640
static void cherryview_disable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(GEN6_RC_CONTROL, 0);
}

4641 4642 4643 4644
static void valleyview_disable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

4645 4646
	/* we're doing forcewake before Disabling RC6,
	 * This what the BIOS expects when going into suspend */
4647
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4648

4649
	I915_WRITE(GEN6_RC_CONTROL, 0);
4650

4651
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4652 4653
}

B
Ben Widawsky 已提交
4654 4655
static void intel_print_rc6_info(struct drm_device *dev, u32 mode)
{
4656
	if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
4657 4658 4659 4660 4661
		if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
			mode = GEN6_RC_CTL_RC6_ENABLE;
		else
			mode = 0;
	}
4662 4663
	if (HAS_RC6p(dev))
		DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s RC6p %s RC6pp %s\n",
4664 4665 4666
			      onoff(mode & GEN6_RC_CTL_RC6_ENABLE),
			      onoff(mode & GEN6_RC_CTL_RC6p_ENABLE),
			      onoff(mode & GEN6_RC_CTL_RC6pp_ENABLE));
4667 4668 4669

	else
		DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s\n",
4670
			      onoff(mode & GEN6_RC_CTL_RC6_ENABLE));
B
Ben Widawsky 已提交
4671 4672
}

4673 4674
static bool bxt_check_bios_rc6_setup(const struct drm_device *dev)
{
4675 4676
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689
	bool enable_rc6 = true;
	unsigned long rc6_ctx_base;

	if (!(I915_READ(RC6_LOCATION) & RC6_CTX_IN_DRAM)) {
		DRM_DEBUG_KMS("RC6 Base location not set properly.\n");
		enable_rc6 = false;
	}

	/*
	 * The exact context size is not known for BXT, so assume a page size
	 * for this check.
	 */
	rc6_ctx_base = I915_READ(RC6_CTX_BASE) & RC6_CTX_BASE_MASK;
4690 4691 4692
	if (!((rc6_ctx_base >= ggtt->stolen_reserved_base) &&
	      (rc6_ctx_base + PAGE_SIZE <= ggtt->stolen_reserved_base +
					ggtt->stolen_reserved_size))) {
4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716
		DRM_DEBUG_KMS("RC6 Base address not as expected.\n");
		enable_rc6 = false;
	}

	if (!(((I915_READ(PWRCTX_MAXCNT_RCSUNIT) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_VCSUNIT0) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_BCSUNIT) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_VECSUNIT) & IDLE_TIME_MASK) > 1))) {
		DRM_DEBUG_KMS("Engine Idle wait time not set properly.\n");
		enable_rc6 = false;
	}

	if (!(I915_READ(GEN6_RC_CONTROL) & (GEN6_RC_CTL_RC6_ENABLE |
					    GEN6_RC_CTL_HW_ENABLE)) &&
	    ((I915_READ(GEN6_RC_CONTROL) & GEN6_RC_CTL_HW_ENABLE) ||
	     !(I915_READ(GEN6_RC_STATE) & RC6_STATE))) {
		DRM_DEBUG_KMS("HW/SW RC6 is not enabled by BIOS.\n");
		enable_rc6 = false;
	}

	return enable_rc6;
}

int sanitize_rc6_option(const struct drm_device *dev, int enable_rc6)
4717
{
4718 4719
	/* No RC6 before Ironlake and code is gone for ilk. */
	if (INTEL_INFO(dev)->gen < 6)
I
Imre Deak 已提交
4720 4721
		return 0;

4722 4723 4724 4725 4726 4727 4728 4729
	if (!enable_rc6)
		return 0;

	if (IS_BROXTON(dev) && !bxt_check_bios_rc6_setup(dev)) {
		DRM_INFO("RC6 disabled by BIOS\n");
		return 0;
	}

4730
	/* Respect the kernel parameter if it is set */
I
Imre Deak 已提交
4731 4732 4733
	if (enable_rc6 >= 0) {
		int mask;

4734
		if (HAS_RC6p(dev))
I
Imre Deak 已提交
4735 4736 4737 4738 4739 4740
			mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
			       INTEL_RC6pp_ENABLE;
		else
			mask = INTEL_RC6_ENABLE;

		if ((enable_rc6 & mask) != enable_rc6)
4741 4742
			DRM_DEBUG_KMS("Adjusting RC6 mask to %d (requested %d, valid %d)\n",
				      enable_rc6 & mask, enable_rc6, mask);
I
Imre Deak 已提交
4743 4744 4745

		return enable_rc6 & mask;
	}
4746

4747
	if (IS_IVYBRIDGE(dev))
B
Ben Widawsky 已提交
4748
		return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
4749 4750

	return INTEL_RC6_ENABLE;
4751 4752
}

I
Imre Deak 已提交
4753 4754 4755 4756 4757
int intel_enable_rc6(const struct drm_device *dev)
{
	return i915.enable_rc6;
}

4758
static void gen6_init_rps_frequencies(struct drm_device *dev)
4759
{
4760 4761 4762 4763 4764
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t rp_state_cap;
	u32 ddcc_status = 0;
	int ret;

4765 4766
	/* All of these values are in units of 50MHz */
	dev_priv->rps.cur_freq		= 0;
4767
	/* static values from HW: RP0 > RP1 > RPn (min_freq) */
4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779
	if (IS_BROXTON(dev)) {
		rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
		dev_priv->rps.rp0_freq = (rp_state_cap >> 16) & 0xff;
		dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
		dev_priv->rps.min_freq = (rp_state_cap >>  0) & 0xff;
	} else {
		rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
		dev_priv->rps.rp0_freq = (rp_state_cap >>  0) & 0xff;
		dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
		dev_priv->rps.min_freq = (rp_state_cap >> 16) & 0xff;
	}

4780 4781 4782
	/* hw_max = RP0 until we check for overclocking */
	dev_priv->rps.max_freq		= dev_priv->rps.rp0_freq;

4783
	dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
4784 4785
	if (IS_HASWELL(dev) || IS_BROADWELL(dev) ||
	    IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
4786 4787 4788 4789 4790
		ret = sandybridge_pcode_read(dev_priv,
					HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
					&ddcc_status);
		if (0 == ret)
			dev_priv->rps.efficient_freq =
4791 4792 4793 4794
				clamp_t(u8,
					((ddcc_status >> 8) & 0xff),
					dev_priv->rps.min_freq,
					dev_priv->rps.max_freq);
4795 4796
	}

4797
	if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
4798 4799 4800 4801 4802 4803 4804 4805 4806
		/* Store the frequency values in 16.66 MHZ units, which is
		   the natural hardware unit for SKL */
		dev_priv->rps.rp0_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.rp1_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.min_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.max_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.efficient_freq *= GEN9_FREQ_SCALER;
	}

4807 4808
	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;

4809 4810 4811 4812
	/* Preserve min/max settings in case of re-init */
	if (dev_priv->rps.max_freq_softlimit == 0)
		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;

4813 4814 4815
	if (dev_priv->rps.min_freq_softlimit == 0) {
		if (IS_HASWELL(dev) || IS_BROADWELL(dev))
			dev_priv->rps.min_freq_softlimit =
4816 4817
				max_t(int, dev_priv->rps.efficient_freq,
				      intel_freq_opcode(dev_priv, 450));
4818 4819 4820 4821
		else
			dev_priv->rps.min_freq_softlimit =
				dev_priv->rps.min_freq;
	}
4822 4823
}

J
Jesse Barnes 已提交
4824
/* See the Gen9_GT_PM_Programming_Guide doc for the below */
Z
Zhe Wang 已提交
4825
static void gen9_enable_rps(struct drm_device *dev)
J
Jesse Barnes 已提交
4826 4827 4828 4829 4830
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4831 4832
	gen6_init_rps_frequencies(dev);

4833
	/* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
4834
	if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
4835 4836 4837 4838 4839 4840 4841 4842 4843 4844
		/*
		 * BIOS could leave the Hw Turbo enabled, so need to explicitly
		 * clear out the Control register just to avoid inconsitency
		 * with debugfs interface, which will show  Turbo as enabled
		 * only and that is not expected by the User after adding the
		 * WaGsvDisableTurbo. Apart from this there is no problem even
		 * if the Turbo is left enabled in the Control register, as the
		 * Up/Down interrupts would remain masked.
		 */
		gen9_disable_rps(dev);
4845 4846 4847 4848
		intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
		return;
	}

4849 4850 4851 4852 4853 4854 4855 4856
	/* Program defaults and thresholds for RPS*/
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
		GEN9_FREQUENCY(dev_priv->rps.rp1_freq));

	/* 1 second timeout*/
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
		GT_INTERVAL_FROM_US(dev_priv, 1000000));

J
Jesse Barnes 已提交
4857 4858
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);

4859 4860 4861 4862
	/* Leaning on the below call to gen6_set_rps to program/setup the
	 * Up/Down EI & threshold registers, as well as the RP_CONTROL,
	 * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
	dev_priv->rps.power = HIGH_POWER; /* force a reset */
4863
	gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
J
Jesse Barnes 已提交
4864 4865 4866 4867 4868

	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
}

static void gen9_enable_rc6(struct drm_device *dev)
Z
Zhe Wang 已提交
4869 4870
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4871
	struct intel_engine_cs *engine;
Z
Zhe Wang 已提交
4872 4873 4874 4875 4876 4877 4878
	uint32_t rc6_mask = 0;

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4879
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
Z
Zhe Wang 已提交
4880 4881 4882 4883 4884

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	/* 2b: Program RC6 thresholds.*/
4885 4886

	/* WaRsDoubleRc6WrlWithCoarsePowerGating: Doubling WRL only when CPG is enabled */
4887
	if (IS_SKYLAKE(dev))
4888 4889 4890
		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
	else
		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
Z
Zhe Wang 已提交
4891 4892
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
4893
	for_each_engine(engine, dev_priv)
4894
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
4895 4896 4897 4898

	if (HAS_GUC_UCODE(dev))
		I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);

Z
Zhe Wang 已提交
4899 4900
	I915_WRITE(GEN6_RC_SLEEP, 0);

4901 4902 4903 4904
	/* 2c: Program Coarse Power Gating Policies. */
	I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25);
	I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25);

Z
Zhe Wang 已提交
4905 4906 4907
	/* 3a: Enable RC6 */
	if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
4908
	DRM_INFO("RC6 %s\n", onoff(rc6_mask & GEN6_RC_CTL_RC6_ENABLE));
4909
	/* WaRsUseTimeoutMode */
4910
	if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
T
Tim Gore 已提交
4911
	    IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
4912
		I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us */
S
Sagar Arun Kamble 已提交
4913 4914 4915
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
			   GEN7_RC_CTL_TO_MODE |
			   rc6_mask);
4916 4917
	} else {
		I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
S
Sagar Arun Kamble 已提交
4918 4919 4920
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
			   GEN6_RC_CTL_EI_MODE(1) |
			   rc6_mask);
4921
	}
Z
Zhe Wang 已提交
4922

4923 4924
	/*
	 * 3b: Enable Coarse Power Gating only when RC6 is enabled.
4925
	 * WaRsDisableCoarsePowerGating:skl,bxt - Render/Media PG need to be disabled with RC6.
4926
	 */
4927
	if (NEEDS_WaRsDisableCoarsePowerGating(dev))
4928 4929 4930 4931
		I915_WRITE(GEN9_PG_ENABLE, 0);
	else
		I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
				(GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE) : 0);
4932

4933
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
Z
Zhe Wang 已提交
4934 4935 4936

}

4937 4938 4939
static void gen8_enable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4940
	struct intel_engine_cs *engine;
4941
	uint32_t rc6_mask = 0;
4942 4943 4944 4945 4946 4947

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* 1c & 1d: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4948
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4949 4950 4951 4952

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

4953 4954
	/* Initialize rps frequencies */
	gen6_init_rps_frequencies(dev);
4955 4956 4957 4958 4959

	/* 2b: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
4960
	for_each_engine(engine, dev_priv)
4961
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
4962
	I915_WRITE(GEN6_RC_SLEEP, 0);
4963 4964 4965 4966
	if (IS_BROADWELL(dev))
		I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
	else
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
4967 4968 4969 4970

	/* 3: Enable RC6 */
	if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
4971
	intel_print_rc6_info(dev, rc6_mask);
4972 4973 4974 4975 4976 4977 4978 4979
	if (IS_BROADWELL(dev))
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
				GEN7_RC_CTL_TO_MODE |
				rc6_mask);
	else
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
				GEN6_RC_CTL_EI_MODE(1) |
				rc6_mask);
4980 4981

	/* 4 Program defaults and thresholds for RPS*/
4982 4983 4984 4985
	I915_WRITE(GEN6_RPNSWREQ,
		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999
	/* NB: Docs say 1s, and 1000000 - which aren't equivalent */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */

	/* Docs recommend 900MHz, and 300 MHz respectively */
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
		   dev_priv->rps.max_freq_softlimit << 24 |
		   dev_priv->rps.min_freq_softlimit << 16);

	I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
	I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
	I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5000 5001

	/* 5: Enable RPS */
5002 5003 5004 5005 5006 5007 5008 5009 5010 5011
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

	/* 6: Ring frequency + overclocking (our driver does this later */

5012
	dev_priv->rps.power = HIGH_POWER; /* force a reset */
5013
	gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
5014

5015
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5016 5017
}

5018
static void gen6_enable_rps(struct drm_device *dev)
5019
{
5020
	struct drm_i915_private *dev_priv = dev->dev_private;
5021
	struct intel_engine_cs *engine;
5022
	u32 rc6vids, pcu_mbox = 0, rc6_mask = 0;
5023 5024
	u32 gtfifodbg;
	int rc6_mode;
5025
	int ret;
5026

5027
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5028

5029 5030 5031 5032 5033 5034 5035 5036 5037
	/* Here begins a magic sequence of register writes to enable
	 * auto-downclocking.
	 *
	 * Perhaps there might be some value in exposing these to
	 * userspace...
	 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* Clear the DBG now so we don't confuse earlier errors */
5038 5039
	gtfifodbg = I915_READ(GTFIFODBG);
	if (gtfifodbg) {
5040 5041 5042 5043
		DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

5044
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5045

5046 5047
	/* Initialize rps frequencies */
	gen6_init_rps_frequencies(dev);
J
Jeff McGee 已提交
5048

5049 5050 5051 5052 5053 5054 5055 5056 5057
	/* disable the counters and set deterministic thresholds */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
	I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

5058
	for_each_engine(engine, dev_priv)
5059
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5060 5061 5062

	I915_WRITE(GEN6_RC_SLEEP, 0);
	I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
5063
	if (IS_IVYBRIDGE(dev))
5064 5065 5066
		I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
	else
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
5067
	I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
5068 5069
	I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */

5070
	/* Check if we are enabling RC6 */
5071 5072 5073 5074
	rc6_mode = intel_enable_rc6(dev_priv->dev);
	if (rc6_mode & INTEL_RC6_ENABLE)
		rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;

5075 5076 5077 5078
	/* We don't use those on Haswell */
	if (!IS_HASWELL(dev)) {
		if (rc6_mode & INTEL_RC6p_ENABLE)
			rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
5079

5080 5081 5082
		if (rc6_mode & INTEL_RC6pp_ENABLE)
			rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
	}
5083

B
Ben Widawsky 已提交
5084
	intel_print_rc6_info(dev, rc6_mask);
5085 5086 5087 5088 5089 5090

	I915_WRITE(GEN6_RC_CONTROL,
		   rc6_mask |
		   GEN6_RC_CTL_EI_MODE(1) |
		   GEN6_RC_CTL_HW_ENABLE);

5091 5092
	/* Power down if completely idle for over 50ms */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
5093 5094
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

B
Ben Widawsky 已提交
5095
	ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
5096
	if (ret)
B
Ben Widawsky 已提交
5097
		DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
5098 5099 5100 5101

	ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
	if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
		DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
5102
				 (dev_priv->rps.max_freq_softlimit & 0xff) * 50,
5103
				 (pcu_mbox & 0xff) * 50);
5104
		dev_priv->rps.max_freq = pcu_mbox & 0xff;
5105 5106
	}

5107
	dev_priv->rps.power = HIGH_POWER; /* force a reset */
5108
	gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
5109

5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123
	rc6vids = 0;
	ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
	if (IS_GEN6(dev) && ret) {
		DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
	} else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
		DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
			  GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
		rc6vids &= 0xffff00;
		rc6vids |= GEN6_ENCODE_RC6_VID(450);
		ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
		if (ret)
			DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
	}

5124
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5125 5126
}

5127
static void __gen6_update_ring_freq(struct drm_device *dev)
5128
{
5129
	struct drm_i915_private *dev_priv = dev->dev_private;
5130
	int min_freq = 15;
5131 5132
	unsigned int gpu_freq;
	unsigned int max_ia_freq, min_ring_freq;
5133
	unsigned int max_gpu_freq, min_gpu_freq;
5134
	int scaling_factor = 180;
5135
	struct cpufreq_policy *policy;
5136

5137
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5138

5139 5140 5141 5142 5143 5144 5145 5146 5147
	policy = cpufreq_cpu_get(0);
	if (policy) {
		max_ia_freq = policy->cpuinfo.max_freq;
		cpufreq_cpu_put(policy);
	} else {
		/*
		 * Default to measured freq if none found, PCU will ensure we
		 * don't go over
		 */
5148
		max_ia_freq = tsc_khz;
5149
	}
5150 5151 5152 5153

	/* Convert from kHz to MHz */
	max_ia_freq /= 1000;

5154
	min_ring_freq = I915_READ(DCLK) & 0xf;
5155 5156
	/* convert DDR frequency from units of 266.6MHz to bandwidth */
	min_ring_freq = mult_frac(min_ring_freq, 8, 3);
5157

5158
	if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
5159 5160 5161 5162 5163 5164 5165 5166
		/* Convert GT frequency to 50 HZ units */
		min_gpu_freq = dev_priv->rps.min_freq / GEN9_FREQ_SCALER;
		max_gpu_freq = dev_priv->rps.max_freq / GEN9_FREQ_SCALER;
	} else {
		min_gpu_freq = dev_priv->rps.min_freq;
		max_gpu_freq = dev_priv->rps.max_freq;
	}

5167 5168 5169 5170 5171
	/*
	 * For each potential GPU frequency, load a ring frequency we'd like
	 * to use for memory access.  We do this by specifying the IA frequency
	 * the PCU should use as a reference to determine the ring frequency.
	 */
5172 5173
	for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
		int diff = max_gpu_freq - gpu_freq;
5174 5175
		unsigned int ia_freq = 0, ring_freq = 0;

5176
		if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
5177 5178 5179 5180 5181 5182
			/*
			 * ring_freq = 2 * GT. ring_freq is in 100MHz units
			 * No floor required for ring frequency on SKL.
			 */
			ring_freq = gpu_freq;
		} else if (INTEL_INFO(dev)->gen >= 8) {
5183 5184 5185
			/* max(2 * GT, DDR). NB: GT is 50MHz units */
			ring_freq = max(min_ring_freq, gpu_freq);
		} else if (IS_HASWELL(dev)) {
5186
			ring_freq = mult_frac(gpu_freq, 5, 4);
5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202
			ring_freq = max(min_ring_freq, ring_freq);
			/* leave ia_freq as the default, chosen by cpufreq */
		} else {
			/* On older processors, there is no separate ring
			 * clock domain, so in order to boost the bandwidth
			 * of the ring, we need to upclock the CPU (ia_freq).
			 *
			 * For GPU frequencies less than 750MHz,
			 * just use the lowest ring freq.
			 */
			if (gpu_freq < min_freq)
				ia_freq = 800;
			else
				ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
			ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
		}
5203

B
Ben Widawsky 已提交
5204 5205
		sandybridge_pcode_write(dev_priv,
					GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
5206 5207 5208
					ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
					ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
					gpu_freq);
5209 5210 5211
	}
}

5212 5213 5214 5215
void gen6_update_ring_freq(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

5216
	if (!HAS_CORE_RING_FREQ(dev))
5217 5218 5219 5220 5221 5222 5223
		return;

	mutex_lock(&dev_priv->rps.hw_lock);
	__gen6_update_ring_freq(dev);
	mutex_unlock(&dev_priv->rps.hw_lock);
}

5224
static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
5225
{
5226
	struct drm_device *dev = dev_priv->dev;
5227 5228
	u32 val, rp0;

5229
	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
5230

5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245
	switch (INTEL_INFO(dev)->eu_total) {
	case 8:
		/* (2 * 4) config */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
		break;
	case 12:
		/* (2 * 6) config */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
		break;
	case 16:
		/* (2 * 8) config */
	default:
		/* Setting (2 * 8) Min RP0 for any other combination */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
		break;
5246
	}
5247 5248 5249

	rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);

5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262
	return rp0;
}

static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

	val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
	rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;

	return rpe;
}

5263 5264 5265 5266
static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

5267 5268 5269
	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
	rp1 = (val & FB_GFX_FREQ_FUSE_MASK);

5270 5271 5272
	return rp1;
}

5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283
static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);

	rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;

	return rp1;
}

5284
static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
5285 5286 5287
{
	u32 val, rp0;

5288
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300

	rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
	/* Clamp to max */
	rp0 = min_t(u32, rp0, 0xea);

	return rp0;
}

static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

5301
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
5302
	rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
5303
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
5304 5305 5306 5307 5308
	rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;

	return rpe;
}

5309
static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
5310
{
5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321
	u32 val;

	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
	/*
	 * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
	 * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
	 * a BYT-M B0 the above register contains 0xbf. Moreover when setting
	 * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
	 * to make sure it matches what Punit accepts.
	 */
	return max_t(u32, val, 0xc0);
5322 5323
}

5324 5325 5326 5327 5328 5329 5330 5331 5332
/* Check that the pctx buffer wasn't move under us. */
static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

	WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
			     dev_priv->vlv_pctx->stolen->start);
}

5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343

/* Check that the pcbr address is not empty. */
static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

	WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
}

static void cherryview_setup_pctx(struct drm_device *dev)
{
5344
	struct drm_i915_private *dev_priv = to_i915(dev);
5345
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
5346 5347 5348 5349 5350 5351
	unsigned long pctx_paddr, paddr;
	u32 pcbr;
	int pctx_size = 32*1024;

	pcbr = I915_READ(VLV_PCBR);
	if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
5352
		DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5353
		paddr = (dev_priv->mm.stolen_base +
5354
			 (ggtt->stolen_size - pctx_size));
5355 5356 5357 5358

		pctx_paddr = (paddr & (~4095));
		I915_WRITE(VLV_PCBR, pctx_paddr);
	}
5359 5360

	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5361 5362
}

5363 5364 5365 5366 5367 5368 5369 5370
static void valleyview_setup_pctx(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *pctx;
	unsigned long pctx_paddr;
	u32 pcbr;
	int pctx_size = 24*1024;

5371
	mutex_lock(&dev->struct_mutex);
5372

5373 5374 5375 5376 5377 5378 5379 5380
	pcbr = I915_READ(VLV_PCBR);
	if (pcbr) {
		/* BIOS set it up already, grab the pre-alloc'd space */
		int pcbr_offset;

		pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
		pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
								      pcbr_offset,
5381
								      I915_GTT_OFFSET_NONE,
5382 5383 5384 5385
								      pctx_size);
		goto out;
	}

5386 5387
	DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");

5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398
	/*
	 * From the Gunit register HAS:
	 * The Gfx driver is expected to program this register and ensure
	 * proper allocation within Gfx stolen memory.  For example, this
	 * register should be programmed such than the PCBR range does not
	 * overlap with other ranges, such as the frame buffer, protected
	 * memory, or any other relevant ranges.
	 */
	pctx = i915_gem_object_create_stolen(dev, pctx_size);
	if (!pctx) {
		DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
5399
		goto out;
5400 5401 5402 5403 5404 5405
	}

	pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
	I915_WRITE(VLV_PCBR, pctx_paddr);

out:
5406
	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5407
	dev_priv->vlv_pctx = pctx;
5408
	mutex_unlock(&dev->struct_mutex);
5409 5410
}

5411 5412 5413 5414 5415 5416 5417
static void valleyview_cleanup_pctx(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (WARN_ON(!dev_priv->vlv_pctx))
		return;

5418
	drm_gem_object_unreference_unlocked(&dev_priv->vlv_pctx->base);
5419 5420 5421
	dev_priv->vlv_pctx = NULL;
}

5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432
static void vlv_init_gpll_ref_freq(struct drm_i915_private *dev_priv)
{
	dev_priv->rps.gpll_ref_freq =
		vlv_get_cck_clock(dev_priv, "GPLL ref",
				  CCK_GPLL_CLOCK_CONTROL,
				  dev_priv->czclk_freq);

	DRM_DEBUG_DRIVER("GPLL reference freq: %d kHz\n",
			 dev_priv->rps.gpll_ref_freq);
}

5433 5434 5435
static void valleyview_init_gt_powersave(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
5436
	u32 val;
5437 5438 5439

	valleyview_setup_pctx(dev);

5440 5441
	vlv_init_gpll_ref_freq(dev_priv);

5442 5443
	mutex_lock(&dev_priv->rps.hw_lock);

5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
	switch ((val >> 6) & 3) {
	case 0:
	case 1:
		dev_priv->mem_freq = 800;
		break;
	case 2:
		dev_priv->mem_freq = 1066;
		break;
	case 3:
		dev_priv->mem_freq = 1333;
		break;
	}
5457
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5458

5459 5460 5461
	dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5462
			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5463 5464 5465 5466
			 dev_priv->rps.max_freq);

	dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5467
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5468 5469
			 dev_priv->rps.efficient_freq);

5470 5471
	dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
	DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
5472
			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5473 5474
			 dev_priv->rps.rp1_freq);

5475 5476
	dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5477
			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5478 5479
			 dev_priv->rps.min_freq);

5480 5481
	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;

5482 5483 5484 5485 5486 5487 5488 5489 5490 5491
	/* Preserve min/max settings in case of re-init */
	if (dev_priv->rps.max_freq_softlimit == 0)
		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;

	if (dev_priv->rps.min_freq_softlimit == 0)
		dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;

	mutex_unlock(&dev_priv->rps.hw_lock);
}

5492 5493
static void cherryview_init_gt_powersave(struct drm_device *dev)
{
5494
	struct drm_i915_private *dev_priv = dev->dev_private;
5495
	u32 val;
5496

5497
	cherryview_setup_pctx(dev);
5498

5499 5500
	vlv_init_gpll_ref_freq(dev_priv);

5501 5502
	mutex_lock(&dev_priv->rps.hw_lock);

V
Ville Syrjälä 已提交
5503
	mutex_lock(&dev_priv->sb_lock);
5504
	val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
V
Ville Syrjälä 已提交
5505
	mutex_unlock(&dev_priv->sb_lock);
5506

5507 5508 5509 5510
	switch ((val >> 2) & 0x7) {
	case 3:
		dev_priv->mem_freq = 2000;
		break;
5511
	default:
5512 5513 5514
		dev_priv->mem_freq = 1600;
		break;
	}
5515
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5516

5517 5518 5519
	dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5520
			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5521 5522 5523 5524
			 dev_priv->rps.max_freq);

	dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5525
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5526 5527
			 dev_priv->rps.efficient_freq);

5528 5529
	dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
	DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
5530
			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5531 5532
			 dev_priv->rps.rp1_freq);

5533 5534
	/* PUnit validated range is only [RPe, RP0] */
	dev_priv->rps.min_freq = dev_priv->rps.efficient_freq;
5535
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5536
			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5537 5538
			 dev_priv->rps.min_freq);

5539 5540 5541 5542 5543 5544
	WARN_ONCE((dev_priv->rps.max_freq |
		   dev_priv->rps.efficient_freq |
		   dev_priv->rps.rp1_freq |
		   dev_priv->rps.min_freq) & 1,
		  "Odd GPU freq values\n");

5545 5546
	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;

5547 5548 5549 5550 5551 5552 5553 5554
	/* Preserve min/max settings in case of re-init */
	if (dev_priv->rps.max_freq_softlimit == 0)
		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;

	if (dev_priv->rps.min_freq_softlimit == 0)
		dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;

	mutex_unlock(&dev_priv->rps.hw_lock);
5555 5556
}

5557 5558 5559 5560 5561
static void valleyview_cleanup_gt_powersave(struct drm_device *dev)
{
	valleyview_cleanup_pctx(dev);
}

5562 5563 5564
static void cherryview_enable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
5565
	struct intel_engine_cs *engine;
5566
	u32 gtfifodbg, val, rc6_mode = 0, pcbr;
5567 5568 5569

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

5570 5571
	gtfifodbg = I915_READ(GTFIFODBG) & ~(GT_FIFO_SBDEDICATE_FREE_ENTRY_CHV |
					     GT_FIFO_FREE_ENTRIES_CHV);
5572 5573 5574 5575 5576 5577 5578 5579 5580 5581
	if (gtfifodbg) {
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

	cherryview_check_pctx(dev_priv);

	/* 1a & 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5582
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5583

5584 5585 5586
	/*  Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

5587 5588 5589 5590 5591
	/* 2a: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */

5592
	for_each_engine(engine, dev_priv)
5593
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5594 5595
	I915_WRITE(GEN6_RC_SLEEP, 0);

5596 5597
	/* TO threshold set to 500 us ( 0x186 * 1.28 us) */
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610

	/* allows RC6 residency counter to work */
	I915_WRITE(VLV_COUNTER_CONTROL,
		   _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));

	/* For now we assume BIOS is allocating and populating the PCBR  */
	pcbr = I915_READ(VLV_PCBR);

	/* 3: Enable RC6 */
	if ((intel_enable_rc6(dev) & INTEL_RC6_ENABLE) &&
						(pcbr >> VLV_PCBR_ADDR_SHIFT))
5611
		rc6_mode = GEN7_RC_CTL_TO_MODE;
5612 5613 5614

	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);

5615
	/* 4 Program defaults and thresholds for RPS*/
5616
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
5617 5618 5619 5620 5621 5622 5623 5624 5625 5626
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	/* 5: Enable RPS */
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
5627
		   GEN6_RP_MEDIA_IS_GFX |
5628 5629 5630 5631
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

D
Deepak S 已提交
5632 5633 5634 5635 5636 5637
	/* Setting Fixed Bias */
	val = VLV_OVERRIDE_EN |
		  VLV_SOC_TDP_EN |
		  CHV_BIAS_CPU_50_SOC_50;
	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);

5638 5639
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);

5640 5641 5642
	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

5643
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
5644 5645 5646 5647
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

	dev_priv->rps.cur_freq = (val >> 8) & 0xff;
	DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
5648
			 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
5649 5650 5651
			 dev_priv->rps.cur_freq);

	DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
5652 5653
			 intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq),
			 dev_priv->rps.idle_freq);
5654

5655
	valleyview_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
5656

5657
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5658 5659
}

5660 5661 5662
static void valleyview_enable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
5663
	struct intel_engine_cs *engine;
5664
	u32 gtfifodbg, val, rc6_mode = 0;
5665 5666 5667

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

5668 5669
	valleyview_check_pctx(dev_priv);

5670 5671
	gtfifodbg = I915_READ(GTFIFODBG);
	if (gtfifodbg) {
5672 5673
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
5674 5675 5676
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

5677
	/* If VLV, Forcewake all wells, else re-direct to regular path */
5678
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5679

5680 5681 5682
	/*  Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

5683
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_CONT);

	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

5703
	for_each_engine(engine, dev_priv)
5704
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5705

5706
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
5707 5708

	/* allows RC6 residency counter to work */
5709
	I915_WRITE(VLV_COUNTER_CONTROL,
5710 5711
		   _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
				      VLV_RENDER_RC0_COUNT_EN |
5712 5713
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));
5714

5715
	if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
5716
		rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
B
Ben Widawsky 已提交
5717 5718 5719

	intel_print_rc6_info(dev, rc6_mode);

5720
	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
5721

D
Deepak S 已提交
5722 5723 5724 5725 5726 5727
	/* Setting Fixed Bias */
	val = VLV_OVERRIDE_EN |
		  VLV_SOC_TDP_EN |
		  VLV_BIAS_CPU_125_SOC_875;
	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);

5728
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5729

5730 5731 5732
	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

5733
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
5734 5735
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

5736
	dev_priv->rps.cur_freq = (val >> 8) & 0xff;
5737
	DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
5738
			 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
5739
			 dev_priv->rps.cur_freq);
5740

5741
	DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
5742 5743
			 intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq),
			 dev_priv->rps.idle_freq);
5744

5745
	valleyview_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
5746

5747
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5748 5749
}

5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764
static unsigned long intel_pxfreq(u32 vidfreq)
{
	unsigned long freq;
	int div = (vidfreq & 0x3f0000) >> 16;
	int post = (vidfreq & 0x3000) >> 12;
	int pre = (vidfreq & 0x7);

	if (!pre)
		return 0;

	freq = ((div * 133333) / ((1<<post) * pre));

	return freq;
}

5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778
static const struct cparams {
	u16 i;
	u16 t;
	u16 m;
	u16 c;
} cparams[] = {
	{ 1, 1333, 301, 28664 },
	{ 1, 1066, 294, 24460 },
	{ 1, 800, 294, 25192 },
	{ 0, 1333, 276, 27605 },
	{ 0, 1066, 276, 27605 },
	{ 0, 800, 231, 23784 },
};

5779
static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
5780 5781 5782 5783 5784 5785
{
	u64 total_count, diff, ret;
	u32 count1, count2, count3, m = 0, c = 0;
	unsigned long now = jiffies_to_msecs(jiffies), diff1;
	int i;

5786 5787
	assert_spin_locked(&mchdev_lock);

5788
	diff1 = now - dev_priv->ips.last_time1;
5789 5790 5791 5792 5793 5794 5795

	/* Prevent division-by-zero if we are asking too fast.
	 * Also, we don't get interesting results if we are polling
	 * faster than once in 10ms, so just return the saved value
	 * in such cases.
	 */
	if (diff1 <= 10)
5796
		return dev_priv->ips.chipset_power;
5797 5798 5799 5800 5801 5802 5803 5804

	count1 = I915_READ(DMIEC);
	count2 = I915_READ(DDREC);
	count3 = I915_READ(CSIEC);

	total_count = count1 + count2 + count3;

	/* FIXME: handle per-counter overflow */
5805 5806
	if (total_count < dev_priv->ips.last_count1) {
		diff = ~0UL - dev_priv->ips.last_count1;
5807 5808
		diff += total_count;
	} else {
5809
		diff = total_count - dev_priv->ips.last_count1;
5810 5811 5812
	}

	for (i = 0; i < ARRAY_SIZE(cparams); i++) {
5813 5814
		if (cparams[i].i == dev_priv->ips.c_m &&
		    cparams[i].t == dev_priv->ips.r_t) {
5815 5816 5817 5818 5819 5820 5821 5822 5823 5824
			m = cparams[i].m;
			c = cparams[i].c;
			break;
		}
	}

	diff = div_u64(diff, diff1);
	ret = ((m * diff) + c);
	ret = div_u64(ret, 10);

5825 5826
	dev_priv->ips.last_count1 = total_count;
	dev_priv->ips.last_time1 = now;
5827

5828
	dev_priv->ips.chipset_power = ret;
5829 5830 5831 5832

	return ret;
}

5833 5834
unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
{
5835
	struct drm_device *dev = dev_priv->dev;
5836 5837
	unsigned long val;

5838
	if (INTEL_INFO(dev)->gen != 5)
5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_chipset_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864
unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
{
	unsigned long m, x, b;
	u32 tsfs;

	tsfs = I915_READ(TSFS);

	m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
	x = I915_READ8(TR1);

	b = tsfs & TSFS_INTR_MASK;

	return ((m * x) / 127) - b;
}

5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876
static int _pxvid_to_vd(u8 pxvid)
{
	if (pxvid == 0)
		return 0;

	if (pxvid >= 8 && pxvid < 31)
		pxvid = 31;

	return (pxvid + 2) * 125;
}

static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
5877
{
5878
	struct drm_device *dev = dev_priv->dev;
5879 5880 5881
	const int vd = _pxvid_to_vd(pxvid);
	const int vm = vd - 1125;

5882
	if (INTEL_INFO(dev)->is_mobile)
5883 5884 5885
		return vm > 0 ? vm : 0;

	return vd;
5886 5887
}

5888
static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
5889
{
5890
	u64 now, diff, diffms;
5891 5892
	u32 count;

5893
	assert_spin_locked(&mchdev_lock);
5894

5895 5896 5897
	now = ktime_get_raw_ns();
	diffms = now - dev_priv->ips.last_time2;
	do_div(diffms, NSEC_PER_MSEC);
5898 5899 5900 5901 5902 5903 5904

	/* Don't divide by 0 */
	if (!diffms)
		return;

	count = I915_READ(GFXEC);

5905 5906
	if (count < dev_priv->ips.last_count2) {
		diff = ~0UL - dev_priv->ips.last_count2;
5907 5908
		diff += count;
	} else {
5909
		diff = count - dev_priv->ips.last_count2;
5910 5911
	}

5912 5913
	dev_priv->ips.last_count2 = count;
	dev_priv->ips.last_time2 = now;
5914 5915 5916 5917

	/* More magic constants... */
	diff = diff * 1181;
	diff = div_u64(diff, diffms * 10);
5918
	dev_priv->ips.gfx_power = diff;
5919 5920
}

5921 5922
void i915_update_gfx_val(struct drm_i915_private *dev_priv)
{
5923 5924 5925
	struct drm_device *dev = dev_priv->dev;

	if (INTEL_INFO(dev)->gen != 5)
5926 5927
		return;

5928
	spin_lock_irq(&mchdev_lock);
5929 5930 5931

	__i915_update_gfx_val(dev_priv);

5932
	spin_unlock_irq(&mchdev_lock);
5933 5934
}

5935
static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
5936 5937 5938 5939
{
	unsigned long t, corr, state1, corr2, state2;
	u32 pxvid, ext_v;

5940 5941
	assert_spin_locked(&mchdev_lock);

5942
	pxvid = I915_READ(PXVFREQ(dev_priv->rps.cur_freq));
5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961
	pxvid = (pxvid >> 24) & 0x7f;
	ext_v = pvid_to_extvid(dev_priv, pxvid);

	state1 = ext_v;

	t = i915_mch_val(dev_priv);

	/* Revel in the empirically derived constants */

	/* Correction factor in 1/100000 units */
	if (t > 80)
		corr = ((t * 2349) + 135940);
	else if (t >= 50)
		corr = ((t * 964) + 29317);
	else /* < 50 */
		corr = ((t * 301) + 1004);

	corr = corr * ((150142 * state1) / 10000 - 78642);
	corr /= 100000;
5962
	corr2 = (corr * dev_priv->ips.corr);
5963 5964 5965 5966

	state2 = (corr2 * state1) / 10000;
	state2 /= 100; /* convert to mW */

5967
	__i915_update_gfx_val(dev_priv);
5968

5969
	return dev_priv->ips.gfx_power + state2;
5970 5971
}

5972 5973
unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
{
5974
	struct drm_device *dev = dev_priv->dev;
5975 5976
	unsigned long val;

5977
	if (INTEL_INFO(dev)->gen != 5)
5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_gfx_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999
/**
 * i915_read_mch_val - return value for IPS use
 *
 * Calculate and return a value for the IPS driver to use when deciding whether
 * we have thermal and power headroom to increase CPU or GPU power budget.
 */
unsigned long i915_read_mch_val(void)
{
	struct drm_i915_private *dev_priv;
	unsigned long chipset_val, graphics_val, ret = 0;

6000
	spin_lock_irq(&mchdev_lock);
6001 6002 6003 6004
	if (!i915_mch_dev)
		goto out_unlock;
	dev_priv = i915_mch_dev;

6005 6006
	chipset_val = __i915_chipset_val(dev_priv);
	graphics_val = __i915_gfx_val(dev_priv);
6007 6008 6009 6010

	ret = chipset_val + graphics_val;

out_unlock:
6011
	spin_unlock_irq(&mchdev_lock);
6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026

	return ret;
}
EXPORT_SYMBOL_GPL(i915_read_mch_val);

/**
 * i915_gpu_raise - raise GPU frequency limit
 *
 * Raise the limit; IPS indicates we have thermal headroom.
 */
bool i915_gpu_raise(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

6027
	spin_lock_irq(&mchdev_lock);
6028 6029 6030 6031 6032 6033
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

6034 6035
	if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
		dev_priv->ips.max_delay--;
6036 6037

out_unlock:
6038
	spin_unlock_irq(&mchdev_lock);
6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_raise);

/**
 * i915_gpu_lower - lower GPU frequency limit
 *
 * IPS indicates we're close to a thermal limit, so throttle back the GPU
 * frequency maximum.
 */
bool i915_gpu_lower(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

6055
	spin_lock_irq(&mchdev_lock);
6056 6057 6058 6059 6060 6061
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

6062 6063
	if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
		dev_priv->ips.max_delay++;
6064 6065

out_unlock:
6066
	spin_unlock_irq(&mchdev_lock);
6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_lower);

/**
 * i915_gpu_busy - indicate GPU business to IPS
 *
 * Tell the IPS driver whether or not the GPU is busy.
 */
bool i915_gpu_busy(void)
{
	struct drm_i915_private *dev_priv;
6080
	struct intel_engine_cs *engine;
6081 6082
	bool ret = false;

6083
	spin_lock_irq(&mchdev_lock);
6084 6085 6086 6087
	if (!i915_mch_dev)
		goto out_unlock;
	dev_priv = i915_mch_dev;

6088
	for_each_engine(engine, dev_priv)
6089
		ret |= !list_empty(&engine->request_list);
6090 6091

out_unlock:
6092
	spin_unlock_irq(&mchdev_lock);
6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_busy);

/**
 * i915_gpu_turbo_disable - disable graphics turbo
 *
 * Disable graphics turbo by resetting the max frequency and setting the
 * current frequency to the default.
 */
bool i915_gpu_turbo_disable(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

6109
	spin_lock_irq(&mchdev_lock);
6110 6111 6112 6113 6114 6115
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

6116
	dev_priv->ips.max_delay = dev_priv->ips.fstart;
6117

6118
	if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
6119 6120 6121
		ret = false;

out_unlock:
6122
	spin_unlock_irq(&mchdev_lock);
6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);

/**
 * Tells the intel_ips driver that the i915 driver is now loaded, if
 * IPS got loaded first.
 *
 * This awkward dance is so that neither module has to depend on the
 * other in order for IPS to do the appropriate communication of
 * GPU turbo limits to i915.
 */
static void
ips_ping_for_i915_load(void)
{
	void (*link)(void);

	link = symbol_get(ips_link_to_i915_driver);
	if (link) {
		link();
		symbol_put(ips_link_to_i915_driver);
	}
}

void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
{
6150 6151
	/* We only register the i915 ips part with intel-ips once everything is
	 * set up, to avoid intel-ips sneaking in and reading bogus values. */
6152
	spin_lock_irq(&mchdev_lock);
6153
	i915_mch_dev = dev_priv;
6154
	spin_unlock_irq(&mchdev_lock);
6155 6156 6157 6158 6159 6160

	ips_ping_for_i915_load();
}

void intel_gpu_ips_teardown(void)
{
6161
	spin_lock_irq(&mchdev_lock);
6162
	i915_mch_dev = NULL;
6163
	spin_unlock_irq(&mchdev_lock);
6164
}
6165

6166
static void intel_init_emon(struct drm_device *dev)
6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 lcfuse;
	u8 pxw[16];
	int i;

	/* Disable to program */
	I915_WRITE(ECR, 0);
	POSTING_READ(ECR);

	/* Program energy weights for various events */
	I915_WRITE(SDEW, 0x15040d00);
	I915_WRITE(CSIEW0, 0x007f0000);
	I915_WRITE(CSIEW1, 0x1e220004);
	I915_WRITE(CSIEW2, 0x04000004);

	for (i = 0; i < 5; i++)
6184
		I915_WRITE(PEW(i), 0);
6185
	for (i = 0; i < 3; i++)
6186
		I915_WRITE(DEW(i), 0);
6187 6188 6189

	/* Program P-state weights to account for frequency power adjustment */
	for (i = 0; i < 16; i++) {
6190
		u32 pxvidfreq = I915_READ(PXVFREQ(i));
6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210
		unsigned long freq = intel_pxfreq(pxvidfreq);
		unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
			PXVFREQ_PX_SHIFT;
		unsigned long val;

		val = vid * vid;
		val *= (freq / 1000);
		val *= 255;
		val /= (127*127*900);
		if (val > 0xff)
			DRM_ERROR("bad pxval: %ld\n", val);
		pxw[i] = val;
	}
	/* Render standby states get 0 weight */
	pxw[14] = 0;
	pxw[15] = 0;

	for (i = 0; i < 4; i++) {
		u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
			(pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
6211
		I915_WRITE(PXW(i), val);
6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226
	}

	/* Adjust magic regs to magic values (more experimental results) */
	I915_WRITE(OGW0, 0);
	I915_WRITE(OGW1, 0);
	I915_WRITE(EG0, 0x00007f00);
	I915_WRITE(EG1, 0x0000000e);
	I915_WRITE(EG2, 0x000e0000);
	I915_WRITE(EG3, 0x68000300);
	I915_WRITE(EG4, 0x42000000);
	I915_WRITE(EG5, 0x00140031);
	I915_WRITE(EG6, 0);
	I915_WRITE(EG7, 0);

	for (i = 0; i < 8; i++)
6227
		I915_WRITE(PXWL(i), 0);
6228 6229 6230 6231 6232 6233

	/* Enable PMON + select events */
	I915_WRITE(ECR, 0x80000019);

	lcfuse = I915_READ(LCFUSE02);

6234
	dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
6235 6236
}

6237 6238
void intel_init_gt_powersave(struct drm_device *dev)
{
6239 6240 6241 6242 6243 6244 6245 6246 6247 6248
	struct drm_i915_private *dev_priv = dev->dev_private;

	/*
	 * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
	 * requirement.
	 */
	if (!i915.enable_rc6) {
		DRM_INFO("RC6 disabled, disabling runtime PM support\n");
		intel_runtime_pm_get(dev_priv);
	}
I
Imre Deak 已提交
6249

6250 6251 6252
	if (IS_CHERRYVIEW(dev))
		cherryview_init_gt_powersave(dev);
	else if (IS_VALLEYVIEW(dev))
6253
		valleyview_init_gt_powersave(dev);
6254 6255 6256 6257
}

void intel_cleanup_gt_powersave(struct drm_device *dev)
{
6258 6259
	struct drm_i915_private *dev_priv = dev->dev_private;

6260 6261 6262
	if (IS_CHERRYVIEW(dev))
		return;
	else if (IS_VALLEYVIEW(dev))
6263
		valleyview_cleanup_gt_powersave(dev);
6264 6265 6266

	if (!i915.enable_rc6)
		intel_runtime_pm_put(dev_priv);
6267 6268
}

6269 6270 6271 6272 6273 6274
static void gen6_suspend_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	flush_delayed_work(&dev_priv->rps.delayed_resume_work);

6275
	gen6_disable_rps_interrupts(dev);
6276 6277
}

6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289
/**
 * intel_suspend_gt_powersave - suspend PM work and helper threads
 * @dev: drm device
 *
 * We don't want to disable RC6 or other features here, we just want
 * to make sure any work we've queued has finished and won't bother
 * us while we're suspended.
 */
void intel_suspend_gt_powersave(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

I
Imre Deak 已提交
6290 6291 6292
	if (INTEL_INFO(dev)->gen < 6)
		return;

6293
	gen6_suspend_rps(dev);
6294 6295 6296

	/* Force GPU to min freq during suspend */
	gen6_rps_idle(dev_priv);
6297 6298
}

6299 6300
void intel_disable_gt_powersave(struct drm_device *dev)
{
6301 6302
	struct drm_i915_private *dev_priv = dev->dev_private;

6303
	if (IS_IRONLAKE_M(dev)) {
6304
		ironlake_disable_drps(dev);
6305
	} else if (INTEL_INFO(dev)->gen >= 6) {
6306
		intel_suspend_gt_powersave(dev);
6307

6308
		mutex_lock(&dev_priv->rps.hw_lock);
6309 6310
		if (INTEL_INFO(dev)->gen >= 9) {
			gen9_disable_rc6(dev);
Z
Zhe Wang 已提交
6311
			gen9_disable_rps(dev);
6312
		} else if (IS_CHERRYVIEW(dev))
6313 6314
			cherryview_disable_rps(dev);
		else if (IS_VALLEYVIEW(dev))
6315 6316 6317
			valleyview_disable_rps(dev);
		else
			gen6_disable_rps(dev);
6318

6319
		dev_priv->rps.enabled = false;
6320
		mutex_unlock(&dev_priv->rps.hw_lock);
6321
	}
6322 6323
}

6324 6325 6326 6327 6328 6329 6330
static void intel_gen6_powersave_work(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
		container_of(work, struct drm_i915_private,
			     rps.delayed_resume_work.work);
	struct drm_device *dev = dev_priv->dev;

6331
	mutex_lock(&dev_priv->rps.hw_lock);
6332

6333
	gen6_reset_rps_interrupts(dev);
I
Imre Deak 已提交
6334

6335 6336 6337
	if (IS_CHERRYVIEW(dev)) {
		cherryview_enable_rps(dev);
	} else if (IS_VALLEYVIEW(dev)) {
6338
		valleyview_enable_rps(dev);
Z
Zhe Wang 已提交
6339
	} else if (INTEL_INFO(dev)->gen >= 9) {
J
Jesse Barnes 已提交
6340
		gen9_enable_rc6(dev);
Z
Zhe Wang 已提交
6341
		gen9_enable_rps(dev);
6342
		if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
6343
			__gen6_update_ring_freq(dev);
6344 6345
	} else if (IS_BROADWELL(dev)) {
		gen8_enable_rps(dev);
6346
		__gen6_update_ring_freq(dev);
6347 6348
	} else {
		gen6_enable_rps(dev);
6349
		__gen6_update_ring_freq(dev);
6350
	}
6351 6352 6353 6354 6355 6356 6357

	WARN_ON(dev_priv->rps.max_freq < dev_priv->rps.min_freq);
	WARN_ON(dev_priv->rps.idle_freq > dev_priv->rps.max_freq);

	WARN_ON(dev_priv->rps.efficient_freq < dev_priv->rps.min_freq);
	WARN_ON(dev_priv->rps.efficient_freq > dev_priv->rps.max_freq);

6358
	dev_priv->rps.enabled = true;
I
Imre Deak 已提交
6359

6360
	gen6_enable_rps_interrupts(dev);
I
Imre Deak 已提交
6361

6362
	mutex_unlock(&dev_priv->rps.hw_lock);
6363 6364

	intel_runtime_pm_put(dev_priv);
6365 6366
}

6367 6368
void intel_enable_gt_powersave(struct drm_device *dev)
{
6369 6370
	struct drm_i915_private *dev_priv = dev->dev_private;

6371 6372 6373 6374
	/* Powersaving is controlled by the host when inside a VM */
	if (intel_vgpu_active(dev))
		return;

6375 6376
	if (IS_IRONLAKE_M(dev)) {
		ironlake_enable_drps(dev);
6377
		mutex_lock(&dev->struct_mutex);
6378
		intel_init_emon(dev);
6379
		mutex_unlock(&dev->struct_mutex);
6380
	} else if (INTEL_INFO(dev)->gen >= 6) {
6381 6382 6383 6384
		/*
		 * PCU communication is slow and this doesn't need to be
		 * done at any specific time, so do this out of our fast path
		 * to make resume and init faster.
6385 6386 6387 6388 6389 6390 6391
		 *
		 * We depend on the HW RC6 power context save/restore
		 * mechanism when entering D3 through runtime PM suspend. So
		 * disable RPM until RPS/RC6 is properly setup. We can only
		 * get here via the driver load/system resume/runtime resume
		 * paths, so the _noresume version is enough (and in case of
		 * runtime resume it's necessary).
6392
		 */
6393 6394 6395
		if (schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
					   round_jiffies_up_relative(HZ)))
			intel_runtime_pm_get_noresume(dev_priv);
6396 6397 6398
	}
}

6399 6400 6401 6402
void intel_reset_gt_powersave(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

6403 6404 6405 6406
	if (INTEL_INFO(dev)->gen < 6)
		return;

	gen6_suspend_rps(dev);
6407 6408 6409
	dev_priv->rps.enabled = false;
}

6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421
static void ibx_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
}

6422 6423 6424
static void g4x_disable_trickle_feed(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
6425
	enum pipe pipe;
6426

6427
	for_each_pipe(dev_priv, pipe) {
6428 6429 6430
		I915_WRITE(DSPCNTR(pipe),
			   I915_READ(DSPCNTR(pipe)) |
			   DISPPLANE_TRICKLE_FEED_DISABLE);
6431 6432 6433

		I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
		POSTING_READ(DSPSURF(pipe));
6434 6435 6436
	}
}

6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450
static void ilk_init_lp_watermarks(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);

	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
}

6451
static void ironlake_init_clock_gating(struct drm_device *dev)
6452 6453
{
	struct drm_i915_private *dev_priv = dev->dev_private;
6454
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6455

6456 6457 6458 6459
	/*
	 * Required for FBC
	 * WaFbcDisableDpfcClockGating:ilk
	 */
6460 6461 6462
	dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479

	I915_WRITE(PCH_3DCGDIS0,
		   MARIUNIT_CLOCK_GATE_DISABLE |
		   SVSMUNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(PCH_3DCGDIS1,
		   VFMUNIT_CLOCK_GATE_DISABLE);

	/*
	 * According to the spec the following bits should be set in
	 * order to enable memory self-refresh
	 * The bit 22/21 of 0x42004
	 * The bit 5 of 0x42020
	 * The bit 15 of 0x45000
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   (I915_READ(ILK_DISPLAY_CHICKEN2) |
		    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
6480
	dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
6481 6482 6483
	I915_WRITE(DISP_ARB_CTL,
		   (I915_READ(DISP_ARB_CTL) |
		    DISP_FBC_WM_DIS));
6484 6485

	ilk_init_lp_watermarks(dev);
6486 6487 6488 6489 6490 6491 6492 6493 6494

	/*
	 * Based on the document from hardware guys the following bits
	 * should be set unconditionally in order to enable FBC.
	 * The bit 22 of 0x42000
	 * The bit 22 of 0x42004
	 * The bit 7,8,9 of 0x42020.
	 */
	if (IS_IRONLAKE_M(dev)) {
6495
		/* WaFbcAsynchFlipDisableFbcQueue:ilk */
6496 6497 6498 6499 6500 6501 6502 6503
		I915_WRITE(ILK_DISPLAY_CHICKEN1,
			   I915_READ(ILK_DISPLAY_CHICKEN1) |
			   ILK_FBCQ_DIS);
		I915_WRITE(ILK_DISPLAY_CHICKEN2,
			   I915_READ(ILK_DISPLAY_CHICKEN2) |
			   ILK_DPARB_GATE);
	}

6504 6505
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);

6506 6507 6508 6509 6510 6511
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);
	I915_WRITE(_3D_CHICKEN2,
		   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
		   _3D_CHICKEN2_WM_READ_PIPELINED);
6512

6513
	/* WaDisableRenderCachePipelinedFlush:ilk */
6514 6515
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6516

6517 6518 6519
	/* WaDisable_RenderCache_OperationalFlush:ilk */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6520
	g4x_disable_trickle_feed(dev);
6521

6522 6523 6524 6525 6526 6527 6528
	ibx_init_clock_gating(dev);
}

static void cpt_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int pipe;
6529
	uint32_t val;
6530 6531 6532 6533 6534 6535

	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
6536 6537 6538
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
		   PCH_DPLUNIT_CLOCK_GATE_DISABLE |
		   PCH_CPUNIT_CLOCK_GATE_DISABLE);
6539 6540
	I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
		   DPLS_EDP_PPS_FIX_DIS);
6541 6542 6543
	/* The below fixes the weird display corruption, a few pixels shifted
	 * downward, on (only) LVDS of some HP laptops with IVY.
	 */
6544
	for_each_pipe(dev_priv, pipe) {
6545 6546 6547
		val = I915_READ(TRANS_CHICKEN2(pipe));
		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
		val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6548
		if (dev_priv->vbt.fdi_rx_polarity_inverted)
6549
			val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6550 6551 6552
		val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
6553 6554
		I915_WRITE(TRANS_CHICKEN2(pipe), val);
	}
6555
	/* WADP0ClockGatingDisable */
6556
	for_each_pipe(dev_priv, pipe) {
6557 6558 6559
		I915_WRITE(TRANS_CHICKEN1(pipe),
			   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
	}
6560 6561
}

6562 6563 6564 6565 6566 6567
static void gen6_check_mch_setup(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t tmp;

	tmp = I915_READ(MCH_SSKPD);
6568 6569 6570
	if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
		DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
			      tmp);
6571 6572
}

6573
static void gen6_init_clock_gating(struct drm_device *dev)
6574 6575
{
	struct drm_i915_private *dev_priv = dev->dev_private;
6576
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6577

6578
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6579 6580 6581 6582 6583

	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);

6584
	/* WaDisableHiZPlanesWhenMSAAEnabled:snb */
6585 6586 6587
	I915_WRITE(_3D_CHICKEN,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));

6588 6589 6590
	/* WaDisable_RenderCache_OperationalFlush:snb */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6591 6592 6593
	/*
	 * BSpec recoomends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
6594 6595 6596 6597
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6598 6599
	 */
	I915_WRITE(GEN6_GT_MODE,
6600
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6601

6602
	ilk_init_lp_watermarks(dev);
6603 6604

	I915_WRITE(CACHE_MODE_0,
6605
		   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620

	I915_WRITE(GEN6_UCGCTL1,
		   I915_READ(GEN6_UCGCTL1) |
		   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);

	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
	 * gating disable must be set.  Failure to set it results in
	 * flickering pixels due to Z write ordering failures after
	 * some amount of runtime in the Mesa "fire" demo, and Unigine
	 * Sanctuary and Tropics, and apparently anything else with
	 * alpha test or pixel discard.
	 *
	 * According to the spec, bit 11 (RCCUNIT) must also be set,
	 * but we didn't debug actual testcases to find it out.
6621
	 *
6622 6623
	 * WaDisableRCCUnitClockGating:snb
	 * WaDisableRCPBUnitClockGating:snb
6624 6625 6626 6627 6628
	 */
	I915_WRITE(GEN6_UCGCTL2,
		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);

6629
	/* WaStripsFansDisableFastClipPerformanceFix:snb */
6630 6631
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
6632

6633 6634 6635 6636 6637 6638 6639 6640
	/*
	 * Bspec says:
	 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
	 * 3DSTATE_SF number of SF output attributes is more than 16."
	 */
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));

6641 6642 6643 6644 6645 6646 6647 6648
	/*
	 * According to the spec the following bits should be
	 * set in order to enable memory self-refresh and fbc:
	 * The bit21 and bit22 of 0x42000
	 * The bit21 and bit22 of 0x42004
	 * The bit5 and bit7 of 0x42020
	 * The bit14 of 0x70180
	 * The bit14 of 0x71180
6649 6650
	 *
	 * WaFbcAsynchFlipDisableFbcQueue:snb
6651 6652 6653 6654 6655 6656 6657
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN1,
		   I915_READ(ILK_DISPLAY_CHICKEN1) |
		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
6658 6659 6660 6661
	I915_WRITE(ILK_DSPCLK_GATE_D,
		   I915_READ(ILK_DSPCLK_GATE_D) |
		   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
6662

6663
	g4x_disable_trickle_feed(dev);
B
Ben Widawsky 已提交
6664

6665
	cpt_init_clock_gating(dev);
6666 6667

	gen6_check_mch_setup(dev);
6668 6669 6670 6671 6672 6673
}

static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
{
	uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);

6674
	/*
6675
	 * WaVSThreadDispatchOverride:ivb,vlv
6676 6677 6678 6679
	 *
	 * This actually overrides the dispatch
	 * mode for all thread types.
	 */
6680 6681 6682 6683 6684 6685 6686 6687
	reg &= ~GEN7_FF_SCHED_MASK;
	reg |= GEN7_FF_TS_SCHED_HW;
	reg |= GEN7_FF_VS_SCHED_HW;
	reg |= GEN7_FF_DS_SCHED_HW;

	I915_WRITE(GEN7_FF_THREAD_MODE, reg);
}

6688 6689 6690 6691 6692 6693 6694 6695
static void lpt_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	/*
	 * TODO: this bit should only be enabled when really needed, then
	 * disabled when not needed anymore in order to save power.
	 */
6696
	if (HAS_PCH_LPT_LP(dev))
6697 6698 6699
		I915_WRITE(SOUTH_DSPCLK_GATE_D,
			   I915_READ(SOUTH_DSPCLK_GATE_D) |
			   PCH_LP_PARTITION_LEVEL_DISABLE);
6700 6701

	/* WADPOClockGatingDisable:hsw */
6702 6703
	I915_WRITE(TRANS_CHICKEN1(PIPE_A),
		   I915_READ(TRANS_CHICKEN1(PIPE_A)) |
6704
		   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
6705 6706
}

6707 6708 6709 6710
static void lpt_suspend_hw(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

6711
	if (HAS_PCH_LPT_LP(dev)) {
6712 6713 6714 6715 6716 6717 6718
		uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);

		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
	}
}

6719 6720 6721 6722
static void kabylake_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

6723
	gen9_init_clock_gating(dev);
6724 6725 6726 6727 6728

	/* WaDisableSDEUnitClockGating:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
			   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6729 6730 6731 6732 6733

	/* WaDisableGamClockGating:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
			   GEN6_GAMUNIT_CLOCK_GATE_DISABLE);
6734 6735
}

6736 6737
static void skylake_init_clock_gating(struct drm_device *dev)
{
6738
	gen9_init_clock_gating(dev);
6739 6740
}

6741
static void broadwell_init_clock_gating(struct drm_device *dev)
B
Ben Widawsky 已提交
6742 6743
{
	struct drm_i915_private *dev_priv = dev->dev_private;
6744
	enum pipe pipe;
6745
	uint32_t misccpctl;
B
Ben Widawsky 已提交
6746

6747
	ilk_init_lp_watermarks(dev);
6748

6749
	/* WaSwitchSolVfFArbitrationPriority:bdw */
6750
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
6751

6752
	/* WaPsrDPAMaskVBlankInSRD:bdw */
6753 6754 6755
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);

6756
	/* WaPsrDPRSUnmaskVBlankInSRD:bdw */
6757
	for_each_pipe(dev_priv, pipe) {
6758
		I915_WRITE(CHICKEN_PIPESL_1(pipe),
6759
			   I915_READ(CHICKEN_PIPESL_1(pipe)) |
6760
			   BDW_DPRS_MASK_VBLANK_SRD);
6761
	}
6762

6763 6764 6765 6766 6767
	/* WaVSRefCountFullforceMissDisable:bdw */
	/* WaDSRefCountFullforceMissDisable:bdw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
6768

6769 6770
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
6771 6772 6773 6774

	/* WaDisableSDEUnitClockGating:bdw */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6775

6776 6777 6778 6779 6780 6781 6782
	/*
	 * WaProgramL3SqcReg1Default:bdw
	 * WaTempDisableDOPClkGating:bdw
	 */
	misccpctl = I915_READ(GEN7_MISCCPCTL);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
	I915_WRITE(GEN8_L3SQCREG1, BDW_WA_L3SQCREG1_DEFAULT);
6783 6784 6785 6786 6787 6788
	/*
	 * Wait at least 100 clocks before re-enabling clock gating. See
	 * the definition of L3SQCREG1 in BSpec.
	 */
	POSTING_READ(GEN8_L3SQCREG1);
	udelay(1);
6789 6790
	I915_WRITE(GEN7_MISCCPCTL, misccpctl);

6791 6792 6793 6794 6795 6796 6797
	/*
	 * WaGttCachingOffByDefault:bdw
	 * GTT cache may not work with big pages, so if those
	 * are ever enabled GTT cache may need to be disabled.
	 */
	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);

6798
	lpt_init_clock_gating(dev);
B
Ben Widawsky 已提交
6799 6800
}

6801 6802 6803 6804
static void haswell_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

6805
	ilk_init_lp_watermarks(dev);
6806

6807 6808 6809 6810 6811
	/* L3 caching of data atomics doesn't work -- disable it. */
	I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
	I915_WRITE(HSW_ROW_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));

6812
	/* This is required by WaCatErrorRejectionIssue:hsw */
6813 6814 6815 6816
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

6817 6818 6819
	/* WaVSRefCountFullforceMissDisable:hsw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
6820

6821 6822 6823
	/* WaDisable_RenderCache_OperationalFlush:hsw */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6824 6825 6826 6827
	/* enable HiZ Raw Stall Optimization */
	I915_WRITE(CACHE_MODE_0_GEN7,
		   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));

6828
	/* WaDisable4x2SubspanOptimization:hsw */
6829 6830
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6831

6832 6833 6834
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
6835 6836 6837 6838
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6839 6840
	 */
	I915_WRITE(GEN7_GT_MODE,
6841
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6842

6843 6844 6845 6846
	/* WaSampleCChickenBitEnable:hsw */
	I915_WRITE(HALF_SLICE_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));

6847
	/* WaSwitchSolVfFArbitrationPriority:hsw */
6848 6849
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);

6850 6851 6852
	/* WaRsPkgCStateDisplayPMReq:hsw */
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
6853

6854
	lpt_init_clock_gating(dev);
6855 6856
}

6857
static void ivybridge_init_clock_gating(struct drm_device *dev)
6858 6859
{
	struct drm_i915_private *dev_priv = dev->dev_private;
6860
	uint32_t snpcr;
6861

6862
	ilk_init_lp_watermarks(dev);
6863

6864
	I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
6865

6866
	/* WaDisableEarlyCull:ivb */
6867 6868 6869
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

6870
	/* WaDisableBackToBackFlipFix:ivb */
6871 6872 6873 6874
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

6875
	/* WaDisablePSDDualDispatchEnable:ivb */
6876 6877 6878 6879
	if (IS_IVB_GT1(dev))
		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));

6880 6881 6882
	/* WaDisable_RenderCache_OperationalFlush:ivb */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6883
	/* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
6884 6885 6886
	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);

6887
	/* WaApplyL3ControlAndL3ChickenMode:ivb */
6888 6889 6890
	I915_WRITE(GEN7_L3CNTLREG1,
			GEN7_WA_FOR_GEN7_L3_CONTROL);
	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
6891 6892 6893 6894
		   GEN7_WA_L3_CHICKEN_MODE);
	if (IS_IVB_GT1(dev))
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6895 6896 6897 6898
	else {
		/* must write both registers */
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6899 6900
		I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6901
	}
6902

6903
	/* WaForceL3Serialization:ivb */
6904 6905 6906
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

6907
	/*
6908
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
6909
	 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
6910 6911
	 */
	I915_WRITE(GEN6_UCGCTL2,
6912
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
6913

6914
	/* This is required by WaCatErrorRejectionIssue:ivb */
6915 6916 6917 6918
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

6919
	g4x_disable_trickle_feed(dev);
6920 6921

	gen7_setup_fixed_func_scheduler(dev_priv);
6922

6923 6924 6925 6926 6927
	if (0) { /* causes HiZ corruption on ivb:gt1 */
		/* enable HiZ Raw Stall Optimization */
		I915_WRITE(CACHE_MODE_0_GEN7,
			   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
	}
6928

6929
	/* WaDisable4x2SubspanOptimization:ivb */
6930 6931
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6932

6933 6934 6935
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
6936 6937 6938 6939
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6940 6941
	 */
	I915_WRITE(GEN7_GT_MODE,
6942
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6943

6944 6945 6946 6947
	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
	snpcr &= ~GEN6_MBC_SNPCR_MASK;
	snpcr |= GEN6_MBC_SNPCR_MED;
	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
6948

6949 6950
	if (!HAS_PCH_NOP(dev))
		cpt_init_clock_gating(dev);
6951 6952

	gen6_check_mch_setup(dev);
6953 6954
}

6955
static void valleyview_init_clock_gating(struct drm_device *dev)
6956 6957 6958
{
	struct drm_i915_private *dev_priv = dev->dev_private;

6959
	/* WaDisableEarlyCull:vlv */
6960 6961 6962
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

6963
	/* WaDisableBackToBackFlipFix:vlv */
6964 6965 6966 6967
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

6968
	/* WaPsdDispatchEnable:vlv */
6969
	/* WaDisablePSDDualDispatchEnable:vlv */
6970
	I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
6971 6972
		   _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
				      GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
6973

6974 6975 6976
	/* WaDisable_RenderCache_OperationalFlush:vlv */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6977
	/* WaForceL3Serialization:vlv */
6978 6979 6980
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

6981
	/* WaDisableDopClockGating:vlv */
6982 6983 6984
	I915_WRITE(GEN7_ROW_CHICKEN2,
		   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));

6985
	/* This is required by WaCatErrorRejectionIssue:vlv */
6986 6987 6988 6989
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
		   I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

6990 6991
	gen7_setup_fixed_func_scheduler(dev_priv);

6992
	/*
6993
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
6994
	 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
6995 6996
	 */
	I915_WRITE(GEN6_UCGCTL2,
6997
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
6998

6999 7000 7001 7002 7003
	/* WaDisableL3Bank2xClockGate:vlv
	 * Disabling L3 clock gating- MMIO 940c[25] = 1
	 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
	I915_WRITE(GEN7_UCGCTL4,
		   I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
7004

7005 7006 7007 7008
	/*
	 * BSpec says this must be set, even though
	 * WaDisable4x2SubspanOptimization isn't listed for VLV.
	 */
7009 7010
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7011

7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
	 */
	I915_WRITE(GEN7_GT_MODE,
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));

7023 7024 7025 7026 7027 7028
	/*
	 * WaIncreaseL3CreditsForVLVB0:vlv
	 * This is the hardware default actually.
	 */
	I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);

7029
	/*
7030
	 * WaDisableVLVClockGating_VBIIssue:vlv
7031 7032 7033
	 * Disable clock gating on th GCFG unit to prevent a delay
	 * in the reporting of vblank events.
	 */
7034
	I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
7035 7036
}

7037 7038 7039 7040
static void cherryview_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

7041 7042 7043 7044 7045
	/* WaVSRefCountFullforceMissDisable:chv */
	/* WaDSRefCountFullforceMissDisable:chv */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7046 7047 7048 7049

	/* WaDisableSemaphoreAndSyncFlipWait:chv */
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7050 7051 7052 7053

	/* WaDisableCSUnitClockGating:chv */
	I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
7054 7055 7056 7057

	/* WaDisableSDEUnitClockGating:chv */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7058 7059 7060 7061 7062 7063

	/*
	 * GTT cache may not work with big pages, so if those
	 * are ever enabled GTT cache may need to be disabled.
	 */
	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
7064 7065
}

7066
static void g4x_init_clock_gating(struct drm_device *dev)
7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dspclk_gate;

	I915_WRITE(RENCLK_GATE_D1, 0);
	I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
		   GS_UNIT_CLOCK_GATE_DISABLE |
		   CL_UNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(RAMCLK_GATE_D, 0);
	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
		OVRUNIT_CLOCK_GATE_DISABLE |
		OVCUNIT_CLOCK_GATE_DISABLE;
	if (IS_GM45(dev))
		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
	I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
7082 7083 7084 7085

	/* WaDisableRenderCachePipelinedFlush */
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
7086

7087 7088 7089
	/* WaDisable_RenderCache_OperationalFlush:g4x */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7090
	g4x_disable_trickle_feed(dev);
7091 7092
}

7093
static void crestline_init_clock_gating(struct drm_device *dev)
7094 7095 7096 7097 7098 7099 7100 7101
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
	I915_WRITE(DSPCLK_GATE_D, 0);
	I915_WRITE(RAMCLK_GATE_D, 0);
	I915_WRITE16(DEUC, 0);
7102 7103
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7104 7105 7106

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7107 7108
}

7109
static void broadwater_init_clock_gating(struct drm_device *dev)
7110 7111 7112 7113 7114 7115 7116 7117 7118
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
		   I965_RCC_CLOCK_GATE_DISABLE |
		   I965_RCPB_CLOCK_GATE_DISABLE |
		   I965_ISC_CLOCK_GATE_DISABLE |
		   I965_FBC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
7119 7120
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7121 7122 7123

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7124 7125
}

7126
static void gen3_init_clock_gating(struct drm_device *dev)
7127 7128 7129 7130 7131 7132 7133
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 dstate = I915_READ(D_STATE);

	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
		DSTATE_DOT_CLOCK_GATING;
	I915_WRITE(D_STATE, dstate);
7134 7135 7136

	if (IS_PINEVIEW(dev))
		I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
7137 7138 7139

	/* IIR "flip pending" means done if this bit is set */
	I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
7140 7141

	/* interrupts should cause a wake up from C3 */
7142
	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
7143 7144 7145

	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
	I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
7146 7147 7148

	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7149 7150
}

7151
static void i85x_init_clock_gating(struct drm_device *dev)
7152 7153 7154 7155
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
7156 7157 7158 7159

	/* interrupts should cause a wake up from C3 */
	I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
		   _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
7160 7161 7162

	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
7163 7164
}

7165
static void i830_init_clock_gating(struct drm_device *dev)
7166 7167 7168 7169
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
7170 7171 7172 7173

	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
7174 7175 7176 7177 7178 7179
}

void intel_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

7180
	dev_priv->display.init_clock_gating(dev);
7181 7182
}

7183 7184 7185 7186 7187 7188
void intel_suspend_hw(struct drm_device *dev)
{
	if (HAS_PCH_LPT(dev))
		lpt_suspend_hw(dev);
}

7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205
static void nop_init_clock_gating(struct drm_device *dev)
{
	DRM_DEBUG_KMS("No clock gating settings or workarounds applied.\n");
}

/**
 * intel_init_clock_gating_hooks - setup the clock gating hooks
 * @dev_priv: device private
 *
 * Setup the hooks that configure which clocks of a given platform can be
 * gated and also apply various GT and display specific workarounds for these
 * platforms. Note that some GT specific workarounds are applied separately
 * when GPU contexts or batchbuffers start their execution.
 */
void intel_init_clock_gating_hooks(struct drm_i915_private *dev_priv)
{
	if (IS_SKYLAKE(dev_priv))
7206
		dev_priv->display.init_clock_gating = skylake_init_clock_gating;
7207
	else if (IS_KABYLAKE(dev_priv))
7208
		dev_priv->display.init_clock_gating = kabylake_init_clock_gating;
7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242
	else if (IS_BROXTON(dev_priv))
		dev_priv->display.init_clock_gating = bxt_init_clock_gating;
	else if (IS_BROADWELL(dev_priv))
		dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
	else if (IS_CHERRYVIEW(dev_priv))
		dev_priv->display.init_clock_gating = cherryview_init_clock_gating;
	else if (IS_HASWELL(dev_priv))
		dev_priv->display.init_clock_gating = haswell_init_clock_gating;
	else if (IS_IVYBRIDGE(dev_priv))
		dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
	else if (IS_VALLEYVIEW(dev_priv))
		dev_priv->display.init_clock_gating = valleyview_init_clock_gating;
	else if (IS_GEN6(dev_priv))
		dev_priv->display.init_clock_gating = gen6_init_clock_gating;
	else if (IS_GEN5(dev_priv))
		dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
	else if (IS_G4X(dev_priv))
		dev_priv->display.init_clock_gating = g4x_init_clock_gating;
	else if (IS_CRESTLINE(dev_priv))
		dev_priv->display.init_clock_gating = crestline_init_clock_gating;
	else if (IS_BROADWATER(dev_priv))
		dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
	else if (IS_GEN3(dev_priv))
		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
	else if (IS_I85X(dev_priv) || IS_I865G(dev_priv))
		dev_priv->display.init_clock_gating = i85x_init_clock_gating;
	else if (IS_GEN2(dev_priv))
		dev_priv->display.init_clock_gating = i830_init_clock_gating;
	else {
		MISSING_CASE(INTEL_DEVID(dev_priv));
		dev_priv->display.init_clock_gating = nop_init_clock_gating;
	}
}

7243 7244 7245 7246 7247
/* Set up chip specific power management-related functions */
void intel_init_pm(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

7248
	intel_fbc_init(dev_priv);
7249

7250 7251 7252 7253 7254 7255
	/* For cxsr */
	if (IS_PINEVIEW(dev))
		i915_pineview_get_mem_freq(dev);
	else if (IS_GEN5(dev))
		i915_ironlake_get_mem_freq(dev);

7256
	/* For FIFO watermark updates */
7257
	if (INTEL_INFO(dev)->gen >= 9) {
7258
		skl_setup_wm_latency(dev);
7259
		dev_priv->display.update_wm = skl_update_wm;
7260
	} else if (HAS_PCH_SPLIT(dev)) {
7261
		ilk_setup_wm_latency(dev);
7262

7263 7264 7265 7266
		if ((IS_GEN5(dev) && dev_priv->wm.pri_latency[1] &&
		     dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
		    (!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
		     dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
7267
			dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
7268 7269 7270 7271 7272 7273
			dev_priv->display.compute_intermediate_wm =
				ilk_compute_intermediate_wm;
			dev_priv->display.initial_watermarks =
				ilk_initial_watermarks;
			dev_priv->display.optimize_watermarks =
				ilk_optimize_watermarks;
7274 7275 7276 7277
		} else {
			DRM_DEBUG_KMS("Failed to read display plane latency. "
				      "Disable CxSR\n");
		}
7278
	} else if (IS_CHERRYVIEW(dev)) {
7279 7280
		vlv_setup_wm_latency(dev);
		dev_priv->display.update_wm = vlv_update_wm;
7281
	} else if (IS_VALLEYVIEW(dev)) {
7282 7283
		vlv_setup_wm_latency(dev);
		dev_priv->display.update_wm = vlv_update_wm;
7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294
	} else if (IS_PINEVIEW(dev)) {
		if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
					    dev_priv->is_ddr3,
					    dev_priv->fsb_freq,
					    dev_priv->mem_freq)) {
			DRM_INFO("failed to find known CxSR latency "
				 "(found ddr%s fsb freq %d, mem freq %d), "
				 "disabling CxSR\n",
				 (dev_priv->is_ddr3 == 1) ? "3" : "2",
				 dev_priv->fsb_freq, dev_priv->mem_freq);
			/* Disable CxSR and never update its watermark again */
7295
			intel_set_memory_cxsr(dev_priv, false);
7296 7297 7298 7299 7300 7301 7302 7303 7304 7305
			dev_priv->display.update_wm = NULL;
		} else
			dev_priv->display.update_wm = pineview_update_wm;
	} else if (IS_G4X(dev)) {
		dev_priv->display.update_wm = g4x_update_wm;
	} else if (IS_GEN4(dev)) {
		dev_priv->display.update_wm = i965_update_wm;
	} else if (IS_GEN3(dev)) {
		dev_priv->display.update_wm = i9xx_update_wm;
		dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
7306 7307 7308
	} else if (IS_GEN2(dev)) {
		if (INTEL_INFO(dev)->num_pipes == 1) {
			dev_priv->display.update_wm = i845_update_wm;
7309
			dev_priv->display.get_fifo_size = i845_get_fifo_size;
7310 7311
		} else {
			dev_priv->display.update_wm = i9xx_update_wm;
7312
			dev_priv->display.get_fifo_size = i830_get_fifo_size;
7313 7314 7315
		}
	} else {
		DRM_ERROR("unexpected fall-through in intel_init_pm\n");
7316 7317 7318
	}
}

7319
int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
B
Ben Widawsky 已提交
7320
{
7321
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
B
Ben Widawsky 已提交
7322 7323 7324 7325 7326 7327 7328

	if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
		DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
		return -EAGAIN;
	}

	I915_WRITE(GEN6_PCODE_DATA, *val);
7329
	I915_WRITE(GEN6_PCODE_DATA1, 0);
B
Ben Widawsky 已提交
7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343
	I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);

	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
		     500)) {
		DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
		return -ETIMEDOUT;
	}

	*val = I915_READ(GEN6_PCODE_DATA);
	I915_WRITE(GEN6_PCODE_DATA, 0);

	return 0;
}

7344
int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u32 mbox, u32 val)
B
Ben Widawsky 已提交
7345
{
7346
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
B
Ben Widawsky 已提交
7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365

	if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
		DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
		return -EAGAIN;
	}

	I915_WRITE(GEN6_PCODE_DATA, val);
	I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);

	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
		     500)) {
		DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
		return -ETIMEDOUT;
	}

	I915_WRITE(GEN6_PCODE_DATA, 0);

	return 0;
}
7366

7367 7368
static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
{
7369 7370 7371 7372 7373
	/*
	 * N = val - 0xb7
	 * Slow = Fast = GPLL ref * N
	 */
	return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * (val - 0xb7), 1000);
7374 7375
}

7376
static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
7377
{
7378
	return DIV_ROUND_CLOSEST(1000 * val, dev_priv->rps.gpll_ref_freq) + 0xb7;
7379 7380
}

7381
static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
7382
{
7383 7384 7385 7386 7387
	/*
	 * N = val / 2
	 * CU (slow) = CU2x (fast) / 2 = GPLL ref * N / 2
	 */
	return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * val, 2 * 2 * 1000);
7388 7389
}

7390
static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
7391
{
7392
	/* CHV needs even values */
7393
	return DIV_ROUND_CLOSEST(2 * 1000 * val, dev_priv->rps.gpll_ref_freq) * 2;
7394 7395
}

7396
int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
7397
{
7398
	if (IS_GEN9(dev_priv))
7399 7400
		return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
					 GEN9_FREQ_SCALER);
7401
	else if (IS_CHERRYVIEW(dev_priv))
7402
		return chv_gpu_freq(dev_priv, val);
7403
	else if (IS_VALLEYVIEW(dev_priv))
7404 7405 7406
		return byt_gpu_freq(dev_priv, val);
	else
		return val * GT_FREQUENCY_MULTIPLIER;
7407 7408
}

7409 7410
int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
{
7411
	if (IS_GEN9(dev_priv))
7412 7413
		return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
					 GT_FREQUENCY_MULTIPLIER);
7414
	else if (IS_CHERRYVIEW(dev_priv))
7415
		return chv_freq_opcode(dev_priv, val);
7416
	else if (IS_VALLEYVIEW(dev_priv))
7417 7418
		return byt_freq_opcode(dev_priv, val);
	else
7419
		return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
7420
}
7421

7422 7423
struct request_boost {
	struct work_struct work;
D
Daniel Vetter 已提交
7424
	struct drm_i915_gem_request *req;
7425 7426 7427 7428 7429
};

static void __intel_rps_boost_work(struct work_struct *work)
{
	struct request_boost *boost = container_of(work, struct request_boost, work);
7430
	struct drm_i915_gem_request *req = boost->req;
7431

7432
	if (!i915_gem_request_completed(req, true))
7433
		gen6_rps_boost(to_i915(req->engine->dev), NULL,
7434
			       req->emitted_jiffies);
7435

7436
	i915_gem_request_unreference__unlocked(req);
7437 7438 7439 7440
	kfree(boost);
}

void intel_queue_rps_boost_for_request(struct drm_device *dev,
D
Daniel Vetter 已提交
7441
				       struct drm_i915_gem_request *req)
7442 7443 7444
{
	struct request_boost *boost;

D
Daniel Vetter 已提交
7445
	if (req == NULL || INTEL_INFO(dev)->gen < 6)
7446 7447
		return;

7448 7449 7450
	if (i915_gem_request_completed(req, true))
		return;

7451 7452 7453 7454
	boost = kmalloc(sizeof(*boost), GFP_ATOMIC);
	if (boost == NULL)
		return;

D
Daniel Vetter 已提交
7455 7456
	i915_gem_request_reference(req);
	boost->req = req;
7457 7458 7459 7460 7461

	INIT_WORK(&boost->work, __intel_rps_boost_work);
	queue_work(to_i915(dev)->wq, &boost->work);
}

D
Daniel Vetter 已提交
7462
void intel_pm_setup(struct drm_device *dev)
7463 7464 7465
{
	struct drm_i915_private *dev_priv = dev->dev_private;

D
Daniel Vetter 已提交
7466
	mutex_init(&dev_priv->rps.hw_lock);
7467
	spin_lock_init(&dev_priv->rps.client_lock);
D
Daniel Vetter 已提交
7468

7469 7470
	INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
			  intel_gen6_powersave_work);
7471
	INIT_LIST_HEAD(&dev_priv->rps.clients);
7472 7473
	INIT_LIST_HEAD(&dev_priv->rps.semaphores.link);
	INIT_LIST_HEAD(&dev_priv->rps.mmioflips.link);
7474

7475
	dev_priv->pm.suspended = false;
7476
	atomic_set(&dev_priv->pm.wakeref_count, 0);
7477
	atomic_set(&dev_priv->pm.atomic_seq, 0);
7478
}